Simple transcendental extensions of valued fields

Dedicated to A. Seidenberg on his 65th birthday
\section*{By}
Jack Оhm
(Communicated by Prof. M. Nagata, Jan. 21, 1981)

Let $K_{0} \subset K=K_{0}(x)$ be fields with x transcendental over K_{0}; let v_{0} be a valuation of K_{0} and v be an extension of v_{0} to K; and let $V_{0} \subset V, k_{0} \subset k$, and $G_{0} \subset G$ be the respective valuation rings, residue fields, and value groups.

If k is not algebraic over k_{0}, then there exists $y \in V$ such that y specializes to a transcendental y^{*} over k_{0} under the canonical homomorphism $V \rightarrow k$; if this y should happen to be a generator of K / K_{0}, then it is easily seen that $k=k_{0}\left(y^{*}\right)$ and $G=G_{0}$. Our main theorem asserts that, under the assumption that char $k_{0}=0$, if v_{0} is henselian, then the converse holds: if k / k_{0} is simple transcendental and $G=G_{0}$, then there exists a generator of K / K_{0} which specializes to a transcendental over k_{0}. We also prove that " v_{0} is henselian" can be replaced by " v_{0} is rk 1 " and that for arbitrary finite rk v_{0} one must assume, in addition, that for every valuation ring $W \supset V$ of K, the residue field of W is simple transcendental over the residue field of $W \cap K_{0}$.

It requires no new considerations to prove this theorem under the a priori weaker hypothesis that k_{0} is algebraically closed in k and $\neq k$ and K / K_{0} is generically of index 1 (i.e. every generator of K / K_{0} has value in G_{0}), and in this form the theorem yields as a corollary the char 0 case of the following conjecture of Nagata:

Ruled Residue Conjecture. k is either algebraic or ruled over k_{0}.
("Ruled" means that there should be a field k_{1} with $k_{0} \subset k_{1} \subset k$ and k simple transcendental over k_{1}; in the present setting such a k_{1} is necessarily finite algebraic over k_{0}.) Nagata [7] has proved, without assumption on the characteristic, that this conjecture holds for discrete v_{0} and that k is always either algebraic over k_{0} or contained in a finite algebraic extension of k_{0} followed by a simple transcendental extension.

The paper divides into two parts. Part I, consisting of $\S \S 1-5$, is devoted to proving the above theorem for henselian v_{0} (3.7) and to deriving the above conjecture in char 0 from it (4.6). In Part II ($\S \S 6-8$) the corresponding theorem for v_{0} of finite rk is proved.

The main portion of this work was done (1978-79) while the author was on sabbatical leave from LSU, during which time he enjoyed the hospitality of the University of Wisconsin-Milwaukee.

Notation and terminology.

We fix fields $K_{0}<K$ with K a simple extension of K_{0}, i.e. there exists $x \in K, \notin K_{0}$ such that $K=K_{0}(x)$. Usually x will be transcendental (abbreviated tr.) over K_{0}, but we do not a priori assume this. We also fix a valuation v of K and its restriction v_{0} to K_{0}. Moreover, we shall consistently use x to denote a generator of K / K_{0} of value 0 ; there always exists such a generator since one of $x, 1+x$, or $1+(1 / x)$ must have value 0 .

The valuation ring, residue field, and value group of v will be denoted V, k, and G respectively; a subscript 0 will indicate the corresponding objects for v_{0}; and K^{\wedge}, v^{\wedge} will denote the henselization (cf. [4] or [9]) of K, v. By the index of K / K_{0} we shall mean $\left[G: G_{0}\right]$; and we shall say that K / K_{0} (or v / v_{0}) is generically of index 1 if for every generator z of $K / K_{0}, v(z) \in G_{0}$. For example, K / K_{0} is generically of index 1 if $\left[G: G_{0}\right]=1$. This condition will be used in $\S 3$ and will be discussed in $\S 4$.

The notation ()* will be reserved for image under the canonical homomorphism $V \rightarrow V / m_{V}=k$; thus, if $a \in V, a^{*}$ denotes the image of a under $V \rightarrow k$. To enlarge on this notation, $K \xrightarrow{\bullet} k$ will signify in our diagrams that k is the residue field of v; and for $a \in K, a \xrightarrow{\stackrel{ }{r}} a^{*}$ (read "a specializes to a^{*} under v^{\prime}) will mean $a \in V$ and a^{*} is the image of a under $V \rightarrow k$. The reference to v will be omitted when the valuation involved is clear. Similarly, if $f(X) \in V[X], f(X)^{*}$ will denote the image of $f(X)$ under the homomorphism $V[X] \rightarrow k[X]$ obtained by specializing coefficients.

In addition, we shall use Z to denote the integers, Q the rationals, C the complex numbers, and X an indeterminate.

Part I: The theorem for

henselian v_{0}, and the Ruled Residue Conjecture.

1. Preliminaries.

As specified above, $K=K_{0}(x), x \notin K_{0}$, with x either transcendental or algebraic over K_{0} and $v(x)=0$.

In a few special cases it is easy to describe a generating set for k / k_{0}. To begin with, note that we always have $k_{0}\left(x^{*}\right) \subset k$ since $k_{0} \subset k$ and $x^{*} \in k$.
1.1. Inf extensions (See also 4.3).

For any $z \in K, v$ will be called the inf extension (to $K_{0}(z)$) of v_{0} w.r.t. $v(z)$ if for cvery $\dot{\xi}=a_{0}+a_{1} z+\cdots+a_{n} z^{\prime \prime}, a_{i} \in K_{0}, v(\xi)=\inf \left\{v_{0}\left(a_{i}\right)+i v(z) \mid i=0, \ldots, n\right\}$. If z is tr. over K_{0}, then it is easily verified that an extension of v_{0} to $K_{0}(z)$ may be so defined (cf. [2, p. 160, Lemma 1]). We are mainly interested in the inf extension of v_{0} w.r.t. $v(x)=0$, for which the following simple fact is basic: x^{*} is $t r$. over $k_{0} \Leftrightarrow x$ is $t r$. over K_{0} and v is the inf extension of v_{0} w.r.t. $v(x)=0$; and when this is the case,
then $k=k_{0}\left(x^{*}\right)$ and $G=G_{0}$ (cf. [2, p. 161, Prop. 2]).
1.2. Suppose x is algebraic over K_{0}. Then K is algebraic over K_{0}, and therefore also k is algebraic over k_{0}. Moreover, it is a classical result that $\left[K: K_{0}\right] \geq\left[k: k_{0}\right]$ $\times\left[G: G_{0}\right]$ (cf. [2, p. 138, Lemma 2]). Therefore if $\left[K_{0}(x): K_{0}\right]=\left[k_{0}\left(x^{*}\right): k_{0}\right]$, then $k=k_{0}\left(x^{*}\right)$ and $G=G_{0}$; or if [$\left.K_{0}(x): K_{0}\right]=\left[G: G_{0}\right]$, then $k=k_{0}$. (A strong form of the above inequality [2, p. 143, Theorem 1] shows that in these two cases v is the only extension of v_{0}, up to equivalence.) Note also that the inequality implies that x is tr. over K_{0} whenever k is not finite algebraic over k_{0}.
1.3. Suppose k is not algebraic over k_{0}. Then there exists $\alpha \in k$ such that α is tr. over k_{0}. Let y be a preimage in V for α. By $1.1, y$ is tr. over K_{0} and the restriction of v to $K_{0}(y)$ has residue field $k_{0}(\alpha)$ and value group G_{0}. Since x is algebraic over $K_{0}(y)$, by the inequality of 1.2 we have $\left[G: G_{0}\right]<\infty$ and $\left[k: k_{0}(\alpha)\right]<\infty$. In particular, k is then a finitely generated extension of k_{0} of tr. degree 1 ; so if k / k_{0} is an algebraic extension followed by a simple tr. extension, then it is automatically a finite algebraic extension followed by a simple tr. extension. (If k / k_{0} is algebraic, then it can happen that $\left[k: k_{0}\right]=\infty$; see 5.1.)
1.4. The residue field and value group for the henselization v^{\wedge}, K^{\wedge} of v, K are again k and G (cf. [4, p. 136]). If $\alpha \in k$ is separably algebraic of $\operatorname{deg} n$ over k_{0} then by Hensel's lemma (cf. [4, p. 118, Cor. 16.6]) there exists a preimage $a \in K^{\wedge}$ for α such that a is separably algebraic over K_{0} of deg n. It follows from 1.2 that G_{0} is the value group and $k_{0}(\alpha)$ the residue field of v^{\wedge} restricted to $K_{0}(a)$.

A consequence is that if K_{u}^{u} is the separable algebraic closure of K_{0} in K^{\wedge}, then the restriction v_{0}^{a} of v^{\wedge} to K_{0}^{a} has a residue field k_{1} which contains the separable algebraic closure of k_{0} in k, and hence which is itself separably algebraically closed in k, and a value group G_{1} such that $G_{0} \subset G_{1} \subset G$, and the restriction of v^{\wedge} to $K_{0}^{a}(x)$ has residue field k and value group G :

Moreover, v_{0}^{a}, K_{0}^{a} is henselian [4, p. 130, Theorem 17.9]. Thus, in considering the Ruled Residue Conjecture, we may assume k_{0} is separably algebraically closed in k and K_{0} is henselian.

A word of caution is in order, however. In passing from K_{0} to K_{0}^{a}, the notion of "generator" changes; for if $r \in K_{0}^{a} \backslash K_{0}$, then $x-r$ is a generator of $K_{0}^{a}(x)$ over K_{0}^{a} but is not a generator of $K_{0}(x)$ over K_{0}, since it is not even in $K_{0}(x)$.

2. Generating pairs.

Throughout $\S 2 x, y$ will be elements of k of value 0 , with x tr. over K_{0}.
2.1. Definition. x will be called a generator for y if $y \in K_{0}[x]$, or, equivalent if $y=a f(x)$ for some $a \neq 0 \in K_{0}$ and some primitive $f(X) \in V_{0}[X] .\left(f(X) \in V_{0}[X]\right.$ is called primitive if some coefficient has value 0 .) The pair $x, f(X)$ will be called a generating pair for y. The a and $f(X)$ are unique up to unit multiples from V_{0}; to be precise, if $y=a_{1} f_{1}(x)$ for some $a_{1} \neq 0 \in K_{0}$ and some primitive $f_{1}(X) \in V_{0}[X]$, then there exists a unit $u \in V_{0}$ such that $a=u a_{1}$ and $f(X)=(1 / u) f_{1}(X)$. Note also that $v(y)=0$ implies $v(f(x))=-v(a) \geq 0$.
2.2. Multiplicity. The generator for y (or the generating pair $x, f(X)$) will be said to have multiplicity $n(\geq 0)$ if x^{*} is a root of multiplicity n for $f(X)^{*}$, i.e. if $f(X)^{*}=\left(X-x^{*}\right)^{n} h(X)$, with $h(X) \in k_{0}[X]$ and $h\left(x^{*}\right) \neq 0$.

Suppose $r \in V$ is such that $r^{*}=x^{*}$. We may write $f(X)=a_{0}+a_{1}(X-r)+\cdots+$ $a_{n}(X-r)^{n}+\cdots+a_{m}(X-r)^{\prime \prime \prime}$, where the a_{i} are uniquely determined elements of $V_{0}[r]$; in fact, $a_{i}=f^{(i)}(r)$, where $f^{(i)}(r)$ shall denote the $i^{t h}$ derivative of $f(X)$ with the coefficients formally divided by i !, evaluated at r. Then x^{*} is a root of multiplicity n for $f(X)^{*} \Leftrightarrow a_{0}^{*}=\cdots=a_{n-1}^{*}=0$ and $a_{n}^{*} \neq 0$. For further reference, note also that if $f(X)=b_{0}+b_{1} X+\cdots+b_{n} X^{n}+\cdots+b_{m} X^{m}$, then x^{*} is a root of multiplicity $\leq n$ for $f(X)^{*}$ if $v\left(b_{n}\right)=0$ and $v\left(b_{j}\right)>0$ for $j>n$; for then $f^{(n)}(x)=b_{n}+($ terms of value $>$ $0)$, so $f^{(n)}(x)^{*}=b_{n}^{*} \neq 0$.
2.3. Multiplicity $0 . x$ is a generator for y of multiplicity $0 \Leftrightarrow y \in V_{0}[x]$. For, suppose $x, f(X)$ is a generating pair for y. Since $y=a f(x), a \in K_{0}$, and $v(y)=0$, $v(a)=0 \Leftrightarrow v(f(x))=0 \Leftrightarrow f\left(x^{*}\right)^{*} \neq 0 \Leftrightarrow x, f(X)$ has multiplicity 0 . Thus, if $x, f(X)$ is a generating pair of multiplicity 0 , then $a \in V_{0}$ and hence $y \in V_{0}[x]$. Conversely, if $y \in V_{0}[x]$, then there exists $a \in V_{0}$ and a primitive $f(X) \in V_{0}[X]$ such that $y=a f(x)$. Since $v(a) \geq 0$, it follows from $v(y)=0$ that $v(a)=0$; so $x, f(X)$ has multiplicity 0 .

