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1. Introduction

The present paper is concerned with the Schreidinger operator

L= — ( n
a +ib i ) 2 +V i n  Rn,ux i -

where b i  a n d  V denote the multiplication operators by real-valued functions bi (x)
and  V(x). b(x)=(b,(x),..., b„(x)) is the magnetic vector potential (thus ro t b re-
presents the magnetic field when n=3) and V(x) is the electric scalar potential. In
their classical work [5], Ikebe and Kato have proved the essential self-adjointness
o f L  on  C (R " )  in the H ilbert space .re--L,(Rn) fo r  an  arbitrary b(x) which is
continuously differentiable and for V(x) in an appropriate class of functions. Re-
cently, the condition on b(x) has been improved considerably by Leinfelder-Simader
[ 9 ] .  In the present paper, for simplicity, we impose the differentiability condition
on b(x) and somewhat strong conditions on the local behavior of V(x) as well as on
its decay rate at infinity, which guarantee the uniqueness of the self-adjoint realization
of L  in .re, and we shall denote it by H . Moreover, the magnetic field is assumed
to tend to zero at infinity (for the study of the Schrbdinger operators with constant
magnetic fields, see Avron-Herbst-Simon [2]). We assume the following conditions
throughout the paper:

( V ) V (x ) is a real-valued measurable function and there exist positive constants
Co , (5 such that I V(x)i C o (1 + lx1) - ' - ‘' for all x e Rn.

(b) bi (x)(j =1,..., n) a re  real-valued C 2  functions a n d  there exist positive
aconstants C,, (5 s u c h  t h a t  B ax;

ab
k • (j, k=1 ,..., n ) satisfies e x ,

I Bi ,(x)I C 0 (1 + lxl) - 3 /2 - '  for all x e Rn.
Logically, the constants Co a n d  .5 in (V ) and (b ) are different. B u t w e  m a y  and
do assume that they a re  identical. M oreover, w e can take (5 so  that 0< 6 <1,
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10 -
2  '  

It is known that these assumptions imply the following properties o f H
akebe-Sait6 [6], Kuroda [8]):

(i) The essential spectrum of H is [0, oo),
(ii) E((0, oo))H is  a n  absolutely continuous operator, where

spectral measure associated with H.
Our purpose in the present paper is to show that H admits a spectral
which needs a stronger assumption on b(x), i.e., the following:

( b ' )  In addition to  (b),

all x E R".
Namely, we shall establish the existence of an unitary operator .F from the subspace
Yea( of absolute continuity for H  onto .1?=L 2 ((0, cc); L 2 (0 )) (0  denotes the unit
sphere in I t" ), which diagonalizes H (Theorem 4.2).

Let us make a  brief sketch of some well-known results about the spectral re-
presentation in the case n = 3  and b =0, i.e., for H =  +  V (see Ikebe [3], [4]).
Let k be a non zero vector in R 3 . A generalized eigenfunction p k(x) fo r  - z1+ V,
which behaves asymptotically like the plane wave e i k 'x  O k ( X ) ,  is obtained by solving
the Lippmann-Schwinger equation

( e i11' I1x-y1(1.2) O k ( x ) -  44(x) -  A   \  V (Y )C c(Y )d Y  •-t7C j R3 Ix —yi

The spectral representation fo r  -  A+ V  can be obtained in  terms of generalized
Fourier transforms

.F f (k )=  (2 0 - 1  k ( x ) f ( x ) d x .
R3

However, this procedure works only for V which decays faster than lx1- 2 - 6  for some
positive (5. Agm on [1] has used a version of the Lippmann-Schwinger equation to
construct the generalized eigenfunctions and has obtained the spectral representation
in the case of short-range V (i.e. V(x)=  '-'3)). On the other hand, in the case
o f  long-range V  which satisfies V(x)=0(lx1 - 1 /2 - 3 ), Ikebe [4] has obtained the
spectral representation by considering the  following lim it, instead o f  using the
generalized eigenfunctions explicitly :

(1.3) s - urn ( r m . .  '1 ) R(.1+ i0)f(r„,•)
m-.00

(strong limit in L 2 (0)), where {r„,} is a  sequence tending to infinity as nz•-co, r m •
stands for r„,w(coEQ), K(x, ).) is a  real-valued function which behaves like Aixl at
infinity and R(1+ 10) denotes the boundary value of the resolvent of H on the upper
side of the positive real axis (see Theorem 2.3 for details).

The spectral representation for Schrbdinger operators with long-range potentials
have been investigated by several authors since [4 ] (e.g. Isozaki [7], Saita [10]).
But it seems that, except for the case of constant magnetic field, the spectral repre-
sentation for H with magnetic vector potentials has not been studied yet.

aB ik k x \
t a X i  

<C 0 (1 + lx1) - 2 - 6  fo r  j, k=  I

E  denotes the

representation,

n and for
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In the present paper, K(x, ).) is of the form ).1x1 — A(x), where A (x) is a certain
function depending only on  b(x), which will be constructed in  §  2 . This function
A (x) has been utilized in Kuroda [8] and, as noticed there, is closely related to the
gauge transformation, which changes the magnetic potential b  into b— grad A, but
does not change the magnetic field. O u r  assumption (6) implies that A (x) can be
chosen so that lb(x) —grad A (x )I. lx1- 1 /2 - 6  for some positive S.

§ 2 is a  preliminary section including the construction of A(x) and the limiting
absorption theo rem . In  § 3, we study the asymptotic behavior of R(.1+ i0)f , that
is, the existence of the limit (1.3) for any sequence { r.}  tending to  infinity . For
this purpose, we need further the following assumption:

( V ')  In addition to (V ), V(x) satisfies I V(x)I + lx!) - 3 1 2 - 6  f o r  all x ER".

Theorem 3.9 asserts that the limit (1.3) exists for f  e L 2 ,1 (i.e. (1+ lx- pf (x) e L 2 (lin))
without taking subsequences if the assumptions (V ') and (b) are fulfilled.

