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§ O . Introduction

Let R  and S  be Riemann surfaces and f  a quasiconformal mapping of R  onto
S. Let be a normal covering surface of R .  Then f  can be lifted to a quasicon-
formal mapping j  of IZ onto a normal covering surface g  of S, and j  is uniquely
determined by f  up to covering transformations of R .  Suppose f  is extrema!. I s
then f also extrema!? In case the universal covering surface of R  is the Riemann
sphere C U {oo} or the complex plane C, this problem is not of in te rest. In fact,
suppose R  is conformally equivalent to C U {00}, C , or the one-punctured complex
plane C-{0}, if f  is extremal then f  is conformal, hence j  is extrem al. Suppose R  is
a torus and K =C or C-{0), then f is extremal if and only if f  is conform al, And
suppose R  and k  are tori, from the classical Teichmiiller's theorem, f is extremal if
and only if so is f. E. Blum [8] showed that if R  is a doubly connected bounded
domain, is the unit disk U, and f is a horizontal streching, then ./ is extrem al. On
the other hand. for the case R  is a compact Riemann surface of genus g 2, and R =
U, K. Strebel [22] gave, together with some examples, a conjecture: even if f  is
extremal,:f is never extremal except for the trivial case that f  is conformal.

The aims of this paper are to give a condition for a lift mapping f of extremal
f  to be extremal or not to be extremal (Theorem 3), and to prove the following
theorem, which is a generalization of Blum's.

Theorem 1 .  Suppose th a t  R  a n d  S  a re  tw o  (a rb itra ry )  Riemann surfaces
whose universal covering surfaces are the u n it d isks  and f  is  a n  extremal quasi-
conform al m apping o f R onto S .  A n d  suppose that i s  a  norm al covering surface
of R whose covering transform ation group r is a fin ite ly generated Abelian group,
and a lift f  o f f  is  a  guasiconformal m apping o f onto a  no rm a l covering surface
of S. Then f is extremal.

The above theorem will be proven in § 2 .2 .  In § 1 we shall sum up related facts
for our a im s. The proofs of theorem and lemmas in § I will be omitted, since they
are seen in many articles.
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§ 1. Preliminaries

1. Let R be a Riemann surface whose universal covering surface is the unit
disk U, and let R be represented by a Fuchsian group G acting on U as R=U/G.
S e t  R* =((OU — A(G)) U U)/G, where A(G) i s  th e  lim it s e t  o f  G , then R *  is  a
Riemann surface whose interior is R .  A quasiconformal mapping f of R onto another
Riemann surface S has the unique extension f *  which is a  topological mapping of
R* onto S* (cf. Ahlfors [2], Lehto & Virtanen [16]). Two quasiconformal mappings
f  and g of R onto S are said to be homotopic modulo the boundary, when f *  g *  on
R*—R and there exists a homotopy between f *  and g* which is constant on R* — R.
If  R* — R is empty: that is, if G  is of the first kind, then this means that f  is just
homotopic to g .  For a quasiconformal mapping f  of R onto S, by .2(f; R, S) (or
simply by .2(f)) we denote the set of all quasiconformal mppings of R onto S which
are homotopic to f  m odulo the boundary . A quasiconformal mapping f  o f  R
onto S is said to be  ex trem a! in .2(f; R, S) if f  has the smallest maximal dilatation
among th e  mappings in  .2 (f; R , S ). There always exists at least one extremal
mapping in _2(f; R, S ) .  (See Bers [5], theorem 4.)

Let 029 1 (G) denote the Banach space o f integrable measurable quadratic differ-
entials on R=U1G; that, is, the set of measurable functions v on U such that

v(A z)A '(z) 2 = v ( z )  for all AeG, a.e.z U ,  and

v  R I V (Z)il dz A d2  < co.

Let sit(G) denote the Banach space of integrable holomorhic quadratic differentials
on R: that is,

saf(G)= 14)e _Ft (G)14) is holomorphic on U.1.

And let d 1 (G) denote the closed unit ball of ..szte(G).
The following theorem due to R. S. Hamilton, E. Reich, K. Strebel and others

is characteristic of extremal quasiconformal mappings.

