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1. Introduction

The present paper is concerned with the Schrédinger operator
1 - ( +ib ) in R,
(1.1) £ (o5

where b; and V denote the multiplication operators by real-valued functions b(x)
and V(x). b(x)=(b,(x),..., b,(x)) is the magnetic vector potential (thus rot b re-
presents the magnetic field when n=3) and V(x) is the electric scalar potential. In
their classical work [5], Ikebe and Kato have proved the essential self-adjointness
of L on CF(R") in the Hilbert space s# =L,(R") for an arbitrary b(x) which is
continuously differentiable and for V(x) in an appropriate class of functions. Re-
cently, the condition on b(x) has been improved considerably by Leinfelder-Simader
[9]. In the present paper, for simplicity, we impose the differentiability condition
on b(x) and somewhat strong conditions on the local behavior of V(x) as well as on
its decay rate at infinity, which guarantee the uniqueness of the self-adjoint realization
of L in s#, and we shall denote it by H. Moreover, the magnetic field is assumed
to tend to zero at infinity (for the study of the Schrédinger operators with constant
magnetic fields, see Avron-Herbst-Simon [2]). We assume the following conditions
throughout the paper:

(V) V(x)is a real-valued measurable function and there exist positive constants

Cy, 6 such that |V(x)| S Co(1+|x])~'~¢ for all xe R".
(b) bix)(j=1,...,n) are real-valued C? functions and there exist positive
ob 0b;
o k=t
|Bji(x)| £ Co(1 +|x|)~3/27% for all x e R".

Logically, the constants Cy and J in (V) and (b) are different. But we may and
do assume that they are identical. Moreover, we can take & so that 0<d<l,

constants Co, § such that By = ., n) satisfies
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6;&%. It is known that these assumptions imply the following properties of H
(Ikebe-Saito [6], Kuroda [8]):
(i) The essential spectrum of H is [0, o0),
(i) E((0, c0))H is an absolutely continuous operator, where E denotes the
spectral measure associated with H.
Our purpose in the present paper is to show that H admits a spectral representation,
which needs a stronger assumption on b(x), i.e., the following:

() In addition to (b), "%(")} < Co(1 +|x])=2-5 for j, k=1,...,n and for

all xe R, ’
Namely, we shall establish the existence of an unitary operator & from the subspace
#,. of absolute continuity for H onto 4 =L,((0, 0); L,(2)) (2 denotes the unit
sphere in R"), which diagonalizes H (Theorem 4.2).

Let us make a brief sketch of some well-known results about the spectral re-
presentation in the case n=3 and b=0, i.e., for H=—A4+V (see lkebe [3], [4]).
Let k be a non zero vector in R3. A generalized eigenfunction y,(x) for —4+V,
which behaves asymptotically like the plane wave e*'* = ¢,(x), is obtained by solving
the Lippmann-Schwinger equation
(1.2) B =) =5 | EE V()

. k(X)) =@y (x An RJ*E"_y—l )W(y)dy.
The spectral representation for —A4+V can be obtained in terms of generalized
Fourier transforms

~

Ffk) =m0 P (f(x)dx.

However, this procedure works only for V which decays faster than |x|=2~? for some
positive 5. Agmon [1] has used a version of the Lippmann-Schwinger equation to
construct the generalized eigenfunctions and has obtained the spectral representation
in the case of short-range V (i.e. V(x)=0(]x|7'~%)). On the other hand, in the case
of long-range V which satisfies V(x)=0(|x|"1/27%), Tkebe [4] has obtained the
spectral representation by considering the following limit, instead of using the
generalized eigenfunctions explicitly :

(1.3) s-lim r,, ("~ 1/2e~iKrm D) R(L +i0)f(r,,")

m-—» o0
(strong limit in L,(Q)), where {r,} is a sequence tending to infinity as m—oo, r,,-
stands for r,w(weR), K(x, 1) is a real-valued function which behaves like A|x| at
infinity and R(A+ i0) denotes the boundary value of the resolvent of H on the upper
side of the positive real axis (see Theorem 2.3 for details).

The spectral representation for Schrédinger operators with long-range potentials
have been investigated by several authors since [4] (e.g. Isozaki [7], Saito [10]).
But it seems that, except for the case of constant magnetic field, the spectral repre-
sentation for H with magnetic vector potentials has not been studied yet.
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In the present paper, K(x, 2) is of the form A|x|— A(x), where A(x) is a certain
function depending only on b(x), which will be constructed in § 2. This function
A(x) has been utilized in Kuroda [8] and, as noticed there, is closely related to the
gauge transformation, which changes the magnetic potential b into b—grad 4, but
does not change the magnetic field. Our assumption (b) implies that A(x) can be
chosen so that |b(x)—grad A(x)| <|x|~'/27% for some positive J.

§ 2 is a preliminary section including the construction of A(x) and the limiting
absorption theorem. In § 3, we study the asymptotic behavior of R(44i0)f, that
is, the existence of the limit (1.3) for any sequence {r,} tending to infinity. For
this purpose, we need further the following assumption:

(V") In addition to (V), V(x) satisfies |V(x)|<Co(l +1x])73/27% for all xe R".