2.4. Existence of generating pairs.

Proposition. Assume $\left[G: G_{0}\right]=n<\infty$, let .x be a tr. generator of K over K_{0} of value 0 , and let l be any field such that $k_{0} \subset l \subset k$. If there exists $\alpha \in k$ such that $\alpha^{\prime} \notin l$, then there exists,$v \in K_{0}[x]$ of value 0 such that,${ }^{\prime} \notin l$.

Proof. Choose a preimage $a \in K$ for α. Since $K=K_{0}(x), a=f_{1}(x) / f_{2}(x)$, $f_{i}(X) \in K_{0}[X]$. Let $b=a^{n}=f_{1}(x)^{n} \mid f_{2}(x)^{n}$. The hypothesis $\left[G: G_{0}\right]=n$ implies $v\left(f_{i}(x)^{n}\right) \in G_{0}, i=1,2$. Therefore there exist $c_{i} \in K_{0}$ such that $v\left(c_{i} . f_{i}(x)^{n}\right)=0$; and then $b=\left(c_{2} / c_{1}\right)\left(c_{1}, f_{1}(x)^{n} / c_{2} f_{2}(x)^{n}\right)$, where $b, c_{2} / c_{1}, c_{i} f_{i}(x)^{n}, i=1,2$, all have value 0 . But then $b^{*}=\left(c_{2} / c_{1}\right)^{*}\left[\left(c_{1} f_{1}(x)^{n}\right)^{*} /\left(c_{2} f_{2}(x)^{n}\right)^{*}\right]$ implies either $\left(c_{1} f_{1}(x)^{n}\right)^{*}$ or $\left(c_{2} f_{2}(x)^{n}\right)^{*}$ is not in l since $b^{*}=\alpha^{n} \notin l$. Thus, for $i=1$ or $2, y=c_{i} f_{i}(x)^{n}$ is the required element.

Corollary. Let x be a generator of K over K_{0} of value 0 , and suppose k is not algebraic over k_{0}. Then there exists. $v \in K_{0}[. x]$ of value 0 such that y^{*} is $t r$. over k_{0} If, moreover, x is a generator of multiplicity 0 for this y, then x^{*} is $t r$. over k_{0} and $k=k_{0}\left(x^{*}\right)$.

Proof. For the first assertion, note that $\left[G: G_{0}\right]<\infty$ by 1.3 , and then apply the above proposition with $l=$ algebraic closure of k_{0} in k. For the second assertion,
apply 2.3 to conclude $y \in V_{0}[x]$. It follows that $y^{*} \in k_{0}\left[x^{*}\right]$ and hence that x^{*} is tr. over k_{0}. Then by $1.1, k=k_{0}\left(x^{*}\right)$.
2.5. Nagata's proof [7, p. 91, Thm. 5] that k / k_{0} is either algebraic or k is contained in a finite algebraic extension of k_{0} followed by a simple tr. extension:

Suppose K_{0} is algebraically closed and k / k_{0} is not algebraic. By 2.4 there exists $y \in K_{0}[x]$ such that $y^{* *}$ is tr. over k_{0}. Factor: $y=a\left(x-r_{1}\right) \cdots \cdots\left(x-r_{m}\right), a$, $r_{i} \in K_{0}$. Since $\left[G: G_{0}\right]<\infty$ (1.3) and G_{0} is now divisible, we have $G=G_{0}$. Therefore there exist $b_{1}, \ldots, b_{m} \in K_{0}$ such that $v\left(x-r_{i}\right)=b_{i}$. Then $y^{*}=\left(a b_{1} \cdots \cdots b_{m}\right)^{*}\left(\left(x-r_{1}\right) /\right.$ $\left.b_{1}\right)^{*} \cdots \cdot\left(\left(x-r_{m}\right) / b_{m}\right)^{*}$, so y^{*} is tr. over k_{0} implies $\left(x-r_{i}\right) / b_{i}$ is tr. over k_{0} for some i. Thus, we have found a generator $x_{1}=\left(x-r_{i}\right) / b_{i}$ of K / K_{0} such that x_{1}^{*} is tr. over k_{0}. By 1.1, $k=k_{0}\left(x_{1}^{*}\right)$.

If K_{0} is not algebraically closed, pass to the algebraic extension $K_{0}^{\prime}=K_{0}\left(r_{i}, b_{i}\right)$. The residue field of $K_{0}^{\prime}(x)$ is $k_{0}^{\prime}\left(x_{1}^{*}\right)$, where k_{0}^{\prime} is the residue field of K_{0}^{\prime} and hence is finite algebraic over k_{0}. Thus, $k_{0} \subset k \subset k_{0}^{\prime}\left(x_{1}^{*}\right)$.

3. Proof of the theorem.

We remind the reader that x always denotes a generator of K over K_{0} of value $0\left(x \notin K_{0}\right)$. In addition, throughout $\S 3 x$ will be assumed $t r$. over K_{0} and y will be an element of K of value 0 having a fixed generating pair $x, f(x)$ of multiplicity $n>0$.
3.1. Definition.. We shall call x rational if $x^{*} \in k_{0}$, or equivalently, if there exists $r \in K_{0}$ such that $v(x-r)>0$. For such an $r, v(r)=0$ and $r^{*}=x^{*}$.

Let $\mathfrak{T}(x)=\left\{x_{1} \in K \mid\right.$ there exist $r, 0 \neq b \in K_{0}$ such that $x_{1}=(x-r) / b$ and $v(x-r)=$ $v(b)>0\}$. Whenever we write $x_{1}=(x-r) / b \in \mathfrak{J}(x)$, we shall be tacitly assuming that $r, 0 \neq b \in K_{0}$ and $v(x-r)=v(b)>0$. Note that $\mathfrak{J}(x) \neq \phi$ if x is rational and K is generically of index 1 over K_{0}. (Reminder: generically index 1 means every generator of K over K_{0} has value in G_{0}.) If $x_{1} \in \mathfrak{J}(x)$ and there exist $r_{1}, 0 \neq b_{1} \in K_{0}$ such that $v\left(x_{1}-r_{1}\right)=v\left(b_{1}\right)>0$, then $x_{2}=\left(x_{1}-r_{1}\right) / b_{1} \in \mathfrak{J}(x)$ too. Thus, every $x_{1} \in \mathfrak{I}(x)$ is a generator of K over K_{0} of value 0 , and $\mathfrak{T}\left(x_{1}\right) \subset \mathfrak{J}(x)$.

The next lemma is crucial to the proof of the main theorem.
3.2. Lemma. Suppose there exists $x_{1}=(x-r) / b \in \mathfrak{J}(x)$ such that x_{1} is not a generator for y of multiplicity $<n$, and write $f(X)=a_{0}+a_{1}(X-r)+\cdots+a_{n}(X-r)^{n}+$ $\cdots+a_{m}(X-r)^{m}, a_{i} \in V_{0}[r]\left(\subset V_{0}\right)$. Then
i) $\left.\quad v\left(a_{i}(x-r)^{i}\right) \geq v\left((x-r)^{n}\right)\right)$ for $i=0, \ldots, n-1$;
ii) x_{1} is a generator for y of multiplicity n; and
iii) if char $k \nmid n$, then $v\left(a_{n-1}\right)=v(x-r)$.

Remark. Since we are assuming throughout $\S 3$ that x is a generator for y of multiplicity $n>0$, ii) may be rephrased: if x is a generator for y of multiplicity $n>0$, then every element of $\mathfrak{J}(x)$ is a generator for y of multiplicity $\leq n$. Also, iii) implies $a_{n-1} \neq 0$ because $x \notin K_{0}$ implies $x-r \neq 0$.

Proof. Note to begin with that $v\left(a_{n}\right)=0$ since r^{*} is a root of multiplicity n of $f(X)^{*}$.
i): Suppose there exists $i<n$ such that $v\left(a_{i}(x-r)^{i}\right)<v\left((x-r)^{n}\right)$. Choose q to be the largest integer in $\{0, \ldots, n-1\}$ such that $v\left(a_{q}(x-r)^{q}\right)=\min \left\{v\left(a_{j}(x-r)^{j}\right)\right\}$ $j=0, \ldots, n-1\}$, i.e. choose $q \in\{0, \ldots, n-1\}$ such that

$$
\begin{cases} & v\left(a_{q}(. x-r)^{q}\right)<v\left(a_{j}(x-r)^{j}\right), j=q+1, \ldots, n, \\ \text { and } & v\left(a_{q}(. x-r)^{q}\right) \leq v\left(a_{j}(. x-r)^{j}\right), j=0, \ldots, q .\end{cases}
$$

It follows that $v\left(a_{q}(x-r)^{q}\right)<v\left(a_{j}(x-r)^{j}\right), j>n$, since $v\left(a_{n}(x-r)^{n}\right)=v\left((x-r)^{n}\right)<$ $v\left(a_{j}(x-r)^{j}\right), j>n$.

Now consider $\left(1 / a_{q} b^{q}\right) f(x)=b_{0}+b_{1} x_{1}+\cdots+b_{n} x_{1}^{n}+\cdots+b_{m} x_{1}^{m}$, where $\quad b_{j}=$ $a_{j} / a_{q} b^{q-j}, j=0, \ldots, m . \quad B y(\#)$,

$$
\left\{\begin{aligned}
& v\left(b_{j}\right) \geq 0, \quad j=0, \ldots, q \\
& b_{4}=1, \\
& v\left(b_{j}\right)>0, \quad j=q+1, \ldots, m
\end{aligned}\right.
$$

Let $f_{1}(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$. Then $y=a f(x)=a a_{q} b^{q} f_{1}\left(x_{1}\right)$, so $x_{1}, f_{1}(X)$ is a generating pair for y. Moreover, by 2.2 the multiplicity of $x_{1}, f_{1}(X)$ is $\leq q<n$. Thus, we have a contradiction to the hypothesis that x_{1} is not a generator for y of multiplicity $<n$.
ii): Consider ($\left.1 / a_{n} b^{n}\right) f(x)=b_{0}+b_{1} x_{1}+\cdots+b_{m} x_{1}^{\prime \prime \prime}$, where now $b_{j}=a_{j} / a_{n} b^{n-j}$, $j=0, \ldots, m$; and again let $f_{1}(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$. By i), $v\left(b_{j}\right) \geq 0$ for $j=0, \ldots, n$; and also $v\left(b_{j}\right)>0$ for $j=n+1, \ldots, m$ since $v(b)>0$. By 2.2 we again see that $x_{1}, f_{1}(X)$ is a generating pair for y of multiplicity $\leq n$; and the hypothesis that x_{1} is not a generator for y ' of multiplicity $<n$ yields the equality.
iii): Let $f_{1}(X)$ be as in ii). Then $f_{1}^{(n-1)}\left(x_{1}\right)=b_{n-1}+n x_{1}+c_{2} b_{n+1} x_{1}^{2}+\cdots+$ $c_{m-n+1} b_{m} x_{1}^{m-n+1}$, where the c_{i} are natural numbers. Therefore $f_{1}^{(n-1)}\left(x_{1}\right)^{*}=$ $b_{n-1}^{*}+n x_{1}^{*}$ since $v\left(b_{j}\right)>0, j=n+1 \ldots, m$. But $n x_{1}^{*} \neq 0$ because char $k \nmid n$; so we must have $b_{n-1}^{*} \neq 0$ too, for otherwise x_{1} would be a generator for y of multiplicity $<n$, contrary to hypothesis. But $b_{n-1}^{*} \neq 0$ implies $v\left(b_{n-1}\right)=0$, so $v\left(a_{n-1}\right)=v\left(a_{n} b\right)=$ $v(b)=v(x-r)$.
3.3 Corollary. Suppose char $k \nmid n$ and K / K_{0} is generically of index 1 . If x is rational and $\operatorname{deg} f(X)=n$, then there exists $x_{1} \in \mathfrak{T}(x)$ which is a generator for y of multiplicity $<n$.

