On the lowest index for semi-elliptic operators to be Gevrey hypoelliptic

Dedicated to Professor SIGERU MIZOHATA on his sixtieth birthday

By

Takashi Окал

(Received August 23, 1984)

1. Introduction

Let $m = (m_1, ..., m_n)$, $(m_i \in N \setminus 0)$, and for multi-index $\alpha \in N^n$

 $|\alpha: m| = \alpha_1/m_1 + \cdots + \alpha_n/m_n$.

We consider the partial differential operator P given by

(1)
$$P(x, D_x) = \sum_{|\alpha| \le m \le 1} a_{\alpha}(x) D_x^{\alpha}$$

where $a_{\alpha}(x)$ is analytic in an open set $\Omega \subset \mathbb{R}^n$. We assume that

(2)
$$P_0(x, \xi) = \sum_{|\alpha:m|=1} a_{\alpha}(x)\xi^{\alpha} \neq 0 \quad \text{for any} \quad \xi \in \mathbb{R}^n \setminus 0.$$

Then we call this operator a semi-elliptic operator. We are concerned with Gevrey hypoellipticity for semi-elliptic operators.

We note $\gamma^{\{s\}}(\omega)$ the space of functions u of class C^{∞} such that for every compact set K of ω , there are constants C and h such that

$$\sup_{\kappa} |D_x^{\alpha} u(x)| \leq C h^{|\alpha|} (|\alpha|!)^s \quad \text{for any} \quad \alpha \in N^n.$$

We shall say that P is $\gamma^{\{s\}}$ -hypoelliptic in a neighborhood of x_0 iff there exists a neighborhood ω of x_0 such that for any open subset $\omega' \subset \omega$, the following implication holds;

$$u \in \mathscr{D}'(\omega), Pu \in \gamma^{\{s\}}(\omega') \Longrightarrow u \in \gamma^{\{s\}}(\omega').$$

Let $P(x, \xi)$ be the symbol of $P(x, D_x)$. Then, there are some constants C_0, C_1 and B such that

$$(3) \quad |D_x^{\beta} D_{\xi}^{\alpha} P(x, \xi)| \leq C_0 C_1^{|\alpha+\beta|} \alpha! \beta! (1+|\xi|)^{-\rho|\alpha|} \quad \text{for} \quad x \in K \Subset \Omega, \ |\xi| \geq B > 0,$$

where $\rho = \min \{m_i/m_j\}$. Combining this estimate with (2), by [7], [1], [2], we know that our operator P is $\gamma^{(s)}$ -hypoelliptic in a neighborhood of every point in

 $\Omega \text{ if } s \ge s_0 = \max\{m_i/m_j\}.$

Our purpose is to show that s_0 is the smallest index for P to be $\gamma^{\{s\}}$ -hypoelliptic in a neighborhood of points in Ω . Namely, let x_0 be any point of Ω . Then we have

Theorem. Under the condition (2), for $1 \le s \le s_0$, P is not $\gamma^{\{s\}}$ -hypoelliptic in a neighborhood of x_0 .

Remark. For the operator with constant coefficients, more general results have been obtained by L. Hörmander. ([3]). For s=1, our result follows from the result of O. A. Oleinik and E. V. Radkevič ([6]). When for any j, m_j is either 1 or 2, our result has been shown implicitly by G. Metivier ([4]).

In the next section, we shall give the proof of theorem. We shall do this by contradiction. Namely, we shall construct the asymptotic soluton which violate a priori estimate. This is inspired by [4].