Theorem 2 .  A quasiconformal mapping f  of R is ex trem a! in .2(f) if  and only
if

s u p  1 S  p( )0 (z)dz (12
Oc.,o,(G) R

where p is the Beltrami differential off.

The proof is found in many articles, for example, see Strebel [23], theorem 5
and Hamilton [10], theorem 1.

For the Beltrami differential p of an extremal quasiconformal mapping of R,
a  sequence {q} 1 of holomorphic quadratic differentials on R with norm 110„11,=- 1
is called a Hamilton sequence for p if

= Ilp
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lim p0„idz A =
I ;  • R

For a holomorphic quadratic differential (/) (not necessarily of finite norm)
on R  and for a real k(0<k< 1), a quasiconformal mapping of R  whose Beltrami
differential is 14/10 is said to be o f Teichmfiller type associated with (/), moreover
if has the finite norm, it is ca lled  a  Teichmiiller m a p p in g . It follows from
theorem 2 that a Teichmilller mapping f is extremal in _2(f).

2. A regular (i.e. complete and smooth) covering surface 11 of R is said to be
norm al when the fundamental group 7r 1 (R) of 1 is isomorphic to a normal subgroup
of Tr,(R). We here especially study the extremality of lifts to  normal covering sur-
faces, so throughout the rest of this paper, unless otherwise mentioned, we assume
the following.

1) R  is  a n  a rb it ra ry  R iemann surface whose universal covering surface is
th e  u n it d is k  U, a n d  R  is  represented by a  Fuchsian g ro u p  G , w ithou t ellitpic

elements, acting  on U as R=UIG.

II) P  is  a  no rm a l covering  surface of R. and  P  is  represented by a  norm al
subgroup C of G as P  =U IC.

III) F  is the covering transform ation group of R.
Under the above assumption we have R = P/r, and (See Ahlfors and

Sario [3], Chapter 1, § 3.)

3. F o r  z , e  U, we set

K(z, (,) = 3i/{27r(1 — z04 1,

then it follows from a simple calculation that K(z, C)dz 2  A  dC2 is Mob (U)-invariant:
that is, for any Te Mob (U)

K(Tz, T )T '(z) 2 T '( ) 2 =K(z, (),

where Mob (U ) is the set of all conformal self-mapping o f U , and it follows that

110 z , ) I ld z  A  621=3402,
L'

where ). is the Poincaré metric on U .  We set

F(z, (,)= E K(Az, C)Ajz) 2 ,
AE

then the right hand side coverges absolutely and uniformly on compact subsets of U,
and F(z, Odz 2  A  dC2 is N(C)-invariant, where N(C) is the normalizer of C in Mob (U),
in particular, it is G-invariant, and

F(z, chi 5 3)40 2 .

Lemma 1 . L e t H  be a  Fuchsian group which contains C and  is contained in
N (C ). For each re  .r 1(H), define
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fi[v](z) 2(C)-2F(Z, OV(C)CgA dC

Then fi is  a  bounded linear projection of  -V (H ) onto si(H ), in particular, for
any  0 e Jai (H)

KO] (z) 4)(z).

(For this section see Kra [12], proposition 5.1 of Chap. III.)

§ 2 . Main results

1. For any y e F, let Ty e G be one of the lifts of y: that is, Ty is a representative
o f the  coset, which is corresponding to y, of the quotient group G /C -1 '. Let
v be an element of ..2"(C), then v(Tyz)T'y (z)2 is independent of any choice of the re-
presentatives of the coset corresponding to y. S e t

(0 1 v)(z) E v(Ty z)T;(z)2, f o r  v e ..29 '(C).
yeF

Then the right hand side converges in ..29 '(G). Hence we can define a  mapping or

of ..V (C ) to  2 1(G ). 0,-v is called, in this paper, the Poincaré series of v. If is
the trivial group, then e r v coincides with the usual Poincaré series 0,v.

Proposition 1. The mapping O,- defined above has the following properties:
i) 0,- is a continuous linear mapping of norm  1, furtherm ore, 0 ,-(21(C))=s1(G),

and for every 0 e d(G), there is a 'b E d ( )  such that 0=0,-0, and 110 11 311 Oil R.
ii) 0 ,= 0 ,o 0 d .

iii) f l . 0  r= e r°fl.
P ro o f . Properties ii) and iii) follow form simple calculations, and i) follows

from the same argument as in the case of the usual Poincaré series, and from ii).

