A topological characterization of $\boldsymbol{C}^{2} / \boldsymbol{G}$

By
R.V. Gurjar and A.R. Shastri
(Communicated by Prof. Nagata, Oct. 1, 1984)

Introduction

In [6], C. P. Ramanujam has given a topological characterization of \boldsymbol{C}^{2} as an affine variety. In [1] it was proved that if $C^{2} \rightarrow V$ is a proper morphism onto an affine normal surface V, then V is topologically contractible, the fundamental group at infinity of V is finite and $V \approx C^{2} / G$ where G is a "small", finite subgroup of $G L(2, C)$ acting linearly on C^{2} (G is "small" if it contains no non-trivial pseudo-reflections).

In this paper we prove a generalization of C. P. Ramanujam's result which is at the same time a converse of the above result in [1].

Theorem. Let V be an affine, normal surface/ C, which is topologically contractible. Assume further that the fundamental group at infinity of $V, \pi_{1}^{\infty}(V)$, is finite. Then $V \approx C^{2} / G$ where G is a "small" subgroup of $G L(2, C)$ isomorphic to $\pi_{1}^{\infty}(V)$.

In particular, V has at most one singular point.
For the definition of $\pi_{1}^{\infty}(V)$, see $\S 1$. In $\S 2$, we will give some examples of affine normal surfaces which fail to satisfy one of the properties of contractibility or finiteness of $\pi_{1}^{\infty}(V)$.

§ 1.

Proof. Let $P=\left\{p_{1} \cdots p_{n}\right\}$ be the singular locus of V. If P is empty then V is non-singular and the result is proved in [1]. In this case $V \approx C^{2}$.

Now assume that $n \geq 1$. Let $\Psi: Y \rightarrow V$ be a resolution of singularities such that $T_{i}=\Psi^{-1}\left(p_{i}\right)$ is a divisor all whose components are smooth curves with normal crossings (i.e., intersecting transversally and no three meeting in a point) and such that Y is a resolution which is minimal with all these properties. Let $Y \subset X$ where X is a smooth projective surface such that Y is a Zariski dense open subset with $T_{\infty}=X-Y$ a divisor with normal crossings and is minimal. Since V is affine, T_{∞} is connected and T_{i} for $1 \leq i \leq n$ are connected because V is normal.

Let U_{i} be a small "tubular"' neighbourhood of T_{i} for $i=1,2, \ldots, n, \infty$ such that U_{i} are pairwise disjoint. Let $Z=X-\left(U_{1} \cup U_{2} \cdots \cup U_{n} \cup U_{\infty}\right)$, so that Z is a compact

4 -dimensional (real) manifold with boundary components $\partial_{i}=\partial U_{i}$ for $i=1, \ldots, n, \infty$. By definition, $\pi_{1}^{\infty}(V)=\pi_{1}\left(U_{\infty}-T_{\infty}\right) \approx \pi_{1}\left(\partial_{\infty}\right)$ and this is finite by hypothesis. By a generalization of the Lefschetz hyperplane section theorem (see [5]) it follows that if R is any Zariski closed proper subset of X, then $\pi_{1}\left(U_{\infty}-R\right) \rightarrow \pi_{1}(X-R)$ is surjective. In particular, taking $R=T_{1} \cup \cdots \cup T_{n} \cup T_{\infty}$, we obtain $\pi_{1}\left(U_{\infty}-T_{\infty}\right) \rightarrow \pi_{1}\left(X-T_{1} \cup\right.$ $\left.\cdots \cup T_{n} \cup T_{\infty}\right)$ is surjective. But $X-\left(T_{1} \cup \cdots \cup T_{n} \cup T_{\infty}\right)=\mathrm{Z}$ and Z is a strong deformation retract of $V-P$. Thus $\pi_{1}(V-P)$ is finite (and actually a homomorphic image of $\left.\pi_{1}^{\infty}(V)\right)$. We will need the following lemmas:

Lemma 1. Let $\varphi: W \rightarrow \Delta$ be a proper morphism where Δ is a smooth algebraic curve, W is smooth and most fibers of φ are isomorphic to \boldsymbol{P}^{1}. Suppose S is a singular fiber of φ and φ has a section A. Let S^{\prime} be the union of certain components of S none of which meet A and none of which is an exceptional curve of the 1st kind. Then
$\#(S) \geq \#\left(S^{\prime}\right)+2(\#$ denotes the number of components).
Proof. Since S must contain an exceptional curve of the 1 st kind, we see that $\#(S) \geq \#\left(S^{\prime}\right)+1$. Let E be the component of S for which $E . A=1$. Then in the scheme-theoretic representation of S, E occurs with multiplicity 1. By a simple argument in \boldsymbol{P}^{1}-fibrations, S should contain an exceptional curve of the 1 st kind $E^{\prime}, E^{\prime} \neq E$. See, for example [4, p. 115]. The lemma is proved.

