On the lowest index for semi-elliptic operators to be Gevrey hypoelliptic

Dedicated to Professor Sigeru Mizohata on his sixtieth birthday

By

Takashi $\overline{\text { OKAJI }}$

(Received August 23, 1984)

1. Introduction

Let $m=\left(m_{1}, \ldots, m_{n}\right),\left(m_{j} \in N \backslash 0\right)$, and for multi-index $\alpha \in N^{n}$

$$
|\alpha: m|=\alpha_{1} / m_{1}+\cdots+\alpha_{n} / m_{n} .
$$

We consider the partial differential operator P given by

$$
\begin{equation*}
P\left(x, D_{x}\right)=\sum_{|\alpha: m|<1} a_{\alpha}(x) D_{x}^{\alpha} . \tag{1}
\end{equation*}
$$

where $a_{\alpha}(x)$ is analytic in an open set $\Omega \subset R^{n}$. We assume that

$$
\begin{equation*}
P_{0}(x, \xi)=\sum_{|\alpha: m|=1} a_{\alpha}(x) \xi^{\alpha} \neq 0 \quad \text { for any } \quad \xi \in R^{n} \backslash 0 \tag{2}
\end{equation*}
$$

Then we call this operator a semi-elliptic operator. We are concerned with Gevrey hypoellipticity for semi-elliptic operators.

We note $\gamma^{\{s\}}(\omega)$ the space of functions u of class C^{∞} such that for every compact set K of ω, there are constants C and h such that

$$
\sup _{K}\left|D_{x}^{\alpha} u(x)\right| \leqslant C h^{|\alpha|}(|\alpha|!)^{s} \quad \text { for any } \quad \alpha \in N^{n} .
$$

We shall say that P is $\gamma^{(s)}$-hypoelliptic in a neighborhood of x_{0} iff there exists a neighborhood ω of x_{0} such that for any open subset $\omega^{\prime} \subset \omega$, the following implication holds;

$$
u \in \mathscr{D}^{\prime}(\omega), P u \in \gamma^{\{s)}\left(\omega^{\prime}\right) \Longrightarrow u \in \gamma^{\{s)}\left(\omega^{\prime}\right)
$$

Let $P(x, \xi)$ be the symbol of $P\left(x, D_{x}\right)$. Then, there are some constants C_{0}, C_{1} and B such that
(3) $\left|D_{x}^{\beta} D_{\xi}^{\alpha} P(x, \xi) / P(x, \xi)\right| \leqslant C_{0} C_{1}{ }^{|\alpha+\beta|} \mid \alpha!\beta!(1+|\xi|)^{-\rho|\alpha|} \quad$ for $\quad x \in K \Subset \Omega$, $|\xi| \geqslant B>0$,
where $\rho=\min \left\{m_{i} / m_{j}\right\}$. Combining this estimate with (2), by [7], [1], [2], we know that our operator P is $\gamma^{\{s\}}$-hypoelliptic in a neighborhood of every point in
Ω if $s \geqslant s_{0}=\max \left\{m_{i} / m_{j}\right\}$.
Our purpose is to show that s_{0} is the smallest index for P to be $\gamma^{\{s)}$-hypoelliptic in a neighborhood of points in Ω. Namely, let x_{0} be any point of Ω. Then we have

Theorem. Under the condition (2), for $1 \leqslant s<s_{0}, P$ is not $\gamma^{[s]}$-hypoelliptic in a neighborhood of x_{0}.

Remark. For the operator with constant coefficients, more general results have been obtained by L. Hörmander. ([3]). For $s=1$, our result follows from the result of O. A. Oleinik and E. V. Radkevič ([6]). When for any j, m_{j} is either 1 or 2 , our result has been shown implicitly by G. Metivier ([4]).

In the next section, we shall give the proof of theorem. We shall do this by contradiction. Namely, we shall construct the asymptotic soluton which violate a priori estimate. This is inspired by [4].

2. Proof of theorem

Lemma 1. Suppose that there are a neighborhood $\tilde{\omega}$ of x_{0} and constants $\varepsilon>0, C>0$ such that for any $\phi \in C_{0}^{\infty}(\tilde{\omega})$,

$$
\begin{equation*}
\|\phi\|_{H^{\varepsilon}(\tilde{\omega})} \leqslant C\left(\left\|P^{*} \phi\right\|_{L^{2}(\tilde{\omega})}+\|\phi\|_{L^{2}(\tilde{\omega})}\right), \quad \text { and } \tag{4}
\end{equation*}
$$

P is $\gamma^{(s)}$-hypoelliptic in a neighborhood of x_{0}. Then, there is a neighborhood ω_{0} of x_{0} such that the following fact holds; for any neighborhood $\omega^{\prime} \Subset \omega \Subset \omega_{0}$, there are constants L and C^{\prime} such that the following inequality holds; for any $k \in N$ and $u \in \mathscr{D}^{\prime}(\omega)$,

$$
\begin{equation*}
\|u\|_{k, \omega^{\prime}} \leqslant C^{\prime} L^{k}\left(\|P u\|_{k, \omega, s}+(k!)^{s}\|u\|_{0, \omega}\right) . \tag{5}
\end{equation*}
$$