Proof. Since x is rational, there exists $r \in K_{0}$ such that $v(x-r)>0$. Then $r \in V_{0}$, and $f(X)=a_{0}+a_{1}(X-r)+\cdots+a_{n}(X-r)^{n}, a_{i} \in V_{0}[r]=V_{0}$. By our initial assumption, $x, f(X)$ is a generating pair for y of multiplicity n, so $a_{n}^{*} \neq 0$ and $a_{n-1}^{*}=0$. Let $t=-a_{n-1} / n a_{n}$. Then $t \in K_{0}$ and $v(t)>0$. Now let $r_{1}=r+t$, and rewrite $f(X)=b_{0}+b_{1}\left(X-r_{1}\right)+\cdots+b_{n}\left(X-r_{1}\right)^{n}$, where $b_{n}=a_{n}, b_{n-1}-n b_{n} t=a_{n-1}, \ldots$. Since K / K_{0} is generically of index 1 , there exists $b \neq 0 \in K_{0}$ such that $v\left(x-r_{1}\right)=$ $v(b)>0$, and hence $x_{1}=\left(x-r_{1}\right) / b \in \mathfrak{J}(x)$. But t was chosen so that $b_{n-1}=0$. Thus, the failure of 3.2 -iii) yields the conclusion that x_{1} must be a generator for y of multiplicity $<n$.
3.4. Lemma. Suppose x is rational and K_{0} is henselian. Then there exists $s \in$ $V_{0}[x]$ of value 0 such that y^{\prime} / s has a generating pair $x, g(X)$ of multiplicity n and with $g(X)$ monic of deg n.

Proof. Since x^{*} is a root of multiplicity $n>0$ of $f(X)^{*}, f(X)^{*}=\left(X-x^{*}\right)^{n} h_{1}(X)$, $h_{1}(X) \in k_{0}[X]$ and $h_{1}\left(x^{*}\right) \neq 0$. By Hensel's lemma. [6, p. 189, Thm. 44.4] or [9, p. 185, Thm. 4], there exist $g(X), h(X) \in V_{0}[X]$ such that $g(X)$ is monic of $\operatorname{deg} n, f(X)=$ $g(X) h(X)$, and $g(X)^{*}=\left(X-x^{*}\right)^{n}, h(X)^{*}=h_{1}(X)$. Let $s=h(x) \in V_{0}[x]$. Since $y=$ $a f(x)$ for some $a \in K_{0}, y=a g(x) h(x)$ and $y / s=a g(x)$; so $x, g(X)$ is a generating pair for y / s of the required type.
Q.E.D.

Note that for the s of $3.4, s \in V_{0}[x]$ and $v(s)=0$ imply $0 \neq s^{*} \in k_{0}\left[x^{*}\right]=k_{0}$.
3.5. Proposition. Suppose K_{0} is henselian, K / K_{0} is generically of index 1 , and char $k \nmid n$. If x is rational, then there exists $x_{1} \in \mathfrak{J}(x)$ such that x_{1} is a generator for y of multiplicity $<n$.

Proof. By 3.4 there exists $s \in V_{0}[x]$ of value 0 and a generating pair $x, g(X)$ for y / s of multiplicity n, with $g(X)$ monic of deg n. By 3.3 there exists $x_{1} \in \mathfrak{J}(x)$ which is a generator for y / s of multiplicity $<n$. This means there exists $a \in K_{0}$ and a primitive $f_{1}(X) \in V_{0}[X]$ such that $y / s=a f_{1}\left(x_{1}\right)$ and x_{1}^{*} is a root of multiplicity $<n$ for $f_{1}(X)^{*}$. If we write $s=s(x) \in V_{0}[x]$, and if $x_{1}=(x-r) / b$, then $s(x)=s\left(x_{1} b+r\right)$ $=s_{1}\left(x_{1}\right) \in V_{0}\left[x_{1}\right]$. Moreover, $s_{1}\left(x_{1}^{*}\right)^{*}=s^{*} \neq 0$, so x_{1}^{*} is a root of multiplicity 0 of $s_{1}(X)^{*}$. Thus, $y=a s_{1}\left(x_{1}\right) f_{1}\left(x_{1}\right)$, and it follows that $x_{1}, s_{1}(X) f_{1}(X)$ is a generating pair for y of multiplicity $<n$.
3.6 Corollary. Suppose K_{0} is henselian, K / K_{0} is generically of index 1 , and char $k=0$. If every element of $\mathfrak{J}(x) \cup\{x\}$ is rational, then there exists $x_{1} \in \mathfrak{I}(x)$ such that x_{1} is a generator for y of multiplicity 0 .

Proof. Since x is rational and K / K_{0} is generically index $1, \mathfrak{J}(x) \neq \emptyset$. Moreover, by 3.2 every element of $\mathfrak{J}(x)$ is a generator for y of multiplicity $\leq n$. Choose $x_{1} \in \mathfrak{I}(x)$ of multiplicity μ and such that no element of $\mathfrak{I}(x)$ has multiplicity $<\mu$. If $\mu=0$, we are done; if not, by 3.5 there exists $x_{2} \in \mathfrak{I}\left(x_{1}\right) \subset \mathfrak{I}(x)$ such that x_{2} is a generator for y of multiplicity $<\mu$, a contradiction to the choice of x_{1}.
3.7 Theorem. Assume $K=K_{0}(x)$, where x is tr. over K_{0} and $v(x)=0$; char $k=0$; and K_{0} is henselian. If K / K_{0} is generically of index 1 and k_{0} is algebraically closed in k and $\neq k$, then there exists $x_{1} \in \mathfrak{J}(x) \cup\{x\}$ such that x_{1}^{*} is tr. over k_{0}.

Proof. If there exists $x_{1} \in \mathfrak{I}(x) \cup\{x\}$ such that $x_{1}^{*} \notin k_{0}$, then by hypothesis x_{1}^{*} is tr. over k_{0} and we are done. Thus we may assume every element of $\mathfrak{J}(x) \cup\{x\}$ is rational.

By 2.4-Corollary, there exists $y_{1} \in K$ of value 0 such that x is a generator for y_{1} and y_{1}^{*} is tr. $/ k_{0}$; and also by 2.4 -Corollary, we may further assume that x is a generator for y_{1} of multiplicity $n>0$. But then by 3.6 there exists $x_{1} \in \mathfrak{J}(x)$ such that x_{1} is a generator for y_{1} of multiplicity 0 , which means $y_{1} \in V_{0}\left[x_{1}\right]$. Therefore $y_{1}^{*} \in k_{0}\left[x_{1}^{*}\right]$, and hence x_{1}^{*} is tr. $/ k_{0}$.
Q.E.D.

In view of the reduction of 1.4 whereby k_{0} may be assumed separably algebraically closed in k and K_{0} henselian, 3.7 yields the Ruled Residue Conjecture (char 0) in the case that $\left[G: G_{0}\right]=1$. For by 1.1 if a generator of K / K_{0} specializes to a tr., then k / k_{0} is simple transcendental.

4. Extensions generically of index 1.

We assume throughout $\S 4$ that $K=K_{0}(x), x$ tr. over K_{0} and $v(x)=0$.
Before proceeding to the final ingredient in the proof of the Ruled Residue Conjecture (char 0), we shall make a couple of comments on the notion of "generically index 1 '". Recall that K / K_{0} is of index 1 means $v(\xi) \in G_{0}$ for every $\xi \in K$ and that K / K_{0} is generically of index 1 was defined to mean $v(\xi) \in G_{0}$ for every generator ξ of K / K_{0}.
4.1 Proposition. The following are equivalent:
i) K / K_{0} is generically of index 1 .
ii) If $r \in K_{0}$ and $v(x-r)>0$, then $v(x-r) \in G_{0}$.
iii) Either $\left\{v(x-r) \mid r \in K_{0}\right.$ and $\left.v(x-r)>0\right\}$ has no maximal element, or its maximal element is in G_{0}.

Proof. Since $x-r$ is a generator of K / K_{0} for all $r \in K_{0}$, the implications i) \Rightarrow ii) \Rightarrow iii) are immediate. ii) \Rightarrow i): Every generator of $K_{0}(x) / K_{0}$ is of the form $\xi=$ $(a x+b) /(c x+d) ; a, b, c, d \in K_{0}, a d-b c \neq 0$ (cf. [10, p. 198]). Therefore it suffices to show $v(a x+b) \in G_{0}$ whenever $a \neq 0, b \in K_{0}$, or equivalently, to show $v(x+(b / a)) \in$ G_{0}. Since $v(x)=0$, either $v(b / a)<0$ and $v(x+(b / a))=v(b / a) \in G_{0}$, or $v(b / a) \geq 0$, in which case $v(x+(b / a)) \geq 0$ and ii) applies. iii $\Rightarrow \mathrm{ii})$: If there exist $r, r^{\prime} \in K_{0}$ such that $0<v(x-r)<v\left(x-r^{\prime}\right)$, then $v(x-r)=v\left((x-r)-\left(x-r^{\prime}\right)\right)=v\left(r^{\prime}-r\right) \in G_{0}$. Thus, if $v(x-r)$ is not a maximal element of the set, then it is automatically in G_{0}.
Q.E.D.
4.2 Example of K / K_{0} which is generically of index 1 but not of index 1 and which has x rational, i.e. $x^{*} \in k_{0}$.

Let v be the X-adic valuation of $Q(\sqrt{2}, \pi)(X)$, i.e. v is the inf extension of the 0 -valuation of $Q(\sqrt{2}, \pi)$ w.r.t. $v(X)=1$; let $K_{0}=Q\left(X^{2}\right)$; and let $K=K_{0}(x)$, where $x=1+\sqrt{2} X^{2}+\pi X^{3}$. In view of 4.1 to prove K / K_{0} is generically of index 1 it suffices to show $v(x-r)>0, r \in K_{0}$, implies $v(x-r)=2$. Note first that $v(x-r)>0$ implies $1=x^{*}=r^{*}$, so $r=1-a, a \in K_{0}$ and $v(a)>0$. Therefore $x-r=a+\sqrt{2} X^{2}+\pi X^{3}$ and $(x-r) / X^{2}=\left(a / X^{2}\right)+\sqrt{2}+\pi X$; so it remains to show $v\left(\left(a / X^{2}\right)+\sqrt{2}\right)=0$. But $a \in K_{0}$ and $v(a)>0$ implies $v(a) \geq 2$. Then $\left(a / X^{2}\right)+\sqrt{2} \rightarrow\left(a / X^{2}\right)^{*}+\sqrt{2}$; and since $a \mid X^{2} \in K_{0},\left(a \mid X^{2}\right)^{*} \in k_{0}=Q$. Since $\sqrt{2} \notin Q$, it follows that $\left(a \mid X^{2}\right)^{*}+\sqrt{2} \neq 0$. Hence $v\left(\left(a / X^{2}\right)+\sqrt{2}\right)=0$.

Finally, to see that K / K_{0} is not of index 1, note that $\left[(x-1) / X^{2}\right]^{2}-2=2 \sqrt{2} \pi X+$ $\pi^{2} X^{2}$ has value $1 \notin G_{0}$. Thus, $G_{0}=2 Z$ and $G=Z$.
Q.E. D.

Exactly when generically index 1 does imply index 1 for fields K / K_{0} is not clear. For example, a consequence of 6.2 is that this implication holds if $r k v=1$,
k_{0} is algebraically closed in k and $\neq k$, and either char $k=0$ or v is discrete.
The following proposition relates arbitrary inf extensions to those defined with respect to value 0 .
4.3 Proposition (continuation of 1.1). Let z be a ($t r$.) generator of K / K_{0}, let $v(z)=g$, and suppose $g+G_{0}$ is of finite order $n \geq 1$ in G / G_{0}. Let $v_{1}=v \mid K_{1}$, where $K_{1}=K_{0}\left(z^{n}\right)$, and let k_{1} be the residue field of v_{1}. Then the following are equivalent:
i) v is the inf extension of v_{0} w.r.t. $v(z)=g$.
ii) v_{1} is the inf extension of v_{0} w.r.t. $v_{1}\left(z^{n}\right)=n g$.
iii) There exists $b \neq 0 \in K_{0}$ such that v_{1} is the inf extension of v_{0} w.r.t. $v_{1}\left(z^{\prime \prime} / b\right)=0$.
iv) There exists $b \neq 0 \in K_{0}$ such that $z^{n} / b \xrightarrow{k_{1}} \alpha$ tr. over k_{0}.