2. Proof of theorem

Lemma 1. Suppose that there are a neighborhood $\tilde{\omega}$ of x_0 and constants $\varepsilon > 0$, C > 0 such that for any $\phi \in C_0^{\infty}(\tilde{\omega})$,

(4)
$$\|\phi\|_{H^{\varepsilon}(\tilde{\omega})} \leq C(\|P^*\phi\|_{L^2(\tilde{\omega})} + \|\phi\|_{L^2(\tilde{\omega})}), \text{ and }$$

P is $\gamma^{(s)}$ -hypoelliptic in a neighborhood of x_0 . Then, there is a neighborhood ω_0 of x_0 such that the following fact holds; for any neighborhood $\omega' \in \omega \in \omega_0$, there are constants L and C' such that the following inequality holds; for any $k \in N$ and $u \in \mathscr{D}'(\omega)$,

(5)
$$\|u\|_{k,\omega'} \leqslant C' L^k (\||Pu\||_{k,\omega,s} + (k!)^s \|u\|_{0,\omega}).$$

Here, $||v||_{k,\omega,s} = \sum_{|\alpha| \le k} k^{s(k-|\alpha|)} ||D_x^{\alpha} u||_{L^2(\omega)}, \text{ and } ||v||_{k,\omega}^2 = \sum_{|\alpha| \le k} ||D_x^{\alpha} u||_{L^2(\omega)}^2.$

This result was obtained by G. Metivier. (Remark 3.2 in [4]) But there is a little change in the definition of the norm $||| \cdot |||$, in comparison with his original form; i.e., we introduce 's' in it. So, we shall give the proof of this lemma in the appendix.

Without loss of generality, we may assume that

$$m_1 \ge m_2 \ge \cdots \ge m_n$$
 and $a_{(m_1,0,\dots,0)}(x) \equiv 1$.

It is classical for P to satisfy the inequality (4). So, in view of lemma 1, in order to prove theorem, it is sufficient to construct the function u_{ρ} such that the following conditions hold; there are the constants C, L, ε , ε' , k_0 and σ independent of ρ such that

$$\begin{cases} \|D_x^{\alpha}Pu_{\rho}\|_{L^{2}(\omega)} \leqslant C(\rho L)^{s_{0}|\alpha|}e^{-\varepsilon\rho} \quad \text{for} \quad \forall |\alpha| \leqslant \sigma\rho, \\ \|u_{\rho}\|_{k,\omega'} \geqslant C^{-1}|D_{x_{n}}^{k-k_{0}}u_{\rho}(x_{0})| \geqslant C^{-2}\rho^{s_{0}(k-k_{0})} \quad \text{for} \quad \forall k \leqslant \sigma\rho, \text{ and} \\ \|u_{\rho}\|_{L^{2}(\omega)} \leqslant Ce^{\varepsilon'\rho}. \end{cases}$$

694

In fact, let $k = [\sigma'\rho]$ (σ' is sufficiently small), then for $s < s' < s_0$, (5) is not hold.

Let $s_j = m_1/m_j$ and $\dot{M} = m_1$. We shall seek u_ρ in the following form;

$$u_{\rho}(x) = e^{iw_{\rho}(x)}U(x, \rho x_1),$$

where, $w_{\rho}(x) = \rho^{s_n} \cdot x_n + \dots + \rho^{s_2} \cdot x_2$. Let x = z, $\rho x_1 = t$. We shall work in the set $\{(z, t) \in \tilde{\omega}_d \times R\}$. Here,

$$\tilde{\omega}_d = \{z \in C^n; \operatorname{dist}(z, \omega) < d\}.$$

Then, we have

$$Pu_{\rho} = \rho^{M} e^{iw_{\rho}}(\mathscr{P}_{\rho}U)(z, t),$$

where $\mathcal{P}_{\rho} = \mathcal{P}_0 + \mathcal{P}'$,

$$\mathcal{P}_0 = \sum_{|\alpha:m|=1} a_{\alpha}(x_0) D_i^{\alpha_1}, \text{ and}$$
$$\mathcal{P}' = \sum_{j=1}^{M+1} \rho^{-(j-1)} \mathcal{P}_j.$$

Here, $\mathcal{P}_j = \mathcal{P}_j(z, \rho, D_z, D_t)$ is the partial differential operator of order j-1 whose coefficients are analytic functions in z and polynomial in ρ^{-1} ; especially,

$$\mathcal{P}_1 = \sum_{|\alpha:m|=1} (a_{\alpha}(x) - a_{\alpha}(x_0)) D_t^{\alpha_1}, \text{ and}$$
$$\mathcal{P}_j = \sum_{|\alpha+\beta| < j-1} b_{\alpha,\beta}(z,\rho) D_z^{\alpha} D_t^{\beta},$$

where $b_{\alpha,\beta}(z, \rho)$ is holomorphic and bounded in $\tilde{\omega}_d \times \{\rho > 1\}$.