Theorem 3.9 asserts that the limit (1.3) exists for fe L, ; (i.e. (1+x])f(x) e L(R")
without taking subsequences if the assumptions (V) and (b) are fulfilled.

It must be noted that, for obtaining our final result, the spectral representation
theorem, it suffices to show that the limit (1.3) exists for certain specified sequences
{r.}. This is, in fact, what we are going to do in § 4 under the assumptions (V)
and (b').

2. Preliminaries.

Throughout the paper we use the following notations:
B,={xeR"| |x|<r},
E,={xeR"| |x|>r},
S,={xeR"| |x|=r}, (r>0).

For « € R and a domain G R", let L, ,(G) denote the Hilbert space of all measurable
functions over G such that

Julizo = (1+1x)u(x)2dx < oo,
The L, inner product over G will be denoted by
(1, 0)g={_u()pl¥)dx,

which makes sense if ue L, ,(G) and ve L, 4(G) with a+=>0. When u and v are
vector-valued, we also write

(u, v)g= i (ujv Uj)c,
Jj=1

n
lulZc= Zl ||uj||§,c-
= '

If «=0 or if G=R", the subscript o« or G will be omitted.
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Hj 4, is the set of all locally L, functions on R* with locally L, distribution
derivatives up to the second order.

Let 0;=0/0x; (j=1,...,n), gradu=(0,u,..., d,u), r=|x|, X=x/r=(%,,..., %,),
{x, y>=21%-1x;y; and du=<X, gradu). Then, for ze C\R* and Ae R*(R* is the
set of all positive real numbers), several differential operators are defined as follows:

D;=0;+ib,,

Du=(D,u,..., D,u)y=grad u+ibu,
- D,u={%, Du)=0,u+i{%, bdu,

Dyu=Du—XD,u,

2(z)u=Du +(n;rl —A/E))?u,

2,(2)u=(X, 2(z)u),

. n—1. . 5
Diu=2(A+i0)u=Du+ > XuTFiJA%u,

n—-1_ _. =
3 u+z\//1u,

Dy u=<(%, Dou)=Du+

where /z is the square root of z such that Sm,/z>0 (F,» =the imaginary part).

Proposition 2.1. Suppose the assumptioh (b) is satisfied. Define
no (x|
4= 3% ("o, s0%,ds (xeR).

j=1

Then A is a C? function and the following assertions hold:
(1) There exists a constant C such that |D(e~i4)|=|b—grad A| < C(1 +|x|)~1/2-9,
(2) If the assumption (b’) is satisfied, then (1) holds and, in addition, there exists
a constant C such that |Lo(e7'*)|SC(1+|x[)"'"%, where Lo=-3",D}=—
T 4oy (@5 ib)2. |
Proof. Since A(x)= i‘, kal b (tx)dt, A(x) is a C? function and, differenti-
k=1 0 .
ating this by x; and integrating by parts, we obtain
1 n 1
0;A(x)= SO b;(tx)dt+ k; X So (0xbj(tx) + By (tx))tdt
Yo axdt+ (b x))dr+ (| @ (tx)d
(' bexar+ | Lo exnar+ | 0 x)an

b, +( o, a0 a1
(o]
where @,(x)= i‘, x;Bj(x). From the assumption (b) [resp. (b')], we obtain the
k=1
following estimate:
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[P ;(x)| S C(1+|x[)~1/2-¢
[lo;®,(x)|= |§, x,.(0;B,;,)(x)| SC(1+]|x)~1-4].

(Here we have used B;;=0.) Hence we have

1
10,4—b)| ggo | ,(tx)|dt
gcg' (1+1]x])~1/2-4dt
0

|x]
—cir go" (14 5)~12-3ds £ C"(1 + | x]) ™1/~

[10,(0,4—b))| = |S; (8, (ex))tdi] £C' (1+]x])~12].

Consequently, we obtain the required ineqﬁalities by noting that
D(e~i4)=i(b—grad A)e 4,
Lo(e™i4)=> {(8;4—b;)?—i0;(0;A—bj)}e™ 4.
J
Proposition 2.2. Suppose that the assumption (b) is satisfied. Let 1 be

a positive number, ¢ a smooth function on Q (the unit sphere in R") and
po(r) a smooth function such that py(r)=1 (r=1) and py(r)=0 (r=1/2). For xe€

R”<r=|x| and w=%), let vy(x, A) be defined by

@n 0y, 2) = C(D) == DIzEI Ao () po ),

where A is as in Proposition 2.1 and C(A)=n"1/2)Y4 Then the following as-
sertions hold with a constant C which can be taken uniformly bounded when A
varies in a compact set in R*:

(1) |04 (r)| SCl(w) |12,
|2.,0,(r®)| < C(r11273| ¢ (w)| + r~|gradg $|)r~ =172,

where grad, denotes the gradient on Q: grad,=r(grad—%0,). Hence v,€
Ly _(1+ey20 2 +V4€ Ly(E,) for an arbitrary positive &.
(2) If the assumption (b’) is satisfied, then (1) holds and in addition

—1

[(Lo—A)v,(ro)| SC(1¢|+|gradg ¢| + | Al "z =13,

where A is the Laplace-Beltrami operator on Q. Hence (Lo—A)0y€ Ly 1+e2
for sufficiently small € (0<&<4/2). ‘

Proof. First note that, by simple calculation,
(2.2) @+(,.—(n—1)/2ei./1r{,}) — ,—(n—x)/ieiﬁ‘rl){ . }',
D(e"i4)=i(b—grad A)e 4,
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and, since A is so constructed that 4,4 =<{X, b),

(2.3) (X, D(e”i4)>= D, (e"i4)=0.