Moreover, when these hold, then $k=k_{1}=k_{0}(\alpha)$ and G / G_{0} is cyclic, generated by $g+G_{0}$.

Proof. i$) \Rightarrow$ ii \Rightarrow iii) are immediate from the definitions, and iii$) \Leftrightarrow \mathrm{iv}$) by 1.1. It remains to show iii) $\Rightarrow \mathrm{i}$). The value group of v_{1} is G_{0} and the residue field is $k_{0}(\alpha)$ by 1.1. Since $\left[K: K_{1}\right]=n$ and $\left[G: G_{0}\right] \geq n$, it follows from 1.2 that $\left[G: G_{0}\right]=n$, $\left[k: k_{1}\right]=1$, and v_{1} extends uniquely, up to equivalence, to K. In particular, then $G=G_{0}+Z g$ and $k=k_{1}$. But the inf extension w of v_{0} w.r.t. $w(z)=g$ is an extension of v_{1} to K (cf 1.1), so w is equivalent to v. Since $G=G_{0}+Z g$ and $w(z)=g=v(z)$, we must actually have $w=v$.
Q.E.D.

We are now ready for the technical device (4.4 and 4.5) needed to complete the proof of the Ruled Residue Conjecture (char 0).
4.4 Lemma. Let $\xi \in K, \notin K_{0}$ and $v(\xi)=g$, where $g+G_{0}$ is of finite order $n \geq 1$ in G / G_{0}; let t be tr. over K, and let v_{t} denote the inf extension of $v($ to $K(t))$ w.r.t. $v_{t}(t)=g$; and let $v_{t}^{\wedge}, K(t)^{\wedge}$ be the henselization of $v_{t}, K(t)$.

If char $k \nmid n, k_{0}$ is algebraically closed in k, and v is not the inf extension of $v_{0}\left(\right.$ to $\left.K_{0}(\xi)\right)$ w.r.t. $v(\xi)=g$, then there exists $b \in K(t)^{\wedge}$ algebraic over $K_{0}(t)$ with the following properties:
i) $\dot{b} \rightarrow b^{*}$ tr. over k.
ii) The residue fields of $K^{\prime}=K(t, b)$ and $K_{0}^{\prime}=K_{0}(t, b)$ are $k\left(b^{*}\right)$ and $k_{0}\left(b^{*}\right)$, respectively.
iii) The value groups of K^{\prime} and K_{0}^{\prime} are G and $G_{0}+Z g$, respectively.

Proof. Since $v_{t}\left(t^{n}\right)=n g \in G_{0}$, there exists $d \in K_{0}$ such that $v_{t}\left(t^{n}\right)=v_{t}(d)$; and by 4.3, $t^{\prime \prime} / d \rightarrow \alpha \operatorname{tr}$. over k_{0} and the residue field of $K_{0}(t)$ is $k_{0}(\alpha)$. Also, by $1.1, t / \xi$ $\rightarrow \beta$ tr. over k and the residue field of $K(t)$ is $k(\beta)$. But $v(d)=v\left(\xi^{n}\right)$ implies there exists $u \in K$ of value 0 such that $\xi^{n}=u d$; and therefore $(t / \xi)^{n}=(1 / u)\left(t^{n} / d\right)$, and consequently $\beta^{n}=\left(1 / u^{*}\right) \alpha$.

Claim: $u^{*} \in k_{0}$. For otherwise u^{*} is tr. over k_{0} by hypothesis. But then $u=\xi^{n} / d \rightarrow u^{*}$ tr. over k_{0} implies by 4.3 that v is the inf extension of v_{0} w.r.t. $v(\xi)=g$, a contradiction to our hypotheses.

Thus, β is separably algebraic of $\operatorname{deg} n$ over $k_{0}(\alpha)$; so by Hensel's lemma [4, p.

118, Cor. (16.6)] there exists $b \in K(t)^{\wedge}$ algebraic of $\operatorname{deg} n$ over $K_{0}(t)$ such that $b \rightarrow \beta$. Then the residue field and value group for $K(t, b)$ are $k(\beta)$ and G since $K(t) \subset K(t, b)$ $\subset K(t)^{\wedge}$. By 1.2 and 4.3 the residue field and value group for $K_{0}(t, b)$ are $k_{0}(\alpha, \beta)=$ $k_{0}(\beta)$ and $G_{0}+Z g=$ value group of $K_{0}(t)$.
Q.E.D.

Note that if ξ is a generator of K / K_{0}, then by $4.3 k / k_{0}$ is not simple transcendental implies v is not the inf extension of v_{0} w.r.t. $v(\xi)$. This is how we shall fulfill the above hypothesis in the following corollary.
4.5 Corollary. If there exist (valued) fields $K \supset K_{0}$ such that
i) K / K_{0} is simple tr. and char $k=0$,
ii) K_{0} is henselian,
iii) k_{0} is algebraically closed in k and $k \neq k_{0}$.
iv) k / k_{0} is not simple tr.,
then there exist such fields with the additional property that K / K_{0} is generically of index 1 .

Proof. Suppose there exists a generator z of K / K_{0} such that $v(z)=g \notin G_{0}$. By 4.4 there exist fields $K_{0}^{\prime} \subset K^{\prime}=K_{0}^{\prime}(z)$ having residue fields $k_{0}^{\prime}=k_{0}(\beta), k^{\prime}=k(\beta)$, respectively, $\beta \operatorname{tr}$. over k, and value groups G_{0}^{\prime}, G, respectively, with $\left[G: G_{0}^{\prime}\right]<$ [$G: G_{0}$]. It follows from [11, p. 167, Lem. 2] that $k^{\prime} / k_{0}^{\prime}$ satisfies iii) and from the generalized Lüroth theorem [8, p. 137, Thm. 4.12.2] that $k^{\prime} / k_{0}^{\prime}$ satisfies iv). Now replace K_{0}^{\prime} by its henselization $\left(K_{0}^{\prime}\right)^{\wedge}$ (inside $\left.\left(K^{\prime}\right)^{\wedge}\right)$ and K^{\prime} by $\left(K_{0}^{\prime}\right)^{\wedge}(z)$; this does not alter the residue fields or value groups (cf. [4, p. 136, Thm. 17.19] or [8, p. 193, Thm. 5.11.11]). Thus, under the assumption that K / K_{0} is not generically index 1 we have found fields $\left(K_{0}^{\prime}\right)^{\wedge} \subset\left(K_{0}^{\prime}\right)^{\wedge}(z)$ satisfying i)-iv) and the additional condition that $\left[G: G_{0}^{\prime}\right]<\left[G: G_{0}\right]$. The corollary now follows by induction on $\left[G: G_{0}\right]$.
4.6 Ruled Residue Theorem (char 0). Let K_{0} and $K=K_{0}(x)$ be fields with x tr. over K_{0}, let v be a valuation of K with residue field k, and let k_{0} be the residue field of $v \mid K_{0}$. Suppose char $k=0$ and k is not algebraic over k_{0}. Then there exists a finite algebraic extension k_{1} of k_{0} and an α tr. over k_{1} such that $k=k_{1}(\alpha)$.

Proof. By 1.3 it suffices to show k is of the form $k_{1}(\alpha), k_{1}$ algebraic over k_{0} and α tr. over k_{1}. By 1.4 we may assume K_{0} is henselian and k_{0} is algebraically closed in k, and by 4.5 we may additionally assume K / K_{0} is generically of index 1 . The theorem now follows from 3.7.
Q.E.D.

4.7 Remarks.

1. It is only in the reduction step of 4.5 that field extensions of K lying outside v^{\wedge}, K^{\wedge} are used. If one wants to think in terms of working inside a fixed valued field, he can proceed as follows: If order of $G / G_{0}=s$, choose preimages $g_{1}, \ldots, g_{s} \in G$ for the elements of G / G_{0}. Then let t_{1}, \ldots, t_{s} be indeterminates, and extend v to $K\left(t_{1}, \ldots, t_{s}\right)$ by infs w.r.t. $v\left(t_{i}\right)=g_{i}$. Now the construction of 4.5 can be carried out inside the henselization $K\left(t_{1}, \ldots, t_{s}\right)^{\wedge}$.
2. On the char $k=0$ assumption: It is not at all clear how to adapt our
methods to the non-zero characteristic case. As noted in the introduction, Nagata has proved without restriction on the characteristic that the statement of 4.6 remains valid a) if v is discrete, rk n, i.e. if G is a lexicographic direct sum of n copies of Z, or b) if the conclusion is weakened to $k \subset k_{1}(\alpha)$ (cf. [7, Thms. 1 and 5], [8, p. 198, Thm. 5.12.1]). When $K_{0}=Q$, it seems that the discrete, rk 1 case of a) (from which a) follows by induction) is implicit in the early paper [5] of Mac Lane, although the terminology of that paper obscures this conclusion (See [5, Thms. 8.1, 12.1, and 14.1]). As for further progress in removing the characteristic 0 assumption from 4.6, in generalizing from Nagata's result a) above there are two extreme cases to take into account: one is the case of discrete, infinite rk v, i.e. G is the lexicographic direct sum of infinitely many copies of Z; and the other (probably the more difficult) is the case of non-discrete, rk $1 v$, e.g. $G=Q$.
3. Addendum (Oct., 1980). W. Heinzer, after reading a preprint of this paper, has pointed out that the Ruled Residue Conjecture for k_{0} perfect can be proved as follows: Let $D=K_{0}[x] \cap V$; and note that $V=D_{s}$, where $S=\{$ units of $V\} \cap D$. For, if $\xi \in V$, write $\xi=f_{1} / f_{2}, f_{i} \in K_{0}[x]$; since $\left[G: G_{0}\right]<\infty$, there exist $a \in K_{0}$ and an integer $n>0$ such that $v\left(f_{2}^{n}\right)=v(a)$; and therefore $\left(f_{2}^{n} / a\right) \xi \in D$ and $\xi \in D_{S}$. It follows that k is the quotient field of D^{*}, where $D \rightarrow D^{*}$. Next, Nagata`s argument (cf. 2.5) shows there exists a finite algebraic extension K_{0}^{\prime} of K_{0} and an $x_{1}=(x-r) / b \in K_{0}^{\prime}[x]$ $=K_{0}^{\prime}\left[x_{1}\right]$ such that x_{1}^{*} is tr. over k_{0}. By 1.1, then $K_{0}^{\prime}\left(x_{1}\right), v^{\prime}$ is the inf extension of $K_{0}^{\prime}, v_{0}^{\prime}$ w.r.t. $v^{\prime}\left(x_{1}\right)=0$, from which it follows that $D^{\prime} \rightarrow k_{0}^{\prime}\left[x_{1}^{*}\right]$, where $D^{\prime}=K_{0}^{\prime}\left[x_{1}\right] \cap$ V^{\prime}. Thus, we have $k_{0} \subset D^{*} \subset k_{0}^{\prime}\left[x_{1}^{*}\right]$; so by $[1$, p. 322, (2.9)] the integral closure of D^{*} is of the form $k_{0}^{\prime \prime}[z], k_{0}^{\prime \prime}$ algebraic over k_{0} and z tr. over $k_{0}^{\prime \prime}$. But then $k=k_{0}^{\prime \prime}(z)$.
Q.E.D.

The theorem of [1] on which Heinzer's proof rests requires two non-elementary facts about 1-dim function fields: i) genus does not decrease under a finite separable extension of the base field and ii) genus 0 plus the existence of a rational place implies simple tr. Thus, while his proof yields the more general case of a perfect k_{0}, it is not nearly as simple-minded as our proof of 4.6. In any case, both approaches should be of interest in further efforts to remove the restrictive hypothesis involving the characteristic.

5. Complements.

We begin with a class of examples to illustrate that all of the possibilities for k / k_{0} suggested by theorem 4.6 can occur.
5.1. Let k_{0} be a subfield of $C=$ complex numbers, let $C((t))$ be the field of formal Laurent series in the indeterminate t with coefficients in C, and let v be the t-adic valuation of $C((t))$. Let $x=a_{0}+a_{1} t+a_{2} t^{2}+\cdots \in C[[t]]$, and consider the residue fields given by

What is a generating set for k over k_{0} ?
Lemma. If $a_{0}, a_{1}, \ldots, a_{i}(i \geq 0)$ are algebraic over k_{0}, then $a_{0}, a_{1}, \ldots, a_{i}$, $a_{i+1} \in k$.