Let $Q(\tau) = \sum_{\substack{|\alpha:m|=1 \\ \alpha_i \in M}} a_{\alpha}(x_0) \cdot \tau^{\alpha_1}$. Then by the assumption (2), $Q(\tau) = 0$ has the nonreal root $\delta_1, \dots, \delta_M \in C$. We take a positive number δ_0 such that $\delta_0 > \max \cdot (|\operatorname{Im} \delta_i|)$. We introduce some function spaces;

$$W_r = \{u; e^{-\delta_0 | t|} D_t^j u \in L^2(R), j = 0, 1, ..., r\}. \text{ and}$$
$$V_r = \{u \in W_r; \sup_{j>0} L_0^{-j} || D_t^j u ||_{W_r} < +\infty\}. L_0 = \max_j \{2Ma_j, 1\}.$$

Then we have

Lemma 2. \mathcal{P}_0 is surjective from W_M to W_0 and has a right inverse which is continuous from W_0 to W_M , and from V_0 to V_M .

Proof. We may write

$$\mathscr{P}_0 = D_t^M + \sum_{j=1}^M a_j D_t^{M-j}, \quad (a_j \in C).$$

Let $v_0 = v$, $v_1 = D_t v$,..., $v_{M-1} = D_t^{M-1} v$. Then, the equation $\mathcal{P}_0 v = f$ is transformed into

$$D_t V = AV + F$$
,

where $V = {}^{t}(v_0, ..., v_{M-1}), F = {}^{t}(0, ..., 0, f)$, and

$$A = \begin{bmatrix} 0 & 1 & & \\ & 0 & 1 & 0 \\ & 0 & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & 0 & 1 \\ & -a_M \cdots \cdots & -a_1 \end{bmatrix}$$

By Petrowsky's lemma (ex. see [5]), there is a non-singular constant matrix C such that

$$CA = DC$$
,

where

$$D = \begin{bmatrix} d_{11} & 0 \\ & \ddots & \\ & * & d_{MM} \end{bmatrix}, \ \{d_{ii}\} = \{\delta_i\},$$

$$|\det C| = 1 \ (|c_{ij}| \le 1), \text{ and}$$

$$|d_{ij}| \le (M-1)! 2^M \max\{1, |a_j|\}.$$

Let CV = W. Then, W satisfies

$$D_t W = DW + CF$$
.

Namely, denoting $W = {}^{t}(w_1, ..., w_M)$, we have

$$w_j(t) = i \int_0^t e^{i \,\delta_j(t-s)} g_j(s) ds.$$

Here, $g_j(t) = \sum_k d_{jk} w_k + c_{jM} f$. Let $\tilde{w}_j(t) = w_j(t) e^{-\delta_0 |t|}$, and $\tilde{g}_j(t) = e^{-\delta_0 |t|} g_j(t)$. Then,

$$\tilde{w}_{j}(t) = i \int_{0}^{t} e^{(i\delta_{j} - \delta_{-})(t-s)} e^{-(\delta_{0} - \delta_{-})(t-s)} \tilde{g}_{j}(s) ds \text{ if } t > 0, \text{ and}$$

$$\tilde{w}_{j}(t) = i \int_{0}^{t} e^{-(\delta_{+} - i\delta_{j})(t-s)} e^{-(\delta_{0} - \delta_{+})|t-s|} \tilde{g}_{j}(s) ds \text{ if } t < 0,$$

where $\delta_{-} = \min_{j} \{ \operatorname{Re}(i\delta_{j}) \}$ and $\delta_{+} = \max_{j} \{ \operatorname{Re}(i\delta_{j}) \}$. So we have

$$||w_j(t)||_{L^2(R)} \leq C_0 ||g_j(t)||_{L^2(R)}.$$

Returning to v, we have

$$\|e^{-\delta_0|t|}D_t^j v(t)\|_{L^2(R)} \leq C_1 \|e^{-\delta_0|t|} f(t)\|_{L^2(R)}, \quad j = 0, 1, \dots, M$$

