A simple extension of a von Neumann regular ring

By
Tomoharu Akiba

(Received, Aug. 22, 1984)

In this note all rings are commutative rings with units. Let R be a (von Neumann) regular ring (i.e. an absolutely flat ring in Bourbaki's sense) and let $R[\alpha]$ be a reduced simple extension of R. Let $R[x]$ be a polynomial ring of a variable x over R, I the kernel of the canonical homomorphism T of $R[x]$ onto $R[\alpha]$ such that $T(x)=\alpha$.

In this note, first we shall give some conditions on I for $R[\alpha]$ to be quasi-regular. (Following [3], we say that a ring is quasi-regular if its total quotient ring is regular.) And then we shall give some results relating to the dondition (F) in [1]. Throughout this paper, we use the above notation. In particular, I is a semi-prime ideal of $R[x]$ with $I \cap R=(0)$.

We begin with an easy lemma.
Lemma 1. Every maximal ideal of $R[x]$ is of height 1 and contains unique minimal prime ideal of the form $\mathfrak{m} R[x]$ where \mathfrak{m} is a maximal ideal of R.

The proof is easy and we omit it.
Corollary 2. Every localization of $R[\alpha]$ at a maximal ideal is an integral domain.

Proposition 3. $R[\alpha]$ is quasi-regular if and only if $R[\alpha]$ is a p.p. ring, that is, every principal ideal of $R[\alpha]$ is projective as an $R[\alpha]-m o d u l e$.

Proof. This follows from Corollary 2 and [2].
Remark 4. In the proof of Proposition 1 in [2], it is shown that if a ring R^{\prime} is a p.p. ring, then every idempotent in $Q\left(R^{\prime}\right)\left(=\right.$ total quotient ring of $\left.R^{\prime}\right)$ is contained in R^{\prime}.

For an $f(x) \in R[x]$, we denote by $c(f)$ the ideal of R generated by coefficients of $f(x)$. For an ideal J of $R[x]$ we denote by $C(J)$ the ideal of R generated by $\{c(f) \mid f(x)$ $\in J\}$.

Theorem 5. Assume that $C(I)=R$. Then $R[\alpha]$ is regular and is integral over
R. Therefore the pair $(R, R[\alpha])$ satisfies the condition (F) in [1], that is, for any ring $R^{\prime \prime}$ between R and $R[\alpha], R[\alpha]$ is $R^{\prime \prime}$-flat.

Proof. The regularity of $R[\alpha]$ is clear. Since $R[\alpha]$ is regular ,there is an idempotent e in $R[\alpha]$ such that $\alpha+e$ is not a zero-divisor, hence, a unit in $R[\alpha]$. Since $R[e]$ is regular and integral over R and since $R[\alpha]=R[e][\alpha+e]$, replacing R and α with $R[e]$ and $\alpha+e$, respectively, we may assume that α is a unit in $R[\alpha]$. Then it is well-known that α is integal over R (cf. [4]).

The latter part of the theorem follows from Proposition 3.1 in [1].
Theorem 6. If $C(I)$ is principal, then $R[\alpha]$ is quasi-regular.
Proof. Let $C(I)=e R$ with $e^{2}=e \in R$. By Theorem 5, we may assume $e \neq 1$. Then there is an $f(x) \in I$ such that $c(f)=e R$. It is clear that we can write $f(x)=e \bar{f}(x)$ with $c(f)=R$. Let \mathfrak{M} be a maximal ideal of $R[x]$ containing $C(I)$. Then it is sufficient to show that \mathfrak{M} contains non-zero-divisor modulo I (recall that we assume that $R[\alpha]$ is reduced). Since \mathfrak{M} is maximal, there is a $g(x)$ in \mathfrak{M} such $c(g)=R$. Then $h(x)=f(x) g(x)+e$ is contained in \mathfrak{M}. We need to prove that $h(x)$ is not a zero-divisor modulo I. Let $k(x)$ be a polynomial such that $h(x) k(x) \in I$. Then

$$
\bar{f}(x) g(x) k(x)+e k(x) \in I \cong C(I) R[x]=e R[x],
$$

whence $f(x) g(x) k(x) \in e R[x]$, that is, $c(f g k) \cong e R$. Since $c(\bar{f})=c(g)=R$, we have $c(k) \subseteq e R$. Hence we can write $k(x)=e \bar{k}(x)$ with $k(x) \in R[x]$. Then

$$
h(x) k(x)=e h(x) k(x)=f(x) g(x) k(x)+e^{2} k(x)
$$

is in I. Since $f(x) \in I, e^{2} k(x)=k(x)$ is also contained in I which implies that $h(x)$ is not a zero-divisor modulo I.

