The nilpotency of elements of the equivariant stable homotopy groups of spheres

By

Kouyemon IRIYE

(Communicated by Prof. H. Toda, Jan. 29, 1981)

Let G be a finite group. Put

$$\omega_G^{\alpha} = \{\Sigma^0, \Sigma^0\}_G^{\alpha}$$

for $\alpha \in RO(G)$ and

$$\omega_G^* = \sum_{\alpha \in RO(G)} \omega_G^{\alpha}$$

which is a graded ring with unity. In this article we will prove

Theorem. Every torsion element of ω_G^* is nilpotent.

Notation and elementary results of [4] are used freely. The author is grateful to Dr. A. Kono for his valuable suggestions.

1. Fixed-point exact sequence

Let G be a finite group, X and Y pointed G-spaces and α an element of the real representation ring RO(G) of G. By $\{X, Y\}_G^{\alpha}$ we denote the abelian group of the stable G-homotopy classes of pointed G-maps of degree α from X to Y.

Put

 $\tilde{\omega}_{G}^{\alpha}(X) = \{X, \Sigma^{0}\}_{G}^{\alpha}$

for a pointed G-space X and $\alpha \in RO(G)$. Let V and W be effective G-modules, that is $V^G = W^G = \{0\}$. Then in a similar way to [1, 2] the G-cofibration

$$S(W)_+ \xrightarrow{\eta_{W,W+V}} S(W \oplus V)_+ \xrightarrow{\xi_{W+V,V}} S(W \oplus V)/S(W) \approx \Sigma^W S(V)_+$$

induces the following exact sequence

(1.1)
$$\begin{array}{c} \cdots \to \tilde{\omega}_{G}^{\alpha+\nu-1}(S(V)_{+}\wedge X) \xrightarrow{\xi^{*}_{W}+\nu,\nu} \tilde{\omega}_{G}^{\alpha+W+\nu-1}(S(W\oplus V)_{+}\wedge X) \\ \xrightarrow{\eta^{*}_{W},w+\nu} \tilde{\omega}_{G}^{\alpha+W+\nu-1}(S(W)_{+}\wedge X) \xrightarrow{\delta_{V,W}} \tilde{\omega}_{G}^{\alpha+\nu}(S(V)_{+}\wedge X) \to \cdots. \end{array}$$

Let U be another effective G-module, then it is easy to check that

(1.2)
$$\xi_{W+V+U,U}^{*} = \xi_{W+V+U,V+U}^{*} \circ \xi_{V+U,U}^{*}$$

(cf. [2], Proposition 2.1, iii)). Thus for fixed $\alpha \in RO(G)$, $\{\tilde{\omega}_{G}^{\alpha+\nu-1}(S(\nu)_{+} \wedge X), \xi_{W+\nu,\nu}^{*}\}$ forms a direct system of abelian groups. Then put

(1.3)
$$\tilde{\lambda}^{\alpha}_{G}(X) = \operatorname{Colim} \tilde{\omega}^{\alpha+V-1}_{G}(S(V)_{+} \wedge X).$$

Let X be a finite dimensional pointed G-complex and consider the following commutative diagram:

Since the fixed-point homomorphism $\phi_G: \tilde{\omega}_G^{a^{H+V-1}} \to \tilde{\omega}_G^{a^{G-1}}(X^G)$ is isomorphic for $|\alpha^H| \ge \dim X^H + 2 - \dim V^H$ for all proper subgroups H of G by [4], Theorem 2.6, passing to the colimit of the above diagram, we get the following exact sequence:

$$(1.4) \qquad \cdots \longrightarrow \tilde{\omega}_{G}^{\alpha^{G}-1}(X^{G}) \longrightarrow \tilde{\lambda}_{G}^{\alpha}(X) \xrightarrow{\delta_{G}} \tilde{\omega}_{G}^{\alpha}(X) \xrightarrow{\phi_{G}} \tilde{\omega}_{G}^{\alpha^{G}}(X^{G}) \longrightarrow \cdots.$$

We call this exact sequence the G-fixed-point exact sequence of ω_G^* . This exact sequence is a special case of the exact sequence of T. tom Dieck [3].