Lemma 2. Let $\varphi: W \rightarrow \boldsymbol{P}^{1}$ be a minimal elliptic fibration (W is projective, smooth and no fibre of φ contains an exceptional curve of the 1 st kind). Let S_{0} be a singular fibre of φ of type II (in the terminology of [3]) and let $S_{j}, 1 \leq j \leq k$, $k=1$ or 2 be all the other singular fibres. Then for $k=2$, both S_{j} cannot be of type $I_{b_{j}}$ (for notation see [3]). If $k=1$, then $S_{1}=I I^{*}$.

Proof. The local monodromy for the fibres of types II and I_{b} are given respectively by the matrices $\left(\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. See [3]. Since \boldsymbol{P}^{1} is simply-connected, it follows that the product of suitable conjugates of the monodromy matrices of all the singular fibres is the identity matrix in $\operatorname{SL}(2, Z)$.

For $k=2$, let $S_{1}=I_{b_{1}}$ and $S_{2}=I_{b_{2}}$. Then $\exists L_{j} \in S L(2, Z)$ such that

$$
L_{1}\left(\begin{array}{ll}
1 & b_{1} \\
1 & 1
\end{array}\right) L_{1}^{-1} \cdot L_{2}\left(\begin{array}{ll}
1 & b_{2} \\
0 & 1
\end{array}\right) L_{2}^{-1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)
$$

Comparing the traces on either side, we get $b_{1}, b_{2}=1$. Hence $b_{1}=b_{2}=1$. But then for the topological Euler characteristic of W obtain $\chi(W)=\chi\left(S_{1}\right)+\chi\left(S_{2}\right)+$ $\chi\left(S_{0}\right)=2+b_{1}+b_{2}=4$. But Noether's formula implies that $12 \mid \chi(W)\left(K^{2}=0\right.$ since φ is a minimal fibration). This is a contradiction.

For $k=1$, the monodromy matrix for S_{1} should be a conjugate of $\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$. From [3], $S_{1}=I I^{*}$.

Lemma 3. Let $\varphi: W \rightarrow \boldsymbol{P}^{1}$ be an elliptic fibration (W smooth, projective) with
a section A and a singular fibre S_{0} of type II. Suppose S_{1} is the only other singular fibre and E_{1} a component of S_{1} such that $E_{1}, A=1$. Assume that no other component of S_{1} is an exceptional curve of the 1st kind. Let T_{1} be the union of all the components of S_{1} other than E_{1}. Then $W-\left(T_{1} \cup S_{0} \cup A\right)$ is not simply connected.

Proof. We can choose tubular neighbourhoods $N\left(E_{1}\right), N\left(T_{1}\right), N\left(S_{1}\right)$ of E_{1}, T_{1} and S_{1} resp. such that $N\left(S_{1}\right)=N\left(E_{1}\right) \cup N\left(T_{1}\right)$. Clearly $W-S_{0}$ is a fibration over C with one singular fibre S_{1} and a section $A^{\prime}=A-S_{0}$. Hence $N\left(S_{1}\right)-A$ is a strong deformation retract of $W-\left(S_{0} \cup A\right)$, in particular, $N\left(S_{1}\right)-\left(A \cup T_{1}\right)$ is a strong deformation retract of $W-\left(T_{1} \cup S_{0} \cup A\right)$. Since A^{\prime} cuts E_{1} transversally, it follows that $N\left(T_{1}\right)-T_{1}$ is a deformation retract of $N\left(S_{1}\right)-\left(A^{\prime} \cup T_{1}\right)$. Thus we shall show that $\pi_{1}\left(N\left(T_{1}\right)-T_{1}\right)$ is non trivial.

