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§0. Introduction

Let R and S be Riemann surfaces and f a quasiconformal mapping of R onto
S. Let R be a normal covering surface of R. Then f can be lifted to a quasicon-
formal mapping f of R onto a normal covering surface § of S, and f is uniquely
determined by f up to covering transformations of R. Suppose f is extremal. Is
then f also extremal? In case the universal covering surface of R is the Riemann
sphere CU {0} or the complex plane C, this problem is not of interest. In fact,
suppose R is conformally equivalent to €U {0}, C, or the one-punctured complex
plane C-{0}, if f is extremal then f is conformal, hence f is extremal. Suppose R is
a torus and R=C or C-{0}, then f is extremal if and only if f is conformal, And
suppose R and R are tori, from the classical Teichmiiller’s theorem, f is extremal if
and only if so is f. E. Blum [8] showed that if R is a doubly connected bounded
domain, R is the unit disk U, and f is a horizontal streching, then f is extremal. On
the other hand. for the case R is a compact Riemann surface of genus g =2, and R=
U, K. Strebel [22] gave, together with some examples, a conjecture: even if f is
extremal, f is never extremal except for the trivial case that f is conformal.

The aims of this paper are to give a condition for a lift mapping f of extremal
S to be extremal or not to be extremal (Theorem 3), and to prove the following
theorem, which is a generalization of Blum’s.

Theorem 1. Suppose that R and S are two (arbitrary) Riemann surfaces
whose universal covering surfaces are the unit disks and f is an extremal quasi-
conformal mapping of R onto S.  And suppose that R is a normal covering surface
of R whose covering transformation group I is a finitely generated Abelian group,
and a lift f of f is a quasiconformal mapping of R onto a normal covering surface
of S. Then f is extremal.

The above theorem will be proven in §2.2. In § | we shall sum up related facts
for our aims. The proofs of theorem and lemmas in § 1 will be omitted, since they
are seen in many articles.
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§1. Preliminaries

1. Let R be a Riemann surface whose universal covering surface is the unit
disk U, and let R be represented by a Fuchsian group G acting on U as R=U/G.
Set R*=((0U — A(G))U U)/G, where A(G) is the limit set of G, then R* is a
Riemann surface whose interior is R. A quasiconformal mapping f of R onto another
Riemann surface S has the unique extension f* which is a topological mapping of
R* onto S* (cf. Ahlfors [2], Lehto & Virtanen [16]). Two quasiconformal mappings
fand g of R onto S are said to be homotopic modulo the boundary, when f*=g* on
R*—R and there exists a homotopy between f* and g* which is constant on R* — R,
If R*—R is empty: that is, if G is of the first kind, then this means that f is just
homotopic to g. For a quasiconformal mapping f of R onto S, by 2(f; R, S) (or
simply by 2(f)) we denote the set of all quasiconformal mppings of R onto S which
are homotopic to f modulo the boundary. A quasiconformal mapping f of R
onto S is said to be extremal in 2(f; R, S) if f has the smallest maximal dilatation
among the mappings in 2(f; R, S). There always exists at least one extremal
mapping in 2(f; R, S). (See Bers [5], theorem 4.)

Let #1(G) denote the Banach space of integrable measurable quadratic differ-
entials on R=U/G; that, is, the set of measurable functions v on U such that

v(A4z)A' (z)>=v(z) forall AeG, a.e.zeU, and
[Iv[lRESSRIv(z)lldz/\d2|<oo.

Let «/(G) denote the Banach space of integrable holomorhic quadratic differentials
on R: that is,

A (G)={peL'(G)|¢p is holomorphic on U.}.
And let o7,(G) denote the closed unit ball of &7(G).

The following theorem due to R. S. Hamilton, E. Reich, K. Strebel and others
is characteristic of extremal quasiconformal mappings.

Theorem 2. A quasiconformal mapping f of R is extremal in 2(f) if and only
if

sup |V) w()9()dz n az| = lul,
e 1(G) R

where y is the Beltrami differential of f.

The proof is found in many articles, for example, see Strebel [23], theorem 5
and Hamilton [10], theorem 1.

For the Beltrami differential u of an extremal quasiconformal mapping of R,
a sequence {¢,}r, of holomorphic quadratic differentials on R with norm ||¢,|z=1
is called a Hamilton sequence for u if
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For a holomorphic quadratic differential ¢ (not necessarily of finite norm)
on R and for a real k(O<k<1), a quasiconformal mapping of R whose Beltrami
differential is k@/|¢| is said to be of Teichmiiller type associated with ¢, moreover
if ¢ has the finite norm, it is called a Teichmiiller mapping. 1t follows from
theorem 2 that a Teichmiiller mapping f is extremal in 2(f).