It must be noted that, for obtaining our final result, the spectral representation
theorem, it suffices to show that the limit (1.3) exists for certain specified sequences
f r m l. This is, in fact, what we are going to do  in  § 4 under the assumptions (V)
and (6').

2. Preliminaries.

Throughout the paper we use the following notations:

B r =  {xe11^11x1<r},

E ,.={ x e lin i Ix' >r},

S r =  {X ER"  = r },  (r > 0 ) .

For a eR and a domain G c R", let L 2 ,„(G) denote the Hilbert space of all measurable
functions over G such that

+1 .0 2 2 1 1 1 ( .0 2 d X  < 0 0 .

The L 2  inner product over G will be denoted by

(u, v ) G =1 u(x )v (x )dx ,
G

which makes sense if u e L2 ,„(G) and ye L 2 ,p (G) w ith  a - 0  . 13. When u and y are
vector-valued, we also write

V )G  = p  ) 0 9

J= 1

J=1

If Œ=O or if G =1{ , the subscript a or G will be omitted.
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H 2 , 10 c  is  the set of all locally L 2  functions on R n with locally L 2  distribution
derivatives up to the second order.

Let ai =a/ax i  (j= 1 ,..., n ), grad u =(a,u,..., 0„u), r =Ix ',  .R=x1r=(5c-R „ ) ,
<x, y> = El= i xi yi  and ar ti = grad u > . Then, for z e C\R+ and A.E R+(R+ is the
set of all positive real numbers), several differential operators are defined as follows:

Di =a i +ib i ,

Du = (D i u,..., D„u)= grad u + ibu,

Dr u= < ,  Du>=0,u+i<R, b>u,

D r u= Du-5c-  Dr u,

9 (z )u =D u +( n
2
—

r
1

g,.(z)u=<R, .9(z)u>,

g ± u= 9(A -±i0)u= Du+  n  1  

± ,,.u= <".t ± u> = D
'
 u +  n —  1  u4"- 2 r

where r z  is the square root of z  such that .9"...rz  >0  (i"..= the imaginary part).

Proposition 2 .1 . Suppose the assumption (b) is satisf ied. Define

A (x)= bi(sg)56 i d s  (xeRn).

Then A  is a C 2 function and the following assertions hold:
(1) T here ex ists a constant C such that ID(ciA)1=lb — grad  A I C(1+Ix1)- 1 /  2 - b .

(2) If  the assumption (b') is satisfied, then (1) holds and, in addition, there exists
a c o n stan t C  s u c h  th a t  IL0 (e- iA)1 C(1+1x1) - 1 - b w here  L0 = — E7=, D3= —

1
P ro o f . Since A (x)= x ,,1 b k(tx)dt, A (x) i s  a  C2 function  and, differenti-

k=1 0
ating this by x i  and integrating by parts, we obtain

c ln
0; 41(x)= O bi (tx )dt+ Xk 1 0 1

k i

( O k b i ( iX ) + B ik ( t x ) ) t d t

=1 bi(tx )dt +

1 

t 
 d  

 (b i(tx))dt 0 i (tx)dtJo d t 0

=b ; (x )+ 0 0 J (tx)dt,

where (Pi (x)= xk fti k (x). From  the assumption (b) [resp. (b')], we obtain the
k=-1

following estimate:
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P i (x )I5C(1+1x 1) - 1 1 2 - 8

[la JO i(X )I =  j X  k (a  iB  ik ) (X )I5  CO +

(Here we have used Bi ;  =O.) Hence we have

iaJ A—b,15_ 0
1 10 ; (tx)Idt

(1 +tlxi) - 1 /2 - 6 dt

=C i x
l ( 1+s)-1/2-ads C'(1+1x1)-112-6H o

i(a —  b ;)I = I ( a  J O i (tx))tdt1 5C' (1 + •

Consequently, we obtain the required inequalities by noting that

D(e -  ' A) = i(b — grad A)e - " ,

L o (e - iA )= E {(a J A— bi )2 — i0 (a J A — bi )}

Proposition 2 .2 .  S uppose th a t  th e  assum ption  (b ) is  satisf ied . Let A  b e
a  positiv e num ber, (/) a  sm ooth function on 52 (the u n it sp h ere  in  R ") and
po (r) a sm ooth function such that p 0 (r)=1 (r and p 0 ( r) =0  ( r1 /2 ) .  F o r x e

R n(r--Ix i and co= —x ) ,  let v o (x, /1) be defined by

(2.1) vo(x, ,1) =  c p r1 r -(n-1)i2 e i(0.-r-A(0))0( co p o ( r ) ,

where A  is  as in Proposition 2.1 and C(,1)=tr - 1 / 2 ,1 1 / 4 .  T hen the follow ing as-
sertions hold w ith a constant C  w hich can be taken uniform ly  bounded w hen
varies in a compact set in R+:

(1) ivo(rco)1 C10(w)lr-(11-012,

12 ± vo (rw )1 .C (r - 1 /2 - 6 10(w)1+r - l igrado  01)r - 0 - 1 ) /2 ,

w here g r a d ,  denotes th e  g rad ie n t  o n  Q : grad,= r(grad — .ROO. Hence v d,e
L 2 ,_ ( 1 - 1 - ) / 2 5 e L 2(E ,) f o r an  arb itrary  positive e.
(2) If  the assumption (b') is satisf ied, then (1) holds and in addition

1(4 , 0(m )I C (101 + jgrad, 01+ I A0Dr -

w here  A  is the L aplace-B eltranti operato r on  Q . H ence  (L,—,1)v,i, eL 2 ,(1 4 . )/2

f or suff iciently  small e (0 < < 6/2).

P ro o f . First note that, by simple calculation,

(2.2) 9±(r-0-1)/2ei•A r{ -} )=r-0-0/2eifx rD{ •} ,

D(e - iA)= i(b —grad A )e-m,
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and, since A  is so constructed that ar A---“, b>,

(2.3) <5e, D(e - lA )>= D r (e - 1 A )=0.