Here, C_1 is a constant depending only on $\{a_j\}$. Since $D_t^{j+1}V = \sum_{0 \le l \le j} A^l D_t^{j-l} F$, we obtain

$$\|e^{-\delta_0|t|}D_t^{j+1}V\|_{L^2(R)} \leq C \sum_{l=0}^j (L_0/2)^l \|e^{-\delta_0|t|}D_t^{j-l}F\|_{L^2(R)}.$$

From this, we conclude that

696

 $||v||_{V_M} \leq C ||f||_{V_0}$. (C is a constant depending only on a_j). Q. E. D.

Let $E_d(\omega, V_r)$ be the space of functions analytic in z with values in V_r which can be prolonged as bounded holomorphic functions on $\tilde{\omega}_d$. Let $||u||_{E_d(\omega, V_r)} = \max_{z \in \omega_d} ||u(z)||_{V_r}$. Since $\partial/\partial z_j$ is a bounded operator from E_d to $E_{d'}(d > d')$ with norm less than 1/(d-d'), taking the form of \mathcal{P}_i into considerations, we have

Lemma 3. There are a neighborhood ω of x_0 , a positive constant d_0 and the constants C_j (j=1,...,M+1) such that for $0 < d' < d \le d_0$, and $u \in E_d(\omega, V_M)$, the following inequalities hold;

$$\|\mathscr{P}_{1}u\|_{E_{d}(\omega,V_{0})} \leq C_{1}(d+diam\,\omega)\|u\|_{E_{d}(\omega,V_{M})}$$

$$\|\mathscr{P}_{j}u\|_{E_{d}'(\omega,V_{0})} \leq \{C_{j}/(d-d')\}^{j-1}\|u\|_{E_{d}(\omega,V_{M})}, \quad j=2,...,M+1.$$

Now, we define $\{u_k\}$ as follows;

$$\mathcal{P}_0 u_k = -\mathcal{P}'_\rho u_{k-1}, k > 1, \text{ and } u_0 = e^{\delta t}, \quad (\delta \in \{i\delta_j\}_{j=1}^M)$$

Then, by lemma 3, we have

Lemma 4. There exists constant C such that for $0 < d' < d \le d_0$ and $\rho \ge 1$, $\|u_k\|_{E_{d'}(\omega, V_M)} \le \|u_0\|_{V_M} \{C(d + diam\omega + k/\rho(d - d') + \dots + (k/\rho(d - d'))^{M+1})\}^k$.

Summing up, we conclude that

Proposition. Let $U_{\rho} = \sum_{k < \rho d^2} u_k(z, t)$, and $\Omega_d = \{x \in \mathbb{R}^n; |x - x_0| < d\}$. Then there are the positive constants d_0 and C such that for $0 < d < d_0$ and $\rho \ge 1/d^2$,

$$\|\mathscr{P}_{\rho}U_{\rho}\|_{F_{d}} \leq Ce^{-\rho d^{2}}, \|U_{\rho}\|_{F_{d}} \leq C, \|U_{\rho}-U_{0}\|_{F_{d}} \leq Cd, \text{ and } U_{0} = e^{\delta t}.$$

Here, $||v||_{F_d} = \sup_{\Omega_d \times R, j, \gamma} \frac{d^{\gamma+j}}{|\gamma|!} e^{-\delta_0|t|} |D_t^j D_z^\gamma v(z, t)|.$

Proof. In lemma 4, let $\omega = \Omega_d$ and $k \leq \rho d^2$. Then, we have

$$\|u_k\|_{E_d(\Omega_d,V_M)} \leqslant \|u_0\|_{V_M}(Cd)^k.$$

Let d_0 sufficiently small such that $\delta_0 \leq d^{-1}$ if $d \leq d_0$. Then, it is easy to see that

$$\|u_k\|_{F_d} \leq C_1 \|u_k\|_{E_d(\Omega_d, V_M)}, \text{ and} \|\mathcal{P}_0 u_k\|_{F_d} \leq C_1 \|\mathcal{P}_0 u_k\|_{E_d(\Omega_d, V_0)} \leq C_1 C_2 \|u\|_{E_d(\Omega_d, V_M)}.$$

