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§ 0 .  Introduction

Here we study normal local rings A of rational surfaces with their completion of
the type KTX", X i Y " , . . . , Y 1 .  It is w ell know n that such  local rings
are obtained by blowing down non-singular rational curves with self intersection — n.
So the problem is to study Zariski neighbourhoods o f such curves. W e in troduce
Logarithmic Kodaira dimension for embeddings o f  curves (following Iitaka) for
classification of such embeddings. For instance logarithmic Kodaira dimension is
— co would precisely mean that K [X ,  Xi r],n , (m=origin.)
We would show that for n < 3, Kodaira dimension is  — c c . The classification of
local rings with Kodaira dimension oo is done in  §2  and those with Kodaira
dimension zero or one is done in  § 3 .  These results are related to a  theorem of
Coolidge which gives necessary and  sufficient condition for a plane curve to be
transformed into a  straight line by a  Cremona transform ation. We reproduce his
proof for completeness and recover the same result in  our s e t  u p . In  §4, we will
also see that the class groups of some of these local rings are smaller than one would
expect !

§ 1 .  Here we shall be working over an algebraically closed field k. Surface, unless
otherwise mentioned, would mean a  non-singular rational projective surface.

Let D be  a  reduced projective curve and X , X ', smooth projective surfaces.
Let i: D—>X and  i ':  D -0 ( ' be two closed embeddings. W e say that i  a n d  i' are
equivalent if there exist Zariski neighbourhoods U , U ' in  X  and X ' o f  i(D ) and
i'(D) and an isomorphism f :  U-* U' such that foti= V. We are interested in studying
the equivalence classes of such embeddings.

Remarks. 1) I f  (i, D , X ) a n d  (i', D , X ') a r e  equivalent then the normal
bundles ArD ix  a n d  N Doe are  isom orphic. In  particular the intersection matrices
of D in X and X ' are the same.

2 )  If D is an irreducible curve in X  and X ' with isomorphic formal neighbour-
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hoods and D2 > 0, then the embeddings are equivalent [H ]. T h is  is trivially false if
D2  < O . For instance, if P, Q are points on a smooth surface X  such that the local
r in g s  x x , ( 2 ,  then consider the exceptional curves of the blowing up of P and Q.

3) Let Ec-)X  and E '- X ' be two exceptional curves of the first kind on smooth
rational surfaces. Then the two embeddings are equivalent. This immediately
follows from the fact that if P  is a smooth point on a rational surface t h e n  x, p=
k [X , Y] ( ,, y ) . [ N ]

4) If D 2 =  - n ,  n 4  then there exist inequivalent embeddings of D
in smooth rational surfaces.
[See §3].

K odaira dimension of germs of embeddings:
Let (i, D, X ) be an embedding of D in X .  Let K  denote a canonical divisor of

X .  We define the Kodaira dimension of (i, D, X ) to be the dimension of the image
of X -4'(H°(m (D+ K ))) for m »O. By convention we say that Kodaira dimension
of (i, D , X )= - co i f  Im(D+ K)1=0 V m> O. W e  d e n o te  the Kodaira dimension
by k(i, D, X ).

Lemma 1 . 1 .  If  D c-a and  X ' =d ilp (X ), P O D ,  then K (i, D, X )=K(i', D, X ').

Pro o f . The natural map, H°(m (D+K x ) ) -4 - 1°(m(D+K x ,)) is  an isomorphism
for every m.

Corollary 1.2. (i, D, X ) depends only on the equivalence class of embeddings
of D.

When there is no confusion, we will denote ic(i, D, X ) by K(D).

Lemma 1 .3 .  L et D ->X  and P D  be a smooth point of  D .  L et X ' =dil,(X )
and D' =the proper transform  of D. Then K(D)=K(D').

Pro o f . The pull back of m (D+K x )=m(D' + K s .).

Definition. (i, D , X ) is  a  relatively minimal embedding, if every exceptional
curve of the first kind on X  meets D.

Remark. It is clear that every embedding (i, D , X ) 'dom inates' a  relatively
minimal embedding.

Proposition 1.4. If  (i, D , X ) is an  embedding with K(D),>-0, then there exists
a unique relatively  m inim al embedding in this class.