First suppose that E_{1} is not exceptional curve of the 1st kind. Then S_{1} is of type II*. Since $E_{1}, A=1, E_{1}$ is the curve that occurs with multiplicity 1 in the schemetheoretic fibre S_{1} (see [3]). It follows that T_{1} can be thought of as the resolution of the E_{8} singularity and hence $\pi_{1}\left(N\left(T_{1}\right)-T_{1}\right)$ is isomorphic to the binary icosahedral group. (Note that this case has occurred in [1]).

Now suppose that E_{1} is an exceptional curve of the 1 st kind. Then E_{1} can be blown down to a smooth point on a smooth surface W_{1} with an elliptic fibration $\varphi_{1}: W_{1} \rightarrow \boldsymbol{P}^{1}$. The image of A will be a section of φ_{1} which will meet the image of all the components in S_{1} that meet E_{1}. Hence E_{1} meets exactly one component in S_{1}. Repeating this argument, it follows that the dual graph of S_{1} is

for some $m \geq 0$. Then it is easily seen that $\pi_{1}\left(N\left(T_{1}\right)-T_{1}\right)$ is non trivial.
Lemma 4. Let V be an affine, normal, irreducible surface. If $\pi_{1}^{\infty}(V)=(1)$ then V can be embedded in a normal projective surface \bar{V} such that \bar{V} is smooth along $\bar{V}-V$ and the dual graph corresponding to $\bar{V}-V$ is $\times \sim \times \begin{gathered}0 \\ \times\end{gathered}$.

If $\pi_{1}^{\infty}(V)$ is isomorphic to the binary icosahedral group, then \bar{V} as above can

Proof. See [1].
Now we continue with the proof of the Theorem.
Step I: Assume that $\pi_{1}(V-P)=(1)$. Then we will show that $P=\emptyset$ and $V \approx C^{2}$. Since V is contractible, $H_{i}(V, P)=(0)$ for $i \geq 2$ (all the homology groups which occur are with Z-coefficients). Also $H_{1}(V, P) \approx Z^{n-1}$ Let $U=U U_{i}, \partial=\bigcup_{i=1}^{n} \partial_{i}$. Then $H_{i}(Z, \partial) \approx H_{i}(V, U) \approx H_{i}(V, P)$. By assumption $\pi_{1}(Z) \simeq \pi_{1}(V-P)=(1)$. Hence $H_{1}(Z)=(0)$. From the exact sequence

$$
H_{2}(Z, \partial) \longrightarrow H_{1}(\partial) \longrightarrow H_{1}(Z) \text { we see that }
$$

$H_{1}(\partial)=(0)$. Hence for $i=1, \ldots, n . \quad H_{1}\left(\partial_{i}\right)=(0)$. By Poincare duality $H_{2}\left(Z, \partial_{\infty}\right)$ $\simeq H^{2}(Z, \partial)$. But $H^{2}(Z, \partial) \approx \operatorname{Hom}\left(H_{2}(Z, \partial), Z\right) \oplus \operatorname{Ext}^{1}\left(H_{1}(Z, \partial), Z\right)$. Since $H_{1}(Z$, ∂) is torsion free, we see that $H^{2}(Z, \partial)=(0)$. Again from the exact sequence $H_{2}(Z$, $\left.\partial_{\infty}\right) \rightarrow H_{1}\left(\partial_{\infty}\right) \rightarrow H_{1}(Z)$ we get $H_{1}\left(\partial_{\infty}\right)=(0)$. Then $G=\pi_{1}^{\infty}(V)$ is a finite perfect group and thus $G=(1)$ or the binary icosahedral group (see [1]). By Lemma 4 the dual $0 \quad 0 \quad-2-1-3$ graph corresponding to T_{∞} can be assumed to be $\times-\times$ (when $G=(1)$) or $\times-\times-\times$ We will first show that $G=(1)$ and hence $T_{\infty}=\times-\times$. If not, we have T_{∞} has

$$
\text { dual graph } \begin{array}{r}
-2-1-3 \\
\times-\times-\times \\
\mid \\
\times-5
\end{array}
$$

As in [1], by three successive blowing down, we get a rational curve C on a smooth surface W with $C^{2}=1$ and C having a unique singular point which is an ordinary cusp of multiplicity 2 . It is easily seen that the linear system C has a unique base point (at which C is smooth) and after blowing-up at this point and taking a 2- dimensional sub-system of C we get an elliptic fibration $\varphi: \tilde{X} \rightarrow \boldsymbol{P}^{1}$ with the proper transform C^{\prime} of C being a singular fibre of φ of type II and a section A. Also now $T_{\infty}=A \cup C^{\prime}$. Then $\tilde{X}-\left(A \cup C^{\prime}\right)=Y$. Let $S_{1}, \ldots, S_{k}, S_{k+1}, \ldots, S_{k+l}$ be the other singular fibres, $S_{i}, i \leq k$ being simply connected and $S_{i}, i>k$ non simplyconnected. Clearly there are no multiple fibres.