Proof. Note that $x \rightarrow a_{0}$ implies $a_{0} \in k$. Let $f(X) \in k_{0}[X]$ be the irreducible polynomial for a_{0} over k_{0}, and let $y_{1}=f(x) / t=f^{\prime}\left(a_{0}\right)\left(\left(x-a_{0}\right) / t\right)+\left(t f^{\prime \prime}\left(a_{0}\right) / 2\right)\left(\left(x-a_{0}\right) /\right.$ $t)^{2}+\cdots$. Since $\left(x-a_{0}\right) / t=a_{1}+a_{2} t+\cdots$, we can write $y_{1}=f^{\prime}\left(a_{0}\right) a_{1}+\left(f^{\prime}\left(a_{0}\right) a_{2}+\right.$ $\left.b_{2}^{(1)}\right) t+\left(f^{\prime}\left(a_{0}\right) a_{3}+b_{3}^{(1)}\right) t^{2}+\cdots$, where $b_{j}^{(1)} \in k_{0}\left(a_{0}, \ldots, a_{j-1}\right)$. But $y_{1} \rightarrow y_{1}^{*}=f^{\prime}\left(a_{0}\right) a_{1}$ and $f^{\prime}\left(a_{0}\right) \neq 0$, so $a_{1} \in k$ since y_{1}^{*} and $f^{\prime}\left(a_{0}\right)$ are in k.

Now let $f_{1}(X) \in k_{0}[X]$ be the irreducible polynomial for y_{1}^{*} over k_{0}, and let $y_{2}=f_{1}\left(y_{1}\right) / t=f_{1}^{\prime}\left(y_{1}^{*}\right)\left(\left(y_{1}-y_{1}^{*}\right) / t\right)+\left(t f_{1}^{\prime \prime}\left(y_{1}^{*}\right) / 2\right)\left(\left(y_{1}-y_{1}^{*}\right) / t\right)^{2}+\cdots$. Since $\left(y_{1}-y_{1}^{*}\right) / t=$ $\left(c^{(1)} a_{2}+b_{2}^{(1)}\right)+\left(c^{(1)} a_{3}+b_{3}^{(1)}\right) t+\cdots$, where $c^{(1)}=f^{\prime}\left(a_{0}\right) \neq 0 \in k_{0}\left(a_{0}\right)$ and $b_{j}^{(1)} \in$ $k_{0}\left(a_{0}, \ldots, a_{j-1}\right)$, we can write $y_{2}=\left(c^{(2)} a_{2}+b_{2}^{(2)}\right)+\left(c^{(2)} a_{3}+b_{3}^{(2)}\right) t+\cdots$, with $c^{(2)} \neq$ $0 \in k_{0}\left(a_{0}, a_{1}\right)$ and $b_{j}^{(2)} \in k_{0}\left(a_{0}, \ldots, a_{j-1}\right)$. Then $y_{2} \rightarrow 1_{2}^{*}=c^{(2)} a_{2}+b_{2}^{(2)}$ implies $a_{2} \in k_{0}\left(a_{0}, a_{1}, y_{2}^{*}\right) \subset k$.

We have thus demonstrated the lemma for $i=0,1$; the general case is by induction on i and is identical to the $i=1$ case.

Corollary. If $a_{0} \ldots, a_{n-1}(n \geq 1)$ are algebraic over k_{0} and a_{n} is $t r$. over k_{0}, then $k=k_{0}\left(a_{0}, \ldots, a_{n-1}, a_{n}\right)$. If a_{0}, a_{1}, \ldots are all algebraic over k_{0}, then $k=k_{0}\left(a_{0}, a_{1}, \ldots\right)$.

Proof. The inclusion \supset is by the lemma. Suppose a_{n} is tr. over k_{0}, and consider the finite algebraic extension of $K_{0}=k_{0}(t), L=k_{0}\left(t, a_{0}, \ldots, a_{n-1}\right)$. Then $L(x)=L\left(x_{n}\right)$, where $x_{n}=a_{n}+a_{n+1} t+\cdots$. The residue field of L is $k_{0}\left(a_{0}, \ldots, a_{n-1}\right)$. Moreover, since $x_{n} \rightarrow a_{n} \operatorname{tr}$. over $k_{0}\left(a_{0}, \ldots, a_{n-1}\right)$, by 1.1 the residue field of $L(x)$ must be $k_{0}\left(a_{0}, \ldots, a_{n-1}\right)\left(a_{n}\right)$. But $K \subset L(x)$ implies k is \subset the residue field $k_{0}\left(a_{0}, \ldots, a_{n-1}\right.$, a_{n}) of L. Thus, we have proved the first assertion of the corollary. For the second, observe that $K \subset k_{0}\left(a_{0}, a_{1}, \ldots\right)((t))$ implies $k \subset k_{0}\left(a_{0}, a_{1}, \ldots\right)$.
Q.E.D.

Note that x is necessarily tr. over $k_{0}(t)$ whenever k / k_{0} is not finite algebraic, by 1.2. In conclusion, the corollary shows that it is possible to get the residue field k to be an arbitrary finite algebraic extension of k_{0} followed by a simple tr. extension (actually, it is only necessary to take $n=1$ in the corollary since any finite algebraic extension of k_{0} can be realized as a simple extension), or to be an arbitrary countably generated algebraic extension of k_{0}. See also [2, p. 173, Exercise 1] and [12, p. 104, Example 4] for examples of this latter type. (Incidentally, the Remark on p. 162 of [2] seems to ignore examples of the former type.)

It is interesting to pursue this example a bit further and inquire about the completion v^{c}, K^{c} of v, K in $C((t))$ when, say, a_{0} is algebraic over k_{0} and $a_{1} \operatorname{tr}$. over k_{0}. First observe that $V=k_{0}\left(y_{1}\right)[x]_{(f(x))}$, where $f(X)$ is the irreducible polynomial for a_{0} over k_{0}. For, we have seen that y_{i} specializes to $a \operatorname{tr}$. over k_{0}, which implies $k_{0}\left(y_{1}\right) \subset V$; and since $f(X)$ is irreducible over k_{0} and therefore also over $k_{0}\left(y_{1}\right), k_{0}\left(y_{1}\right)[x]_{(f(x))}$ is a DVR contained in V and having the same quotient field $k_{0}(t, x)$ as V, and hence must be V. We have also seen that the residue field k of V is $k_{0}\left(a_{0}, a_{1}\right)$, so by Hensel's lemma (cf. [4, p. 120,16.7]) there exists a preimage for a_{0}
in V^{c} which is algebraic over k_{0}. But the only such preimage in $C[[t]]$ is a_{0} itself, so $a_{0} \in V^{c}$. Thus, $k_{0}\left(y_{1}\right)\left[a_{0}\right]=k_{0}\left(y_{1}, a_{0}\right) \subset V^{c}$ is a coefficient field for V^{c}, and V^{c} is the t-adic topological closure of $k_{0}\left(a_{0}, y_{1}\right)[t]_{(t)}$ in $C[[t]]$; so V^{c} may be thought of as being the subset of $C[[t]]$ obtained by taking power series in t with coefficients in $k_{0}\left(a_{0}, y_{1}\right)$ and rewriting them as power series with coefficients in C.
5.2. As mentioned in the introduction, Nagata [7, p. 91, Thm. 5] has proved that if k / k_{0} is not algebraic, then k is contained in a (finite) algebraic extension of k_{0} followed by a simple tr. extension. Does this result in itself imply 4.6? That is, given fields $k_{0} \subset k \subset k_{1}(t)$ with k_{1} finite algebraic over $k_{0}, t \operatorname{tr}$. over k_{1}, and k / k_{0} not algebraic, is k necessarily a finite algebraic extension of k_{0} followed by a simple tr. extension? The following example (cf. [3, p. 23] and [8, p. 144, 2]) shows that the answer is "no".

Let $k_{0}=$ reals; $k=k_{0}(x, y)$, where $x^{2}+y^{2}+1=0$; and $k_{1}=C=$ complexes. Then $k_{0} \subset k \subset C(x+i y)$. For $x-i y=-1 /(x+i y)$ implies $x-i y, x+i y \in C(x+i y)$, and hence $x, y \in C(x+i y)$.

Next observe that k_{0} is algebraically closed in k, which amounts to verifying $i \notin k$. For, if $i \in k$, then $k_{0}(x, y)=k_{0}(x, y, i)$; and hence $\left[k_{0}(x, y, i): k_{0}(x)\right]=2$. But $\left[k_{0}(x, i): k_{0}(x)\right]=2$, and it follows from Gauss's lemma that $Y^{2}+x^{2}+1$ is irreducible over $k_{0}(x, i)=C(x)$; so $\left[k_{0}(x, y, i): k_{0}(x)\right]=4$.

Now suppose k / k_{0} is simple tr. . Then there exists a valuation v of k / k_{0} having residue field k_{0}. If $v(x) \geq 0$, then $y^{2}+x^{2}+1=0$ implies $v(y) \geq 0$ too; and therefore in the residue field $k_{0}, y^{* 2}+x^{* 2}+1=0$, which is impossible because $k_{0}=$ reals. If $v(x)<0$, then the same argument applied to $(y / x)^{2}+(1 / x)^{2}+1=0$ works. Thus, k is not a simple tr. extension of k_{0}.

The function field k / k_{0} is known to have genus 0 , but the additional fact needed to be able to conclude that k is a simple tr. extension of k_{0} is the existence of a $k_{0}{ }^{-}$ rational place. See [3, p. 23].
5.3. An application of the Ruled Residue Theorem (inspired by the applications of Nagata in [7]. See also [8, p. 199, Thm. 5.12.2]).

Let $k_{0}<k$ be fields of char. 0 and G be any torsion-free abelian group (written additively). Let $k[G]$ be the group ring of G with coefficients in k, i.e. $k[G]=\oplus$ $\left\{k X^{g} \mid g \in G\right\}$, with multiplication defined linearly by $X^{g} X^{h}=X^{g+h}$. Let $k(G)$ denote the quotient field of $k[G]$. Then $k_{0}(G) \subset k(G)$.

Cancellation theorem. If $k(G)$ is a simple tr. extension of $k_{0}(G)$, then k is a simple $t r$. extension of k_{0}.

Proof. Since G is torsion-free, G can be totally ordered. Then any $\check{\zeta} \in k[G]$ may be written $\check{\zeta}=a_{1} X^{g_{1}}+\cdots+a_{t} X^{g_{t}}, a_{i} \neq 0 \in k, g_{1}<\cdots<g_{t} \in G$. Define $v: k[G] \rightarrow$ G by $v(\xi)=\inf \left\{g_{i} \mid i=1, \ldots, t\right\}$; and extend to a valuation v of $k(G)$ having value group G and residue field k. The restriction v_{0} of v to $k_{0}(G)$ is similarly a valuation with residue field k_{0}.

Claim: k_{0} is algebraically closed in $k(G)$, and hence a fortiori in k. Since $k_{0}(G)$ is algebraically closed in $k(G)$ by hypothesis, it suffices to show k_{0} is
algebraically closed in $k_{0}(G)$. If $\alpha \in k_{0}(G)$ is algebraic over k_{0}, then $k_{0}[\alpha]=k_{0}(\alpha) \subset$ V_{0}, and hence $k_{0}(\alpha)$ would map isomorphically under the residue map $V_{0} \rightarrow k_{0}$, thereby yielding $\alpha \in k_{0}$.

Thus, by theorem 4.6 and the fact that k_{0} is algebraically closed in k and $\neq k$, we conclude that k is a simple tr. extension of k_{0}.
Q.E.D.

In the statement of the cancellation theorem, we can replace the hypothesis that $k(G)$ is a simple tr. extension of $k_{0}(G)$ by the weaker hypothesis that $k(G)$ is \subset a simple tr. extension of $k_{0}(G)$, for by Lüroth's theorem the former hypothesis is a consequence of the latter. Finally, the cancellation theorem may be rephrased in terms of quotient fields of group rings as follows: If G is identified with $0 \oplus G$ in $Z \oplus G$, then $k_{0}(Z \oplus G)=k(G)$ implies $k \cong k_{0}(Z)$.
5.4. The set $\mathfrak{J}(\boldsymbol{x}) \cup\{\boldsymbol{x}\}$. The statements of 3.6 and 3.7 concerning elements of $\mathfrak{J}(x) \cup\{x\}$ imply comparable statements for arbitrary gencrators of value 0 , as we shall now show. Assume $K=K_{0}(x)$, where x is tr. over K_{0} of value 0 .