Here, $\quad\|v\|_{k, \omega, s}=\sum_{|\alpha|<k} k^{s(k-|\alpha|)}\left\|D_{x}^{\alpha} u\right\|_{L^{2}(\omega)}$, and $\|v\|_{k, \omega}^{2}=\sum_{|\alpha|<k}\left\|D_{x}^{\alpha} u\right\|_{L^{2}(\omega)}^{2}$.
This result was obtained by G. Metivier. (Remark 3.2 in [4]) But there is a little change in the definition of the norm $\|\|\cdot\|$, in comparison with his original form; i.e., we introduce ' s ' in it. So, we shall give the proof of this lemma in the appendix.

Without loss of generality, we may assume that

$$
m_{1} \geqslant m_{2} \geqslant \cdots \geqslant m_{n} \quad \text { and } \quad a_{\left(m_{1}, 0, \ldots, 0\right)}(x) \equiv 1 .
$$

It is classical for P to satisfy the inequality (4). So, in view of lemma 1, in order to prove theorem, it is sufficient to construct the function u_{ρ} such that the following conditions hold; there are the constants $C, L, \varepsilon, \varepsilon^{\prime}, k_{0}$ and σ independent of ρ such that

$$
\left\{\begin{array}{l}
\left\|D_{x}^{\alpha} P u_{\rho}\right\|_{L^{2}(\omega)} \leqslant C(\rho L)^{s_{o}|\alpha|} e^{-\varepsilon \rho} \text { for }{ }^{\forall}|\alpha| \leqslant \sigma \rho, \\
\left\|u_{\rho}\right\|_{k, \omega^{\prime}} \geqslant C^{-1}\left|D_{x_{n}}^{k-k_{0}} u_{\rho}\left(x_{0}\right)\right| \geqslant C^{-2} \rho^{s_{0}\left(k-k_{0}\right)} \text { for } \quad{ }^{\forall} k \leqslant \sigma \rho, \text { and } \\
\left\|u_{\rho}\right\|_{L^{2}(\omega)} \leqslant C e^{\varepsilon^{\prime} \rho} .
\end{array}\right.
$$

In fact, let $k=\left[\sigma^{\prime} \rho\right]$ (σ^{\prime} is sufficiently small), then for $s<s^{\prime}<s_{0}$, (5) is not hold.
Let $s_{j}=m_{1} / m_{j}$ and $M=m_{1}$. We shall seek u_{ρ} in the following form;

$$
u_{\rho}(x)=e^{i w_{\rho}(x)} U\left(x, \rho x_{1}\right),
$$

where, $w_{\rho}(x)=\rho^{s_{n}} \cdot x_{n}+\cdots+\rho^{s_{2}} \cdot x_{2}$. Let $x=z, \rho x_{1}=t$. We shall work in the set $\left\{(z, t) \in \tilde{\omega}_{d} \times R\right\}$. Here,

$$
\tilde{\omega}_{d}=\left\{z \in C^{n} ; \operatorname{dist}(z, \omega)<d\right\} .
$$

Then, we have

$$
P u_{\rho}=\rho^{M} e^{i w_{\rho}}\left(\mathscr{P}_{\rho} U\right)(z, t)
$$

where $\mathscr{P}_{\rho}=\mathscr{P}_{0}+\mathscr{P}^{\prime}$,

$$
\begin{aligned}
\mathscr{P}_{0} & =\sum_{|\alpha: m|=1} a_{\alpha}\left(x_{0}\right) D_{t}^{\alpha_{1}}, \quad \text { and } \\
\mathscr{P}^{\prime} & =\sum_{j=1}^{M+1} \rho^{-(j-1)} \mathscr{P}_{j} .
\end{aligned}
$$

Here, $\mathscr{P}_{j}=\mathscr{P}_{j}\left(z, \rho, D_{z}, D_{t}\right)$ is the partial differential operator of order $j-1$ whose coefficients are analytic functions in z and polynomial in ρ^{-1}; especially,

$$
\begin{aligned}
& \mathscr{P}_{1}=\sum_{|\alpha: m|=1}\left(a_{\alpha}(x)-a_{\alpha}\left(x_{0}\right)\right) D_{t}^{\alpha_{1}}, \quad \text { and } \\
& \mathscr{P}_{j}=\sum_{|\alpha+\beta|<j-1} b_{\alpha, \beta}(z, \rho) D_{z}^{\alpha} D_{t}^{\beta},
\end{aligned}
$$