The estimate for v, in (1) is immediate from (2.1). We have for r>1, using (2.2),

(2.4) C(2) D40 y=r(n=Di2givir D(e=iAgh)
—(n— i . emid
=rmomtnzgiied ple=iyg+ £ grad, )

Hence, the estimate for 2,0, in (1) follows from (2.4) combined with (1) of Pro-
position 2.1.

Let vy, denote the function r~("=D/2¢ivir(w). Then we have by direct
computation

n—1
2r

grad vy 4= < - + z\/i)ivo_d, +r'("‘‘)/Ze'\"'i’—l_—gl'adQ ®,

—1)(n—3 o A
(A+l)vo,¢=—_(’i%_)vo,¢_r (n 1)/2ex¢zr,_,2¢__

Hence, by noting vy=C(1)~'e"i4v, , and by the use of (2.3), we obtain
(2.5) C(A)(Lo—A)vg=1vo,4Lo(e™'4) —2{grad vg, 4, D(e™4))

—(Avg, 4+ 4vg, 4)e 4

=r—(rr—l)/ZeiJ—Ir[{e—iAin_ ],)'g”v“3) +L0(e"")}¢ _

__:);L<grad9 ¢, D(e—u)>+/1_§be_u]

The required estimate in (2) follows from (2.5) combined with Proposition 2.1.

The following theorem which has been established in Tkebe-Saité [6] is funda-
mental to this paper and will be stated without proof. In what follows ¢ will denote
a positive constant smaller than J/2.

Theorem 2.3 (Limiting absorption principle). Let the assumptions (V) and
(b) be satisfied. Then the following assertions hold:
(1) Let K be a bounded domain in C\R such that K, the closure of K in C, does
not intersect (—c0,0], and let fe L, (\1,),2. Then, if we denote the resolvent of H
by R(z) (ze K), u=R(2)fe Ly L, _(y )2 Satisfies the inequalities

[l ”—(1+c)/2 < C||f||(1+c)/2,

||9(Z)u||(—1+e)/2,5. < C“f“(l+c)/2a

where C is a domain constant independent of f.
(2) R(2)f is continuous in L, _ 4., with respect to ze C\R and fe L, .2,
and for any 2>0, the limit
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R(21+i0)f= s-litln R(2)f

z
t Suz>0

exists in Ly _ (4,2 in such a way that R(2)f can be extended to a continuous map

from CEURY (Ct={zeC| £ Fmz>0}) to L, _(14.,,- The inequlaities in (1)

are satisfied with u=R(A+i0)f and 2(z) replaced by @(A+i0) when LeK.

(3) Given A>0 and fe L, 4,2, R(AI0)f in (2) solves the following problem

uniquely: ‘
l Lu—Au=f, u€H, 1,6MNL;, (1452,

(2.6)

D (ALi0)ue Ly (—146)2(Ey).

(4) Forf,geL,+c2 and any Borel set B in R*, we have

(EB)f, 9) =tz | (RG+10)f~ RO=10)1, )2

— 7 | {RGHI0)f, 9)= (£, RO+i0)g)}d,

2ni

where E is the spectral measure associated with H. The part of H in E((0, o)) is
absolutely continuous.

Remark. When Q,uel, _ . p[2-uel, _ .,,], u is said to satisfy the
outgoing [resp. incoming] radiation condition, and R(A+i0)f [R(1—i0)f] is called
the outgoing [resp. incoming] solution for the equation Lu—Au=f. For example,
if the assumptions (V) and (b') are fulfilled and if g, denotes (L — A)v,, where v, is a
function as in Proposition 2.2, vy is the outgoing solution for (L—A)v,=g, (thus
R(A+i0)gy=04), since v4€ Ly _ (1152 DiVs€L(E)) and g,=(Lo—A)v,+ Vo, €
L; (142 as noticed in Proposition 2.2.

3. Asymptotic behavior of outgoing solutions

As has been seen in (4) of Theorem 2.3, the following quantity is important in
investigating the spectral representation for H:

3.1 (R(A+i0)f— R(A=i0)f, f) for feL, 142

We shall utilize the following Green’s formula for computing (3.1):
(3.2) SB (uf—=fii)dx= SS (2, Wil —u(D, ,u)]dS+2i\/ % Ss |u|%dS,

where u=R(A+i0)f. The left-hand side of (3.2) converges to (3.1) as r—o0. As
remarked after Theorem 2.3, v, in Proposition 2.2 is the outgoing solution for
(L—A)vy=g, under the assumptions (V) and (b’), and, by letting f=g, and r—oo
in (3.2), we have

CROiai . /i
(33) o7 (RU+i0)g,— RG-i0)gy, g9)=lim Y2 { |0, 1245 =191,

T
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where || ||, is the norm of L,(Q) (=the L, space over the unit sphere Q). In the
next lemma and the succeeding propositions, we are going to prove that R(4+i0)f
behaves like v, near infinity and the analogue of (3.3) holds for f satisfying an ap-
propriate condition under the assumptions (V) and (b).