Corollary 7. If I is finitely generated then $R[\alpha]$ is quasi-regular.
If $R[\alpha]$ is quasi-regular, every idempotent in $Q(R[\alpha])$ is contained in $R[\alpha]$ as stated in Remark 4. In addition, if I is generated by linear polynomials, that is, polynomials of degree 1 , then we have the following result.

Proposition 8. Assume that $R[\alpha]$ is quasi-regular. If I is generated by linear polynomials, then every idempotent of $Q(R[\alpha])$ is contained in R.

To prove the proposition, we need the following lemma.
Lemma 9. Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ be a polynomial in $R[x]$ such that $f(\alpha)$ is integral over R. Then $a_{i} \in C(I)$ and $a_{i} \alpha^{r}$ is integral over R for every i with $0 \leq i \leq n-1$ and every integer $r \geq 0$.

Proof. Since $f(\alpha)$ is integral over R, there are an integer m and $b_{j} \in R$ such that

$$
\begin{aligned}
0 & =f(\alpha)^{m}+b_{1} f(\alpha)^{m-1}+\cdots+b_{m} \\
& =a_{0}^{m} \alpha^{m n}+(\text { lower terms of } \alpha),
\end{aligned}
$$

that is,

$$
a_{0}^{m} x^{m n}+(\text { lower terms of } x)
$$

is contained in I. Therefore $\mathrm{a}_{0}^{m} \in C(I)$ and, hence, $a_{0} \in C(I)$ and $a_{0} \alpha$ is integral over R. Let $a_{0}=e_{0} u_{0}$ with $e_{0}^{2}=e_{0}$ and u_{0} a unit in R. Then $a_{0} \alpha^{r}=u_{0}^{1-r}\left(a_{0} \alpha\right)^{r}$ and is integral over R. Since $f(\alpha)-a_{0} \alpha^{n}$ is also integral over R, by induction on i, we have that $a_{i} \in C(I)$ and $a_{i} \alpha^{r}$ is integral over R for every i with $0 \leq i \leq n-1$ and for every r.

Proof of Proposition 8. By Remark 4, it is sufficient to show that every idempotent in $R[\alpha]$ is contained in R. Let $\phi(\alpha)$ be an idempotent of $R[\alpha]$ with $\phi(x) \in$ $R[x]$. Since $\phi(\alpha)$ is integral over R, setting

$$
\phi(\alpha)=a_{0} \alpha^{n}+a_{1} \alpha^{n-1}+\cdots+a_{n}
$$

we have $a_{i} \in C(I)$ for every i with $0 \leq i \leq n-1$ by Lemma 9. Since I is generated by linear polynomials, there is a $b_{0} \in R$ such that $a_{0} x+b_{0} \in I$ and $b_{0} \in a_{0} R$. Then

$$
\phi(x)=\left(a_{0} x+b_{0}\right) x^{n-1}+\left(a_{1}-b_{0}\right) x^{n-1}+\cdots+a_{n} .
$$

Since $a_{1}-b_{0} \in C(I)$, applying the above process inductively, we see that there is an $e \in R$ such that $\phi(x)-e \in I$. Since $\phi^{2}(x)-\phi(x) \in I, e$ is an idempotent as is easily seen. Hence $\phi(\alpha)=e$ is contained in R.

Corollary 10. If I is a principal ideal generated by $a x+b$ with $a \neq 0$ and $b \in a R$, then $R[\alpha]$ is quasi-regular and the pair $(R, Q(R[\alpha]))$ satisfies the condition (F).

Proof. It is easy to see that I is semi-prime and $I \cap R=\{0\}$. Then by Theorem $6 R[\alpha]$ is quasi-regular. Since every idempotent in $Q(R[\alpha])$ is contained in R, the pair $(R, Q(R[\alpha]))$ satisfies (F) by Proposition 3.2 in [1].

It is natural to ask under what additional conditions on I (or on $C(I)$) $R[\alpha]$ is quasi-regular in case that $C(I)$ is not principal. Though we do not have any answer yet, the following proposition reduces the problem in case that I is generated by linear polynomials.

Proposition 11. Let $\bar{R} e$ the integral closure of R in $R[\alpha]$ and let $\bar{R}[x]=$ $R[x] \otimes_{R} \bar{R}$. We denote by \bar{I} the kernel of the canonical homomorphism \bar{T} of $\bar{R}[x]$ onto $\bar{R}[\alpha](=R[\alpha])$ such that $\bar{T}(x)=\alpha$. Then \bar{I} is generated by linear polynomials and $C(\bar{I})=C(I) \bar{R}$.