Remark. We have defined here the Poincaré series as a  mapping not only of
se(C) but also of 2) 1(e), so the norm of the Poincaré series is one . W e, however,
have much interest in the Poincaré series as a mapping of si(C) onto d(G), so by
ilerd we mean the norm of the Poincaré series as a mapping of .21(C) onto si(G):
that is,

II01-11=  s u p  
0.d(c) 110 11ft

Set b(G)= {0 e si(G)11411 R  = .1 } and  for every 0 e b(G), define

/(0)=inf {11 0 1litlerd5 =46 , E d ( 0 ) }

/(0)= /(ip).

Then / (resp. I) is upper (resp. lower) semi-continuous function on b(G ). Obviously,
/(0)>__-_/_(0) for any 0 e (G),



R A O  d Z  A  dZ ttO„dz A d2  /110.11i,

SSR ti e 1-0„dz A d2

sup 11.111
n  co

--r-
= 11M

n  co
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inf =  in f  / (0 )= 1.
e b (G)

r r  1

o 13(G )

Now the following is one of the main results of this paper.

Theorem 3. 1 )  Suppose that 1(0 0 )=1  f or some 0, e b (G ) . L e t f  be a Teich-
m ailer m apping of  R  associated w ith 0 0 ( f  is, of  course, ex trem a! in .2(f).), and f
be a lift to o f f .  T h e n  f  i s  ex trem a! in .2(f ).

II) Suppose that (q) e b(G) I 1(4))= I} is dense in b(G), so (4) e b(G)I 40)=1}  =
b(G ). L et f  be  an  arbitrary  ex trem al quasiconform al m apping of  R  (not neces-
sarily , a Teichmiiller mapping), and f  be a lift to o f f .  T h e n  f  is  extrema! in .2(f).

IH ) I f  dim d(G)< oo, then the converses of  I) and II) are  v alid . T hat is,
the following III.i) and HUI) are concluded.

III.i) S uppose that dim d ( G ) < .  L e t  f  b e  a T eichm iiller m apping of  R
associated with some cb, e b(G), and f a lif t  to o f f .  I f  J  is ex trem a! in .2(f),
then  N O = I.

III.ii) Suppose that dim si(G)< c o .  If  a lif t f  to lq of  each ex trem al quasi-
conform al m apping f  of  R  is ex trem al in .2(f ), then

e b(G)II(0)=1}  =b(G).

Pro o f . I) Suppose that N O  =1 for some 00  E  b(G ). Let y be the Beltrami
differential of a Teichmiiller mapping f  associated with (h. Then there is a sequence
10„1,T- i c b(G) which satisfies the next three conditions;

a) On converges to 00 in  ..V (G).
b) For each 0„, there is a  dpi, ea (C ) such that 0 „=e r 43„.
c) lim 11 0 IIR= 1 •

Then

sup
ocd,(c) SS R psi) dz df lim

n
ff 11■10„dz A  C/2 1/110 nlik
) ) / 1

=  151POndZ A  d2
n—oco R

R 1100CIZ A  d2

=  II /211.9.
Hence f is extremal in .2(f).

II) Let p  be the Beltrami differential of an arbitrary extremal quasiconformal
mapping f  of R , and let {c/)„} = , b(G) be a Hamilton sequence for p .  Then there
is a  sequence {(P„} , ..:zi(C) such that lirn 110 .1 1 A = 1 ,  a n d  lim

n n
•

This means that
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=lim Ç1 „dz A  df
. R

= •

Hence f, a lift to  1  o ff , is  extremal in .9(f).
H U ) I n  case dim Jaf(G)< c o ,  i t  t u r n s  o u t  th a t  e v e ry  Hamilton sequence

10 „1 = 1  b(G ) f o r  p= kchllOol < k <1) coverges t o  0 ,  in  .T '(G ). Since f  is
extremal in  .2( J) ,  th e re  is  a H am ilton sequence { 0 „ 1 ,  b(C) fo r  p. Then

p 1im p , jd z  A dfl

=Jim  Çç 1101- 19 „Id: A d21.
. . R

From this, limIler(Pull= R 1, and  { 6 r Ou/110,-(1)IIR I; ,̀= , b (G )  is a  Hamilton sequence

for p, so it converges to  450 in 2 " (G). Hence

- i(460) l im 1 (6 1- 0 „1110 r0 „11R)

qt'JR./MeroP„MR=1.