2. A regular (i.e. complete and smooth) covering surface R of R is said to be
normal when the fundamental group m,(R) of R is isomorphic to a normal subgroup
of m,(R). We here especially study the extremality of lifts to normal covering sur-
faces, so througlout the rest of this paper, unless otherwise mentioned, we assume
the following.

1) R is an arbitrary Riemann surface whose universal covering surface is
the unit disk U, and R is represented by a Fuchsian group G, without ellitpic
elements, acting on U as R=U/G.

I1) R is a normal covering surface of R, and R is represented by a normal
subgroup G of G as R=U|G.

1) T is the covering transformation group of R.
Under the above assumption we have R=R/I', and '~ G/G. (See Ahlfors and
Sario [3], Chapter I, §3.)

3. Forz (eU, we set
K(z, {) = 3i/{2n(1 - z{)*},

then it follows from a simple calculation that K(z, {)dz% A d{? is M&b (U)-invariant:
that is, for any Te M6b (U)

K(Tz, TOT'(2)*T'()*=K(z, {),

where M6b (U) is the set of all conformal self-mapping of U, and it follows that
[, 1K, 01 1dz n dz1=3202,
where / is the Poincaré metric on U. We set
F(z, C)=A§G K(Az, ) A'(2)?,

then the right hand side coverges absolutely and uniformly on compact subsets of U,
and F(z, {)dz? A d{? is N(G)-invariant, where N(G) is the normalizer of G in M&b (U),
in particular, it is G-invariant, and

SSR Flz, O] |dz A dZ] < 33(0)>.

Lemma 1. Let H be a Fuchsian group which contains G and is contained in
N(G). For each ve #'(H), define
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p01(a) = 102F G DuDdcdL.

Then B is a bounded linear projection of £'(H) onto «/(H), in particular, for
any ¢ € Z(H)

Bl$1(2) = ¢(2).
(For this section see Kra [12], proposition 5.1 of Chap. 111.)

§2. Main results

1. Foranyyel, let T,e G be one of the lifts of y: that is, T, is a representative
of the coset, which is corresponding to y, of the quotient group G/G=I. Let
v be an element of £!(G), then W(T,z)T)(2)* is independent of any choice of the re-
presentatives of the coset corresponding to y. Set

(@) (2) = erv(T,z)T’,(z)z, for ve 2'(G).

Then the right hand side converges in #!(G). Hence we can define a mapping @
of 21(G) to £Y(G). O,vis called, in this paper, the Poincaré series of v. If G is
the trivial group, then @ ;v coincides with the usual Poincaré series Ogv.

Proposition 1. The mapping O defined above has the following properties :

i) O is a continuous linear mapping of norm 1, furthermore, O {(#(G))=(G),

and for every ¢ € #£(G), there is a ® € o£(G) such that =0 ®, and ||z <3| g
i) Og=0 0.
iii) fo@ =0 rof.

Proof. Properties ii) and iii) follow form simple calculations, and i) follows
from the same argument as in the case of the usual Poincaré series, and from ii).

Remark. We have defined here the Poincaré series as a mapping not only of
&(G) but also of #(G), so the norm of the Poincaré series is one. We, however,
have much interest in the Poincaré series as a mapping of «#(G) onto 27(G), so by
|@rll we mean the norm of the Poincaré series as a mapping of & (G) onto «#(G):
that is,

1Or®Pllr

Or|= su s
T T

Set b(G)={¢p e (G)|||¢lr=1}, and for every ¢ € b(G), define
I(¢)=inf {| @40 D=0, Pet(G)},
1(¢)=lLmI(y).

¢

Then I (resp. I) is upper (resp. lower) semi-continuous function on b(G). Obviously,

1(¢)21(9) for any $ € (G),
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inf I(¢)= inf I($)=[0]"121.
¢eb(G) ¢eb(G)

Now the following is one of the main results of this paper.

Theorem 3. 1) Suppose that I(¢,)=1 for some ¢, b(G). Let f be a Teich-
miiller mapping of R associated with ¢o (f is, of course, extremal in 2(f).), and f
be a lift to R of f. Then [ is extremal in 2(f).

1) Suppose that {¢ € b(G)|I(¢p)=1} is dense in b(G), so {¢p € b(G)|I(p)=1}=
b(G). Let f be an arbitrary extremal quasiconformal mapping of R (not neces-
sarily, a Teichmiiller mapping), and f be a lift to R of f. Then fis extremal in 2.