Proposition. Suppose K / K_{0} is generically of index 1 , and let l be a field such that $k_{0} \subset l \subset k$. If there exists a generator y of K / K_{0} of value 0 such that $y^{*} \notin l$, then there exists $x_{1} \in \mathfrak{J}(x) \cup\{x\}$ such that $x_{1}^{*} \notin l$.

Proof. By [10, p. 198], $y=(a x+b) /(c x+d), a, b, c, d \in K_{0}, a d-b c \neq 0$. Since K / K_{0} is generically of index 1 , there exists $e \neq 0 \in K_{0}$ such that $v(a x+b)=v(c x+d)=$ $v(e)$. Then $y=((a x+b) / e) /((c x+d) / e)$ implies one of $((a x+b) / e)^{*}$ or $((c x+d) / e)^{*} \notin l$. Therefore we may assume $y=(a x+b) / e$. Dividing a, b, e by the element of least value from among a, b, e, we may further assume a, b, e have value ≥ 0 and one of them has value 0 . If $v(e)=0$, then $y^{*}=\left(a^{*} / e^{*}\right) x^{*}+\left(b^{*} / e^{*}\right)$ implies $x^{*} \notin l$, so $x_{1}=x$ works; if $v(e)>0$ but $v(a)=0$, then $x_{1}=y=(x+(b / a)) /(e / a) \in \mathfrak{I}(x)$; and if $v(e)>0$ and $v(b)=0$, then $v(a x+b)=v(e)>0$ implies $v(a)=0$ and we are in the previous case.
Q.E.D.

By taking $l=k_{0}$ (resp., $l=$ algebraic closure of k_{0} in k), we have
Corollary. Suppose K / K_{0} is generically of index 1 . If there exists a generator y of K / K_{0} such that $y^{*} \notin k_{0}$ (resp., y^{*} is tr. over k_{0}), then there exists $x_{1} \in$ $\mathfrak{J}(x) \cup\{x\}$ such that $x_{1}^{*} \notin k_{0}$ (resp., x_{1}^{*} is $t r$. over k_{0}).

To carry this a bit further, let us define K to be generically rational over K_{0} if for every gnerator y of K / K_{0} of value $0, y^{*} \in k_{0}$. Then under the assumption that K / K_{0} is generically of index 1 , the condition of 3.6 "every element of $\mathfrak{J}(x) \cup\{x\}$ is rational" is equivalent to " K is generically rational over K_{0} ".

Part II: The theorem for $\mathbf{v}_{\mathbf{0}}$ of finite $\mathbf{r k}$.

We retain the notation established in the introduction; in particular, $K=K_{0}(x)$, where $v(x)=0$. In addition, we assume throughout II that x is $t r$. over K_{0}.

6. Theorem 3.7 revisited.

Theorem 3.7 is false without the assumption that K_{0} is henselian if $\mathrm{rk} v>1$, as example 7.2 will show; indeed, the henselian hypothesis was employed precisely to deal with valuations of infinite rk, and if we restrict attention to valuations of finite rk, a sharper result, which in the rk 1 case amounts to deleting the henselian hypothesis and in the discrete, rk I case amounts to deleting both the henselian and char 0 hypotheses, can be obtained. Since we are ignorant of the status of this result in the cases of infinite rk or of non-zero characteristic and arbitrary value group, we shall first phrase it as a conjecture.
6.1 Conjecture. For every valuation overring W of $V(W \subset K)$, the residue field I_{0} of $W \cap K_{0}$ is algebraically closed in the residue field l of $W, k_{0} \neq k$, and K / K_{0} is generically of index $1 \Rightarrow$ there exists a generator x of K / K_{0} such that v is the inf extension of v_{0} w.r.t. $v(x)=0$; or, equivalently, there exists a generator x of K / K_{0} which specializes to a tr. over k_{0}.

What we know about this conjecture, aside from the henselian case of 3.7 , is summed up in the following theorem. ${ }^{1 \prime}$
6.2 Theorem The implication \Rightarrow of 6.1 is true if either a) $\mathrm{rk} v$ is finite and char $k=0$, or $b) v$ is discrete.

The converse implication \Leftarrow to 6.1 is always true. For, if $x \xrightarrow{b} x^{*}$ tr. over k_{0} and w is the valuation of K whose ring is W, then there exists a valuation u of the residue field l of w such that $x \xrightarrow{\uplus} x^{\prime} \xrightarrow{\bullet} x^{*}$. (See §7). But x^{*} is tr. over k_{0}, so x^{\prime} is tr. over l_{0}, and therefore 1.1 yields I / I_{0} is simple tr., and hence I_{0} is algebraically closed in l.

In b) rk v is necessarily finite, since by definition of discrete, G is a lexicographic direct sum of finitely many copies of Z; but char k may be arbitrary. In both a) and b) the crux of the proof lies in the rk 1 case, from which the finite rk case follows by induction.

The remainder of $\S 6$ will be devoted to establishing a) and b) for $\mathrm{rk} 1 v$. Just as theorem 3.7 follows from 3.6, this will follow from
6.3 Proposition. Suppose v is rk 1 and either a) char $k=0$ or b) v is discrete, and suppose K / K_{0} is generically of index 1 and every element of $\mathfrak{J}(x) \cup\{x\}$ is rational. If y is an element of K of value 0 and x is a generator for y of multiplicity >0, then there exists $x_{1} \in \mathfrak{J}(x)$ such that x_{1} is a generator for y of multiplicity 0 .

Proof. We first need a lemma.
Lemma. Suppose $y \in K$ has a generating pair $x, f(X)$ of multiplicity $n>0$, where char $k \nmid n$. If $x_{1}=(x-r) / b \in \mathfrak{T}(x)$, then either x_{1} is a generator for y of multiplicity $<n$ or there exists a generating pair $x_{1}, f_{1}(X)$ for y of multiplicity n

[^0]and an $r_{1} \in K_{0}$ such that $f(x)=b^{n} f_{1}\left(x_{1}\right), v\left(x_{1}-r_{1}\right)>0$, and $v\left(f_{1}^{(n-1)}\left(r_{1}\right)\right) \geq$ $2 v\left(f^{(n-1)}(r)\right)=2 v(b)$.

Proof of lemma. Suppose x_{1} is not a generator for y of multiplicity $<n$. We may write $f(X)=a_{0}+a_{1}(X-r)+\cdots+a_{n}(X-r)^{n}+\cdots+a_{m}(X-r)^{m}$, where the a_{t} are in $V_{0}, a_{0}^{*}=\cdots=a_{n-1}^{*}=0, a_{n}^{*} \neq 0$, and $a_{n-1}=f^{(n-1)}(r)(\mathrm{cf} .2 .2)$. By 3.2, $v\left(a_{i}(x-r)^{i}\right)$ $\geq v\left((x-r)^{n}\right)$ for $i=0, \ldots, n-1$, and $v\left(a_{n-1}\right)=v(x-r)=v(b)$. Therefore if we write $b^{-n} f(x)=b_{0}+b_{1}((x-r) / b)+\cdots$, where $b_{i}=a_{i} / b^{n-i}$, then $v\left(b_{i}\right) \geq 0, i=0, \ldots, n-1$, and $v\left(b_{n-1}\right)=0$; moreover, the b_{i} for $i \geq n$ are of the form $b_{n}=a_{n}, b_{n+1}=a_{n+1} b, \ldots$, and hence are also in V_{0}. Let $f_{1}(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$. Then $x_{1}, f_{1}(X)$ is a gencrating pair for y, and $f(x)=b^{n} f_{1}\left(x_{1}\right)$. Moreover, computing $f_{1}^{(n)}(X)=a_{n}+b(\cdots)$, we see that $f_{1}^{\left({ }_{1}^{\prime \prime}\right)}\left(x_{1}^{*}\right)^{*}=a_{n}^{*} \neq 0$. Therefore $x_{1}, f_{1}(X)$ is a generating pair for y of multiplicity $\leq n$, and hence by our initial assumption of multiplicity n.

It remains to show there exists $r_{1} \in K_{0}$ with the specified properties. We have $f_{1}^{(n-1)}\left(x_{1}\right)=\left(a_{n-1} / b\right)+n a_{n} x_{1}+b(\cdots)$, and $f_{1}^{(n-1)}\left(x_{1}\right)^{*}=0$ since $x_{1}, f_{1}(X)$ has multiplicity n; so $0=\left(a_{n-1} / b\right)^{*}+n a_{n}^{*} x_{1}^{*}$ and $x_{1}^{*}=-\left(a_{n-1} / b\right)^{*} / n a_{n}^{*}$. Let $\alpha=-\left(a_{n-1} / b\right) /$ $n a_{n}$. Now, as far as the requirement $v\left(x_{1}-r_{1}\right)>0$ is concerned, we are free to choose r_{1} to be any element of the form $r_{1}=\alpha+t, t \in K_{0}$ and $v(t)>0$. For any such r_{1}, $f_{1}^{(n-1)}\left(r_{1}\right)=\left(a_{n-1} / b\right)+n a_{n} r_{1}+((n+1) n / 2) a_{n+1} b r_{1}^{2}+b^{2}(\cdots)=n a_{n} t+((n+1) n / 2) a_{n+1}$ $b \alpha^{2}+\left(\right.$ terms involving $b t, t^{2}$, and $\left.b^{2}\right)$. Therefore if we choose $t=-\left((n+1) / 2 a_{n}\right) \times$ $\left(a_{n+1} b x^{2}\right)$ (Note: If char $K=2$, our hypotheses imply $n+1$ is even.), then $f_{1}^{(n-1)}\left(r_{1}\right)=$ (terms involving bt, t^{2}, and b^{2}). It follows that $v(t) \geq v(b)>0$ and $v\left(f_{1}^{(n-1)}\left(r_{1}\right)\right) \geq$ $2 v(b)=2 v\left(a_{n-1}\right)$.
Q.E.D.

We shall only use the inequality of the lemma in the weak form $v\left(f_{1}^{(n-1)}\left(r_{1}\right)\right) \geq$ $v\left(f^{(n-1)}(r)\right)$. We now continue the proof of 6.3.

Choose $x_{1} \in \mathfrak{J}(x) \cup\{x\}$ such that x_{1} is a generator for y of multiplicity n and no clement of $\mathfrak{J}(x) \cup\{x\}$ is a generator for y of multiplicity $<n$. If $n=0$, we are done, so assume $n>0$. Every element of $\mathfrak{J}\left(x_{1}\right) \subset \mathfrak{J}(x)$ is rational by hypothesis, and by 3.2 every element of $\mathfrak{J}\left(x_{1}\right)$ is a generator for y of multiplicity n. Thus, by replacing x by x_{1} in the formulation of proposition 6.3, we may additionally assume that every element of $\mathfrak{J}(x)$ is a generator for y of multiplicity $n>0$.

Proof of 6.3-a): Assume char $k=0$. Suppose we have a generating pair $x_{i}, f_{i}(X)$ of multiplicity n for $y, x_{i} \in \mathfrak{J}(x)$, and an $r_{i} \in K_{0}$ such that $v\left(x_{i}-r_{i}\right)>0$. Since K / K_{0} is generically of index 1 , there exists $b_{i} \in K_{0}$ such that $\left(x_{i}-r_{i}\right) / b_{i}=x_{i+1} \in \mathfrak{J}\left(x_{i}\right) \subset \mathfrak{J}(x)$. By the above Icmma, there exists a generating pair $x_{i+1}, f_{i+1}(X)$ for y of multiplicity n and an $r_{i+1} \in K_{0}$ such that $f_{i}\left(x_{i}\right)=b_{i,}^{\prime \prime} f_{i+1}\left(x_{i+1}\right), v\left(x_{i+1}-r_{i+1}\right)>0$, and $v\left(f_{i+1}^{(n-1)}\left(r_{i+1}\right)\right)$ $\geq v\left(f_{i}^{(n-1)}\left(r_{i}\right)\right)=v\left(b_{i}\right)$. We thus define inductively a sequence $x_{i}, f_{i}(X), i=$ $1,2, \ldots$, of generating pairs for y and elements $b_{i} \in K_{0}$ such that $f_{i}\left(x_{i}\right)=b_{i}^{n} f_{i+1}\left(x_{i+1}\right)$ and $v\left(b_{i+1}\right) \geq v\left(b_{i}\right)$. Then $y=a f_{1}\left(x_{1}\right)=a b_{1}^{n} f_{2}\left(x_{2}\right)=a b_{1}^{n} b_{2}^{n} f_{3}\left(x_{3}\right)=\cdots$, where $0<$ $v\left(b_{1}\right) \leq v\left(b_{2}\right) \leq \cdots$. Since v is rk 1 , for sufficiently large $t v\left(a b_{1}^{n} \cdots b_{t}^{n}\right)>0$. But then $v(y)>0$, a contradiction.