Proof. It is clear that \bar{I} is generated by linear polynomials of the form $\phi(\alpha) x-$ $\psi(\alpha)$ where $\phi(\alpha), \psi(\alpha) \in \bar{R}$ with $\phi(x), \psi(x) \in R[x]$ and $\phi^{2}(\alpha)=\phi(\alpha), \psi(\alpha) \in \phi(\alpha) \bar{R}$. Let $\phi(x)=\sum_{i=0}^{n} a_{i} x^{n-i}$ with $a_{i} \in R$ and $a_{0} \neq 0$. Then by Lemma $9, a_{i} \in C(I)$ and $a_{i} \alpha \in \bar{R}$ for every i with $0 \leq i \leq n-1$. Then $a_{i} x-a_{i} \alpha \in \bar{I}$ and

$$
\begin{aligned}
\phi(\alpha) x-\psi(\alpha)= & \sum_{i=0}^{n-1} e_{i} \alpha^{n-i}\left(a_{i} x-a_{i} \alpha\right) \\
& +a_{n} x+\sum_{i=0}^{n-1} a_{i} \alpha^{n+1-i}-\psi(\alpha)
\end{aligned}
$$

where e_{i} 's are idempotents in R such that $a_{i}=e_{i} u_{i}$ with u_{1} units in R. Since $a_{i} \alpha^{r}$ and, therefore, $e_{i} \alpha^{r}$ are contained in \bar{R} for every r by Lemma 9 , we see that $a_{n} x+\sum_{i=0}^{n-1} a_{i} \alpha^{n+1-i}-\psi(\alpha) \in \bar{I}$. Then it is easy to see that $a_{n} \in C(I)$. Therefore $\phi(\alpha)=$ $\sum_{i=0}^{n-1} a_{i} e_{i} \alpha^{n-i}+a_{n}$ is contained in $C(I) \bar{R}$ and we have $C(\bar{I}) \cong C(I) \bar{R}$. Since the converse inclusion is obvious, we see that $C(\bar{I})=C(I) \bar{R}$.

Examples 12. Let $\left\{k_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of infinitely many fields and let $R=\prod_{\lambda \in \Lambda} k_{\lambda}$. We denote by e_{λ} the idempotent of R such that λ-th component is 1 and the others are 0 .
(1) Let n be a natural number and let $f_{\lambda}(x)$ be a square-free polynomial of $k_{\lambda}[x]$ such that $0<\operatorname{deg} f_{\lambda}(x) \leq n$ for every $\lambda \in \Lambda$. Let I be the ideal of $R[x]$ generated by $\left\{f_{\lambda}(x)\right\}_{\lambda \in \Lambda}$. It is easy to see that I is semi-prime and $I \cap R=\{0\}$. We show that $R[\alpha]=R[x] / I$ is not quasi-regular. By our assumption, there is a polynomial $f(x)$ in $R[x]$ such that $e_{\lambda} f(x)=f_{\lambda}(x)$ for every λ. Then $C(f)=R$ and $\operatorname{Ann}_{R[\alpha]} f(\alpha)=$ $C(I) R[\alpha]$. Since $C(I)=\sum_{\lambda \in \Lambda} k_{\lambda}$ and is not principal, $R[\alpha]$ is not quasi-regular by Proposition 3.
(2) Let $g_{\lambda}(x)$ be an irreducible polynomial in $k_{\lambda}[x]$ for every $\lambda \in \Lambda$. Assume that for every integer n, the set of λ with $\operatorname{deg} g_{\lambda}(x) \leq n$ is a finite set. Then the ideal I of $R[x]$ generated by $\left\{g_{\lambda}(x)\right\}_{\lambda \in A}$ is semi-prime and $I \cap R=\{0\}$. We show that $R[\alpha]=R[x] / I$ is quasi-regular. First we remark that $C(I)=\sum_{\lambda \in A} k_{\lambda}$.

Let M be a maximal ideal of $R[x]$ containing $C(I)$. We need to show that M contains a non-zero-divisor modulo I. There is a $g(x)$ in M such that $c(g)=R$. Assume that $g(x)$ is a zero-divisor modulo I. Then the set of λ with $g_{\lambda}(x) \mid e_{\lambda} g(x)$ is a finite set, say, $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. Then $g(x)+e_{\lambda_{1}}+\cdots+e_{\lambda_{r}}$ is a non-zero-divisor modulo I and is contained in M. Hence $R[\alpha]$ is quasi-regular.

Institute of Mathematics
Yoshida College
Kyoto University

References

[1] T. Akiba, Remarks on generalized rings of quotients IV, preprint.
[2] S. Endo, Note on p.p. rings, Nagoya Math. J., 17 (1960).
[3] S. Endo, On semi-hereditary rings, J. Math. Soc. Japan, 13 (1961).
[4] R. M. Raphael, Algebraic extensions of commutative regular rings, Can. J. Math., 22 (1970).