Also let d_0 small such that $Cd_0 \leq 1/e$. Then, using the above inequalities, we have

$$\begin{split} \| U_{\rho} \|_{F_{d}} &\leq \sum_{k < \rho d^{2}} \| u_{k} \|_{F_{d}} \leq 2C_{1} \| u_{0} \|_{V_{M}}, \\ \| U_{\rho} - U_{0} \|_{F_{d}} &\leq 2C_{1} \| U_{0} \|_{V_{M}} (Cd), \text{ and } \\ \| \mathscr{P}_{\rho} U_{\rho} \|_{F_{d}} &= \| \mathscr{P}_{\rho}' u_{k_{0}} \|_{F_{d}} = \| \mathscr{P}_{0} u_{k_{0}+1} \|_{F_{d}} \\ &\leq C_{1} C_{2} \| U \|_{V_{M}} (Cd)^{k_{0}+1} \leq C_{1} C_{2} \| U_{0} \|_{V_{M}} e^{-\rho d^{2}}. \end{split}$$

Takashi Ōkaji

Here, we take $k_0 = [\rho d^2]$.

Let $U_{\rho}(z, t)$ be in the proposition, and

$$u(x) = e^{iw_{\rho}(x)}U_{\rho}(x, \rho x_1).$$

Then, we have

$$|D_x^{\gamma}u(x)| \leq \sum |\binom{j}{h}\binom{\alpha_1}{\beta_1}\cdots\binom{\alpha_n}{\beta_n}\rho^{j-h-(s_j,\beta)}D_t^h D_{x_1}^{j-h} D_z^{\alpha-\beta}U_\rho|,$$

where $z' = (z_2, ..., z_n)$. Since for $|\gamma| \leq d\rho$

$$\begin{aligned} (|\gamma| - |\beta| - h)! d^{-(|\gamma| - |\beta| - h)} &\leq \rho^{|\gamma| - |\beta| - h}, \\ |D_t^h D_{x_1}^{j - h} \ D_x^{\alpha - \beta} \ U_\rho| &\leq \|U_\rho\|_{F_d} e^{\delta_0 |t|} (|\gamma| - |\beta| - h)! d^{-(|\gamma| - |\beta| - h)} \\ &\leq \|U\|_{F_d} e^{\delta_0 |t|} \rho^{|\gamma| - |\beta| - h}. \end{aligned}$$

From these two inequalities, we conclude that

$$\begin{split} |D_x^{\gamma}u(x)| &\leq \|U_{\rho}\|_{F_d} e^{\delta_0|t|} \rho^{|\gamma|} \sum {j \choose h} {\alpha_1 \choose \beta_1} \cdots {\alpha_n \choose \beta_n} \rho^{(s_j-1,\beta)} \\ &\leq \|U_{\rho}\|_{F_d} e^{\rho\delta_0|x_1|} \rho^{|\gamma|} (1+\rho^{s_2-1}+\cdots+\rho^{s_n-1})^{|\gamma|} \\ &\leq \|U_{\rho}\|_{F_d} e^{\rho\delta_0|x_1|} \rho^{s_n|\gamma|}. \end{split}$$

Similarly, we see that for $\rho \ge 1/d^2$ and $x \in \Omega_d$ $(d \le d_0)$,

$$|D_x^{\gamma} P u(x)| \leq C e^{-\rho d^2} e^{\rho \delta_0 |x_1|} \rho^{s_n(|\gamma|+M)},$$

$$|D_x^{\gamma} (u-u^0)(x)| \leq C d e^{\rho \delta_0 |x_1|} \rho^{s_n(|\gamma|)}, \quad \text{for} \quad |\gamma| \leq \rho d,$$

where $u^{0}(x) = e^{iw_{\rho}(x)}e^{\delta\rho x_{1}}$.