Proof of $6.3-b)$: Assume v is discrete. To every generating pair $x_{1}, f_{1}(X)$ for y
with $x_{1} \in \mathfrak{J}(x)$ there is associated a coefficient $a=y / f_{1}\left(x_{1}\right) \in K_{0}$. Since $v\left(f_{1}\left(x_{1}\right)\right)>0$ because x_{1} is assumed to be a generator for y of multiplicity >0, we have $v(a)<0$. Choose a generating pair $x_{1}, f_{1}(X)$ of this type (i.e. for y with $x_{1} \in \mathfrak{J}(x)$) for which $-v(a)$ is minimal. (This uses v is discrete, rk 1.) Since x_{1} is rational and K / K_{0} is generically of index 1 , there exists $x_{2}=\left(r_{1}-r_{1}\right) / b_{1} \in \mathfrak{J}\left(x_{1}\right) \subset \mathfrak{J}(x)$. Expand: $f_{1}(X)=$ $a_{0}+a_{1}\left(X-r_{1}\right)+\cdots+a_{n}\left(X-r_{1}\right)^{n}+\cdots+a_{m}\left(X-r_{1}\right)^{\prime \prime \prime}, a_{i} \in V_{0}$. Then $f_{1}\left(x_{1}\right)=b_{1}^{n}\left[c_{0}+\right.$ $\left.c_{1}\left(\left(x_{1}-r_{1}\right) / b_{1}\right)+\cdots+c_{m}\left(\left(x_{1}-r_{1}\right) / b_{1}\right)^{m}\right]$, where $c_{i}=a_{i} b_{1}^{i-n}$. By 3.2-i), $c_{0}, \ldots, c_{n-1} \in V_{0}$; and $c_{n}=a_{n}, c_{n+1}=a_{n+1} b_{1}, \ldots, c_{m}=a_{m} b_{1}^{m-n}$ are also in V_{0}. Therefore if $f_{2}(X)=$ $c_{0}+c_{1} X+\cdots+c_{m} X^{m}$ and $x_{2}=\left(x_{1}-r_{1}\right) / b_{1}$, it follows that $x_{2}, f_{2}(X)$ is a generating pair for y. But $y=a f_{1}\left(x_{1}\right)=a b_{1}^{n} f_{2}\left(x_{2}\right)$, and $v\left(b_{1}\right)>0$ (since $v\left(b_{1}\right)=v\left(x_{1}-r_{1}\right)>0$); so $-v\left(a b_{1}^{n}\right)<-v(a)$, a contradiction to our choice of $x_{1}, f_{1}(X)$.

7. Composite valuations and the induction step for 6.2.

Recall (cf. [12, pp.43,53]) that a valuation v of K is called composite with valuations w of K and u of l if $V \subset W, l$ is the residue field of w, and the image V^{\prime} of V under $W \rightarrow W / m_{w}=l$ is the valuation ring U of u. The canonical homomorphism $V \rightarrow V / m_{v}=k$ may then be factored: $V \rightarrow V^{\prime}=U \rightarrow k$. In terms of specialization maps (or "places"; cf. [12, p. 3]), one should keep in mind the following diagram:

7.1. We shall now finish the proof of 6.2 by induction on $\mathrm{rk} v$, the rk 1 case having been established in $\S 6$. If $\mathrm{rk} v>1$ (and finite), then v is composite with valuations w and u of strictly smaller rk .

First observe that w / w_{0} is generically of index 1. For, v / v_{0} is generically of index 1 implies for any generator z of K / K_{0} there exists $a \in K_{0}$ such that z / a is a unit of V. But $V \subset W$, so z / a is also a unit of W, and therefore $w(z)=w(a)$ and w / w_{0} is generically of index 1 .

By induction hypothesis applied to w, there exists a generator z of K / K_{0} such that $z \xrightarrow{\cdots} z^{\prime}$ tr. over I_{0}. Replacing z by either $1+z$ or $1+(1 / z)$ if necessary, we may further assume $v(z)=0$ and hence also $u\left(z^{\prime}\right)=0$. Now let $l_{1}=l_{0}\left(z^{\prime}\right) \subset l$, and let $u_{1}=u \mid l_{1}$. We want to check next that the hypotheses of 6.1 hold for u_{1} / u_{0}.

Claim: u_{1} / u_{0} is generically of index 1 . First observe that for any element $\beta \neq 0$ of l which has a w-preimage $b \in K$ which is a generator of $K / K_{0}, u(\beta) \in u\left(l_{0}\right)$. For v / v_{0} is generically of index 1 implies there exists $a \neq 0 \in K_{0}$ such that b / a is a unit of $V \subset W$. Then $w(a)=w(b)=0, a \xrightarrow{w} x \neq 0 \in I_{0}$, and $b / a \xrightarrow{w} \beta / \alpha$. But b / a is a unit of V implies β / α is a unit of $V^{\prime}=U$, so $u(\beta)=u(\alpha) \in u\left(l_{0}\right)$. Next observe that to check u_{1} / u_{0} is generically of index 1 , it suffices by 4.1 to show that for any $r^{\prime} \in I_{0}$ such that
$u\left(z^{\prime}-r^{\prime}\right)>0, u\left(z^{\prime}-r^{\prime}\right) \in u\left(l_{0}\right)$. But $z^{\prime}-r^{\prime}$ has a w-preimage $z-r, r \in K_{0}$, in K which is a generator of K / K_{0}; so the previous observation applies.

Claim: Given any valuation overring R_{1} of U_{1} in I_{1}, the residue field of $R_{1} \cap I_{0}=R_{0}$ is algebraically closed in the residue field of R_{1}. To see this, first note that there exists a valuation overring R of U in l such that $R \cap l_{1}=R_{1}$ (cf. [12, p. 53, Lemma 4]). The inverse image of R under $W \rightarrow l$ is a valuation ring T lying between V and W; so by the hypothesis on V, the residue field \mathcal{O}_{0} of $T \cap K_{0}$ is algebraically closed in the residue field \mathcal{O} of T. But $\mathcal{O}, \mathcal{O}_{0}$ are also the residue fields of R, R_{0}, respectively, and the residue field of R_{1} lies between \mathcal{O}_{0} and \mathcal{O}, thereby establishing our assertion.

Claim: The residue field of $u_{0}, l_{0}\left(=k_{0}\right) \neq$ residue field of u_{1}, l_{1}. For, l is algebraic over l_{1} implies k is algebraic over the residue field of u_{1}. Since k / k_{0} is not algebraic by hypothesis, $k_{0} \neq$ residue field of u_{1}.

Thus, we may apply the induction hypothesis to u_{1} / u_{0} to conclude there exists a generator of I_{1} / l_{0} which specializes under u to a tr. over k_{0}. By 5.4 -Corollary this generator may be assumed to be of the form $\left(z^{\prime}-r^{\prime}\right) / s^{\prime}$, for some $r^{\prime}, 0 \neq s^{\prime} \in l_{0}$. But then if r, s are w-preimages in K_{0} for $r^{\prime}, s^{\prime},(z-r) / s-\cdots,\left(z^{\prime}-r^{\prime}\right) / s^{\prime}$; and therefore $(z-r) / s$ is the desired generator of K / K_{0} which specializes under v to a tr. over k_{0}.
Q.E.D.
7.2. We give next an example to show " K_{0} is henselian" cannot be omitted from 3.7 and the condition on the residue fields in 6.1 cannot be weakened to " k_{0} is algebraically closed in k^{\prime}. The example will have the following properties: v, v_{0} are discrete, rk 2 ; index of $v / v_{0}=1 ; k / k_{0}$ is simple tr.; $k_{0}=Q$. The idea is to construct discrete, rk 1 valuations w, u such that v is composite with w and u and such that (in the initial notation of $\S 7$) l / I_{0} is not simple tr. Then no generator of K / K_{0} can specialize under v to a tr. over k_{0}; for if it did, it would also specialize under w to a tr. over I_{0}, and by 1.1 this would imply l / I_{0} is simple tr.

Let s, z be complex numbers algebraically independent over Q, and let t be an indeterminate over C. Let $K_{0}=Q(s, t)$ and $K=K_{0}(x)$, where $x=(1+s)^{1 / 2}+z t$, and let w be the restriction of the t-adic valuation of $C(t)$ to K. Then $I_{0}=Q(s)$ and $I=I_{0}\left((1+s)^{1 / 2}, z\right)$, as we have seen in 5.1. Now let u_{0} be the s-adic valuation of I_{0}; extend first to a valuation u_{1} of $l_{0}\left((1+s)^{1 / 2}\right)$ and then to a valuation u of l by infs w.r.t. $u(z)=0$.

The residue field k_{0} of u_{0} is Q; and the residue field k_{1} of u_{1} remains Q, since u_{0} extends in two ways to $l_{0}\left((1+s)^{1 / 2}\right)$ (because if $\xi=(1+s)^{1 / 2}$, then $s=\zeta^{2}-1=(\xi-1)$. $(\xi+1)$ implies u_{0} extends to $l_{0}(\xi)=Q(\xi)$ either by $u_{1}(\xi-1)=1, u_{1}(\xi+1)=0$, or the reverse). Therefore by 1.1 the residue field k of u is $Q\left(z^{*}\right)$, where $z \rightarrow{ }_{H} z^{*}$.

Finally, v / v_{0} is of index 1 because w / w_{0} and u / u_{0} are of index 1 . (To see this, let $a \neq 0 \in K$. Then w / w_{0} is of index 1 implies there exists $a_{0} \neq 0 \in K_{0}$ such that a/ $a_{0} \xrightarrow{w} \beta \neq 0$. Similarly, u / u_{0} is of index 1 implies there exists $\beta_{0} \neq 0 \in l_{0}$ such that $\beta / \beta_{0} \longrightarrow \longrightarrow \gamma \neq 0$. Let b_{0} be a w-preimage for β_{0} in K_{0}. Then $a / a_{0} b_{0} \xrightarrow{w} \beta / \beta_{0} \xrightarrow{\mu} \gamma \neq 0$, so $v(a)=v\left(a_{0} b_{0}\right) \in v\left(K_{0}\right)$.)
7.3. We conclude § 7 with a proposition on composite valuations needed in $\S 8$.

Proposition. Let z be a generator of K / K_{0}, and suppose $\left[G: G_{0}\right]<\infty$ and v is composite with a valuation w of K. If v is the inf extension of $v_{0} w . r . t . v(z)$, then w is the inf extension of w_{0} w.r.t. $w(z)$ (and w / w_{0} is of finite index).

Proof. Let H be the value group of w. If the coset $v(z)+G_{0}$ has order n in G / G_{0}, then $w(z)+H_{0}$ has order n_{1} dividing n in H / H_{0}. For, if there exists $b \neq 0 \in K_{0}$ such that $v\left(z^{n} / b\right)=0$, then z^{n} / b is a unit of V and a fortiori a unit of W; and therefore $w\left(z^{\prime \prime}\right)=w(b) \in H_{0}$. Thus, $n=n_{1} m$ for some integer $m \geq 1$.

By 4.3, there exists $b \neq 0 \in K_{0}$ such that $z^{\prime \prime} / b \xrightarrow{\bullet} \eta$ tr. over k_{0}, which implies $z^{\prime \prime} / b \xrightarrow{w}$ $\eta^{\prime} \operatorname{tr}$. over l_{0}. Also, there exists $c \neq 0 \in K_{0}$ such that $w\left(z^{n_{1}}\right)=w(c)$. Then $\left(z^{n_{1}} / c\right)^{m}=$ $z^{n} / c^{m}=z^{n} / d b, d$ a unit of W_{0}. Hence $\left(z^{n_{1}} / c\right)^{m} \longrightarrow \eta^{\prime} / d^{\prime}, d^{\prime} \in I_{0}$. But η^{\prime} is tr. over I_{0}, so we must have $z^{n_{1}} / c$ also specializes under w to a tr. over l_{0}. Therefore by 4.3 w is the inf extension of w_{0} w.r.t. $w(z)$.