P ro o f . Let (i, D, X ) and (i, D, X ') be two relatively minimal embeddings in
the same equivalence class. Then we have by definition a  rational map f : X -)X '
which is an isomorphism in  a neighbourhood of D in X  and X ' .  Since neither f
nor f  i s  a  morphism, there exists a  curve C  in  X  such that f (C )=a point C
becomes an exceptional curve of the first kind after a  few blowing ups. Since
C n D =0, C  cannot be an exceptional curve of the first kind and hence C2 _>.- O. S o
C• K < O. H e n c e  C• (D + K)< O. S in c e  C 2 0 , w e get I m(D + K)I= 0 V m > 0, which
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is a contradiction.

Remark. This is analogous to the Castelnuovo-Enriques-Zariski theorem that
a ll the classes of surfaces except the  c lasses o f ru led  surfaces have absolute
minimal models.

Proposition 1.5. D c  X  and assume D h a s  o n ly  o rd in a ry  normal crossings.

Suppose X\D has an algebraic fam ily of com plete rational curves, possibly singular
and char k = 0 .  Then k(D, X)= — oo.

P r o o f .  By assumption, we have a cycle z1 e X  x C , where C  parametrises the
family of rational curves on X \ D .  We may assume that C  is a  non-singular curve
(not complete) and z1 to be irreducible. Desingularising A  and choosing a  small
enough irreducible open set in  it, we may assume that there exists a  curve F  such
tha t P i x I '  dominates A. (char k = 0  is  u sed  in  this p rocess) Since under the
first projection A maps into X\D, by hypothesis, we see that P 1 x F  dominates X\D.

Hence by [ I ], K (D , X)=  —cc.

Lemma 1.6. Dc—›X, reduced  cu rve . Suppose there exists uncountably many
complete rational curves (possibly singular) in X \ D .  Then there exists an algebraic
fam ily  o f com p le te  ra tiona l cuves in X\D.

P r o o f .  T his follows easily from considering C, = Chow family o f  rational
curves of 'degree' d inside X\D.

Corollary 1.7. I f  char k=0, k is uncountable, D  h a s  o n ly  o rd in a ry  normal

crossings then the hypothesis in lemma K (D , X)=  —cc.

§2. Kodaira dimension — oo

From now on we assume that the surfaces are rational and D P 1 with (i(D)) 2 <
O. These assum ptions are motivated by Remark 2, §1. Note that such a  D  can
always be blown down to a normal point and the formal neighbourhood of such a
D is completely determined by the (negative) number D 2 = — n, and in fact, the com-
pletion of this normal local ring is isomorphic to K TX", xiy

W e denote by D'n th e  u n iq u e  se c tio n  o f  F n =Pp,((.960(n)) w ith  D = — n.

Theorem 2.1. Let Dc—X, D 2 = — n w ith  n > 0 .  Then the fo llo w in g  are equi-
valent.

a) (D, X) is equivalent to (D„, F„).

b) There exists o- : Y-0( a birational morphism such that a l - 1 ( D ) :
 o-- 1 (D)—>D

is an isomorphism and Y\o-- 1 (D) contains an open set of the fo rm  U x P 1 ,

U a curve.
c) Iva<  + nDI = 0 Vm>0.
d) K(D)= — co.

P r o o f .  a)=.b)
By hypothesis we have a  rational m ap, p: X—>F„ which is a n  isomorphism
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between a  neighbourhood of D and that of D „ . By blowing up outside D, we get
o- : Y-+X and poor is a  morphism, Consider G e 1D +  nFl irreducible, where
F is a fibre of F .  T h e n  G is a non-singular curve with h°(F„, G)>2 and G. D„=0.
Since I GI has no base points, we may further assume that G does not pass through the
base points of the birational map, (poo) - 1  and then (poo-) i (G )=  G' is a  non-singular
rational curve on Y with G' 2 ..>. 0 and G' n 0-- 1 -(D ) = 0 .  Now blowing up further on
G' we may assume that G' 2 = 0 and then b) is clear.
b) c)

Without loss of generality, we may assume that we have a morphism 7E: X -*P 1

with general fibre P ' and D is contained in fibre. B u t  fo r  any fibre C of 7E, IM K +
nC1=0, m >1 and hence I mK+ nDI=0 m >1.
c) d )  Obvious
d) a)
We start with the