The estimate for u4, in  (1) is immediate from (2.1). We have for r  1 , u s in g  (2.2),

(2.4) C (A )9,v 4,=r-
 
( "- " 1 2 e" , ÂrD(e - iA0)

= r - - ( "— " 1 2 Ci s' ID (e — iA )0  - - e—ILA  grad e  4/1

Hence, the estimate for 9 + 4  in (1) follows from (2.4) combined with (1) o f Pro-
position 2.1.

L e t yo ,d,  denote  the  function  r - ( "- 1 ) /2 eL'A r4)(w). T hen  w e  have  by  direct
computation

grad v0 ,4, — (—  n —  + i , R ) 5 4 0 ,4, +r - (" - 1 ) 1 2 elsr'tr 1 grad o  0,

(4 +2,)v — —  ( n - 1 ) ( n - 3 ) A ( I )4r 2

Hence, by noting v4, =C ( 1 .re - iAv0 ,4, and by the use of (2.3), we obtain

(2.5) C(/1)(L0— ) )v 4, = v 0 ,4,L 0 (e - i")-2<grad V 0 ,0 , D(e )>

—(z1v0 ,4, +).110 ,4,)e - iA

(n —1)(n —3) + L o (e - iA)}4)—.2

O •— —
2
—
i

<grado  0 , D (e 4 )>+
A

r2

The required estimate in (2) follows from (2.5) combined with Proposition 2.1.

The following theorem which has been established in Ikebe-Saito [6] is funda-
mental to this paper and will be stated without proof. In what follows e will denote
a positive constant smaller than 6/2.

Theorem 2.3 (L im iting absorption princ ip le ). L e t the  assumptions (V ) and
(b) be satisf ied. T hen the follow ing assertions hold:
(1) L et K  be a bounded dom ain in C \R  such that K, the closure of  K  in C, does
not intersect (— co, 0 ], and let f e  L2 ( I + ) / 2 •  T h e n ,  i f  we denote the resolvent of  H
by  R (z )(z  e K), R (z )f  E L2 L2 , _(1 + )/2  satisfies the inequalities

Ilull--(14-c)/2-5 0 1 f  11(1+ )/2,

11
9

(Z )0(_14-0/2,EI C II.f M (1+0/2.

where C is a dom ain constant independent off .
(2) R (z )f  is continuous in  L2 , _(1+ )/2 w ith respect to z  e C \R  and  f e L 2 . 0 + 0 / 2 ,
and for any  ). >0, the limit
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R (+ i0 ) f = s - lim  R (z ) f
f . z  >0

exists in L2 . _(1 +0/2 in such a way that R(z)f  can be extended to a continuous map
f ro m  C± u R+ (CI = {z GC' +..fir.z>0}) to  L2 , _(1+012. T he inequlaities in (1)
are satisf ied w ith u=R( + i0)f  and  g(z ) replaced by .9(i1+ i0) when .1.e K.
(3) Given .1>0 and f  E L2 ,0  + 0 /2 , R (,.±  i0).f  in  (2 ) solves the following problem
uniquely:

(2.6)

(4) For f , g E L2 ,( + )/ 2  and any  Borel set B  in R+, we have

(E(B )f , g)=  ( R ( ) .+i0 ) f — g)cl.1
B

{(R (.1 .+ i0 )f, g)— (f , R (A + i0)g)}27ri

where E is the spectral m easure associated w ith H. The part of  H in E((0, oo)) is
absolutely continuous.

R em ark . W hen g + u E L2,(_ 1 +6)12[9 _ U G  L 2 _  + 0 / 2 ] ,  U  is said to satisfy the
outgoing [resp. incoming] radiation condition, and R(.1+ i0 )f  [R 1—  i0 ) f l is called
the outgoing [resp. incoming] solution for the equation Lu — .114=f. For example,
if the assumptions (V ) and (b )  are fulfilled and if go denotes (L — ))4, where /.)4, is a
function as in Proposition 2.2, y o  i s  the outgoing solution for (L—À)vo =g o  (thus
R(/) + i0)g o = v ) ,  s in c e  yo  G L2 , _ ( + 0 1 2 , g + llo  E  L 2 (E 1)  a n d  g =(1 , 0 —).)v4, + Vvo  e
L2,(1 + 6)/2 as noticed in Proposition 2.2.

3. Asymptotic behavior of outgoing solutions

As has been seen in (4) of Theorem 2.3, the following quantity is important in
investigating the spectral representation for H:

(3.1) (R(,1+ i0)f—  R(.1— i 0 ) f ,  f )  f o r  f e  L2 , (1+)/2.

We shall utilize the following Green's formula for computing (3.1):

(3.2) 1 B r ( u f — u(.9.4_,,.u)]dS+21/1 lul 2 dS,

where 14 = R ()H - i0 )f . The left-hand side of (3.2) converges to  (3.1) as r— *co. As
remarked after Theorem 2.3, u 4,  in Proposition 2 .2  is  th e  outgoing solution for
(L—))v 4,---g4,  under the assumptions (V ) and (b'), and, by letting f =g o  and  r--*oo
in (3.2), we have

(3.3) ( R(A.-1- i0)g 4, — R ( 1 ,— i0)g g 0 ) = lim Iv 0 12  cIS = Pkili2(n) ,
r  oo S,.

{ L u —  Ilu=f , u eH- - --2,1oenL2,-(1+012>

(A + 10)u E L 2 , ( _1 + 0 / 2 (E 1)•
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where 11 11/ 0) is the norm of L 2 (0) (=the L 2  space over the unit sphere Q ). In the
next lemma and the succeeding propositions, we are going to prove that R().+ i0) f
behaves like vo near infinity and the analogue of (3.3) holds for f  satisfying an ap-
propriate condition under the assumptions (V ) and (b).

Definition 3.1. Let the operator F(.1., r): L 2 ,0 + 0 1 2 -4.. 2 (0 )  be defined by

f  ( 0 ) ) = C ( A .W . - 1)12e - i , ./Ar+iA
( r w ) R t +  i 0 ) f ( r w ) ,

where co E Q, f e  L2 ,0 + 0 /2 and C(.1.)=n- 1 / 2 p /  4.