Definition 3.1. Let the operator F(4, r): L, 4.2~ L,(2) be defined by
F (A, r)f(w)=C(A)rin=DI2g=ivirtidre) R} +i0) f (rw),
where we Q, fe L, (14,2 and C(A)=n"1/241/4,

Lemma 3.2. Suppose that the assumptions (V) and (b) are satisfied, fe
Ly 1402 and D(A+i0)R(A+i0)fe Ly(E,). Then there exists the following strong
limit in L,(9):

F(4; f)=lim F (4, .

For the proof of this lemma, we need some formulae and propositions. To
begin with, we consider:

(3.4) I (u v)sgs (D,.,u)5dS,
where u, ve H, j,.. First, we obtain

35 Er, w0

r

d o _ s tiies
=_d_r(,.(n 1)/Ze:ti./ﬂ.r+|A(9i'ru)’ ,.(n 1)/ eiuJAr+4AU)L2(Q)

=g (9;,,9¢_,u)5d5+§s (D4 u)(F7 0)dS,
J S, JSr

where we have used

ar(r(n—x)/ze:ti./‘Ir+iAu) = ,.(n—l)/ZeiiJTr+iA9;‘ru.

Moreover, we have

(3.6) D4, @, = D3+ "~ Lp + =) 4

(3.7) S (L0u+D3u+—n:1D,u>ﬁdS
Sr
=S (Du, D_v>dS—S D,ubDvdS
Sr Sy

=§ (Dqu, Dyv)ds,
Sr

where Lo=—Y D3:(3.6) is obtained by straightforward calculation, and (3.7) is

obtained by differentiating Green’s formula
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(Lo, 0),= (Du, Do)y~ (Dw)ids
JSy

with respect to r and by noting that D= D; + %D, is an orthogonal sum decomposition.
By the use of (3.5), (3.6) and (3.7) we obtain

(3.8) %ri_,(u, v)=g (Dyu, DTE>ars+gS (Vu—(L—7)u)idS
S, S,

+gs (24 ,u) (D5 ,0)dS,

where V =V+

(’7_—14)’(;':” Further, taking the upper side of the double sign of

(3.8) and using the relation @__,=9+,,-+j2\/7'.i and the orthogonal sum decom-
position 2, =Dy + %2, ,, we have

(3.9) ( j

r

F2JA) 0= (Do, Fvyds+ | (Pu-(L-2wids.

Proposition 3.3. Let uel, _(,.+,, and D,uel,_ ., ,(E)). Then there
exists a sequence {r,} of positive numbers diverging to infinity as m—oo such that

(3.10) r;,‘g |u)?dS — 0 as m — 0,

rm

G.11) r,'l,g‘ |9, ul?dS — 0 as m— w.

D n

Proof. It is not difficult to verify that, for an integrable function g over R",
there exists a sequence {r,,} diverging to infinity as m— oo such that

rf lgtolas —o.

m

Considering this fact, we have the assertion of the proposition.

Proposition 3.4. Let the assumption of lemma 3.2 be satisfied. Let ve
Ly (1462 N Hy oo with 2,0€ Ly(E,). Then we have

(3.12) Ss (2, u)idS — 0 as r— o  (u=R(A+i0)f).
In particular, we have by (3.12) with v=u, (3.2) and Theorem 2.3
(3.13) im [ (4, r)f 100 = 37 (RGAIOVf = RG. =0V f).
Proof. Let F(r) be the right-hand side of (3.9). Tllen, E(r) is integrable over
(1, ©) because by assumption Z,u, D,veLy(E,), Vu.(L-Au=feL, ..

V€L, _(1+,/2- Since we can rewrite (3.9) as - .

) 7;_1; (e2i./7rr+,’) — e2i./7;'rF(,.)’
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we have

(3.14) I - —S“’ 2V E(r) dr.

r

Here we have used the existence of a sequence {r,} such that r,—co and ry, —0
as m— o0, which can be verified by an argument similar to the proof of Proposition

3.3, since r~(1*22(g, )T is integrable over E, and F+‘,=S (2, ,1)idS ((3.4)).
S,
(3.12) follows from (3.4) and (3.14).

Proposition 3.5. Under the assumption of Lemma 3.2, there exists a function
o(r) such that a(r) | 0 as r—oo, and for all r and s satisfying 1<r<s and for ¢ €
H () (= the set of L, functions over Q with L, distribution derivatives up to the
first order), the following inequality holds:

[004(7)s @) Lyl +10v-(F) = w_(5), @)L,
Sa(r)(IPllL,e +77"2lgradn @l L))

where w . (r)e L,(Q) are defined by

wi(r)( - )=C(A)r=DI2emivirtidirig,  y(r.)

(u=R(A+i0)f, C(A)=n""12)1/4),

Proof. Let ¢ e C*(Q), v, be as in Proposition 2.2 and F(r) be the right-hand

side of (3.9) with v replaced by v,, i.e.,
(3.15) F(r)=gsr<9+u, .@+v¢>dS+Ssr (Pu—1)v,dS.