Remark. L et X '=dilp (X ), with p e D .  D' = proper transform o f  D  in  X '.
Then (D, X ) is equivalent to (D„, F) if and only if (D ', X ') is equivalent to (D„ + 1 ,
Fn+1)*

We prove d) a) by induction on n and the proof follows closely the proofs in
[M —S]. If n=1, result is clear from Remark 3, §1. If there exists an exceptional
curve of the first kind, which meets D once, by blowing it down, we are d o n e . I f
X is relatively minimal, again we are done. So we may assume that there exists at
least one exceptional curve E of the first kind on X  and for any such E, E•D >2.
11 E is such a curve, then 1(E+ K + D)= E• D —1 >1 by Riemann-Roch.
Case 1 . (D +K ) 2 < —2.

By Fujita's theorem [F], choose m>0 such that IE + m(D+K)1O0 a n d  IE +
(m +1) (D + K)I = 0. Then, (E + rn(D + K)). K = — 1 + m[(K + D) 2 +2] <  — 1 . So
E + m(D + K)O 0 and if C is any irreducible curve contained in IE + m(D + K)I, then C
is a  non-singular rational curve and C•D< 1, because, IC+D+KI = 0 .  If C 2 0
and C•D =1, then by blowing up on C outside D, we get an exceptional curve of the
first kind meeting D o n c e .  By blowing this down, we are done by induction. If
C•D=0, then there exists a  morphism after blowing up o n  C, i f  necessary, from
X to P ', such that D is part of a fibre. Now, since this fibre contains an exceptional
curve, we may blow it down and eventually assume that there is one which meets
D once and hence we are done.

If C 2 <0 for every C in  1E+ m(D+K)I, choose one with C.K <0, since K•(E +
m(D+ K))< —1. But then C is an exceptional curve of the first kind and C•D < 1,
which is a contradiction.
Case 2. (D+K) 2 > —1.

Since I2K +DI = 0 , by Riemann Roch, we get that I — D — Ki 00. But since
E•D >2 for any exceptional curve of the first kind, we get IE + D + K I 0 0 .  But then
E=(E+D+K)+(— D— K) and since 1(E)=1 we see that —D—K=E because —D—
KO 0. Thus we see that there exists a unique exceptional curve of the first kind
E on X, E • D=2, E + D + K -= O. Now, if F is any curve with F 2 <0, F E  o r D,
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then F•K =— F•E— F•D<0 and hence F is a  non-singular rational curve. Since
F is not an exceptional curve, we get that F 2 = —2 and F•E=F•D=0.

If there is no such curve F, then when we blow down E, we get a model which
has at most one curve of negative self intersection and this curve is singular. Then
the image must be P 2 • B u t  then X  F ,  and this is not possible. Again, if there is
such an F, blowing E down we get a minimal model and hence must be F 2 , and there
is a unique F .  Let D' =im age of D in F 2 .  Then D n D2=0 because D2 is the image
of F .  Thus, D'—r(D 2 +2f ), where f  is a  general fibre of F y .  But D'2 =4— n=
2r2 . Thus n=2 or 4. If n=2 then r=1  and hence pa (D')= 0, which is not possible.
If n=4, r= 0, which is also not possible. This proves the theorem.

Lemma 2 .2 .  Suppose (D+K ) 2 < —2 and Im(D + K)I 00 f o r so m e  m 1 . T h e n
there exists an exceptional curve of  the f irst k ind such that E n D=0.

Pro o f . Write m(D + K)= rD + d , with r> 0 and d does not have D as a com-
ponent. So —2m > m(D+ K) 2  = —2r + A • (D + K). 2 (r —  m )  d • (D + K). Since
IrK I =0, r < t n .  Thus d • (D + K )<0 . So there exists an  irreducible curve C  in

Supp A l such that C •(D +K )<0 . So C-d <0 and hence C2 < O. A ls o  C•K <O.
So C  is exceptional of the first kind. N o w  C•(D +K )<0 implies, C•D-1 <121.
C•D=0.

Corollary 2 .3 .  If  134c- X  is a m inim al embedding and ic(D)>O, then (D+K) 2 ,>.
—1 .

Corollary 2 .4 .  The following are equivalent:

a) K(D)= — co.

b) =0.

c) 12(K+D)I = 0.