Lemma 3 . 2 .  Suppose th at  the assum ptions (V ) and  ( b )  are satisfied, f E

+ 0/2 and 9(/1+ i0)R(/1-Ei0)fe L 2 (E 1). Then there exists the following strongL2,(1 
lim it in L 2 (0):

) = lim  F , rlf .

For the proof o f this lemma, we need some formulae and propositions. To
begin with, we consider:

(3.4) F ± ,r (u,

where u, y e H 2 ,1° ,. First, we obtain

d(3.5) v)

=  d   0(.-1)12 e ±i,/Ar+iA( , , )
dr r

(n-1)/2e±i,/i:r+iA.,\
u 1L2(0)

= .s , (
9 ,T r9± , ,u)5dS-F (.2 + ru )( dS,

. s,

where we have used

e r ( r (n--1)/26,±i,Ar+iA t i ) =  r (n-1)12 e ± i,jr+ iA

Moreover, we have

(3.6) D +  n —
r

1 D r +  (n— 1
4 r

(
2
n — 3 )  +

(3.7) 5s,(L 0u +D ,?u+ n ; (  D,u)DdS

<Du, I))>dS—  D , u D , v d S
s, s,

=1
s , 

<D T u, D T v)c/S,

where L 0 = —E D3: (3.6) is obtained by straightforward calculation, and (3.7) is

obtained by differentiating Green's formula
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(L o u , v) 8 ,= (Du, Dv) 8 ,.— L(D ,u)edS

with respect to r and by noting that D = D T  RD,. is an orthogonal sum decomposition.
By the use of (3.5), (3.6) and (3.7) we obtain

(3.8) T ±,r(u, v )= <DT u, D T v>dS-F ( u — (L dS
s, s,

(.2± ,u)( x)dS,

(n  — 1)(n -3 )w h e r e  = v
4r2

Further, taking the upper side of the double sign of

(3.8) and using the relation r-I-2\/i.i and the orthogonal sum decom-
position= D T + i.9 + ,„  we have

(3 . 9 )  (wd  2 \ / ) ,1 ) r + 0 . (u ,  y) 9+v>dS+ — (L J.)u)CdS.

Proposition 3 . 3 .  L e t  u e L2 , _ 1 i  + ,,) 1 2  a n d  9 + U E L2 ,( _ 1+ 0 12(E1). Then th ere
exists a sequence {rm } of positive num bers d iverging to in fin ity as m—, 00 such that

(3.10) r 5 IuI2dS o  a s  m co ,

(3.11) nt oor 1.9.,u12 d S  --0  0  as

P r o o f .  I t  is not difficult to verify that, for an integrable function g over R",
there exists a sequence {r„,} diverging to infinity as ni—■ co such that

rm 1 Ig(x)IdS 0.

Considering this fact, we have the assertion of the proposition.

Proposition 3.4. L e t  th e  assum ption  o f  lemma 3.2 b e  s a t is f ie d . L e t  ye
L2 , _ ( 1 +

)
/2 n H 2 1 0  W ith 9+V  e L ,(E ,) .  Then we have

(3.12) (g + ,,u)edS 0  a s  r co (u= R(.1-1-i0)f).
s,

In  particu lar, w e have by (3.12) w ith y=u, (3.2) and Theorem 2.3

(3.13) lim r)./.112L2101= 1  (R(i.± lO)f — i0).f,f)•

P ro o f . Let F(r) be the right-hand side of (3.9). Then, F(r) is integrable over
(1, o o )  b e c a u se  b y  a ssu m p tio n  .9,u, 2.4.v E L 2 (E,), Pu. (L—).)u = fe  L 2 ," + 0 / 2 ,
y e + 0 / 2 .  Since we can rewrite (3.9) as

_d e21 F(r),
' d r
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we have

(3.14) e 2 i•RrF(r )dr.

Here we have used the existence of a sequence fr„,1 such that r,„—*oo and r + ,,„-4o
as co, which can be verified by an argument similar to the proof of Proposition
3.3 , since ,-- ( '+

)
/2 (.9 +. ,.u )f) is integrable over E ,  a n d  F., (.9+ ,,.u)bdS  ((3.4)).

' s,.

Proposition 3.5. Under the assumption of Lemma 3.2, there exists a function
of(r) such that a(r).1. 0  as r--*co, and for all r and s satisfy ing 1 ..5 ..rs  and for 0 e
H ,(0 )  (=  the set of  L 2  functions over Q with L 2  distribution derivatives up to the
first order), the following inequality  holds:

( 11'.4-( 0 ,  0 ) L 2 ( f 2 ) 1 +  1 ( 1 V - ( r ) 0 ) L 2 ( 9 ) 1

2 (r ) 010 II L2(12) r ' ' 2 II gradnI I„L2(1?)),

where IV + (r) e L 2(Q) are defined by

w + (r
)( ) = 0 » ,0 ,-1 ) /2 e -i ri-iA(r•)

9 + , r u ( r • )

(u = R (2 + i0 ) f , C (2 )=n - ' 1 2 2' 1 4 ).

P ro o f . Let 0 e C '(0 ) ,  v o  b e  as in Proposition 2.2 and F(r) be the right-hand
side of (3.9) with y replaced by yo , i.e.,

(3.15) F ( r) =s r<g +u , g + vo >dS +5
s ,

( Pu — f)v o dS.

Then, since  vo e L 2 , _(1 + ) /2 n g +V o  E  L 2 ( E i )  a s  noted in Proposition 2.2,
the argument in the proof of Proposition 3.4 is applicable to  the case v= vo . That
is, F(r) is integrable over (1, CO )  ,  and we have

(3.16) e2is/Arr+,,.(u, vo ) = e2 i 'Â rF (r )d r .
. r

Moreover, taking the lower side of the double sign of (3.8) and replacing y by vo ,
we have

(3.17) „ (u ,  v o )= s , <DT u, v  >dS +1
s ,

(.9_ „u)(.9± ,„v o )dS

. sr

 ( Pu— f )v o dS.