Let $s_{j}=$ number of irreducible components of $S_{j} \cap\left(T_{1} \cup \cdots \cup T_{n}\right)$ and $\#\left(S_{j}\right)=$ number of irreducible components of S_{j}. Since T_{i} do not intersect $C^{\prime} \cup A$, for $1 \leq i \leq n$, each T_{i} is contained in a singular fibre S_{j} for $j \geq 1$. Hence $\sum_{j=1}^{k+l} s_{j}=\sum_{i=1}^{n} \#\left(T_{i}\right)$. Also $\#\left(S_{j}\right) \geq s_{j}+1$ because A is a section. By the contractibility of V, it is easily seen that the second betti number

$$
b_{2}(\tilde{X})=\sum_{i=1}^{n} \#\left(T_{i}\right)+\#\left(T_{\infty}\right)=\sum_{j=1}^{k+l} s_{j}+2
$$

Since S_{j} is simply- connected for $j \leq k$,

$$
\chi_{t o p}\left(S_{j}\right)=\#\left(S_{j}\right)+1 \quad \text { and } \quad \text { for } \quad j \geq k+1, \chi\left(S_{j}\right)=\#\left(S_{j}\right)
$$

Now

$$
\chi(\tilde{X})=\sum s_{j}+4=\sum_{j=0}^{k+l} \chi\left(S_{j}\right)=2+\sum_{j=1}^{k}\left(\#\left(S_{j}\right)+1\right)+\sum_{j=k+1}^{k+l}\left(\# S_{j}\right)
$$

$\geq 2+\sum_{j=1}^{k}\left(s_{j}+2\right)+\sum_{j=k+1}^{k+l}\left(s_{j}+1\right)$ (here we are using the fact that the only curves in X which do not intersect T_{∞} are contained in $\bigcup_{i=1}^{n} T_{i}$ and a singular fibre of φ cannot consists entirely of the T_{i} as the quadratic form on T_{i} is negative definite). Thus $\chi(\tilde{X}) \geq 2+2 k+l+\sum_{j=1}^{k+l} s_{j}$. Thus $2 k+l \leq 2$. By lemma 2 the possibilities $(k, l)=$ $(0,1)$ or $(0,2)$ are ruled out. Thus $(k, l)=(1,0)$. Then it follows that $\#\left(S_{1}\right)=$
$s_{1}+1$. By Lemma 3 it follows that $n=1$ and $\tilde{\mathrm{X}}-\left(T_{1} \cup T_{\infty}\right) \approx V-P$ is not simply connected.

This is a contradiction. Thus $G=(1)$ and T_{∞} can be assuned to be $\begin{array}{lll}0 & 0 \\ C_{1} & \times \\ C_{2}\end{array}$. Then the linear system $\left|C_{1}\right|$ defines a \boldsymbol{P}^{1}-fibration $\varphi: X \rightarrow \boldsymbol{P}^{1}$ for which C_{2} is a section. If S_{1}, \ldots, S_{r} are the singular fibres of φ, as before each T_{i} for $1 \leq i \leq n$, is contained in some S_{j} and $\sum_{i=1}^{n} \#\left(T_{i}\right)=\sum_{j=1}^{r} s_{j}$. By Lemma $1 \#\left(S_{j}\right) \geq s_{j}+2$ and hence we have

$$
\sum s_{j}+4=4+\sum_{j=1}^{r}\left(\chi\left(S_{j}\right)-2\right) \geq 4+\sum_{j=1}^{r}\left(s_{j}+1\right)=4+\sum_{j=1}^{r} s_{j}+r
$$

Hence $r=0$. Thus V is smooth as claimed.
Step II. In this step we reduce the situation to the step I
We know that $\pi_{1}(V-P)$ is finite and by step I we can assume it to be nontrivial. Let $\pi^{\prime}: \tilde{V}^{\prime} \rightarrow V-P$ be the universal covering projection.