where $b_{\alpha, \beta}(z, \rho)$ is holomorphic and bounded in $\tilde{\omega}_{d} \times\{\rho>1\}$.
Let $Q(\tau)=\sum_{|\alpha: m|=1} a_{\alpha}\left(x_{0}\right) \cdot \tau^{\alpha_{1}}$. Then by the assumption (2), $Q(\tau)=0$ has the nonreal root $\delta_{1}, \ldots, \delta_{M} \in C$. We take a positive number δ_{0} such that $\delta_{0}>\max$. ($\left.\left|\operatorname{Im} \delta_{j}\right|\right)$. We introduce some function spaces;

$$
\begin{aligned}
& W_{r}=\left\{u ; e^{-\delta_{0}|t|} D_{t}^{j} u \in L^{2}(R), j=0,1, \ldots, r\right\} . \quad \text { and } \\
& V_{r}=\left\{u \in W_{r} ; \sup _{j>0} L_{0}^{-j}\left\|D_{t}^{j} u\right\|_{W r}<+\infty\right\} . \quad L_{0}=\max _{j}\left\{2 M a_{j}, 1\right\} .
\end{aligned}
$$

Then we have
Lemma 2. \mathscr{P}_{0} is surjective from W_{M} to W_{0} and has a right inverse which is continuous from W_{0} to W_{M}, and from V_{0} to V_{M}.

Proof. We may write

$$
\mathscr{P}_{0}=D_{t}^{M}+\sum_{j=1}^{M} a_{j} D_{t}^{M-j}, \quad\left(a_{j} \in C\right)
$$

Let $v_{0}=v, v_{1}=D_{t} v, \ldots, v_{M-1}=D_{t}^{M-1} v$. Then, the equation $\mathscr{P}_{0} v=f$ is transformed into

$$
D_{t} V=A V+F,
$$

where $V={ }^{t}\left(v_{0}, \ldots, v_{M-1}\right), F={ }^{t}(0, \ldots, 0, f)$, and

$$
A=\left[\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & 0 \\
0 & \ddots & \ddots & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
-a_{M} & \cdots & \cdots & -a_{1}
\end{array}\right] .
$$

By Petrowsky's lemma (ex. see [5]), there is a non-singular constant matrix C such that

$$
C A=D C,
$$

where

$$
D=\left[\begin{array}{cccc}
d_{11} & & & 0 \\
& \ddots & & \\
& & \ddots & \\
& & & d_{M M}
\end{array}\right],\left\{d_{i i}\right\}=\left\{\delta_{i}\right\},
$$

$$
|\operatorname{det} C|=1\left(\left|c_{i j}\right| \leqslant 1\right), \quad \text { and }
$$

$$
\left|d_{i j}\right| \leqslant(M-1)!2^{M} \max \left\{1,\left|a_{j}\right|\right\}
$$

Let $C V=W$. Then, W satisfies

$$
D_{t} W=D W+C F .
$$

Namely, denoting $W={ }^{t}\left(w_{1}, \ldots, w_{M}\right)$, we have

$$
w_{j}(t)=i \int_{0}^{t} e^{i \delta_{j}(t-s)} g_{j}(s) d s
$$

Here, $g_{j}(t)=\sum_{k} d_{j k} w_{k}+c_{j M} f . \quad$ Let $\tilde{w}_{j}(t)=w_{j}(t) e^{-\delta_{0}|t|}$, and $\tilde{g}_{j}(t)=e^{-\delta_{0}|t|} g_{j}(t)$. Then,

$$
\begin{aligned}
& \tilde{w}_{j}(t)=i \int_{0}^{t} e^{\left(i \delta_{j}-\delta_{-}\right)(t-s)} e^{-\left(\delta_{0}-\delta_{-}\right)(t-s)} \tilde{g}_{j}(s) d s \text { if } t>0, \text { and } \\
& \tilde{w}_{j}(t)=i \int_{0}^{t} e^{-\left(\delta_{+}-i \delta_{j}\right)(t-s)} e^{-\left(\delta_{0}-\delta_{+}\right)|t-s|} \tilde{g}_{j}(s) d s \quad \text { if } t<0,
\end{aligned}
$$

where $\delta_{-}=\min _{j}\left\{\operatorname{Re}\left(i \delta_{j}\right)\right\}$ and $\delta_{+}=\max _{j}\left\{\operatorname{Re}\left(i \delta_{j}\right)\right\}$. So we have

$$
\left\|w_{j}(t)\right\|_{L^{2}(R)} \leqslant C_{0}\left\|g_{j}(t)\right\|_{L^{2}(R)} .
$$

Returning to v, we have

Here, C_{1} is a constant depending only on $\left\{a_{j}\right\}$.
Since $D_{t}^{j+1} V=\sum_{0<l<j} A^{l} D_{t}^{j-l} F$, we obtain

$$
\left\|e^{-\delta_{0}|t|} D_{t}^{j+1} V\right\|_{L^{2}(R)} \leqslant C \sum_{l=0}^{j}\left(L_{0} / 2\right)^{l}\left\|e^{-\delta_{0}|t|} D_{t}^{j-l} F\right\|_{L^{2}(R)}
$$

From this, we conclude that
$\|v\|_{V_{M}} \leqslant C\|f\|_{V_{0}} . \quad\left(C\right.$ is a constant depending only on $\left.a_{j}\right)$.
Q.E.D.