The right-hand side o f (3.17) coincides with F ( r )  because we have  9 , , , .v o = 0  by
straightforward calculation and  the  orthogonal sum decomposition 9 4. =D T +
gg-f.,r• Hence, we obtain by integrating (3.17),

(3.12) follows from (3.4) and (3.14).

(3.18) v o )— F,(u , v o ) =- , F(r)dr
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On the other hand, (3.4) and the definition of w+ (r) and v to

(3.19) ( w ± (r), (1))1.2(a )= 0 ) 2 rC ) 2 ±
 , r ( ' ,  v d, ) ,

from which, in view of (3.16) and (3.18), the following estimate can be obtained for

I( ll'+(r), OLgod + 1(w-( ) — w_(s), L2(0) i

IF(r)idr

dr1 1<g + u, 2 + c4,›IdS+CY ( 'I f l u t T , I d S + C IfvoldS"
. r S r r . S r r S r

where C is a constant depending only on i.. A ccording to  Schwarz' inequality and
Proposition 2.2 (1), we have

C
 r  r( -1 "2 11 9 -,u lgradoI 4)11L,(0))drdi,,( 0) (r - " 2 - 6 11011L ,( 0)+

c.\ /1 2,,2( ) dr x

X  (, \ r - v -"drilq5d L 2 ( 0 ) + r-2drItgrad0

+r - 1 /2 1!gradn 4)11 L2(9))= C112+ u II Er   11011 L 2 (0 )

dr11611
Jr c2(o) , 7 ,,t,(0)

cr - E1 2 1Iu II -( t+r)/2110 11 L 2 (0 ) ,

13< Cr " -  ) / 2  Ilf II L2(0)dr11011L2(n)

< c r — /2 11f11(14- )12114)11L2 ( 2) •

T h en , if  w e p u t  cx(r)=CW + ull E r +Cr -
■■ —(1 1-e ) /2 If II (  + e )/ 2 ) ,  th e  required

inequality holds fo r  tk e C"(0), a n d  2(01 0 a s  r — *cc s in c e  .g.04 = 3+ R(i.+ i0)f e
L 2 (E 1) by assumption. Finally, the inequality is obtained for 4)G H , (0) by approxi-
mating it by smooth functions.

Proposition 3 .6 .  Let the assumptions ( V) and (b) be satisfied and fe L 2 , 0  + 0 / 2 .

Then, { , - ; ,
1 / 2  grad0 .F(.1, r„,)f}„, is bounded in  L 2 (C2) f o r  any sequence {r„,} which

satisfies (3.10), (3.11) with u i0)f and n=1.

P ro o f . By straightforward computation, we have
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c (
1

1
) gradn  91,1, O f

= r(n+ )/2 , - i,./Ar{grad (e" u) —  V r (emu)}

= r (n+1 )12 e - is '11.-" A  {Du — i(b— grad A)u—.R D r u}

_ r (n+1)12e -isl Ar+iA {D T u —t o  grad A)u}

Hence, by using Proposition 2. I ( I), we have

Ilgradn  ST- r„,)f 1.2(o)

Cfr;:+ 1 )1 2 11 D i -u(r„,•) IIL2(0) + 1. /2 - 6 L 2 ( o ) }

Cr4,1 2 i\ r„,ç 1.9 4.u1 2 d S + \  r ;, 2 1 1 1 1 2  CIS} .
. Sr „, 5„,

Consequently, since e  denotes a positive constant smaller than (5/2, we have the
assertion of the proposition.

Proof of Lemma 3.2. S ee in g  th a t Y.:(;., r)f =(2i \ I ),)- '(w _(r)— w + ( r) ) ,  we
have by Proposition 3.5

(3.20) rlf  <F(/1 , s ) f , 0 )1 , 2(nd

. - 1 / 2 a(r)(114) 11/,(o)+r -

fo r ofi E H 1 (Q) a n d  r, s  (1  5 _  r_ s) . Consequently, (,'()., r ) f ,  0 ) " , ,  is  convergent
when r—+ x . S in c e  {,F()., r) f }  is bounded with respect to  r (Proposition 3.4) and
111(Q) is dense in L 2 (0 ), we have the weak convergence in L 2 (0 ) o f  {.F()., r)f } .
Let ..*-().; f )  denote this weak lim it. T hen , letting co in (3.20), we have

(3.2 I ) IGF(2, —•",()I J ), 04 2(0) 1

4) II L2(0) + " 2 1Igrad0 4) II L2(n)).

Putting r= r„, and r„,)f  in (3.21) and using the boundedness of 1,7 ()„ r)f }
(Proposition 3.4) and Proposition 3.6 f o r  a  sequence {r„,} which satifises (3.10)
and (3.11) with u= R(). + i0)f  a n d  = 1 (the existence of such a sequence is guaranteed
by Proposition 3.3 since  u E L2 , _ ( i + )/ 2  by Theorem 2.3 a n d  g + u E L 2 ( E i )  by
assumption), one can see that there exists a constant M independent of m such that
the following inequality holds:

I(.F R  r,„)f r . ) f ) i  a(r.)M .

According to this and the weak convergence of {3r()., r) f }  to .."( ) .; f ), we have

li m (2 ,  r f  11 2=I I .F ( ;. : f ) 1 1 1 2 (0) ,m . L2(n)

fo r some sequence. {r„,}, SinceII ) fr.., 11L2(f2) converges w hen r — ,c o  by Pro-
position 3.4, we have further

r)f II L(r2)= f )11i:2 w) .

1/2 ligradn  4 Il c,(o))•

r
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From this and the weak convergence, the strong convergence of .F()„ r)f to f)

follows.

Lemma 3.7. Suppose th a t  th e  assumptions ( V ')  a n d  (b) a re  s a tis f ie d . Let

fe  L2 , 1 L2 , 0  + 0 / 2 .  T h e n , in  a d d it io n  to  a ll the  statem ents of Theorem  2.3, we

have

2 (),+i0)R(.1+i0).feL2(E1),

119(),±io)R( , 1±- io)flIE,5c1I.f11,,

where C is  a constant independent of f  and  remains bounded when )1. varies in  a

compact set of R+.