P ro o f . a) b)-4*-c) are obvious.
So assume b) and suppose K (D )>0. We may assume that the embedding is

m inim al. So (D  + K ) 2
 -  1 by Corollary 2.3. So by Riemann-Roch, l(— D — K)

1. So m(D + K)= 0, which is impossible, since D(D + K)= —2.

Corollary 2 .5 .  If  D2  — 3 , then ic(D)= —co.

Pro o f . Easy to see that D.(D +2K)< 0 and hence l(D +2K)=1(2K)= O.

Remarks. 1 )  This result is true even for D2 > 0 from Nagata's Theorem [N].
2 )  Let V be an affine, normal rational surface with one isolated singularity

P, which is obtained by blowing down a  non-singular rational curve D with self-
intersection — n and K(D)= — cc. Then every vector bundle on Vis a direct sum of a
trivial bundle and a line bundle. This easily follows since by Theorem 2.1, there
exists sufficiently many rational curves on V, not passing through P and hence for any
simple point x e V, k(x) is zero in Ko(V).
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We now make some remarks about a theorem of Coolidge [C] about plane curves
transformable in to  stra igh t lines. Let C  be any irreducible curve on a  smooth
rational surface Y. Let F: X—>Y  be a  birational morphism such that the proper
tramsform D  of C is sm ooth. W e define R(C, Y )=K(D, X ) .  It is easily checked
that k-(C, Y ) is independent of F.

Theorem 2.6. (C oolidge) Let Cc—P2 be an irreducible rational curve. T hen
there exists a Cremona transformation a of  P 2  such that a(C) is a line if  and only
if R(C, P2 )= — oo

P ro o f . Suppose such a  a  exists. Then, since x(L , P 2 )= — co  fo r  a  line L,
it easily follow s that R(C, P 2)= — ac. S u p p o s e  now  tha t k(C, P 2 ) =  — co. By
Theorem 2. 1, there exists a birational map f : P 2 —>F„ for some n, such that f (C)= D„.
It is well known that there is a  birational map g :  F„—>13 2  such that g(D„) is a line.

We now reproduce Coolidge's proof of the  above theorem . The plan is to
reduce the degree of C  by quadratic transform ations. A  curve D of degree n —3s
is said to be an sth adjoint of C if at any point Pe  C, m p(D» m p(C) — s, where for
infinitely near points P of C, C and D are interpreted as the proper transforms. It
is easy to check that R(C, P2 ) = — co if and only if  C has no adjoints.

Let P, e C be a point of largest multiplicity say r 1 . Let n—r 1 = 2 s .  The case
when n— r, is odd can be treated sim ilarly. W e claim  that r i  > s. If  no t, n —
3r 1 =2(s — r,)> O. Then any curve of degree n — 3r, is an  r;" adjoint. Suppose C
has only one singular point P 1 . Consider (n — 3)L, where Lis a  line through P,.
The curve (n -3 )L  is not an adjoint of C .  Hence n -3  < r, — 1. i.e.
r 1 = n—  1. Apply a standard quadratic transformation with cetres P 1 , P 2 , P 3 where
P2 and P3 are suitable points on C to reduce the degree of C .  So we may assume that
C has at least two singular points. A ssu m e  C has exactly two singular points, P,
and P 2 .  Then (n-3s)L , where Lis the line joining P , and P2  can easily seen to be
an se" a d jo in t. So we may assume that C has at least three singular points. L e t
P 1 ,..., Pk , (k  >3) be  the  singular points of C , with multiplicities, r 1 ,>.r2 >--•
respectively. We claim that r 2  > s .  If not, ri < s for i  > 2 .  Take (n —3s)L where L
is a line passing through P,. It is immediate that this is an S t h adjoint of C.

We know claim that r , + r2 + r3 > n. If not, let L be the line joining P, and P2.