III.ii) This follows from III.i). Q. E. D.

Remark. It is easily seen from theorem 2 that if 110 [.11<1, then f, a lift to of
an aribitrary extremal quasiconformal mapping f  of R, is not extremal in ...Q(f) except
for the case that f is  con fo rm al. On the other hand, if dim si(G )< co and if
1, then there is a  00 in  b(G) such that 1 = Or11- 1 =[(00). From  I) of theorem 3,
there is an extremal quasiconformal mapping of R which is not conformal and whose
lift to is extremal. Hence, in case dim se(G)<oo, 110 1-11< I  if and only if a lift
to of an  arbitrary extremal quasiconformal but not conform al m apping is not
extremal. T he above  argum ent tells us th a t  Strebel's conjecture stated in the
introduction is equivalent to the following one.

Conjecture. L e t G  be a  Fuchsia' i g ro u p  a c tin g  o n  th e  u n it d is k  U such that
UIG is a  compact Riemann surface o f g e n u s  g  2. Then the operator norm  of the
Poincaré series as a m apping o f ,z2(1) onto d(G) is  s tric tly  less  than  one, where
1 is the tr iv ia l group.

But no Fuchsian group G such that 11490 11 <1 is known.

2. N ow  w e are  in  position to  p ro v e  th eo rem  I. I t is  su ff ic ien t to  d o  this
in the case that the covering transformation group F is  c y c lic . In case f -  is  a finite
group, theorem 1 is trivial, since sif(G)c.)1(C), and for any 4) E 

#(1-)1! 011 R  =

11011A. In  order to  show theorem 1 in the case th a t F  is  an  infinite cyclic group,
we need the next two lemmas.

For the covering transformation group F of R, which may not be a cyclic group,
an open subset o.) of w h ic h  s a t is f ie s  the following three conditions is called, in
this paper, a fundam ental region for r  in  K.
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( i ) Whenever y(p)=q f or some p, gee°, y  E F, then y= id.
(ii) For ev ery  point g e 14 , there is a  yeF, an d  a pe (7) such that y(p)= g.
(iii) The (two dimensional) Lebesgue measure of  Co—co is zero.
A fundamental region for F in R always exists, and we can take such an open

set as a  connected set, i.e. a  re g io n . For example, the projection to  R  o f a  usual
Dirichlet fundamental region for G in  U is such a  region.

Lemma 2. S uppose that the covering transform ation group r is  an  infinite
cyclic group generated by  a  conformal self-mapping y  of  R . L et co be a funda-
mental region f o r F = <y> in 11 and let xn be  the characteristic function of  n- '(o.)„),
where it i s  the projection of  U onto Q =U I ,  and con =  E  yk(o)). A nd for an

Ici

arbitrary  4) e si(G), set

(1)„=(211+1)-'xJ/).

Then „E ..r 1(C), 110  „11R=-11011R, a n d

lim111 ) „— In0 „]11R=0.

Pro o f . The first two assertions are obv ious. And

IlOn — fiLoi II R= 1 R I° „(z) -fl[o„](z)1 Idz A d2 1

= I n (Z) fl [
4)

0 ]  (Z)  dzA c/2 1-1- 1 IflE J(z)1 Idz A d2 I
( 0 „

The first integral is equal to

(2n+ 1)- I  15 14)(z) 1) , (0 - 2 F(z, 0 40 ( 0  A C/CI Idz A d2 1
( 0 „

=(2n+1) - ' 0 0 (0 4  A CIC idz A d2 i
( 0 „

(2n+1) - ' j(co)110,00) 40-21F(z,

x 10(01 14 A Idz A dZI

= (2n+ 1)-1 ik;„1.),J-k(a))
( 0

/1-.(C) - 2 1F(z, C)1
IJI n

x  4(01 1dC A C/C1 Idz A cal

= (2n+ tio , 5 ), ( ( , ) 55, , , ) 0 - 2 1F(z, 0110(0114 A 41 I dz A Cal

= (2n+ 1) - 1
 f oA M - 2 10(0114  A 4 ' 1 IF(Z, IdZ A d2 I

The similar computation tells us that the second integral is not greater than the above
last expression, too. H e n c e
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t=oiiOn -  n 0 01)15 2 (2,1 + 0 ' E .)çjç a,()10(01dC A  41,
where