Then we can embed $\tilde{V}^{\prime} \subset \tilde{V}$ where \tilde{V} is a normal affine surface, $\tilde{V}-\tilde{V}^{\prime}$ is a finite set of points and π^{\prime} extends to a proper morphism $\pi: \tilde{V} \rightarrow V$. The fundamental group at infinity for \tilde{V} is a subgroup of $\pi_{1}^{\infty}(V)$. We will show, that \tilde{V} is contractible. Once this is done, by step $\mathrm{I}, \tilde{V} \approx C^{2}$ as an affine variety and $\tilde{V} / G \approx V$, where G is a finite group of automorphisms of \tilde{V} (the covering transformations of \tilde{V}^{\prime} extended to \widetilde{V} giving automorphisms of \widetilde{V}).

To show that \tilde{V} is contractible, we proceed as follows. Let m_{i} be the number of points in $\pi^{-1}\left(p_{i}\right)$ and $m=\sum_{i=1}^{n} m_{i}$. Since \tilde{V} is a Galois extension of $V, m_{i} \mid d$ for $i=1, \ldots, n$ where $d=\operatorname{deg} \pi$. We define $\tilde{\partial}_{\infty}, \tilde{\partial}, \tilde{Z}$ for \tilde{V} just as for V. Then $\tilde{\partial}_{\infty}$ is connected. Since \tilde{V}^{\prime} is simply connected, so is \tilde{Z} and hence $H_{1}(\tilde{\mathrm{Z}})=(0)$. Also $\pi_{1}\left(\partial_{\infty}\right)$ is finite. It follows from the cohomology exact sequence of the pair $\left(\tilde{Z}, \tilde{\partial}_{\infty}\right)$ that $H^{1}\left(\tilde{Z}, \tilde{\partial}_{\infty}\right)=(0)$. By duality $H_{3}(\tilde{Z}, \tilde{\partial})=(0)$. Clearly $H_{i}(\tilde{Z}, \tilde{\partial})=(0)$ for $i \geq 4$. In particular it follows that $H_{3}(\tilde{\delta}) \approx H_{3}(\tilde{Z})$. Hence the third betti number $b_{3}(\tilde{Z})=m$. We shall show that $H_{2}(\tilde{Z}, \tilde{\partial})=(0)$. Assuming this for a moment, it follows that $H_{i}\left(\tilde{V}, \pi^{-1}(P)\right) \approx H_{i}(\tilde{Z}, \tilde{\sigma})=0$ for $i \geq 2$. By the homology exaxt sequence of $(\tilde{V}$, $\left.\pi^{-1}(P)\right)$, it follows that $H_{i}(\tilde{V})=(0)$ for $i \geq 1(\tilde{V}$ is simply-connected $)$. Thus \tilde{V} is contractible.

In order to show that $H_{2}(\tilde{Z}, \tilde{\delta})=(0)$, we first show that the second betti number $b_{2}(\tilde{Z})=(0)$. For the Euler-characteristics of \tilde{Z} and Z, we have $d \cdot \chi(Z)=d(1-n)$ $=1+b_{2}(\tilde{\mathrm{Z}})-m$. Let t be such that $0 \leq t \leq n$ and $m_{i}<d$ for $i \leq t$ and $m_{t+1}=\cdots=$ $m_{n}=d$. For $i \leq t, m_{i} \leq \frac{d}{2}$ since $m_{i} \mid d$. Hence $0<\frac{1+b_{2}(\check{Z})}{d}=1-n+\frac{m}{d}=1-n+$ $\sum_{i=1}^{t} \frac{m_{i}}{d}+\sum_{t+1}^{n} \frac{m_{i}}{d} \leq 1-n+\frac{t}{2}+(n-t)=1-\frac{t}{2}$ This forces $t \leq 1$. If $t=0$, then $\tilde{V} \rightarrow V$ will be unramified, contrary to $\pi_{1}(V)=(1)$. Hence $t=1$. Hence $\pi_{1}\left(\partial_{i}\right) \rightarrow \pi_{1}(Z)$ are trivial maps for $i>1$ and $\pi_{1}\left(\partial_{1}\right) \rightarrow \pi_{1}(Z)$ has image H. The index of H in $\pi_{1}(Z)$ is m_{1}. Now consider the unramified covering $\tilde{W}^{\prime} \rightarrow Z$, with $\pi_{1}\left(\tilde{W}^{\prime}\right)=H$. Then each ∂_{i} has exactly m_{1} lifts in \tilde{W}^{\prime}. This in turn means that \tilde{W}^{\prime} extends to an unramified covering $\tilde{W} \rightarrow V$, of degree m_{1}. By the simply
connectivity of V, it follows that $m_{1}=1$. Now $1+b_{2}(\tilde{Z})=d(1-n)+m=d(1-n)$ $+1+(n-1) d$, implies that $b_{2}(\tilde{Z})=0$.