Therefore, let d = 1/2C, then we have

$$|D_{x_n}^k u(x_0)| \ge (1/2)\rho^{s_n k}, \quad \text{for} \quad k \le d\rho.$$

Moreover, let $\Omega = \Omega_d \cap \{|x_1| < d^2/2\delta_0\}$, we have

$$\begin{cases} |D_x^{\gamma} P u|_{\infty} \leq C e^{-\rho d^2/2} \rho^{s_n(|\gamma|+M)}, \text{ and} \\ |u|_{\infty} \leq C e^{\rho d^2/2}. \end{cases}$$

Remarking that $s_n = s_0$, this proves theorem.

3. Appendix (Proof of lemma 1).

First, we recall the following well-known result;

For any open set $\omega' \in \omega \subset \mathbb{R}^n$, there are the functions χ_k $(k \in \mathbb{N})$ of $C_0^{\infty}(\omega)$ which take values 1 on ω' and satisfy the following inequalities;

(A-1)
$$\forall k \in N, \ \forall \alpha \in N^n, \ |\alpha| \leq k, \ |D_x^{\alpha} \chi_k|_{\infty} \leq (r_0 k/r)^{|\alpha|}.$$

698

Q. E. D.

Q. E. D.

where $r = \inf_{x \in \omega'} \operatorname{dist}(x, \omega^c)$ and r_0 is a constant depending only on *n*. Then we have

Lemma A-1. Let Ω be a neighborhood of $x_0 \in \mathbb{R}$ and B be a Banach space which is imbeded continuously into $L^2(\Omega)$. We suppose that there exists a nighborhood $\omega \in \Omega$ of x_0 such that for any $u \in B$, $u|_{\omega} \in \gamma^{\{s\}}(\omega)$. Then, for any neighborhood $\omega' \in \omega$ of x_0 , and χ_k satisfying (A-1), there are the constants C and C'such that for $\forall k \in N$ and $\forall u \in B$,

$$\begin{aligned} |\xi|^k \widehat{\chi_k u} &\in L^2(\mathbb{R}^n) \quad and \\ \||\xi|^k \widehat{\chi_k u}\|_{L^2(\mathbb{R}^n)} &\leq C(C'k)^{sk} \cdot \|u\|_B. \end{aligned}$$

Proof. For a compact set $K \subset \mathbb{R}^n$, we denote by $\gamma_h^{\{s\}}(K)$ the space of functions of class C^{∞} such that there is a constant C such that

$$\forall \alpha \in N^n, \sup_{\kappa} |D_x^{\alpha}u| \leq Ch^{|\alpha|}(|\alpha|!)^s.$$

Let $\gamma^{(s)}(K) = \liminf_{h \to \infty} \gamma_h^{(s)}(K)$. Then, $\gamma^{(s)}(K)$ is a space of type \mathscr{LF} in the

sense of A. Grothendieck. ([8])

So, by the closed graph theorem, the mapping $u \mapsto u|_{\overline{\omega}}$ is continuous from B to $\gamma^{(s)}(\overline{\omega})$ and a Banach space B is in some $\gamma_h^{(s)}(\overline{\omega})$;

$$||u||_{s,h,\omega'} = \sup ||D_x^{\alpha}u||_{0,\omega'}/|\alpha|!^{s}h^{|\alpha|} \leq C ||u||_{B}.$$

Let χ_k be the functions satisfying (A-1). Then

$$\|D_x^{\alpha}\chi_k u\|_{L^2(\mathbb{R}^n)} \leq \sum_{\beta < \alpha} {\alpha \choose \beta} (r_0 k/r)^{|\beta|} |\alpha - \beta| !^{s} h^{|\alpha - \beta|} \|u\|_{s,h,\omega}$$
$$\leq C(h + (r_0/r))^{|\alpha|} k^{s|\alpha|} \|u\|_{B} \quad \text{for} \quad |\alpha| \leq k.$$

So, we have

$$\| |\xi|^k \widehat{\chi_k u} \|_{L^2(R_n)} \leq n^{k/2} C (h + (r_0/r))^k k^{sk} \| u \|_B. \qquad Q. E. D.$$