) If dim «/(G)<co, then the converses of 1) and 11) are valid. That is,
the following 111.1) and 11L.ii) are concluded.

111.i) Suppose that dim «£(G)< . Let f be a Teichmiiller mapping of R
associated with some ¢o€ b(G), and [ a lift to R of f. If f is extremal in 200,
then I(¢o)=1.

111ii) Suppose that dim &£(G)<oo. If a lift f to R of each extremal quasi-
conformal mapping f of R is extremal in 2(f), then

{¢€b(G)|L(¢)=1}=b(G) .

Proof. 1) Suppose that I(¢,)=1 for some ¢, € b(G). Let u be the Beltrami
differential of a Teichmiiller mapping f associated with ¢,. Then there is a sequence
{¢,}Z, = b(G) which satisfies the next three conditions;

a) ¢, converges to ¢, in Z(G).

b) For each ¢,, there is a ®, € «(G) such that ¢,=0,®,.

c) lim [®,]z=1.

Then
sup ’Sgk;updz A dz| 2 Tim SSR udb dz A dZ|/||d>,,||R

Peo(G) n—00

=lim SSR ud,dz A di\

n-—>00

= 'SSR Hoodz A dz"‘

= ]l -
Hence f is extremal in 2(f).

II) Let u be the Beltrami differential of an arbitrary extremal quasiconformal
mapping f of R, and let {¢,}<, = b(G) be a Hamilton sequence for x. Then there
is a sequence {®,}%,c(G) such that lim |®,|gz=1, and lim ||¢,— O P,|g=0.
This means that s e V

sup [SSR ubdz A dz| 2Tim S&R ud,dz A dz| |19,z

Pes((G) n—wo

~Tm \SSR 1O P, dz A dz|
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=lim Sg ud,dzAdz
R

n—o by

=lulc.
Hence f, a lift to R of f, is extremal in 2(f).
IlL.i) In case dim/(G)<oo, it turns out that every Hamilton sequence
{@,)2,=b(G) for u=keo/lpol(0<k<1) coverges to ¢, in Z'(G). Since f is
extremal in 2(f), there is a Hamilton sequence {®,!*,cb(G) for u. Then

]l =1lim SSR“‘D""” A dZ|

—lim \g 1O, d,|d= A d3|.
R

From this, lim ||@®,| =41, and {O;?,/|O;D,| )=, =b(G) is a Hamilton sequence

for u, so it converges to ¢ in Z'(G). Henee

1= 1(¢o) Slim (O, 9,/(O P, [r)
slim [0, [g/1Or®,llx=1.

I1Lii) This follows from I1L.i). Q.E.D.

Remark. It is easily seen from theorem 2 that if |©,| <1, then f, a lift to R of
an aribitrary extremal quasiconformal mapping f of R, is not extremal in 2(f) except
for the case that fis conformal. On the other hand, if dim &/(G)< oo and if |O[| =
1, then there is a ¢, in b(G) such that 1 =|O /| '=1(¢,). From I) of theorem 3,
there is an extremal quasiconformal mapping of R which is not conformal and whose
lift to R is extremal. Hence, in case dim «/(G)< o0, @] <1 if and only if a lift
to R of an arbitrary extremal quasiconformal but not conformal mapping is not
extremal. The above argument tells us that Strebel’s conjecture stated in the
introduction is equivalent to the following one.

Conjecture. Let G be a Fuchsian group acting on the unit disk U such that
U/G is a compact Riemann surface of genus g=2. Then the operator norm of the
Poincaré series as a mapping of (1) onto (G) is strictly less than one, where
1 is the trivial group.

But no Fuchsian group G such that ||@¢| <1 is known.

2. Now we are in position to prove theorem 1. It is sufficient to do this
in the case that the covering transformation group I is cyclic. In case I is a finite
group, theorem 1 is trivial, since &#(G)c(G), and for any ¢ € #(G), $(I)|P|x=
l¢llg- In order to show theorem 1 in the case that I' is an infinite cyclic group,
we need the next two lemmas.

For the covering transformation group I' of R, which may not be a cyclic group,
an open subset w of R which satisfies the following three conditions is called, in
this paper, a fundamental region for I' in R.
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(i) Whenever y(p)=q for some p, qe w, yeI', then y=id.

(ii) For every point qe R, there is a yeT, and a pe @ such that y(p)=q.

(iii) The (two dimensional) Lebesgue measure of @ —w is zero.

A fundamental region for I' in R always exists, and we can take such an open
set as a connected set, i.e. a region. For example, the projection to R of a usual
Dirichlet fundamental region for G in U is such a region.