Then (n -3 r 3 )L is an /4
3 " adjoint. If P ,, P2, P3 can be chosen to be the centres of

a quadratic transformation, then we can reduce the degree o f C . T he  only case where
we have a problem is when P2 and P3  are  both in the first order neighbourhood of
P , .  Let Pi  be any point with r i  > s. If P i  is not infinitely near to P,, then by taking
the image of P i  in  P 2 , we have a point P i in  P 2 , / 0 1 and ri > s .  Then P,, P2  and
P i form possible centres for a quadratic transformation which reduce the degree of C,
since r i  + r2  + ri >  n .  So we may assume that all such P i 's are infinitely near to P,.
If Pi  is not in the first order neighbourhood of P 1 , then by taking its images, we have,
P i , Pm  two points, Pi is in the first order neighbourhood of P„„ P„, is in the first order
neighbourhood of P , and r i , rm > s .  Thus these three points P i , P i and  Pm  can be
taken as the centres of a quadratic transformation and since r,+ r i + rm > n, the degree
of C will d r o p .  So we may assume that any point Pi  with ri > s lies on the first order
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neighbourhood of P ,  unless it is P , itself. Let P 1 ,..., P. b e  the points with mul-
tiplcity bigger than s. L et 1.1 b e  the line joining P ,  and P i , 2 < i < j. We have

r 1 > r 2 +•-• +r i  and hence n —3s > s > E (r 1 — s). Consider E (r i —s)Li +M
1=21 =2 1=2

where M  is an n-3 s—  E (r 1 —s) degree curve passing through P 1 . Then it is easy
1=2

to see that this is an 51" adjoint, giving us the required contradiction.

§3 . The case when Kodaira dimension is bigger than or equal to zero

As before let Dc-4X; D P' and D 2 < 0 . N o te  tha t if ic(D)> 0 then I —D—Kl=
0.

Theorem 3.1. The follow ing are equivalent.
a) D2 = — n, 1(2K + D)=1 and every exceptional curve of  the f irst k ind m eets

D at least twice.
b) (D+K) 2 = —1, K(D)>0 and every exceptional curve meets D at least twice.
c) K 2 = —1, l( — K)=0, n=4.

Proof. b)
Riemann-Roch gives, 1(2K + D)+ D — K )  (K  + D)2 + 2 .  Therefore, (D+

K) 2 < —1. By lemma 2.2, we see that (D + K) 2 =  — 1. We claim that, if tc(D) >
then K 2 < 0. If K 2 > 0, then by Riemann-Roch, I —K1 0 0. Also by Corollary 2.5
D2 .< —4 and hence D.(— K)< 0. S o  D is part of I— K I, which implies, I K  DI 0 0,
contradicting the earlier remark.
b) c)

Since k(D)> 0, I2K  +D I 0 0 by Corollary 2.4. If (2K + D) 2 <  0 , then there
exists C e SUPP I2 K ± Di such that C• (2K +D)<0. Since 12K1=ø,  S u p p  I 2 K  +
DI and hence C O D . But then C 2 <0  and C .K < 0 .  So C is an exceptional curve
of the first kind and hence 0> (2K +D)-C =C.D— 2 which is a contradiction to our
hypothesis. So, (2K + D) 2 ,>, O. 0 < (2K + D) 2 = K 2 + 2K• (K + D)+ (K + D) 2 = K 2  +
3(K +D) 2 —2D(K+D)= K 2 - 3 + 4 = K 2 + 1 . T h u s  K 2 ,.>. —1 a n d  hence K 2 = —1.
Since ic(D) >0, K I  = 0 .  Also —1= (K + D)2 = K 2  + 2(D • K) +D2 = —1+ 2( —2+
n )— n . Therefore n=4.
c) a)

By Riemann-Roch, /(2K)— h 1(2K)+l(— K)= K 2  + 1 = 0 . Thus h 1(2K)= 0 .  The
exact sequence,

0 — > 0(2K) —3. 0(2K+ (7, — >  0  gives,

1(2K +D )=1. So k(D),>, 0. If there exists an exceptional curve meeting D at most
once, then blowing it down, we still have K(Image of D) 0 but K 2 = 0 , contradicting
our earlier remark. This proves the theorem.

Corollary 3.2. 0 or 1 if  and only  if  1(2K +D)=1.