Let $E_{d}\left(\omega, V_{r}\right)$ be the space of functions analytic in z with values in V_{r} which can be prolonged as bounded holomorphic functions on $\tilde{\omega}_{d}$. Let $\|u\|_{E_{d}\left(\omega, V_{r}\right)}=$ $\max _{z \in \omega_{d}}\|u(z)\|_{V_{r}}$. Since $\partial / \partial z_{j}$ is a bounded operator from E_{d} to $E_{d^{\prime}}\left(d>d^{\prime}\right)$ with norm less than $1 /\left(d-d^{\prime}\right)$, taking the form of \mathscr{P}_{j} into considerations, we have

Lemma 3. There are a neighborhood ω of x_{0}, a positive constant d_{0} and the constants $C_{j}(j=1, \ldots, M+1)$ such that for $0<d^{\prime}<d \leqslant d_{0}$, and $u \in E_{d}\left(\omega, V_{M}\right)$, the following inequalities hold;

$$
\begin{aligned}
& \left\|\mathscr{P}_{1} u\right\|_{E_{d}\left(\omega, V_{0}\right)} \leqslant C_{1}(d+\operatorname{diam} \omega)\|u\|_{E_{d}\left(\omega, V_{M}\right)} \\
& \left\|\mathscr{P}_{j} u\right\|_{E_{d^{\prime}}\left(\omega, V_{0}\right)} \leqslant\left\{C_{j} /\left(d-d^{\prime}\right)\right\}^{j-1}\|u\|_{E_{d}\left(\omega, V_{M}\right)}, \quad j=2, \ldots, M+1 .
\end{aligned}
$$

Now, we define $\left\{u_{k}\right\}$ as follows;

$$
\mathscr{P}_{0} u_{k}=-\mathscr{P}_{\rho}^{\prime} u_{k-1}, k>1, \quad \text { and } \quad u_{0}=e^{\delta t}, \quad\left(\delta \in\left\{i \delta_{j}\right\}_{j=1}^{M}\right)
$$

Then, by lemma 3, we have
Lemma 4. There exists constant C such that for $0<d^{\prime}<d \leqslant d_{0}$ and $\rho \geqslant 1$, $\left\|u_{k}\right\|_{E_{d^{\prime}}\left(\omega, V_{M}\right)} \leqslant\left\|u_{0}\right\|_{V_{M}}\left\{C\left(d+\operatorname{diam} \omega+k / \rho\left(d-d^{\prime}\right)+\cdots+\left(k / \rho\left(d-d^{\prime}\right)\right)^{M+1}\right)\right\}^{k}$.

Summing up, we conclude that
Proposition. Let $U_{\rho}=\sum_{k<\rho d^{2}} u_{k}(z, t)$, and $\Omega_{d}=\left\{x \in R^{n} ;\left|x-x_{0}\right|<d\right\}$. Then there are the positive constants d_{0} and C such that for $0<d<d_{0}$ and $\rho \geqslant 1 / d^{2}$,

$$
\left\|\mathscr{P}_{\rho} U_{\rho}\right\|_{F_{d}} \leqslant C e^{-\rho d^{2}},\left\|U_{\rho}\right\|_{F_{d}} \leqslant C,\left\|U_{\rho}-U_{0}\right\|_{F_{d}} \leqslant C d, \text { and } U_{0}=e^{\delta t} .
$$

Here, $\|v\|_{F_{d}}=\sup _{\Omega_{d} \times R, j, \gamma} \frac{d^{\gamma+j}}{|\gamma|!} e^{-\delta_{0}|t|}\left|D_{t}^{j} D_{z}^{\gamma} v(z, t)\right|$.
Proof. In lemma 4, let $\omega=\Omega_{d}$ and $k \leqslant \rho d^{2}$. Then, we have

$$
\left\|u_{k}\right\|_{E_{d}\left(\Omega_{d}, V_{M}\right)} \leqslant\left\|u_{0}\right\|_{V_{M}}(C d)^{k} .
$$

Let d_{0} sufficiently small such that $\delta_{0} \leqslant d^{-1}$ if $d \leqslant d_{0}$. Then, it is easy to see that

$$
\begin{aligned}
& \left\|u_{k}\right\|_{F_{d}} \leqslant C_{1}\left\|u_{k}\right\|_{E_{d}\left(\Omega_{d}, V_{M}\right)}, \quad \text { and } \\
& \left\|\mathscr{P}_{0} u_{k}\right\|_{F_{d}} \leqslant C_{1}\left\|\mathscr{P}_{0} u_{k}\right\|_{E_{d}\left(\Omega_{d}, V_{0}\right)} \leqslant C_{1} C_{2}\|u\|_{E_{d}\left(\Omega_{d}, V_{M}\right)} .
\end{aligned}
$$