Then, since vgyel, (1402 NHy e D4vs€L,(E)) as noted in Proposition 2.2,
the argument in the proof of Proposition 3.4 is applicable to the case v=v,. That
is, F(r) is integrable over (1, o0), and we have

. x —
(3.16) eXivarly (u, vy)= —g e2iNArF(rydr.
Moreover, taking the lower side of the doublc sign of (3.8) and replacing v by vy,

we have

(3.17) ’Zz‘ir"r-v'(“’ u¢)=35r (Dyu, DT'z}'¢>dS+gSr(g_,,u)(gﬂ,o;)ds

+Ssr(Vu—f)v4,dS.

The right-hand side of (3.17) coincides with F(r) because we have 2. ,0,=0 by
straightforward calculation and the orthogonal sum decomposition 2,=D;+
%2, ,. Hence, we obtain by integrating (3.17),

(3.18) o, vg) =T (u, u¢)=S’ Firdr  (1<r<s).
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On the other hand, (3.4) and the definition of w,(r) and v, leads to
(3.19) (Wi (r)y @)y =C(A)2T 4 (u, vy),

from which, in view of (3.16) and (3.18), the following estimate can be obtained for
1<r<s:

[0047), ) sl + 100 () =1 (5), @) 00|

gcgw \F(r)|dr

IIA

ngdrg KZuu, Frrpplas+c | ar |17u17¢,|ds+cg°°d,-g | foqldS
Jr Sr r J Sy Jr Sr

Il + 12 + 13a

where C is a constant depending only on 4i. According to Schwarz’ inequality and
Proposition 2.2 (1), we have

I, §CS r VI @ ul ) (r 2 G Ly + 7t Igradg @l L)) dr

LN IPAT
x <\/S P2 bl 0+ ‘/S, r*drlgradg d’”"""’)

8 _
=Cl@ule (55 19l lgradn Ol )
sl
BEC] Ay dr
r

< C,.—e/Z||u||_“+“/2||¢”Lz(!))’

a
l,gcg PO L indr B e

r

éCr‘”“IIfII(.+5)/zll¢HL,(m-

Then, if we put w(r)=ClD ullg, +Cr e 2(Jul -+ o2+ 1 fll(1 +22). the required
inequality holds for ¢ € C*(Q), and «(r) L 0 as r—oo since 2,u=2,R(.+i0)fe
L,(E,) by assumption. Finally, the inequality is obtained for ¢ € H,(2) by approxi-
mating it by smooth functions.

Proposition 3.6. Let the assumptions (V) and (b) be satisfied and fe Ly 1 +ey2-
Then, {r;''2gradg F(, r,)f}, is bounded in L,(Q) for any seqiience {r,} which
satisfies (3.10), (3.11) with u=R(A+i0)f and n=1.

Proof. By straightforward computation, we have
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oty Brada FOL NS

=+ DI2g=ivir{orad (eifu) — X0,(e'4u)}
=t D2e=ivirtial Dy —j(b—grad A)u — % D,u}
=yt 2=iVAr+iAl{ Dy — i(b—grad A)u}.
Hence, by using Proposition 2.1 (1), we have
lgradg F (4, rp) fllLy2)

< C{’:n"ﬂ "2 Dru(r,) | L2(R) +r:,/2_6||u(’m') ”Lz(m}

scr |

v O,

I.@+u|2dS+\/r;,2"g julds}.

Y Orm

Consequently, since & denotes a positive constant smaller than 6/2, we have the
assertion of the proposition. ’

Proof of Lemma 3.2. Seeing that Z(/, r)f= (21‘\/’7:)"(“’_(;')—w+(r)), we
have by Proposition 3.5
(3.20) (F (L N f=F L ), &)yl
<272a(r) (1@l Loy +r7 2 gradg @l Lya))-

for e H(R) and r.s (1=r=<s). Consequently, (F(4, r)f, ¢),a is convergent
when r—o0. Since {#(/, r)f} is bounded with respect to r (Proposition 3.4) and
H,(Q) is dense in L,(R2), we have the weak convergence in L,(Q) of {#(/, r)f}.
Let #(/; f) denote this weak limit. Then, letting s— o0 in (3.20), we have

(3.21) (F (A ) f=Fif), @) yn)l
SAT2a(r) (@l Ly + 7~ 2] gradg @l Ly0))-

Putting r=r,, and ¢ =% (4, r,)f in (3.21) and using the boundedness of {F (4, r)f}
(Proposition 3.4) and Proposition 3.6 for a sequence {r,} which satifises (3.10)
and (3.11) with u = R(A+i0)f and n =1 (the existence of such a sequence is guaranteed
by Proposition 3.3 since uel, _(;+,,, by Theorem 2.3 and 2,ueL,(E,) by
assumption), one can see that there exists a constant M independent of m such that
the following inequality holds:

(F (A r)f = F (2 f), F(4 rp) ) Salrn) M.

According to this and the weak convergence of {F (4, r)f} to F(4; f), we have

11_!2 | & (4. "m)f“i,(m:‘ |F i f) ”i;(nv

for some sequence. {r,}. Since | F(%, r)fllLq) converges when r—oo by Pro-
position 3.4, we have further

1{}2 | # (4, ")f"izm)= |F(4: f) ||2Lz(_m~
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From this and the weak convergence, the strong convergence of F(4, r)f to #(/: f)
follows.