at(C)=A(C)-2 1F(z, 01 1 d z  df; .
R -

It turns out from § 1.3 that for any non-negative integer t

and

f o r  a n  arbitrary fixed C e  U, a,(0-+0 a s  t-± c .  F r o m  Lebesgue's theorem,
lim agh4)(0  I IdC y 41= 0. Hence fim No„ - fl[0 .] = 0 . Q. E. D.t--0 00 ( I ) /I

Lemma 3. Under the sam e assum ption as  in  lemma 2, it is concluded that
in particular, I -.- 1,110r 11=1.

P ro o f . For any ck E b(G), and for every non-negative integer n, /3[0„] e Jat(C),
and O f  ofl[49„]= )6[0 r .1)„] f i [0 ] =  0 . Hence 1 ._. ./(4))51im 11/3[(1)„]1 = 1.Q . E .  D .

From theorem 3 and the above two lemmas, we get theorem 1.

Rem ark. 1) We can prove theorem 1 from lemma 2 without the help of the
Poincaré series.

2) Though it is a trivial case that a  Fuchsian group itself is an Abelian group
(even if it is an infinitely generated Kleinian group), it is not the case that the covering
trnasformation group of a norm al covering surface is a  finitely generated Abelian
g ro u p . In  fact, there exists an Abelian covering transformation group generated by
n elements for any positive integer n.

3) Even if  a  covering surface R=U/C' o f R=UIG is  no t normal, if R is  a
complete covering surface of R and the number of sheets of R is finite, then the con-
clusion of theorem 1 is valid. For, in this case, '(G)Œ d ( ) ,  and for any 4) e sl(G),
1104=EG: 0 11(151i

By applying this fact and  theorem 1 some times over , w e get the following.

Theorem F. Let R be an arbitrary  Riemann surface whose universal covering
surface is the unit disk and R a complete covering surface o f  R . Suppose that there
are a f inite num ber of  R iem ann surfaces R„(n =0, N )  w hich satisfy  1)- 111).

I) Ro = R, R N = .
ID  For n=1,..., N, each R„ is a complete covering surface of R„_,.

III) For 11 = , ,  N, either 1) or ii) is fulfilled;
i) T he num ber o f  sheets o f  a  covering surface R„ of  R„_, is .finite.
ii) R„ is a  norm al covering surface of  R„_,, and  the covering trans-

form ation group of  R„ is a f initely  generated A belian group.
Then the lif ts to R of extremal guasiconformal mappings of R are extrema!.

3 .  Let T(R o ) be the Teichmiiller space whose initial points is (Ro , id.). L e t
Ro  be a complete covering surface of 120 . Then we can naturally regard T(R o ) as a
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subset of T( 0 ) ,  in particular, w e can regard T(R 0 )  as a subset of the universal
Teichmiiller space T ( ( J ) .  Concerning the Teichmüller m etrics o f T(R o )  and of
T(R o) c  T( l c)) (or of T(R 0 )c T(U)), it is know n that T(R 0 )  is closed in T(R o ) (or
T(U)) and the inclusion mapping is homeomorphism (see B ers [6 ].). We get from
theorem l'

C o ro lla ry . Le t R , be a  R iem an', surface whose universal covering surface is

the  u n it  d is k , a n d  le t 11, be  a  com plete covering surface o f  R , as in  th e  above

th e o re m . T h e n  the in c lus ion  m a p p ing  o f T(R o ) to  T(110 ) is  is o m e tr ic . In  p a r-
t ic u la r , if  R , is  a  doubly connected bounded domain, then the inclusion m apping
of T(R 0 ) to  T(U) is isometric.
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