Also let d_{0} small such that $C d_{0} \leqslant 1 / e$. Then, using the above inequalities, we have

$$
\begin{aligned}
& \left\|U_{\rho}\right\|_{F_{d}} \leqslant \sum_{k<d^{2}}\left\|u_{k}\right\|_{F_{d}} \leqslant 2 C_{1}\left\|u_{0}\right\|_{V_{M}}, \\
& \left\|U_{\rho}-U_{0}\right\|_{F_{d}} \leqslant 2 C_{1}\left\|U_{0}\right\|_{V_{M}}(C d), \quad \text { and } \\
& \left\|\mathscr{P}_{\rho} U_{\rho}\right\|_{F_{d}}=\left\|\mathscr{P}_{\rho}^{\prime} u_{k_{0}}\right\|_{F_{d}}=\left\|\mathscr{P}_{0} u_{k_{0}+1}\right\|_{F_{d}} \\
& \quad \leqslant C_{1} C_{2}\|U\|_{V_{M}}(C d)^{k_{0}+1} \leqslant C_{1} C_{2}\left\|U_{0}\right\|_{V_{M}} e^{-\rho d^{2}} .
\end{aligned}
$$

Here, we take $k_{0}=\left[\rho d^{2}\right]$.
Q.E.D.

Let $U_{\rho}(z, t)$ be in the proposition, and

$$
u(x)=e^{i w_{\rho}(x)} U_{\rho}\left(x, \rho x_{1}\right)
$$

Then, we have

$$
\left|D_{x}^{\gamma} u(x)\right| \leqslant \Sigma\left|\binom{j}{h}\binom{\alpha_{1}}{\beta_{1}} \cdots\binom{\alpha_{n}}{\beta_{n}} \rho^{j-h-(s, \beta)} D_{t}^{h} D_{x_{1}}^{j-h} D_{z^{\prime}}^{\alpha-\beta} U_{\rho}\right|,
$$

where $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right)$. Since for $|\gamma| \leqslant d \rho$

$$
\left.\begin{array}{l}
(|\gamma|-|\beta|-h)!d^{-(|\gamma|-|\beta|-h)} \leqslant \rho^{|\gamma|-|\beta|-h}, \\
\left|D_{t}^{h} D_{x_{1}}^{j-h} D_{z}^{\alpha-\beta} U_{\rho}\right|
\end{array} \leqslant\left\|U_{\rho}\right\|_{F_{d}} e^{\delta_{0}|t|}(|\gamma|-|\beta|-h)!d^{-(|\gamma|-|\beta|-h)}\right) .
$$

From these two inequalities, we conclude that

$$
\begin{aligned}
\left|D_{x}^{\gamma} u(x)\right| & \leqslant\left\|U_{\rho}\right\|_{F_{d}} e^{\delta_{0}|t|} \rho^{|\gamma|} \sum\binom{j}{h}\binom{\alpha_{1}}{\beta_{1}} \cdots\binom{\alpha_{n}}{\beta_{n}} \rho^{\left(s_{j}-1, \beta\right)} \\
& \leqslant\left\|U_{\rho}\right\|_{F_{d}} e^{\rho \delta_{0}\left|x_{1}\right|} \mid \rho^{|\gamma|}\left(1+\rho^{s_{2}-1}+\cdots+\rho^{s_{n}-1}\right)^{|\gamma|} \\
& \leqslant\left\|U_{\rho}\right\|_{F_{d}} e^{\rho \delta_{0}\left|x_{1}\right|} \rho^{s_{n}|\gamma|} .
\end{aligned}
$$

Similarly, we see that for $\rho \geqslant 1 / d^{2}$ and $x \in \Omega_{d}\left(d \leqslant d_{0}\right)$,

$$
\begin{aligned}
& \left|D_{x}^{\gamma} P u(x)\right| \leqslant C e^{-\rho d^{2}} e^{\rho \delta_{0}\left|x_{1}\right|} \rho^{s_{n}(|\gamma|+M)}, \\
& \left|D_{x}^{\gamma}\left(u-u^{0}\right)(x)\right| \leqslant C d e^{\rho \delta_{0}\left|x_{1}\right|} \rho^{s_{n}|\gamma|}, \text { for }|\gamma| \leqslant \rho d,
\end{aligned}
$$

where $u^{0}(x)=e^{i w_{\rho}(x)} e^{\delta \rho x_{1}}$.
Therefore, let $d=1 / 2 C$, then we have

$$
\left|D_{x_{n}}^{k} u\left(x_{0}\right)\right| \geqslant(1 / 2) \rho^{s_{n} k}, \quad \text { for } \quad k \leqslant d \rho .
$$

Moreover, let $\Omega=\Omega_{d} \cap\left\{\left|x_{1}\right|<d^{2} / 2 \delta_{0}\right\}$, we have

$$
\left\{\begin{array}{c}
\left|D_{x}^{\gamma} P u\right|_{\infty} \leqslant C e^{-\rho d^{2} / 2} \rho^{s_{n}(|\gamma|+M)}, \text { and } \\
|u|_{\infty} \leqslant C e^{\rho d^{2} / 2} .
\end{array}\right.
$$

Remarking that $s_{n}=s_{0}$, this proves theorem.
Q.E.D.