Again use the exact sequence $(0)=H_{3}(\tilde{Z}, \tilde{\partial}) \rightarrow H_{2}(\tilde{\partial}) \rightarrow H_{2}(\tilde{Z}) \rightarrow H_{2}(\tilde{Z}, \tilde{\partial}) \rightarrow H_{1}(\tilde{\delta}) \rightarrow$ $H_{1}(\tilde{Z}) . \quad H_{2}(\tilde{Z})$ is a finite group and by duality $H_{2}(\tilde{\delta}) \approx H^{1}(\tilde{\delta})$ is torsion -free. Hence $H_{2}(\tilde{\partial})=(0)$ and therefore $H_{1}(\tilde{\partial})$ is finite and $H_{2}(\tilde{Z} \tilde{\partial})$ is finite. Again $H_{2}(\tilde{Z}, \tilde{\partial}) \approx$ $H^{2}\left(\tilde{Z}, \tilde{\partial}_{\infty}\right)$ is torsion free (being isomorphic to $\operatorname{Hom}\left(H_{2}\left(\tilde{Z}, \tilde{\partial}_{\infty}\right), Z\right) \oplus \operatorname{Ext}\left(H_{1}(\tilde{Z}\right.$, $\left.\left.\tilde{\partial}_{\infty}\right) Z\right)$). Hence $H_{2}(\tilde{Z}, \tilde{\partial})=(0)$ as desired.

It is known that any finite subgroup of Aut $\left(C^{2}\right)$ is conjugate to a subgroup of $G L(2, C)$. See [2] for a proof. From our proof it follows that $\pi_{1}(V-P)=\pi_{1}^{\infty}(V)$ and $\tilde{V} \approx C^{2}$. It follows that $G=\pi_{1}(V-P)$ has no non-trivial pseudo- reflections i.e. G is a small subgroup of $G L(2, C)$. Since the action of elements of G on C^{2} is homogeneous linear, it follows that V has only one singular point. This completes the proof of the theorem.
§2. In this section we will give some examples of affine normal surfaces for which the contractibility or the finiteness of the fundamental group at infinity does not hold. In [6] C. P. Ramanujam has given an example of smooth, affine contractible surface which is not isomorphic to \boldsymbol{C}^{2}. By our theorem (or by a direct argument) we know that the fundamental group at infinity for this surface is infinite.

Example 1. We will construct an affine, normal, contractible surface V, with two singular points.

On $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, there is a smooth rational curve C, with $C^{2}=4$. Let $\varphi_{0}: \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ $\rightarrow \boldsymbol{P}^{1}$ be the projection to one of the factors. Then C can be taken to be a bisection of φ and hence by Riemann- Hurwitz formula, there are two fibres F_{1} and F_{2} of φ_{0} which meet C tangentially.

Blow-up $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ at the point $C \cap F_{2}$ to obtain a surface X_{1}. Let E_{1} be the exceptional curve. Denote by L^{\prime} the proper transform of a curve L. Then we see that $C^{\prime}, F_{2}^{\prime}$ and E_{1} meet in a single point p_{1}, transversally. Blow up X_{1} at P_{1} to obtain a surface a surface X_{2} with the following configuration of lines:

where E_{2} is the exceptional curve, $\left(F_{1}^{\prime \prime}\right)^{2}=0,\left(C^{\prime \prime}\right)^{2}=2,\left(E_{1}^{\prime}\right)^{2}=-2$ and $\left(F_{2}^{\prime \prime}\right)^{2}=-2$ Blow down E_{1}^{\prime} and $F_{2}^{\prime \prime}$ to normal points on a projective surface X, say $\Psi=X_{2} \rightarrow X$. Let $V=X-\Psi\left(F_{1}^{\prime \prime} \cup C^{\prime \prime}\right)$. Then V is the required example.