Let $G_s = \{u \in L^2(\mathbb{R}^n); e^{|\xi|^{1/s}} \hat{u} \in L^2(\mathbb{R}^n)\}$. Then, we obtain

Lemma A-2. Let k be an integer ≥ 1 . Then, for any $u \in H^k(\mathbb{R}^n)$, we can write u in the following form;

 $u = \sum u_j$, u_j being in G_1 and satisfying: $\forall s \ge 1$,

$$\Phi_{k,s,R^n,G_s}^2(\{u_j\}) = \sum_j N_j^{2sk} \left(\|u_j\|_{0,R^n}^2 + e^{-2N_j} \|u_j\|_{G_s}^2 \right)$$

$$\leq 2(2C)^{sk} \|\|u\|_{k,R^n,s}^2,$$

where $N_j = k2^j$ (j=0, 1,...) and C is a constant depending only on n.

Proof. Let $N_{-1} = 0$ and set

$$u_{j}(x) = (2\pi)^{-2n} \int_{N_{j-1} < |\xi|^{1/s} < N_{j}} e^{ix,\xi} \hat{u}(\xi) d\xi.$$

Takashi Ōkaji

Then, Remarking that for $|\xi|^{1/s} \ge N_{j-1}$, $N_j \le 2^s (|\xi| + k^s)^{2k}$, we have the desired inequality. Q. E. D.

Let B be in Lemma A-1; especially, there is a neighborhood ω of x_0 such that for $u \in B$, $u|_{\overline{\omega}} \in \gamma^{(s)}(\overline{\omega})$. Then, for $\omega' \in \omega$, we have

Lemma A-3. There is a constant C such that if $u_j \in B$ satisfy $\Phi_{k,s,\Omega,B}(\{u_j\}) < +\infty$, then $u = \sum u_j$ converges in $L^2(\Omega)$, and

 $u|_{\omega'} \in H^k(\omega') \quad with \quad \|u\|_{H^k(\omega')} \leq C^{k+1} \Phi_{k,s,\Omega,B}(\{u_j\}). \quad (\forall k \in N)$

Proof. By Lemma A-1,

(A-2)
$$\|(|\xi|/C'N^s)^N \chi_N^{\gamma} u\|_{L^2(R_n)} \leq C \|u\|_B.$$

By the hypothesis, $\sum u_j$ converges to $u \in L^2(\Omega)$. Let $v = \sum \chi_{N_j} u_j$. Then,

 $v|_{\omega'}=u.$

 $\|v\|_{v_{1}} \leq C^{k+1} \Phi_{v_{1}} \leq n(\{u_{1}\})$

So, it is sufficient to show

Let
$$\Theta(j, \xi, s) = e^{-N_j} (|\xi|/C'N_j^s)^{N_j}$$
 and $g_j(\xi) = (1 + \Theta(j, \xi, s)) \widehat{\chi_{N_j} u_j}(\xi)$. Then,
 $|\xi|^k v(\xi) = \sum (1 + \Theta(j, \xi, s))^{-1} g_j(\xi) |\xi|^k$, and
 $|\xi|^{2k} |v(\xi)|^2 \leq (\sum |g_j(\xi)|^2 N_j^{2s} k) \Theta(\xi)$,

where $\Theta(\xi) = \sum (|\xi|/N_{j}^{s})^{2k} (1 + \Theta(j, \xi, s))^{-2}$. By (A-2), we have

$$\sum \|g_j(\xi)\|_{L^2(\mathbb{R}^n)}^2 N_j^{2s\,k} \leq (1+C^2) \Phi_{k,s,\Omega,B}^2.$$

Considering two cases: $C'e^2N_i^s \leq |\xi|$ and $C'e^2N_i^s > |\xi|$, we have

$$|\Theta(\xi)|_{L^{\infty}(\mathbb{R}^n)} \leq C^{k+1}$$
 with $C = \max(e/(e^2 - 1), 2, (C'e^2)^2)$. Q.E.D.