3. Appendix (Proof of lemma 1).

First, we recall the following well-known result;
For any open set $\omega^{\prime} \Subset \omega \subset R^{n}$, there are the functions $\chi_{k}(k \in N)$ of $C_{0}^{\infty}(\omega)$ which take values 1 on ω^{\prime} and satisfy the following inequalities;

$$
\begin{equation*}
{ }^{\forall} k \in N, \forall \alpha \in N^{n},|\alpha| \leqslant k,\left|D_{x}^{\alpha} \chi_{k}\right|_{\infty} \leqslant\left(r_{0} k / r\right)^{|\alpha|} . \tag{A-1}
\end{equation*}
$$

where $r=\operatorname{Inf}_{x \in \omega^{\prime}} \operatorname{dist}\left(x, \omega^{c}\right)$ and r_{0} is a constant depending only on n. Then we have
Lemma A-1. Let Ω be a neighborhood of $x_{0} \in R$ and B be a Banach space which is imbeded continuously into $L^{2}(\Omega)$. We suppose that there exists a nighborhood $\omega \Subset \Omega$ of x_{0} such that for any $u \in B,\left.u\right|_{\omega} \in \gamma^{(s)}(\omega)$. Then, for any neighborhood $\omega^{\prime} \mathbb{C} \omega$ of x_{0}, and χ_{k} satisfying ($\mathrm{A}-1$), there are the constants C and C^{\prime} such that for ${ }^{\forall} k \in N$ and ${ }^{\forall} u \in B$,

$$
\begin{aligned}
& |\xi|^{k} \widehat{\chi_{k} u \in L^{2}\left(R^{n}\right) \quad \text { and }} \\
& \left\||\xi|^{k} \widehat{\chi_{k}} u\right\|_{L^{2}\left(R^{n}\right)} \leqslant C\left(C^{\prime} k\right)^{s k} \cdot\|u\|_{B} .
\end{aligned}
$$

Proof. For a compact set $K \subset R^{n}$, we denote by $\gamma_{h}^{\{s\}}(K)$ the space of functions of class C^{∞} such that there is a constant C such that

$$
{ }^{\forall} \alpha \in N^{n}, \sup _{K}\left|D_{x}^{\alpha} u\right| \leqslant C h^{|\alpha|}(|\alpha|!)^{s} .
$$

Let $\gamma^{\{s\}}(K)=\underset{h \rightarrow \infty}{\operatorname{limind}} \gamma_{h}^{\{s\}}(K)$. Then, $\gamma^{\{s\}}(K)$ is a space of type $\mathscr{L} \mathscr{F}$ in the sense of A. Grothendieck. ([8])

So, by the closed graph theorem, the mapping $\left.u \mapsto u\right|_{\bar{\omega}}$ is continuous from B to $\gamma^{\{s)}(\bar{\omega})$ and a Banach space B is in some $\gamma_{h}^{\{s)}(\bar{\omega})$;

$$
\|u\|_{s, h, \omega^{\prime}}=\sup _{\alpha}\left\|D_{x}^{\alpha} u\right\|_{0, \omega^{\prime}}| | \alpha \mid!^{s} h^{|\alpha|} \leqslant C\|u\|_{B} .
$$

Let χ_{k} be the functions satisfying (A-1). Then

$$
\begin{aligned}
\left\|D_{x}^{\alpha} \chi_{k} u\right\|_{L^{2}\left(R^{n}\right)} & \leqslant \sum_{\beta<\alpha}\binom{\alpha}{\beta}\left(r_{0} k / r\right)^{|\beta|}|\alpha-\beta|!^{s} h^{|\alpha-\beta|}\|u\|_{s, h, \omega^{\prime}} \\
& \leqslant C\left(h+\left(r_{0} / r\right)\right)^{|\alpha|} k^{s|\alpha|}\|u\|_{B} \quad \text { for } \quad|\alpha| \leqslant k .
\end{aligned}
$$

So, we have

$$
\left\||\xi|^{k} \widehat{\chi}_{k} u\right\|_{L^{2}\left(R_{n}\right)} \leqslant n^{k / 2} C\left(h+\left(r_{0} / r\right)\right)^{k} k^{s k}\|u\|_{B}
$$