For the proof, we need the following proposition which is a version of Lemma
2.1 in Ikebe-Saito [6].

Proposition 3.8. Assume th a t  V is  a  bounded m easurable function a n d  b . ;

are  co n tin uo u s ly  d iffe re n tia b le . Then, fo r  a n y  u E H 2 1 0 , a n d  R>0, the fo llow ing
inequality ho lds w ith  a  positive constant C independent of u and R:

(3.22) Mpull2B,, C(11u112/32,,+11Lu1121,2„).

P ro o f . F o r  i ,  a  real-valued smooth function with compact support, we have
by partial integration

11D(fru)11 2 = —(Ou, DD((//u))

= —((//u, (//(E Di Di u))-2(1fru, <grad (z10)u)

=(11/u, IPLu)— (0u, Vu)— 2(u grad D(I/iu))+

+211u grad ti/112 — (Ou, (40)u).

Hence, noting that 21(u grad D(tPu))I 211u grad 0112 + -:1-5.- 11D(tPu)112  b y  the use of
Schwarz' inequality, we have

11D( 00 112  R IP  u, 1//Lu)1+1( 1Pu, Vu)1+411u grad (//112 +1(u, (A )u)1.

(3.22) is obtained from this inequality by taking t1/(x)= p(xIR) where p is a  smooth
function on R" such that p(x)= 1(1x1 1) and p(x)=0 2).

P roo f o f Lemma 3.7. Let {z,„} be a  sequence of complex numbers such that
simz„,>0 and as oo. Then for R(z„,)f e L 2  we have by Theorem 2.3

(3.23)M  u m M - ( 1 + 0 / 2 5

(3.24)U rnu = R ( ) . + i 0 ) f  strongly i n  1,
2,—(1+e)12.

Since f =(L—z„,)u„„ applying Proposition 3.8 with u=u„„ we have
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(3.25) 19 (z„,)u„,i 2dx I f  11282 R +Ilum3 2 .1,

with C independent of R, f  and tn. Since u„, e L 2  and fE L2 , 1 , 9 (Z „ ,)1 ( ns e L 2 (E,)
by (3.25). Let p  be  a  smooth function o f  r=lx1 on  iftn such that p(1).---0 and
p (r)= r (r 2). Then, by multiplying (L -z,„)u„,= f by pg,.(z„,)u„, and integrating
by parts, the following equality can be obtained:

f',, Li ( j t m N 7 z 'n ) P +  21 a 0. F19 ( z ") u m12 +

+ ( P
r  -  °I r )(ig (z ,)u ,1 2 -19,.(z„,)u„,1 2 )1dx

= pP u„,9,(z„,)u„,dx + Pfgr(z„,)u„,dxl—
e,

 

"

pBj kgi(Z„,)Um5C'1:147ndX
E l j,k=1

(F o r the  details o f  th e  computation see Ikebe-Saita [6].) From this equality,
-- Op OPnoting  tha t Jim,/ z,„/z > O, = I  a n d  r

P
 - - 0  i f 1.9r(z,Jum12:5-

pP =0(1x1 - " 2 - 6 ) and pBi k =0(lxl -112 ' ) ,  we have by the use of Schwarz' inequality

9(z.,) um II

11<lX1<2 19(Z jU m 1
2 d X  + 1  Ig (Z n i)U m 1 2 d X

E2

5_1 1.9(zJumi2dx+2 (.1”,
\ 
1-z„,)p+ 1 6 9  I.9(z,„)u,,,j 2dx

E2 2  a r )1<r<2

<C 19 (z„,)u„,l 2dx + CI (1 + lx1) -1/2-6 um II 9 (zm)timd El
+

1<ixl<2

CM (II X ) f 11 119  (Z

• 19 (Z m )14,7,12 dX +C ' 01 + Ilf Ili) +1<ixi <2

119(z„,)u„,112e,,

where C, C' are constants depending only on n, p and C o in  the  assumptions ( V')
and (b). Hence, applying (3.25) with R=2 and using (3.23), we have

g(zJumlli, C"Ilf11

Consequently, there exists a  subsequence {m i } su c h  th a t  {g(z„,,)u„, j }  is weakly
convergent in L 2 (E 1 ) to some w e 1.2 (E , ) .  On the other hand, according to (3.24),
{g(z,,,)u„,} converges to  9 .0  in the distributional sen se . Therefore, g + u coincides
with w and we have

119 +14E , lim
.1-00
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We have thus concluded the proof of Lemma 3.7.

We conclude this section with a  theorem which can be obtained by combining
Lemma 3.7 with Lemma 3.2.

Theorem 3.9. Suppose that the assumptions (V') and (b) are satisfied. Then,
there exists an operator ,.(1): L 2 ,1--31,2(Q) (2> 0) such that the following assertions
hold:

(1) =s-lim . 1, r ) f  i n  L 2 (0) ( J e  L 2 ,,).

(2) 119 .(2 )f 112L2(o) —  (R(2-1-10)f , — R(1— i0)f, f) (feL 2 ,1).

P ro o f .  Under the assumptions (V ') and (b), fE L2 , 1 satisfies the assumption of
Lemma 3.2 for every positive number 2 according to Lemma 3.7. Hence, we can
define ,F (2)f by ‘. (2; f)=  Jim r ) f  of Lemma 3.2 which obviously satisfies (1).

(2) follows from (I) and (3.13) of Proposition 3.4.

4. Spectral representation for H

In this section, the spectral representation for H is obtained by means of the next
lemma, a version of Theorem 3.9, where we impose a stronger condition on b but,
instead, relax the condition on V.

Lemma 4.1. Suppose that the  assumptions (V )  and (b') a re  satisfied. T h e n

there exists a  bounded operator ,F( 2): L 2 1 „ ) / 2 - ■L 2 (Q ) (2>0) such that the fol-

lowing assertions hold:

(1) .3 (2)f=  s-u rn( 2 ,  r „ , ) f f E L2, (1+0/2) ,

I I I - 0

where {r„,} is any sequence satisfying

oo,

(4.1) 1R (/1 -F 1.0 )P 2 dS 0,

E
l 19(2-Fi0)R(2+i0)/1 2 dS — ■  0  a s  in oo .