Proof of lemma1. By hypothesis, there is a neighborhood Ω of x_0 such that *P* has a right inverse *R* which is continuous from $L^2(\Omega)$ to $L^2(\Omega)$ and for $\omega \in \Omega$, $u \in \gamma^{(s)}(\omega) \Rightarrow Ru \in \gamma^{(s)}(\omega)$. Let $\omega' \in \omega \in \Omega$ and χ_k satisfy (A-1G). Also, let $G' = \{u \in L^2(\Omega); \exists v \in G_s \text{ such that } v|_{\Omega} = u\},$

$$\|u\|_{G'} = \inf_{v \in V} \|v\|_{G_s}, V = \{v \in G_s; v|_{\Omega} = u\}.$$

Finally, let B = R(G') with norm $||u||_B = ||R^{-1}u||_{G'}$. Then, by hypothesis, the Banach space B satisfies the assumption of lemma A-1. Let

 $u \in \mathscr{D}'(\omega)$ such that $Pu \in H^k(\omega)$.

Put $f = \chi_k P u$. Then we have

 $||| f |||_{k, \mathbb{R}^n, s} \leq L^k ||| Pu |||_{k, \omega, s}$ with a constant L independent of k.

By lemma A-2,

$$f = \sum f_i$$
 with $f_i \in G_1$ and

700

$$\sum N_j^{2sk}(\|f_j\|_{L^2(\mathbb{R}^n)}^2 + e^{-2N_j}\|f_j\|_{G_s}^2) \leq 2(2C)^k \|\|f\|_{k,\mathbb{R}^n,s}^2.$$

Put $v_j = R(f_j|_{\Omega})$. Then, we have

$$\sum N_{j}^{2sk} \left(\|v_{j}\|_{0,\Omega}^{2} + e^{-2N_{j}} \|v_{j}\|_{G_{s}}^{2} \right) \leq \tilde{C} \|\|f\|_{k,R^{n},s}$$

Therefore, by lemma A-3, $\sum v_i$ converges to $v \in L^2(\Omega)$ and

(A-3)
$$||v|_{\omega'}||_{H^k(\omega')} \leq C^{k+1} |||f|||_{k,R^n,s}.$$
 $(\forall k \in N)$

Since $(u-v)|_{\omega'}=0$, we have $P(u-v)|_{\omega'}=0$. Let $\mathscr{N} = \{u \in \mathscr{D}(\omega'); Pu=0\}$ with the topology induced by $L^2_{loc}(\omega')$. Then, \mathscr{N} is a Frechet space. So, by Baire's theorem, for $\omega'' \in \omega'$, we have for some constant C_0

$$(A-4) \quad ||(u-v)|_{\omega''}||_{H^{k}(\omega'')} \leq (k!)^{s} C_{0}^{k+1} ||(u-v)|_{\omega'} ||_{L^{2}(\omega')}$$
$$\leq (k!)^{s} C_{0}^{k+1} (||u||_{0,\omega'} + ||R|| \cdot ||Pu||_{0,\omega'}). \quad (\forall k \in N)$$

By (A-3) and (A-4), we have the inequality (5).

Q. E. D.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] P. Bolley and J. Camus, Regularite Gevrey et iteres pour une classe d'opérateurs hypoelliptique, Comm. Part. Diff. Eq., 6 (1981), 1057-1110.
- S. Hashimoto, T. Matsuzawa, and Y. Morimoto, Opérateurs pseudo-différentielles et classe Gevrey, Comm. Part. Diff. Eq., 8 (1983), 1277–1289.
- [3] L. Hörmander, Linear partial differential operators, Springer (1963).
- [4] G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J., 29 (1980), 823-860.
- [5] S. Mizohata, Theory of partial differential equations, Cambridge (1973).
- [6] O. A. Oleinik and E. V. Radkevič, On conditions for the existence of non-analytic solutions of linear partial differential equations of arbitrary order, Trans. Moscow Math. Soc., 31 (1974), 13-25.
- [7] L. R. Volevič, Pseudo-differential operators with holomorphic symbols and Gevrey classes, Trans. Moscow Math. Soc., 24 (1971), 45–68.
- [8] A. Grothendieck, Espaces vectoriels topologiques, Publicacao da Sociedade de Matematica de Sao Paulo.