Let $G_{s}=\left\{u \in L^{2}\left(R^{n}\right) ; e^{|\xi|^{1 / s}} \hat{u} \in L^{2}\left(R^{n}\right)\right\}$. Then, we obtain
Lemma A-2. Let k be an integer $\geqslant 1$. Then, for any $u \in H^{k}\left(R^{n}\right)$, we can write u in the following form;
$u=\sum u_{j}, u_{j}$ being in G_{1} and satisfying: ${ }_{s} \geqslant 1$,

$$
\begin{aligned}
\Phi_{k, s, R^{n}, G_{s}}^{2}\left(\left\{u_{j}\right\}\right) & =\sum_{j} N_{j}^{2 s k}\left(\left\|u_{j}\right\|_{0, R^{n}}^{2}+e^{-2 N_{j}}\left\|u_{j}\right\|_{G_{s}}^{2}\right) \\
& \leqslant 2(2 C)^{s k}\|u\|_{k, R^{n}, s}^{2},
\end{aligned}
$$

where $N_{j}=k 2^{j}(j=0,1, \ldots)$ and C is a constant depending only on n.
Proof. Let $N_{-1}=0$ and set

$$
u_{j}(x)=(2 \pi)^{-2 n} \int_{N_{j-1}<|\xi|^{1 / s<N_{j}}} e^{i x, \xi} \hat{u}(\xi) d \xi
$$

Then, Remarking that for $|\xi|^{1 / s} \geqslant N_{j-1}, \quad N_{j} \leqslant 2^{s}\left(|\xi|+k^{s}\right)^{2 k}$, we have the desired inequality.
Q.E.D.

Let B be in Lemma A-1; especially, there is a neighborhood ω of x_{0} such that for $u \in B,\left.u\right|_{\bar{\omega}} \in \gamma^{(s)}(\bar{\omega})$. Then, for $\omega^{\prime} \Subset \omega$, we have

Lemma A-3. There is a constant C such that if $u_{j} \in B$ satisfy $\Phi_{k, s, \Omega, B}\left(\left\{u_{j}\right\}\right)<$ $+\infty$, then $u=\sum u_{j}$ converges in $L^{2}(\Omega)$, and

$$
\left.u\right|_{\omega^{\prime}} \in H^{k}\left(\omega^{\prime}\right) \quad \text { with } \quad\|u\|_{\boldsymbol{H}^{k}\left(\omega^{\prime}\right)} \leqslant C^{k+1} \Phi_{k, s, \Omega, B}\left(\left\{u_{j}\right\}\right) . \quad\left({ }^{\forall} k \in N\right)
$$

Proof. By Lemma A-1,

$$
\begin{equation*}
\left\|\left(|\xi| / C^{\prime} N^{s}\right)^{N} \widehat{\chi_{N}} u\right\|_{L^{2}\left(R_{n}\right)} \leqslant C\|u\|_{B} . \tag{A-2}
\end{equation*}
$$

By the hypothesis, $\sum u_{j}$ converges to $u \in L^{2}(\Omega)$. Let $v=\sum \chi_{N_{j}} u_{j}$. Then,

$$
\left.v\right|_{\omega^{\prime}}=u .
$$

So, it is sufficient to show

$$
\|v\|_{\boldsymbol{H}^{k}\left(\mathbb{R}^{n}\right)} \leqslant C^{k+1} \Phi_{k, s, \Omega, B}\left(\left\{u_{j}\right\}\right) .
$$

Let $\Theta(j, \xi, s)=e^{-N_{j}}\left(|\xi| / C^{\prime} N_{j}^{s}\right)^{N_{j}}$ and $g_{j}(\xi)=(1+\Theta(j, \xi, s)) \widehat{\chi_{N_{j}} u_{j}}(\xi)$. Then,

$$
\begin{aligned}
& |\xi|^{k} v(\xi)=\sum(1+\Theta(j, \xi, s))^{-1} g_{j}(\xi)|\xi|^{k}, \text { and } \\
& |\xi|^{2 k}|v(\xi)|^{2} \leqslant\left(\sum\left|g_{j}(\xi)\right|^{2} N_{j}^{2 s}\right) \Theta(\xi),
\end{aligned}
$$

where $\Theta(\xi)=\Sigma\left(|\xi| / N_{j}^{s}\right)^{2 k}(1+\Theta(j, \xi, s))^{-2}$. By (A-2), we have

$$
\sum\left\|g_{j}(\xi)\right\|_{L^{2}\left(R^{n}\right)}^{2} N_{j}^{2 s} k \leqslant\left(1+C^{2}\right) \Phi_{k, s, \Omega, B}^{2}
$$

Considering two cases: $C^{\prime} e^{2} N_{j}^{s} \leqslant|\xi|$ and $C^{\prime} e^{2} N_{j}^{s}>|\xi|$, we have

$$
|\Theta(\xi)|_{L^{\infty}\left(R^{n}\right)} \leqslant C^{k+1} \quad \text { with } \quad C=\max \left(e /\left(e^{2}-1\right), 2,\left(C^{\prime} e^{2}\right)^{2}\right) . \quad \text { Q. E.D. }
$$