P ro o f . By proof of Lemma 1.1, we may assume that every exceptional curve of
the first kind meet D at least twice. First we will show that, if x(D) >0 and (D + K)2 >
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0 then K(D)= 2. If D2 = — n, it is easy to see that, 1(mn(D+K))=1(mn(D+K)— mD).
N ow , (n(D + K)— D)2  = n2 (D + K)2  + 4n — n = (D + K) 2 n2  +3n> 0  i f  (D+ K) 2  > O.
Thus, 1(mn(D + K)— mD) is a quadratic polynomial in m, (notice that K(D).,-. 0 is used
to say that H2 (mn(D + K)— niD)= 0) and hence u(D)= 2.

So, if K(D)= O or 1, (D + K)2 < —1 and by Cor. 2.3, (D + K)2 = —1. N o w  b y
Theorem 3.1, we see that 1(2K + D)= 1.

If 1(2K + D)= 1, then by Theorem 3.1, we have (2K + D) 2  = O. Also, easy to see
that 2K + D is a numerically effective divisor. If u(D)= 2, then since, 1(2m(D + K))=
1(2mK+mD), m(2K +D)I gives a  map to a surface . So for any ample divisor H,
m(2K + D)— H is  effective for m» O. But this implies, H • (2K + D)< 0  a  contra-
diction. Thus K(D)= O or 1.

Theorem 3 .3 .  A ssume any equivalent conditions of Theorem 3.1. Then there
exists an exceptional curve E0 such that Eo  • D=2. Also:
a) 13K +DI = 0.‹.>K(D) = 0 and then we have a birational morphism f: X-43 2  such

that f(D )=a sextic w ith ten double points, (possibly  inf initely  near) and in
this case, D is linearly  equivalent to — 2K. A lso if  E is any exceptional curve
of the f irst k ind, the linear system ID +2E1 is an irreducible pencil of  elliptic
curves.

b) 13K +D10<r>K(D)= 1. A lso in this case, there exists a  birational inorphism
f: X -4 3 2 , such that f (D )= a  curve of degree 3m, m 3  w ith nine m-tuple points

and one double point (possibly  infintely near.)  A lso  the linear system  D + 2 E 0 1
is an irreducible pencil of elliptic curves and this Eo  is  unique.

P ro o f . I f  13K +D1=0, then, l( -2 K — D )> 1  b y  Riemann-Roch and hence
2 K  + D = 0 . So every exceptional curve meets D twice. If 13K +DI 0 0 , then since
(3K + D) 2 = —1, there exists an irreducible curve E n Supp 13K +DI such that E.(3K +
D )< 0 .  So E2  < 0 and E•K< 0, implying E is exceptional curve of the first kind.
Also, then E. D < 3 implying E. D  = 2 . To show uniqueness of such an exceptional
curve, first observe that they are all fixed components of 13K + D I. If there are two
such, then since D meet them twice each, 4 < D.(3K+D)= —4 + 6=2, a contradiction.

So we have found our E0 , and it is unique in the case 13K +DI 00.
C laim : l(D +2E 0 ) >2.

D+2E 0 = (D +E 0 + K )+ (E 0 —K).

l(D+E o +K).> 1  a n d  /(E0 —K)> 1 ,  b y  Riemann-Roch. S ince 1D+ K1=0,
E ,  S u p p  + E0 +  K I. Since /( —K)=0, E is not in Supp 1E0  — K1. So this curve
in, (D+E o + K )+ (E o — K) is not equal to D + 2E0 and hence l(D +24) > 2.

Using the exact sequence, 0—*6(2E0 )—>e(2E0 +D)—q9D —>0, one gets, 1(2E0 +D)
< 2 and thus /(2E0 + D)= 2. So neither D nor E 0 is a fixed component of ID +2E 0 1.
But (D + 2E0 )2 = 0 says that ID +2E 0 1 i s  a  pencil of curves without base points.
Also, pc,(D +2E 0 )=  1. Since D+ 2E 0 is  a  connected member of this system, which
is reduced at some points, we see that the general member is irreducible of arithmetic
genus 1. This gives the required elliptic fib ra tion . Finally, we separately analyse
the two cases to prove the Theorem.
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a) I3K +DI=0. W e know  that D + 2 K  -0 , and hence K (D )= 0. Observe that
if X is any smooth surface with a curve D such that D +2K x - 0  and if f: X-> Y
any birational morphism, then f(D )+ 2K y -  O. So we need only show tha t X
dominates P 2 b irationally . Let now  Y= F„, where f: X -> F„ is  a  birational
morphism. W e claim  that n 2. L e t  D = f(D ) and F  a  general fibre. We
have, D , -4D n + 2(n +2)F. I n  particular, T h  D „ a n d  hence D • D > 0 .  This
gives n •<, 2. I f  n= 0, X  dominates some blow up of P 1 x 13 1  a n d  hence F,.
If n= 2, then D. D„=0 (i.e. D n D,,=0) and hence X  dominates a surface got by
blowing up F 2  away from D„ and hence F 1 . So in any case X dominates P 2 .
Let f: X -> P 2  be this morphism. Then since f(D )+ 2K 2 '-'O , f(D ) is a rational
sextic. Using D+2K - 0 ,  it is also clear that it has only double points and
hence exactly ten of them, may be infinitely near.