Lemma 3.7. Suppose that the assumptions (V') and (b) are satisfied. Let
fe€Ly Ly 1 +e2- Then, in addition to all the statements of Theorem 2.3, we
have ' »

2(ALi0)R(A£i0)fe L,(E)),
[2(A£i0)R(Ai0)fg, =CIfI,

where C is a constant independent of f and remains bounded when /. varies in a
compact set of R*.

For the proof, we need the following proposition which is a version of Lemma
2.1 in Ikebe-Saito [6].

Proposition 3.8. Assume that V is a bounded measurable function and b;
are continuously differentiable. Then, for any ue H, ,,. and R>O0, the following
inequality holds with a positive constant C independent of u and R:

(3.22) IDul}, = Clul},+ I Lullh,,)

Bar

Proof. For ¢, a real-valued smooth function with compact support, we have
by partial integration

IDWu)|*= —(Yu, ; D;D;(Yu))
== Wu, Y(¥ D;D;uw) = 2(pu, (grad §, Dup) = (Yru, (Ah)u)
=(Yu, YLu)— (Yu, yVu)—2(ugrad y, D(Yu))+
+2lugrad 2= (Yu, (4Y)u).

Hence, noting that 2|(u grad y, D(Yu))| <2|ju grad ¢||2.+';1)“||D(l[/ll)|!2 by the use of
Schwarz’ inequality, we have

“;*IID(l//u)Ilzél(lﬂu. YLw) |+ |(Yu, YVu)| +4llugrad Y|+ |(Yu, (4¢)u)|.

(3.22) is obtained from this inequality by taking ¥(x)=p(x/R) where p is a smooth
function on R" such that p(x)=1(]x|£1) and p(x)=0 (|x|=2). '

Proof of Lemma 3.7. Let {z,} be a sequence of complex numbers such that
FImz,>0 and z,—A as m—oo. Then for u,=R(z,)feL, we have by Theorem 2.3

(3.23) ltmll -1+ 2 S CIS N 14y 2 S CU S N
(3.24) Uy, —> u=R(A+i0)f strongly in L, _(;4,).

Since f=(L- z,,)u,,, applying Proposition 3.8 with u=u,, we have
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(3.25) Sl<|x|<R 12 (zp)unldx SCLfIByn + Nl B0

with C independent of R, f and m. Since u,eL, and feL,,, D(z,)u, € Ly(E,)
by (3.25). Let p be a smooth function of r=|x| on R” such that p(1)=0 and
p(r)=r (r22). Then, by multiplying (L—z,)u,,=f by p2,z,)u, and integrating
by parts, the following equality can be obtained:

S [I(Jm\/z,,,)p+ : a-- }I@(z,,,)u,,,l +

P _0p 2 2 1
(£ =219l = 12, o) |dx
——a | oVugauds [+ 2| @ c)udx]-
E, . LJE,
_j”’I:S i ijkgj(zm)umx’ku_mde'
E, j.k=1 .

(For the details of the computation see lkebe-Saito [6].) From this equality,
noting that Sm/z,,>0 op =1 and »f—— %f::O if r22, |2z, u,|*<12(z,)u,.)?

’ 6
pV =0(]x|~1/2-%) and pBj,=0(|x|7'/27%), we have by the use of Schwarz’ inequality

12 (z)unll2,
=§ 2 nunldy+ | 19,2y
1<|x|<2 Ez

IIA

SI 1] zlg(zm)u,,,lzdx+"g <(‘l’”\/zm)p+ L ap >|9(Z,")ll,,,, dx

IIA

I L O e TR R P ETER P P
I<|x|<2

+CIA+ DS 12 (z) umll g,

IIA

CS:<| <2 |2 (2 tt|?dx +C (|2 1402+ 111D +

+% ”9(zm)um“%,,
where C, C’ are constants depending only on n, p and C, in the assumptions (V')
and (b). Hence, applying (3.25) with R=2 and using (3.23), we have
12 (zm)unmllE, <C"IfII3.

Consequently, there exists a subsequence {m;} such that {2(z, )u,,} is weakly
convergent in L,(E,) to some we L,(E,). On the other hand, according to (3.24),
{2(z,)u,,} converges to 2, u in the distributional sense. Therefore, 2,u coincides
with w and we have

| Dsullg, lim inf | D (z, Y, lle, S C"ILf 1.
Jj—o®
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We have thus concluded the proof of Lemma 3.7.

We conclude this section with a theorem which can be obtained by combining
Lemma 3.7 with Lemma 3.2.

Theorem 3.9. Suppose that the assumptions (V') and (b) are satisfied. Then,
there exists an operator F(2): Ly | —Ly(2) (~>0) such that the following assertions
hold:

(1) FO)=slimF (A, r)f in L,(Q) (feL,,).

®) 1F (D f = e (RGHi0)f~ RG~i0Vf, f)  (fELy,y).

Proof. Under the assumptions (V') and (b), fe L, , satisfies the assumption of
Lemma 3.2 for every positive number A according to Lemma 3.7. Hence, we can
define #(2)f by F(2; f)=Ilim F(2, r)f of Lemma 3.2 which obviously satisfies (1).

r—»o

(2) follows from (1) and (3.13) of Proposition 3.4.