Proof of lemma1. By hypothesis, there is a neighborhood Ω of x_{0} such that P has a right inverse R which is continuous from $L^{2}(\Omega)$ to $L^{2}(\Omega)$ and for $\omega \Subset \Omega$, $u \in \gamma^{\{s)}(\omega) \Rightarrow R u \in \gamma^{\{s\}}(\omega)$. Let $\omega^{\prime} \Subset \omega \Subset \Omega$ and χ_{k} satisfy (A-1G). Also, let

$$
\begin{gathered}
G^{\prime}=\left\{u \in L^{2}(\Omega) ;{ }^{\exists} v \in G_{s} \text { such that }\left.v\right|_{\Omega}=u\right\} \\
\|u\|_{G^{\prime}}=\inf _{v \in V}\|v\|_{G_{s}}, V=\left\{v \in G_{s} ;\left.v\right|_{\Omega}=u\right\}
\end{gathered}
$$

Finally, let $B=R\left(G^{\prime}\right)$ with norm $\|u\|_{B}=\left\|R^{-1} u\right\|_{G^{\prime}}$. Then, by hypothesis, the Banach space B satisfies the assumption of lemma A-1. Let

$$
u \in \mathscr{D}^{\prime}(\omega) \text { such that } P u \in H^{k}(\omega)
$$

Put $f=\chi_{k} P u$. Then we have
$\left\|\|f\|_{k, R^{n}, s} \leqslant L^{k}\right\| P u \|_{k, \omega, s} \quad$ with a constant L independent of k.
By lemma A-2,

$$
f=\sum f_{j} \text { with } f_{j} \in G_{1} \text { and }
$$

$$
\sum N_{j}^{2 s k}\left(\left\|f_{j}\right\|_{L^{2}\left(R^{n}\right)}^{2}+e^{-2 N_{j}}\left\|f_{j}\right\|_{G_{s}}^{2}\right) \leqslant 2(2 C)^{k}\|f\|_{k, R^{n}, s}^{2} .
$$

Put $v_{j}=R\left(\left.f_{j}\right|_{\Omega}\right)$. Then, we have

$$
\sum N_{j}^{2 s k}\left(\left\|v_{j}\right\|_{0, \Omega}^{2}+e^{-2 N_{j}}\left\|v_{j}\right\|_{G_{s}}^{2}\right) \leqslant \tilde{C}\|f\|_{k, R^{n}, s}
$$

Therefore, by lemma A-3, Σv_{j} converges to $v \in L^{2}(\Omega)$ and

$$
\begin{equation*}
\left\|\left.v\right|_{\omega^{\prime}}\right\|_{H^{k}\left(\omega^{\prime}\right)} \leqslant C^{k+1}\|f\|_{k, R^{n}, s} \quad\left({ }^{\forall} k \in N\right) \tag{A-3}
\end{equation*}
$$

Since $\left.(u-v)\right|_{\omega^{\prime}}=0$, we have $\left.P(u-v)\right|_{\omega^{\prime}}=0$. Let $\mathscr{N}=\left\{u \in \mathscr{D}\left(^{\prime} \omega^{\prime}\right) ; P u=0\right\}$ with the topology induced by $L_{\text {loc }}^{2}\left(\omega^{\prime}\right)$. Then, \mathscr{N} is a Frechet space. So, by Baire's theorem, for $\omega^{\prime \prime} \Subset \omega^{\prime}$, we have for some constant C_{0}
(A-4) $\left\|\left.(u-v)\right|_{\omega^{\prime \prime}}\right\|_{H^{k}\left(\omega^{\prime \prime}\right)} \leqslant(k!)^{s} C_{0}^{k+1}\left\|\left.(u-v)\right|_{\omega^{\prime}}\right\|_{L^{2}\left(\omega^{\prime}\right)}$

$$
\leqslant(k!)^{s} C_{0}^{k+1}\left(\|u\|_{0, \omega^{\prime}}+\|R\| \cdot\|P u\|_{0, \omega^{\prime}}\right) . \quad\left({ }^{\forall} k \in N\right)
$$

By (A-3) and (A-4), we have the inequality (5).
Q.E.D.

Department of Mathematics Kyoto University

References

[1] P. Bolley and J. Camus, Regularite Gevrey et iteres pour une classe d'opérateurs hypoelliptique, Comm. Part. Diff. Eq., 6 (1981), 1057-1110.
[2] S. Hashimoto, T. Matsuzawa, and Y. Morimoto, Opérateurs pseudo-différentielles et classe Gevrey, Comm. Part. Diff. Eq., 8 (1983), 1277-1289.
[3] L. Hörmander, Linear partial differential operators, Springer (1963).
[4] G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J., 29 (1980), 823-860.
[5] S. Mizohata, Theory of partial differential equations, Cambridge (1973).
[6] O. A. Oleinik and E. V. Radkevič, On conditions for the existence of non-analytic solutions of linear partial differential equations of arbitrary order, Trans. Moscow Math. Soc., 31 (1974), 13-25.
[7] L. R. Volevič, Pseudo-differential operators with holomorphic symbols and Gevrey classes, Trans. Moscow Math. Soc., 24 (1971), 45-68.
[8] A. Grothendieck, Espaces vectoriels topologiques, Publicacao da Sociedade de Matematica de Sao Paulo.