b) 13K -FM *0.
We first show that K(D)= 1. By Corollary 3.2, it suffices to show that K(D)+ O.

E0  is a fixed component of PK + D I. I f  E0  is a component o f I2K + DI, then I2K+
D - E0 1+Ø. B u t  D•(2K + D -E 0 ) =  - 2  a n d  hence I2K - Eo I * 0 ,  w hich is not
possible. So E0  is not a component of 2K +D. L e t  A e I2K +DI and B e j3K +Di.
Then 3A +3D 6(D+ K )- 2 8  + 4 D . But, 3A +3D+ 2B + 4D and hence 1(6(K +D)),>
2. Hence K(D)> O.

Let X be the contraction of E0  and D, the image of D in X .  Since ID + 2K1+0,
afortiori, ID + 2 1 + ø .  N o w  c h o o s e  m 2  su c h  th a t  ID  + m K I# 0 and ID +
(m+1)KI =0. W e also  have r)2=o a n d  K2 = 0 .  B y  Riemann-Roch, it easily
follows that 1( - D - m K ) 0  0, and hence 15+ mK— 0. Now as in  the proof of a),
one easily sees that there is a  birational morphism f: X -43 2 , such that J(D ) i s  a
rational curve of degree 3 m with nine m-tuple points and a double point. This
completes the proof of Theorem 3.3.

Remark 3.4. If K(D) > 0  and every exceptional curve meets D  at least twice,
then (D + K)2  0  implies K(D)=2.

Proposition 3 .5 . L et 1)c-)X and D'(-->X' be as  in  Theorem 3.1 and f: X->X'
be a b ira tion a l map such f (D )= D '.  Then f  is an isomorphism.

P ro o f . Let g :  b e  a  birational morphism so  tha t h= Pg: Y -> X ' is also
a  morphism. We may assume that there exists no exceptional curves of the first
kind, which is in the fibre of g  as well as h. Let E0 , G  be exceptional curves as
in  Theorem 3.3. Then there exists m, m'( „>..• 2) such that ID + mKI = {(m -2)E 0 }
and ID' + mK'I = {(m' -2)E 0 } where K , K ' are canonical divisors of X  and X ' re-
specitvely. Notice that m and m' are largest integers such that ID+ m K I *0 and
IlY + m gC 140. These numbers are invariant under blowing ups and hence corn-
paring them in Y, we get m = m ' .  Also note that l(D + mK)=1(D' + m' K')= 1 and
this property also is invariant under blowing u p s . In  other words if 13 is the proper
transform of D (and hence of D') on Y, then 1(13 + mg)---- 1 where R is the canonical
divisor of Y. By successively checking at each blowing ups one sees that, ID+ mR1=
{E  m i Ei }, where E, (i >1) are all the irreducible fibres of g  and  m, >0 fo r i
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Similarly, looking at h ,  w e have , ID + mk- 1-{E Tr6E}  with >0, i 1. (If
1=0

f : A -43 is the blowing up of a point of B, where A  and B are smooth surfaces, then
rk Pic A =rk Pic B +1  and K 1 - 1 =  K i .  In  other words, if f : A --B  is a composite
of blowing ups, then rk Pic A =rk  Pic B +K 2

B -K ,24 a n d  thus f  is the composite of
K i - K 2

A  blowing u p s .  So in  the above situation, Y is obtained as the composite
of K i - K i  blowing ups from X  via g .  Similarly for h. But K i = K i , .  Thus the
number of exceptional fibres of g and h are same).