8. Conjecture 6.1 for arbitrary inf extensions.

What is the appropriate generalization of conjecture 6.1 to arbitrary inf extensions? It is a somewhat surprising fact that the obvious reformulation is not quite correct; one needs an extra condition, "every generator of $K_{0}\left(z^{n}\right) / K_{0}$ has value in $G_{0}{ }^{\prime \prime}$ below, as we shall show in example 8.2.

8.1. Conjecture.

For every valuation overring $W \subset K$ of V the residue field I_{0} of $W \cap K_{0}$ is algebraically closed in the residue field l of $W ; k_{0} \neq k$; and there exists a generator z of K / K_{0} with $v(z)+G_{0}$ of order $n \geq 1$ in G / G_{0} such that every generator of K / K_{0} has value in $\left\{i v(z)+G_{0} \mid i=0, \ldots, n-1\right\}$ and every generator of $K_{0}\left(z^{\prime \prime}\right) / K_{0}$ has value in $G_{0}\left(\Longleftrightarrow v\right.$ is the inf extension of v_{0} w.r.t. $v\left(z_{1}\right)$ for some generator z_{1} of K / K_{0} such that $v\left(z_{1}\right)+G_{0}$ has order n in G / G_{0}.

Note that the converse (\Leftarrow) to the conjecture is true: if v is the inf extension of v_{0} w.r.t. $v(z)$, then the value group of $K_{0}\left(z^{n}\right) / K_{0}$ is G_{0} by 4.3; the group G / G_{0} is cyclic generated by $v(z)+G_{0}$ by the definition of inf extension w.r.t. $v(z)$; and I / I_{0} is simple tr., by 7.3 and 4.3, and a fortiori satisfies the hypothesis of the conjecture.
8.2. Examples. If Γ is any totally ordered abelian group and L a field, then the group ring $L[\Gamma]=\oplus\left\{L X^{\gamma} \mid \gamma \in \Gamma\right\}$, with multiplication defined by $X^{\gamma} X^{\delta}=X^{\gamma+\delta}$, may be given a valuation w by defining $w\left(a_{0} X^{\gamma_{0}}+\cdots+a_{t} X^{\gamma_{1}}\right)=\inf \left\{\gamma_{i} \mid i=0, \ldots, t\right\}$; and, as usual, this valuation extends to the quotient field $L(\Gamma)$ of $L[\Gamma]$. Moreover, the value group of w is Γ, and one verifies easily that the residue field is L.

Let $Q(t)$ be a simple tr. extension of Q, let Γ be the additive subgroup of the reals consisting of $\{\alpha+\beta \pi \mid \alpha, \beta \in Z\}$, and let w be the (rk 1) valuation of $Q(t)(\Gamma)$ described above. Let $z=X^{1}+t X^{\pi}$, let $K=K_{0}(z)$, where $K_{0} \subset Q(t)(\Gamma)$ will be described presently, and let v_{0}, v be the restrictions of w to K_{0}, K respectively. a) Example where k is simple tr. over k_{0} but G / G_{0} is not cyclic (and hence v cannot be an inf extension of v_{0} w.r.t. any choice of generator of $\left.K / K_{0}\right)$. Take $K_{0}=Q\left(G_{0}\right)$, where
G_{0} is the subgroup of Γ consisting of $\{\alpha+\beta \pi \mid \alpha, \beta \in 2 Z\}$. Then the value group of v_{0} is G_{0} and the residue field k_{0} is Q. Since $z^{2}=X^{2}+2 t X^{1+\pi}+t^{2} X^{2 \pi}$ and $X^{2}=$ $r \in K_{0}, z^{2}-r \in K$, and therefore $v\left(z^{2}-r\right)=1+\pi$ is in the value group G of v. Since $v(z)=1$, it follows that $1, \pi \in G$; so $G=\Gamma$. Then $G / G_{0} \cong(Z / 2 Z) \oplus(Z / 2 Z)$.

Now let us compute k. (Incidentally, we know $Q=k_{0} \subset k \subset Q(t)=$ residue field of w, so without further ado we already know by Lüroth's theorem that k / k_{0} is simple tr.) We have $\left(z^{2}-r\right)^{2}=4 t^{2} X^{2+2 \pi}+4 t^{3} X^{1+3 \pi}+t^{4} X^{4 \pi}$. Let $s=4 X^{2+2 \pi} \in$ K_{0}. Then $\xi=\left(z^{2}-r\right)^{2} / s^{\bullet} \rightarrow t^{2}$. Since t^{2} is tr. over k_{0}, it follows that the residue field of $K_{0}(\xi)$ is $Q\left(t^{2}\right)$ (cf. 1.1); and the value group of $K_{0}(\xi)$ is G_{0}. But then $\left[G: G_{0}\right]=4$ and $\left[K: K_{0}(\breve{\zeta})\right] \leq 4$ imply (by 1.2) that the resdidue field k of K is also $Q\left(t^{2}\right)$.

Remark. In light of this example, it would be interesting to know just what finite groups G / G_{0} can occur when k is simple tr. over k_{0} (and, of course, also K is simple tr. over K_{0}). ${ }^{2)}$ If $k=k_{0}$, results of this type, due to Mac Lane-Schilling, are discussed in [12, p. 102].
b) Example to show that the hypothesis "every generator of $K_{0}\left(z^{\prime \prime}\right) / K_{0}$ has value in $G_{0}{ }^{\prime}{ }^{\text {E }}$ is needed in 8.1. Take $K_{0}=Q\left(G_{0}\right)$, where G_{0} is the subgroup of Γ consisting of $\{\alpha+\beta \pi \mid \alpha \in 2 Z, \beta \in Z\}$. Then $v(z)=1$ implies the value group G of K is Γ. Therefore $G / G_{0} \cong Z / 2 Z$, and $v(z)+G_{0}$ generates G / G_{0}.

Let $K_{1}=K_{0}\left(z^{2}\right)$. We have seen in a) that $v\left(z^{2}-r\right)=1+\pi$, so the value group G_{1} of K_{1} is $\Gamma=G$. Therefore $\left[G_{1}: G_{0}\right]=2$. Since $G_{1} \neq G_{0}, v_{1}$ is not the inf extension of v_{0} w.r.t. $v_{1}\left(z^{2}\right)=2\left(\in G_{0}\right)$, and hence by $4.3 v$ cannot be the inf extension of v_{0} w.r.t. $v(z)=1$.

Claim: v cannot be the inf extension of v_{0} w.r.t. any generator of K / K_{0}. Note first that for any $s \in K_{0}, v(z)=1 \neq v(s)$. If $v(s)<v(z)$, then $v(z-s)=v(s)$ and $(z-s)^{2} / s^{2} \rightarrow-1$. If, on the other hand, $v(z)<v(s)$, then $v(z-s)=v(z)=1$ and $(z-s)^{2} / X^{2} \rightarrow 1$. The claim now follows from the Proposition below, which asserts that if v is the inf extension of v_{0} w.r.t. some generator of K / K_{0}, then there exists $s \in K_{0}$ such that for any $d \neq 0 \in K_{0}$ with $v(d)=v\left((z-s)^{2}\right),(z-s)^{2} / d$ specializes to a tr. over k_{0}.

Lemma. Let $\xi \in K$. If $\xi / b \rightarrow t r$. over k_{0} for some $b \neq 0 \in K_{0}$, then $\xi / b^{\prime} \rightarrow t r$. over k_{0} for every $b^{\prime} \in K_{0}$ such that $v\left(b^{\prime}\right)=v(\xi)$.

Proof. $v\left(b^{\prime}\right)=v(\xi)=v(b)$ implies there exists a unit u of V_{0} such that $b^{\prime}=u b$. Therefore $\xi / b^{\prime}=(1 / u)(\xi / b) \rightarrow\left(1 / u^{*}\right)(\xi / b)^{*}$. But $1 / u^{*} \in k_{0}$.

Proposition (4.3 continued). Suppose z_{1} is a (tr.) generator of K / K_{0} such that $v\left(z_{1}\right)+G_{0}$ has finite order $n \geq 1$ in G / G_{0}. If v is the inf extension of v_{0} w.r.t. $v\left(z_{1}\right)$, then for any generator z of K / K_{0}, there exists $s \in K_{0}$ such that for any $d \in K_{0}$ with $v(d)=n v(z-s),(z-s)^{n} / d \rightarrow t r$. over k_{0}.

Proof. By 4.3, there exists $b \neq 0 \in K_{0}$ such that $z_{1}^{n} / b \rightarrow \operatorname{tr}$. over k_{0}. We may write $z_{1}=\left(a_{1} z-c_{1}\right) /\left(a_{2} z-c_{2}\right), a_{i}, c_{i} \in K_{0}, a_{1} c_{2}-a_{2} c_{1} \neq 0$. Since $\left[G: G_{0}\right]=n$, there

[^1]exist $d_{i} \in K_{0}$ such that $n v\left(a_{i} z-c_{i}\right)=v\left(d_{i}\right), i=1,2$. Therefore $z_{1}^{n} /\left(d_{1} / d_{2}\right)=N_{1} / N_{2}$, where $N_{i}=\left(a_{i} z-c_{i}\right)^{n} / d_{i}$ has value 0 . By the lemma, $z_{1}^{n} /\left(d_{1} / d_{2}\right) \rightarrow \operatorname{tr}$. over k_{0}, so either N_{1} or N_{2} specializes to a tr. over k_{0} also; say N_{1} does. Then $a_{1} \neq 0$ and $N_{1}=$ $\left(z-\left(c_{1} / a_{1}\right)\right)^{n} /\left(d_{1} / a_{1}^{n}\right)$. In view of the above lemma, we are done.
Q.E.D.

In order to apply this example to 8.1 , it remains to verify k_{0} is algebraically closed in k. (As in a) we know a priori by Lüroth's theorem that k / k_{0} is simple tr., but it is also easy to compute k directly.) We have seen in a) that the residue field of $K_{0}(\xi)$ is $Q\left(t^{2}\right)$ and the value group is G_{0}. Since $\left[K_{1}: K_{0}(\xi)\right] \leq 2$ and $\left[G_{1}: G_{0}\right]=2$, it follows that the residue field of K_{1} must remain $Q\left(t^{2}\right)$. But $\left[K: K_{1}\right] \leq 2$ and $\left(z^{2}-r\right) / 2 X^{\pi} Z \longrightarrow t, t \in$, so we must have $k=Q(t)$.

Louisiana State University
 Baton Rouge, Louisiana 70803

References

[1] S. Abhyankar, P. Eakin, and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. of Algebra, 23 (1972), 310-342.
[2] N. Bourbaki, Algèbre Commutative, Éléments de Math. 30, Hermann, Paris, 1964.
[3] C. Chevalley, Algebraic Functions of One Variable, Math. Surveys 6, Amer. Math. Soc., New York, 1951.
[4] O. Endler, Valuation Theory, Springer-Verlag, New York, 1972.
[5] S. Mac Lane, A construction for absolute values in polymial rings, Trans. Amer. Math. Soc., 40 (1936), 363-395.
[6] M. Nagata, Local Rings, Interscience, New York, 1962.
[7] M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J., 29 (1967), 85-91.
[8] M. Nagata, Field Theory, Dekker, New York, 1977.
[9] P. Ribenboim, Theorie des Valuations, Les Presses de l`Université de Montréal, 1964.
[10] B. L. van der Waerden, Modern Algebra I, Unger, New York, 1949.
[11] O. Zariski, Pencils on an algebraic variety and a new proof of a theorem of Bertini, Trans. Amer. Math. Soc. 50 (1941), 48-70.
[12] O. Zariski and P. Samuel, Commutative Algebra, vol. II, van Nostrand, Princeton, 1960.

[^0]: 1) Added August, 1981: I now have an example (to appear in a sequel) in char. p for which $G_{0}=G=Q, k / k_{0}$ is simple tr., and yet no generator of K / K_{0} specializes to a tr. over k_{0}. Thus, the remaining undecided case of 6.1 is char $k=0$ and $\mathrm{rk} v$ infinite.
[^1]: 2) Added August, 1981: W. Heinzer has now proved that G / G_{0} may be any finite abelian group.