(2) 1 
( R ( A +  i 0 ) f  —II ,F(AVII 2L2(o)= --)7TT

(3) , (i l ) f  is strongly continuous in 2  for a n y  fe  L 2 , ( 1+ 0 /2 .

P ro o f .  L et j e  L 2 ,0  + 0 /2 . By Theorem 2 .3 , u  R(2+ i0)fe
(  t + 0 / 2  

and
.9+ ue L2 . (  _  + 0 /2 .  Therefore, the existence of a sequence { r„,} satisfying (4.1) is
guaranteed by Proposition 3.3 with n=e.

Let 4) E Cœ)(0) and vo =u 4,(x, 1 ) be defined as in Proposition 2.2. Then we have
by Green's formula

R(2— i0)f, f) (feL2,0 + 0 / 2 ).
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(4.2) ((1- ) . )u ,  v (u ,  ( L  ))v 0) e r

u9 + ,,.vo d S -1
s ,

9 +  r uv o dS+2i,,,'A ur o dS.
s, s,

Hence, since (. "(A, Of, 0)1.2(0 )= 0 2 )2 1 u iTo dS (C(A)=7c 1 /2 ).'/4 ) in view of the
s,

definition of yo, and .F(2, r )f  ((2.1) and Definition 3.1), we obtain from (4.2) with
r=r„,

(4.3) (5;(À, r„,)f, 0) 1,2 0  = 9+,ruV;1S—( 

— ((L — A)u, v o ) B rm + (u, (L — A)v o ) B , } .

From (4.1) and the estimates in Proposition 2.2, we have

(4.4) u 94. r vo dS 0, 1 9 4. r ue/T:1, dS O  a s  'It oo.

Because u E  L 2 ,_ ( , , , )12 , (L —  ) )u  f E —2,( I +e1/2,4 ,  E L 2 ,—  + 0 / 2  and (L — ).)v 4, e

L 2 ,( l + e ) /2  (Proposition 2.2), we have in view of (4.4) the following equality by letting
m—)co in (4.3):

1 (4.5) lim CF(A, r)f, (/)) L , ( D ) = { — (f ,  vo ) + (u , (L - A )vo )}.

Similarly, by letting r=r,„ and rn- co in (3.2), we have

1(4.6) firn rm)f1121.21a)=-7)n7- (R(i. + i0 ) f — R ( ) f ) .

Therefore, {, -(A, r„,)fl,„ is  bounded  in  L 242). Hence, since (4.5) holds for
4)e C'(52), which is a dense subspace of L 2(Q), the weak convegence of {,F()., r„,)f}
in L 2 (0 ) fo llow s. Note that this weak limit is independent of the choice of the
sequence {r.} because the right-hand side of (4.5) is so.

Let an operator ..r, (1 ): L 2 , (1 + 0 /2
- 0L 2 ( 0 )  be defined by

(4.7) .F(.1)f = ). , r„,)f

for fe L 2 ,0  + 0 / 2 ,  where Irm l  is any sequence satisfying (4.1). Then we have by
(4.6) and Theorem 2.3 (2)

(4.8) 11.5r W ill i2(o) 2 r
1 (R (.1 .+ i0 )f— f )  c  II f  11?,14-0/2

,

where C is a constant independent off which can be taken uniformly bounded when
A  varies in a compact set in R + .  H ence  3 () ) is a  bounded operator:
L 2 ,0  + e )/2 —*L 2 (Q )•

Let us prove that (4.7) is a strong limit.

Let H o b e  the self-adjoint realization of 1.0 = — D3 in ye = L 2 (1?' ). Then
J= 1

the argument developed so far is applicable to H o . T h a t  is, if R0 (A+i0) denotes the
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boundary value of the resolvent of Ho an d  .F0 (2, r)  is defined a s  .9"(), r) in  Defi-
nition 3.1 with R(2-1- i0) replaced by R0 (2+ i0), we have

(4.6') lirn 2(0) = 1 7 , 1 ( R 0 (A + i0)j . — Ro (A — f
m—.s0

(4.7') 34-(:)(A)f = w-lim Fo(A, vm)f,
m — P C C

for f  e  L ", + 0 ,2 and  fo r a  sequence {r„,} satisfying (4.1) with R + i0) replaced by
R0 (2+ i0), and g -

0 ) )  is a bounded operator: L2, ( 1  + E ) / 2 — ■ 1 , 2 ( 0 ) •  Since Theorem 3.9
applies to H o , { .F0 (A , r)f}  converges strongly in L 2 (0) when o p  i f  f  e L2 , 1. Thus,
from (4.6') and (4.7'), we have

(4.9) <.9-o(1)f /2 (i)) = (Ro(À + i0)f— R 0 (2 — 10)f, f),

for f  e L2 ,1 . But since both sides of (4.9) are continuous in f  e L2 , ( „  0 /2 and since
L2 , 1 is dense in L 2 ,(1 , )/2 , (4.9) holds for all j e  L2 ,11 0 0 • (4 .9 ) combined with
(4.6'), (4.7') leads to  th e  strong convergence of {.F0 (2, r„,)f }  to  .F0 (2 )f fo r  je
L2,(1 + e)I2 '

Next, noting that H = H 0 + V and V is a bounded linear operator: L2 , _  + 0/2 —■

L2,(1 +8)/2 by the assumption (V ), we have, passing to the limit in the usual resolvent
equation,

(4.10) R(A+ i0)— R 0 (.1. +i0)= —  R o (A +i0)V R(A +i0).

H ence , app ly ing  (410) to  fe L h ,0 4 .0 / 2 , w e  h a v e  th e  following equality for
j e L2 , (1 + 0 /2  and u =R .+ i0 ) f e  L2 , _ (1+0/2 :

u= R 0 (A +i0)(f —  Vu).

From the definition of .F0 (2, r) and .F(A , r), we have

.F( 2 ,  O f r ) ( f -  V u ) .