Let Ek be an exceptional of the first kind on Y such that g(E k ) is a  p o in t . Then
Ek =E 0 , by our assumption that h (E ,)*  p o in t .  S in c e  E =  -1 , h- 1  h a s  no funda-
mental points on  E .  H e n c e  Ek. i5 =E0 . D ' =2, which is a contradiction, since D
is non-singular. Hence f  is an isomorphism.

Corollary 3.6. Let D-X , D 'c-)X ' be em beddings of  P 1 , such that D 2 =D' 2 =
- 4  and w ith k (D)=K (D')=0 o r 1 . L e t  f : X -4 3 2  an d  f ': X '->P 2  be birational
morphisms as in Proposition 3.3. L et C, C' be im ages of  D and D' in P 2 . Then
the em beddings Dc4 X  and D '- X ' a r e  equiv alent i f  an d  on ly  if  th e re  is  a
Cremona transform ation a: P 2 ->P2 such that a(C)=C'.

§ 4. Class groups

Let X  be a projective normal rational surface with isolated singularity PE X .
We define K(ex ,p ) to be R (X -P)  (in the sense of Iitaka [I].). It is easy to see that
it depends only on Ox . p. For a ring A , we denote by C(A), its class group.

Proposition 4 . 1 .  L et A  be a normal geometric local ring such that
x n - i y , . . . ,  x i y  n - i , . . . 9 Further assume that the quotient f ield of A  is k(X , Y).
Then,
a) K(A)= -  oo >C(A )=C(Â )=ZInZ

C(A )=Z /2Z , C(Â )=Z /4Z i f  n = 4 .{

C(A )=ZInZ = C(Â) if  n > 5 .

P ro o f . Let U be the punctured spectrum of A.
Let f : X -*Spec A  be a  minimal desingularisation of Spec A .  It is well known

that f - 1  (closed point) =DP-JP" and D 2 =  -  n. We have the following commutative
diagram of exact sequences:

0 , Z D - - 4 P ic X - - ÷ P ic U — *  0

O
0

Z Z Z InZ 0

G G

0 0

b) i(A )= O

where (9(F)=F•D. [[Q , page 225]. To compute C(A )= Pic U , it is sufficient to
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compute G.
a) K (A )= - (x). In this case, by Theorem 2.1, using a fibre of F„, we see that there

exists a  divisor F  on  X  such that F•D =1  and hence 0  is  surjective. Hence
C(A ) Z  nZ  = C(Â ).

b) K(A)= 0.
By Theorem 3.1, if n  5, there exists an exceptional curve which meets D once

and hence 0 is surjective. Thus C(A )=ZInZ.
If n =4 , by Theorem 3.3, D -  - 2 K  and therefore C-D is even for all curves C.

Since there is an E 0  such that E0 •D = 2, we get G =Z 12Z  and hence C(A) Z12Z.
We now consider the case when K(A)= 1 with ;;I' KIIX" , X i y n - i , . . . ,

M .  Let Y be a  complete rational normal surface with isolated singularity y e Y,
such that e y ,y = A . Let f : X -* Y be the minimal desingularisation of Y. T h e n
f - t(y )=D P 1 a n d  D 2 = - n .  B y Proposition 1.4 and Theorem 3.3, there is a
birational morphism g : X - ,P 2 such that g(D) is a  curve of degree 3m(m >2) and
m depends only on A.

Proposition 4.2. W ith the notations as above, assum e K (A )=1. T hen,
a) If n .„>-5, then C(A) ZInZL-' C(Â).
i) n=4 , in odd, then C(A )=Z14Z=C(A ).
ii) n =4, m even, then C(A )=Z/2Z.

Pro o f . W h en  n  5, the  proof is exactly as in Proposition 4.1, b). Assume
n  = 4 . Let Lbe a generic line in P 2 . Then g 1(L)•D= 3 m . The image of 0: Pic X - ,

Z  (as in the Proof of Proposition 3.1) contains 3m and 2 (note E0 •D  = 2). Hence if
ni is odd 0  is surjective. i.e. G = 0, giving us C (A )=Z /4 Z . Suppose ni is even.
Then D + m K  (m  -2 )E 0 . Hence D•C is even for any curve C .  Thus Image 0=
2 .Z .  Thus C(A )=Z /2Z .
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