4. Spectral representation for H

In this section, the spectral representation for H is obtained by means of the next
lemma, a version of Theorem 3.9, where we impose a stronger condition on b but,
instead, relax the condition on V.

Lemma 4.1. Suppose that the assumptions (V) and (b’) are satisfied. Then
there exists a bounded operator F(2): Ly 44,2, Ly(Q) (2>0) such that the fol-
lowing assertions hold:

(I) '9-(;*).f=S_l'_i’?r:1 f(}w rm).f (fe LZ,(I-H:)/Z)v

where {r,} is any sequence satisfying

Fy — 0,

m

r{:

S |2 (7 +i0)R(.+i0)f2dS — 0 as  m—s oo.

@ NFO =57 (R0 f~ RG=IOVf, f) (€L, (1402

3) F(A)f isstrongly continuous in 2 for any feL, 14,2

Proof. Let fe&Lj(i4.2- By Theorem 2.3, u=R(Z+4i0)feL; _( 4+, and
Diuel, 4, Therefore, the existence of a sequence {r,} satisfying (4.1) is
guaranteed by Proposition 3.3 with n=s¢.

Let ¢ € C*(Q) and v, =vy(x, 1) be defined as in Proposition 2.2. Then we have
by Green's formula
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(4.2) ((L—A)u, vy)p, — (u, (L—/l)%;)s,

—{, w vpas-| D, uvgdS+2iy/% | uvgds.
S, . s,

Hence, since (F(4, r)f, d))Lz(Q,:C(}.)ZSS u?J;dS (C(A)=n"Y2)Y%) in view of the
definition of v, and #(4, r)f ((2.1) and Definition 3.1), we obtain from (4.2) with

r=r,

(43 (FC s D= g |), 4DivpdS=| B, uvgds-

~((L=M)u, vy)s, +(u, (L —/1)”4))&,..}-

From (4.1) and the estimates in Proposition 2.2, we have

4.4) S U, 04dS — 0, 3 D, uv,dS— 0 as m— .

rm Sr m

BCCallSC UELZ,—(l"‘I:j/Z’ (L—).)u =f€ LZ.(I"’C)/Z’ U¢GL2‘_(|+“/2 and (L—).)v¢€
L; (1 +¢y2 (Proposition 2.2), we have in view of (4.4) the following equality by letting
m— o0 in (4.3):

@5) m (FCralfs D=3y (= (/2 0g)+ (0 (L=2)0g)).

Similarly, by letting r=r,, and m— o in (3.2), we have
(4.6) lim |# (2, ra)f 1 3um = apy (RUG+i0)f =~ RG=i0)f. f).

Therefore, {F(A, r,)f}m is bounded in L,(Q). Hence, since (4.5) holds for
¢ € C(Q), which is a dense subspace of L,(Q), the weak convegence of {F(4, r,)f}
in L,(Q) follows. Note that this weak limit is independent of the choice of the
sequence {r,} because the right-hand side of (4.5) is so.

Let an operator F(A): L; 4,2~ L2(Q2) be defined by

4.7) FA)f=w-limF (4, r,)f

for fe L, +e2, Where {r,} is any sequence satisfying (4.1). Then we have by
(4.6) and Theorem 2.3 (2)

@8)  1F WS huay S 57 (R0 f = RG=i0)f, F)SCIS [Frseyas

where C is a constant independent of f which can be taken uniformly bounded when
J varies in a compact set in R*. Hence #(4) is a bounded operator:
Ly (1402 La(8).

Let us prove that (4.7) is a strong limit.

Let H, be the self-adjoint realization of Ly= — i D% in £ =L,(R"). Then
the argument developed so far is applicable to H,,. Tl{;tl is, if Ro(4+ i0) denotes the
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boundary value of the resolvent of H, and Fo(4, r) is defined as & (A, r) in Defi-
nition 3.1 with R(A+i0) replaced by Ry(2+i0), we have

(@6) i [ Fo(h ra)f T =257 (Rol +i0)f = Ro(A=10)f, 1),
(4.7)  F(Af=w-lim Fo(4, r,)f,

for fe L,y +s),2 and for a sequence {r,} satisfying (4.1) with R(A+ i0) replaced by
Ro(A+i0), and Fo(4) is a bounded operator: L, (; 4,2~ L,(2). Since Theorem 3.9
applies to Hy, {F,(2, r)f} converges strongly in L,(Q) when r> oo if fe L, ;. Thus,
from (4.6') and (4.7), we have

(4.9) 1 Fo(A)f Iaim =557 (Ro(A+i0) = Ro(2=10). 1),

for fe L,,. But since both sides of (4.9) are continuous in f& L, (4., and since
Ly, is dense in Lj 4,2, (4.9) holds for all fe Ly 42 (4.9) combined with
(4.6"), (4.7) leads to the strong convergence of {Fo(L, r,)f} to Fo(A)f for fe
Ly 4ey2

Next, noting that H=Hy+ V and Vis a bounded linear operator: L, _;4.,2—
L, (1 +¢y2 by the assumption (V'), we have, passing to the limit in the usual resolvent
equation,

(4.10) R(A+i0) — Ro(A+i0)= — Ro(2+i0)VR(A+i0).