That V is affine, normal with two singular points is easily seen. To see that V is contractible, note that φ_{0} definies a \boldsymbol{P}^{1} fibration $\varphi_{2}: X_{2} \rightarrow \boldsymbol{P}^{1}$ with a singular fibre $\boldsymbol{E}_{1}^{\prime} \cup E_{2} \cup F_{2}^{\prime \prime}$. Hence φ_{2} defines a \boldsymbol{P}^{1}-fibration $\varphi: X \rightarrow \boldsymbol{P}^{1}$ with a singular fibre $S=\Psi\left(E_{2}\right)$ which is a topological sphere. Also $\Psi\left(F_{1}^{\prime \prime}\right)$ is a good fibre of φ and hence $X-\Psi\left(F_{1}^{\prime \prime}\right)$ is a \boldsymbol{P}^{1} fibration over C. Since $\Psi\left(C^{\prime \prime}\right)$ and $S=\Psi\left(E_{2}\right)$ intersect transversally in a single point q, it follows that $V=X-\Psi\left(F_{1}^{\prime \prime} \cup C^{\prime \prime}\right)$ deforms to $S-q$
which is topologically a 2 disc. Hence V is contractible.
Ofcourse, $\pi_{1}^{\infty}(V)$ is infinite. Indeed $\pi_{1}^{\infty}(V) \simeq(\boldsymbol{Z} /(2)) *(\boldsymbol{Z} /(2))$.
Example 2. Let $W=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}-\Delta$, where Δ is the diagonal. On $W \boldsymbol{Z} /(2)$ acts fixed point freely by interchanging the coordinates. Let V be the quotient space. Then V is a smooth affine variety with $\pi_{1}(V) \simeq Z /(2)$. The topological Euler characteristic of W is 2 and so for V it is 1 . Thus $b_{2}(V)=0$ and since $H_{2}(V, Z)$ is torsion free, we see that $H_{2}(V, \boldsymbol{Z})=(0)$. Since $\pi_{1}^{\infty}(W) \simeq \boldsymbol{Z} /(2), \pi_{1}^{\infty}(V)$ is a group of order 4 (it is actually cyclic of order 4)

Example 3. (Due to N. Mohan Kumar and V. Srinivas). Consider the minimal model $F_{n}(n \neq 0)$ of the rational function field $\boldsymbol{C}(X, Y)$. (see [7]. There is a minimal \boldsymbol{P}^{1}-fibration $\varphi: F_{n} \rightarrow \boldsymbol{P}^{1}$ with a unique section S_{0} such that $S_{0}^{2}=-n$. Let S be any section with $S^{2}=n$ and let F be a fibre of φ. Blow up F_{n} at a point on F other than $S \cap F$ and $S_{0} \cap F$ to obtain a smooth surface X_{1} and E_{1} be the exceptional curve that occurs. As before denoting by L^{\prime} the proper transform of a curve L, let $p_{1}=$ $E_{1} \cap F^{\prime}$. Blow up X_{1} at p_{1} to obtain a surface X_{2} and let E_{2} be the exceptional curve. Now blow down $E_{1}^{\prime}, \Psi: X_{2} \rightarrow X$, to obtain a projective, normal surface with one singular point. Let $V=X-\Psi\left(S^{\prime \prime} \cup F^{\prime \prime}\right)$. Then V is affine. Also $V-\Psi\left(E_{2}\right)$ is isomorphic with $F_{n}-(S \cup F) \simeq C^{2}$. Thus V is simply connected. One can easily show that $\pi_{1}^{\infty}(V)$ is finite and $H_{2}(V ; \boldsymbol{Z}) \simeq \boldsymbol{Z}$. In particular V is not contractible.

School of Mathematics
tata Institute of Fundamental Research Homi Bhabha Road, Bombay 400005

References

[1] R. V. Gurjar and A. R. Shastri, The fundamental group at infinity of affine surfaces (To appear, Comment Math. Helvetici).
[2] T. Kambayashi, On the absence of nontrivial Separable forms of the affine plane, J. Algebra, 35 (1975), 449-456.
[3] K. Kodaira, On compact analytic Surfaces II, Ann. of Math., 77 (1963), 563-626.
[4] M. Miyanishi, Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, Bombay 1978.
[5] M. Nori, Zariski's conjecture and related problems, Ann. Scient. E'cole Norm. Sup. 4a serie, 16 (1983), 305-344.
[6] C. P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. of Math., 94 (1971), 69-88.
[7] I. R. Safarevic, et al., Algebraic Surfaces (English translation of Proc. Steklov Inst. Math. No. 75, 1965).