Lemma 2. Suppose that the covering transformation group I is an infinite
cyclic group generated by a conformal self-mapping y of R. Let w be a funda-
mental region for I ={y) in R and let y, be the characteristic function of n~"(w,),
where n is the projection of U onto R=U|G, and w,,=|k|25 y*(w). And for an

arbitrary ¢ € #(G), set
®,=2n+1)"y,0.
Then ®,e2'(G), |®,llz=I¢lx and

lim |, ~ B(®,] 15 =0.
Proof. The first two assertions are obvious. And

10, ~B10.11e=\{ 19,() - B[, (2)] Idz A d

=SS |16,(2) = BL#.](2)] "’“df|+ggk_w_llf[¢n](z)| \dz A d2|

The first integral is equal to

ot [§ 1o =] 202FE 0o dndl 1dz n az

=(2n+1)"gg

i 202FG 0p@aradt|idznazi

Wn wn

SR R R DO T e T

[jlsn |k[>n

x| |l A dl] |dz A dz|

=t 3w () aomiRc. o)

iTEn (K750

x 16O |dL A dl] |dz A dz]

—@n+) T S Y XS A awrre, 01181 1ag A atl 1dz 4 a2l
=0 |s|>1t yS(w) 9]

=0 3 a0 1aenatl (| 17G, 01 1dznaz)
t=0 © R-o,

The similar computation tells us that the second integral is not greater than the above
last expression, too. Hence
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10, - B12]18<2Cn+ D7 8 (@161 140 2 ),

where
a©=202{] _1FG 0l ldznaz.

It turns out from § 1.3 that for any non-negative integer ¢
gl =3, and

for an arbitrary fixed (e U, a({)»0 as r—»oc. From Lebesgue's theorem,
tim (| a0l @)11d0vdli=0. Hence lim |#,~ pL0,11x=0. Q.E.D.

Lemma 3. Under the same assumption as in lemma 2, it is concluded that
I=1, in particular, I=1, O] =1.

Proof. For any ¢ e b(G), and for every non-negative integer n, f[®,] € #(G),
and @ -p[®,]=p[OP,]=p[p]=¢. Hence I=l(¢)slim |3[,]Ig=1. Q.E.D.

From theorem 3 and the above two lemmas, we get theorem 1.

Remark. 1) We can prove theorem | from lemma 2 without the help of the
Poincaré series.

2) Though it is a trivial case that a Fuchsian group itself is an Abelian group
(even if it is an infinitely generated Kleinian group), it is not the case that the covering
trnasformation group of a normal covering surface is a finitely generated Abelian
group. In fact, there exists an Abelian covering transformation group generated by
n elements for any positive integer n.

3) Even if a covering surface R=U/G of R=U/G is not normal, if R is a
complete covering surface of R and the number of sheets of R is finite, then the con-
clusion of theorem 1 is valid. For, in this case, 2(G) < «(G), and for any ¢ € «(G),
I$llg=[G: G1ll -

By applying this fact and theorem | some times over, we get the following.

Theorem 1. Let R be an arbitrary Riemann surface whose universal covering
surface is the unit disk and R a complete covering surface of R.  Suppose that there
are a finite number of Riemann surfaces R (n=0, 1,..., N) which satisfy 1)~1II).

I) Ro=R, Ry=R.
I) For n=1,..., N, each R, is a complete covering surface of R, _,.
1) For n=1,..., N, either i) orii) is fulfilled
i) The number of sheets of a covering surface R, of R,_, is finite.
ii) R, is a normal covering surface of R,_,, and the covering trans-
Jormation group of R, is a finitely generated Abelian group.
Then the lifts to R of extremal quasiconformal mappings of R are extremal.

3. Let T(R,) be the Teichmiiller space whose initial points is (R,, id.). Let
R, be a complete covering surface of R,. Then we can naturally regard T(R,) as a
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subset of T(R,), in particular, we can regard T(R,) as a subset of the universal
Teichmiiller space T(U). Concerning the Teichmiller metrics of T(R,) and of
T(R,) = T(R,) (or of T(R,)=T(U)), it is known that T(R,) is closed in T(R,) (or
T(U)) and the inclusion mapping is homeomorphism (sec Bers [6].). We get from
theorem 1’

Corollary. Let Ry be a Riemann surface whose universal covering surface is
the unit disk, and let Ry be a complete covering surface of Ry as in the above
theorem. Then the inclusion mapping of T(Ry) to T(R,) is isometric. In par-
ticular, if Ry is a doubly connected bounded domain. then the inclusion mapping
of T(Ry) to T(U) is isometric.
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