2. Proof of Theorem

Put

$$\omega_G^{2*} = \sum_{\alpha \in RO(G)} \omega_G^{2\alpha},$$

which is a commutative ring with unit. For an element ξ of ω_G^{2*} put

$$S(\xi) = \{1, \xi, \xi^2, ..., \xi^n, ... \}.$$

 $S(\xi)$ is the multiplicative subset of ω_G^{2*} . It is sufficient to prove Theorem for an element of ω_G^{2*} . Thus Theorem is equivalent to the following theorem.

Theorem 2.1. For every torsion element ξ of ω_G^{2*} we have $S(\xi)^{-1}\omega_G^*=0$.

We will prove Theorem 2.1 by induction on the order of G. If $G = \{e\}$, G. Nishida [5] proved the theorem. Hence, fix a finite group G and assume that Theorem 2.1 is valid for all proper subgroups of G.

For a pointed G-space X we put

$$\tilde{\omega}_{G}^{*}(X) = \sum_{\alpha \in RO(G)} \tilde{\omega}_{G}^{\alpha}(X),$$

which is an ω_G^{2*} -module. $f^*: \omega_G^*(Y) \to \omega_G^*(X)$, which is induced by a pointed G-map, is an ω_G^{2*} -module homomorphism and so is the suspension isomorphism $\sigma^V: \tilde{\omega}_G^*(X)$

 $\rightarrow \tilde{\omega}_{G}^{*}(X)$. Moreover for a subgroup *H* of *G* the forgetful homomorphism ψ_{H} : $\omega_{G}^{2*} \rightarrow \omega_{H}^{2*}$ is a ring homomorphism.

Noting these fact we obtain the following lemma by a parallel argument to [4], Lemma 2.3.

Lemma 2.2. Let V be an effective G-module, then

$$S(\xi)^{-1}\tilde{\omega}_{G}^{*}(S(V)_{+}) = 0$$

for any torsion element ξ of ω_G^{2*} .

Proof of Theorem 2.1. If we put

$$\lambda_G^* = \sum_{\alpha \in RO(G)} \tilde{\lambda}_G(\Sigma^0),$$

then it is an ω_G^{2*} -module by definition. Then by Lemma 2.2 $S(\xi)^{-1}\lambda_G^*=0$ since the localization commutes with the colimit.

Since there is the G-fixed-point exact sequence (1.4), there is the exact sequence

$$\lambda_G^* \xrightarrow{\delta_G} \omega_G^* \xrightarrow{\phi_G} \omega^*.$$

Obviously δ_G is an ω_G^{2*} -module homomorphism. Since $\phi_G: \omega_G^{2*} \to \omega^{2*}$ is a ring homomorphism, we may regard ω^* as an ω_G^{2*} -module. Then ϕ_G is an ω_G^{2*} -module homomorphism. Since $S(\xi)^{-1}\lambda_G^*=0$, $S(\xi)^{-1}\omega^*=0$ and the localization preserves exact sequences, $S(\xi)^{-1}\omega_G^*=0$, which completes the proof.

Remark. An element ξ of ω_G^* is a torsion element if and only if $\phi_H(\xi) \in \omega^*$ is a torsion element for all subgroups H of G. This fact is easily showed by a parallel argument to [4].

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY

References

- [1] S. Araki, Forgetful spectral sequences, Osaka J. Math., 16 (1979), 173-199.
- [2] S. Araki and K. Iriye, Equivariant stable homotopy groups of spheres with involutions, I, Osaka J. math., 19 (1982), 1-55.
- [3] T. tom Dieck, Lokalisierung äquivarianter Kohomologie-Theoreien, Math. Z., 121 (1971), 253-262.
- [4] K. Iriye and A. Kono, A note on stable G-cohomotopy groups, J. Math. Kyoto Univ., 21 (1981), 599-603.
- [5] G. Nishida, The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan, 25 (1973), 707-732.