Hence, applying (4 10) to feL, 4,2, we have the following equality for
feLz'(1+£)/z and u=R(}.+"0)f€Lz'_(l+s)/2:

u= Ry(A+i0)(f—Vu).
From the definition of &y(4, r) and F(4, r), we have
F (A, ) f=Fo (4, r)(f—Vu).

Noting that the condition (4.1) on {r,} is concerned only with u=R(A+i0)f=
Ro(A+i0)(f—Vu) and applying the result obtained for Hy to f—VuelL; .,
we have the strong convergence in L,(Q) of the sequence {F(4, r,)f}={Fo(4, r,)
(f—Vu)} for feL, .y, and for any sequence {r,} satisfying (4.1). Thus, we
have proved that the weak limit (4.7) is also a strong limit. From (4.6) and the strong
convergence of {&(/, r,)f}, (2) of the lemma follows. Thus we have proved (1)
and (2) of the lemma.

Finally, for obtaining the continuity in A of #(4)f, it suffices to show the con-
tinuity of (F(A)f, ¢)L,n) for all ¢ e C*(Q) since [|F(2)f |}, is continuous in A
as is seen from the right-hand side of (2) of the lemma and Theorem 2.3. We have
by (4.5)

4.11)  (FAS, D ya)

=71,;,-{—(f( ), v+ D)+ (RA+I0)f( ), (L—Dvy( -, )}
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Let A vary in an interval [a,, d,] (0<a,<a,<o). Then we have the following
pointwise estimates by Proposition 2.2:

[vg(x, IS C(1+]|x])~ (172,
[(Lo—A)ve(x, )| SC(1 + |x])~(n=D/271=9,

with C independent of Ze€[a,,a,]. Hence, since |V(x)|<Co(1+|x|)"17% and
L=L,+V, we have

(L+[x])" D vy (x, M) —v4(x, )2 S2C(1+|x]) "¢,
(T+1xD (L =2)vy(x, A) = (L= Dvg(x, DIZSC(1+|x|)7n-20%e,

for 4, ’€[a,, a,]. Therefore, noting that according to (2.1) v,(x, 2)—=v4(x, 2)
and (L—A")vy(x, A')=(L—2)vg(x, 1) as A’— A for each x € R", we have by the use of
the Lebesgue dominated convergence theorem

||U¢( * l’)—%( *y }»)”—uﬂ)/z — 0,
I(L=A)ogs(-, A)=(L=ADvyg( -, Dl 14e2— 0,

as A'>A (X, Ae[ay, a;]). Thus, vy(-,4) and (L—2)vyg(-,A) are continuous for
A>0in Ly _(14+¢2 and L, .., respectively. Hence, since R(4+i0)f is con-
tinuous in A in L, _(; 4.y, (Theorem 2.3 (2)), we obtain the continuity of (F(1)f,
)1, from (4.11). This completes the proof of (3) and thus Lemma 4.1.

We leave the proof of the next theorem, the spectral representation for H, to the
reader, because it can be obtained in the same way as in the proof of Theorem 2.8
and Theorem 3.1 of Ikebe [4], by using Theorem 2.3, Lemma 4.1 and Proposition
2.2.

Theorem 4.2. Suppose that the assumptions (V) and (b’) are satisfied. Then
the following assertions hold:
(1) Let P,.=E(0, o) be the projection onto the subspace 5,. of absolute con-
tinuity for H. Let 3# =L,((0, 00); Ly(Q)) be the Hilbert space of all Ly(Q)-valued
square integrable functions over (0, 0)=R*. For fe L, 4,/ Wwe define a
mapping Ff: Rt >Ly(Q) by

Ff=FA)f (1>0),

where F(A) is given in Lemma 4.1. Then for f, geL, 1,2 and for any Borel
subset B of R*, we have

(4.12) (E@)f, )= (FFD). FgW) a2,

where E is the spectral measure for H. In particular, by letting B=R" in (4.12),
we have Ffe # and

(Puct, 9)=(F1, F9)2={ (F12), F9D) a2
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(2) The operator F defined above on L (,4,, can be uniquely extended to whole
o (this will be denoted by & also). & is a partial isometry with the initial set
H#,, and the final set # (i.e. F is an unitary operator from #,, to H#). Fora
bounded Borel measureable function a(2) on R*, we have for all fe i#,,

(Fa(H)f)(A)=a(l)FfL) ae. i>0.

(3) Let B be a relatively compact Borel subset of R*. Then &% is defined by
ﬁf:S FO*f()d.  for e,
B

which is a partial isometry from # to #,, and we have
FEr=E(B)F*=(FE(B))*.

The following inversion formula holds:
N
P,.f=slim S F)(FS)(A)dh.
N-wo JI/N

(4) F(A)*: Ly(Q)> L,y _(1 4.2 is an eigenoperator of H with eigenvalue 1 in the
sense that for any ¢ € L,(Q), LF(\)*p=AF(1)*¢ in the distributional sense.

Remark. One can obtain the spectral representation under the assumptions
(V') and (b) on the basis of #(X) defined in Theorem 3.9 except for the unitraity
assertion.
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