Noting that the condition (4.1) o n  {r„,} is concerned only with u=R (A +i0)f =
Ro (A+ i0)(f—  V u) and  applying th e  result obtained fo r  Ho t o  f— Vu e L 2 ,0 + 0 1 2 ,
we have the strong convergence in L2 (0 ) of the sequence {.F(2, r„,)f} ={ 54.

0 (A, r,„)
( f —  Vu)) f o r  j e L 2 ,0  + 8 1 / 2  and  fo r any sequence { r}  satisfying (4.1). Thus, we
have proved that the weak limit (4.7) is also a strong lim i t .  From (4.6) and the strong
convergence of {.9"(1, r„,)f} , (2) of the lemma follows. Thus we have proved (1)
and (2) of the lemma.

Finally, for obtaining the continuity in 2 of .54-(2)f , it suffices to show the con-
tinuity of (3r(2)f , 0),, ( , ) f o r  a ll (/) E C -(0 )  since 11.53-(2 )f L (o) is continuous in  2
as is seen from the right-hand side of (2) of the lemma and Theorem 2.3. We have
by (4.5)

(4.11) ( r (2 )f , 0)1, 2(Q)

1 • , A )) + (R(A +i0)f( • ), (L—  2)v,( • ,
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Let I  v a ry  in  an interval [ a ,  0'2 ] (0 <a 1 <a 2 < c o ) .  Then we have the following
pointwise estimates by Proposition 2.2:

I vd,(x ,  1) 1 C(1 IX1) - ( "-
1 " ,

I (Lo — /1,)1.-- C(1 - 1- 12C1) -
( n - 1 ) / 2 - 1 - 3 ,

w ith  C  independent of ). e [a l , a2 ]. H ence, since V (x)I_C o (1+1.x1) - ' - 6  a n d
L =L o + V, we have

(1 +ixl) - ( '+olv o (x, 2')— vo (x , 2)12 . 2C(1+ lxI) - "- E,

(1+ lx1)'+ 8 1 (L -2 ')v (x , 1 ')—  (L -2 )v (x , 1)1 2 C ' (1 +1X1) -
n - 2 3 + n ,

fo r  A, A' E [a 1 , a 2 ] . Therefore, noting that according to (2.1) vo (x , 2')—,o (x, 2)
and (L-2')v,p(x, —  2)4(x, 2) as l'-+2  for each x ER ", we have by the use of
the Lebesgue dominated convergence theorem

11v0( • 2 ') —  vo( • 9 2 ) 11-0+0/2 --> 0,

11(L — )v 0( • • —  (L A )v 0( • 111A, .0+8)/2 — +  0 ,

a s  A' —*A (A' , l e  [a 1 , a 2 ]). T h u s ,  v o ( . ,  2 )  a n d  (L—  2)4( • , 2) a re  continuous for
2 > 0  in  L2 , + ( i + ) /2  and L 2 ,( 1 + ) /2 , respectively. Hence, since R (2+ i0)f  is con-
tinuous in  A in L2 , _(1 +)/2 (Theorem 2.3 (2)), we obtain the continuity of ( (2)f ,
0),2 ( o )  from  (4.11). This completes the proof of (3) and thus Lemma 4.1.

We leave the proof of the next theorem, the spectral representation for H, to the
reader, because it can be obtained in the same way as in the proof of Theorem 2.8
and Theorem 3.1 of Ikebe [4], by using Theorem 2.3, Lemma 4.1 and Proposition
2.2.

Theorem 4 .2 .  Suppose that the assumptions (V ) and (b ') are satisfied. T h e n
the following assertions hold:
( 1 )  L et 19„,=E (0 , co) be  the projection onto the subspace .r o c  o f  absolute con-
tinuity f or H .  Let =L 2 4 0 , co); L2 (0)) be the Hilbert space of all L2 (0)-valued
square  integrable functions ov er (0, oo)=R + . Fo r fe  L 2 ,(1  + 0 /2 , w e def ine a
m ap p in g  .f : 11±—>L2 (0 )  by

glic(2) 3 (A ) f  ( 1 > 0),

where ..F(2) is giv en in  Lemma 4.1. Then for f ,  g e L2 , 0  + 0 /2  and f or any  Borel
subset B of R +, we have

(4.12) (E (B )f , g )=1 8 („Ff (2), Fg(2)) 2,2 (g 2 ) d2,

where E  is the spectral m easure f or H . In particular, by  letting B =R + in (4.12),
we have . .F f e ii; and

(Pa c f ,  g )= ( f ,  g 'g ) j - = (.Ff(A ), Fg(2))L 2"2,d2.
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(2) The operator Y  defined above on L 2 . 0 + 0 / 2  can be uniquely extended to whole
(th is w ill be denoted by ,F  a ls o ) .  Y  is  a  p a rtia l iso m e try  w ith  the  in itia l se t

and the f in a l  set .Y? ( i.e . Y . is  a n  u n ita ry  o pe ra to r fro m  Aa
a ,  to Yt? ). F or a

bounded Bore l mea.sureable fu n c tio n  a().) on R ', we have for all fe'.Yfa c .

(Y - cx(H)f)().)= a().).Ff().) a.e.

(3) Let B be a  re la tive ly  compact Borel subset of R + .  Then .F1, is defined by

, - '1,1=5 B ,FG1-)1( , 1)clA f o r  f E ,

which is a  p a rtia l isom etry from  A:9' to  A°„
e
 and we have

.F := E (B ).F*= (Y - E(8))*.

The follow ing inversion form ula holds:

P a f= s - u rn( A ) * ( ,F f  ) ( /1 . ) C 1 /1 .
N-.œ  I I N

(4) ..F().)*: L 2 (52)-1, 2 . _( l „ ) / 2  i s  an  eigenoperator o f H  w ith  eigenvalue ). in  the
sense that for any 4)e l...2 (0), L.F(.1)*4)=AY(2)*(/) in  th e  d is tr ib u tio n a l sense.

R em ark. One can obtain the spectral representation under the  assumptions
(V ') and (b) on the basis of F(A) defined in Theorem 3.9 except for the unitraity
assertion.
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