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§ 1 .  Introduction

Let G be a finitely generated Fuchsian group of the first kind acting on the upper
half plane U such that the Riemann surface U/G is of type ( p ,  n). The Teichmtiller
space T(G) of G is identified with a bounded domain in  C 3 P- 3 , which is called the
Bers embedding o f  T (G) (Bers [ 5 ] ) .  Recently, Bers investigated the  ac tion  of
modular transformations on the boundary OT(G) of T(G) in  the  B ers embedding
(cf. [8 ] , [9 ] ) . H e showed that all modular transformations can be extended to
some set of boundary points which is dense in a T(G) and that the infinite iterations of
a hyperbolic modular transformation accumulate to boundary points corresponding
to totally degenerate groups.

In this paper, we shall investigate the infinite iterations of parabolic and pseudo-
hyperbolic modular transform ations. Furthermore, we shall give a new characteri-
zation of the Thurston-Bers classifications of modular transformations in terms of
their infinite iterations. Roughly speaking, accumulation points of elliptic, parabolic,
pseudo-hyperbolic and hyperbolic modular transformations correspond to quasi-
Fuchsian groups, regular b-groups, degenerate cusps and totally degenerate groups,
respectively (Theorem 3.3). And we shall give some examples about the  infinite
iterations of pseudo-hyperbolic modular transformations (§4).

The author wishes to express his deepest gratitude to Prof. Y. Kusunoki for his
encouragement and comments. The author also thanks to Mr. H. Ohtake and
Mr. M. Masumoto for their useful and stimulating conversations with him.

§ 2. Preliminaries

In this section, we shall introduce some notations and recall some known results
(for details see Bers [5], [7] and Kra [10]).

Throughout this paper, we denote by G a finitely generated Fuchsian group of
the first kind acting on the upper half plane U such that UIG is a Riemann surface of
type (p , n ) with 2p + n — 2 > 0, and denote by 7r a canonical projection of U onto U/G.
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Let B2(L , G) be the Banach space consisting of all holomorphic functions 4)
defined on the lower half plane L such that

0(g(z ))g'(z )2 =0(z ), z  E L, g E G,
with the norm

1140 11= sur (Tm z) 2 10(z)l< + cc.z 

Let M(G) be the set of all measurable functions it defined on U such that 11/211 < 1
and

p(g(z ))g'(z )Ig'(z )= p(z ), z  e U, g e G.

F or each p e M (G) we denote by wu the quasiconformal homeomorphism of
C satisfying (wil)2(z)=11(z)(wA)z (z ) o n  U, (wP), =0 o n  L ,  w (0)= 0 ,  wu(1)= 1 and
w ( c c ) = c c .  Then wu is compatible with G , that is, it induces an isomorphism;
gi-4wizoge(wu) - 1  o f  G  onto Gm wuG(wu) -- '  with two simply connected invariant
components (a quasi-Fuchsian group). If wu and wu" (p, p' E M(G)) induces the
same isomorphism, they are called to be equivalent. The equivalence class of wu is
denoted by [14,11 .  The Teichmiiller space T(G) is the set of Schwarzian derivatives
{wu, z}  of wu in L for all it in  M (G ). I f  [w ]=  [w '] , then {wu, z} = { w 1 L ' ,  z} . If
[ w ]  [ w '] ,  then {wu, z} {ww , z}. It is known that 0,, = {wA, z} belongs to B2(L,
G) and T(G) is a bounded domain in BAL, G).

For each 4)E T(G)U OT(G)cB 2(L , G) we denote by W4, the univalent function
o n  L  satisfying {Wo , z} = 4)(z) a n d  W,A(z )=(z  + 0 - 1 + o(1) as z - -+ - i. Then for

T(G) = W 0 G(W0 )- 1  i s  a quasi-Fuchsian group and for  4 )  e OT(G) G 4'  is  a
Kleinian group called b-group, which has only one simply connected invariant
component. All b-groups are classified into regular b-groups, partially  degenerate
groups and totally  degenerate groups ([1 ], [5 ], [11]). We set h4'(g)=W 4'ogo( N ) - 1 .
(g E G), the isomorphism of G onto Go induced by Wo.

It is also well known that the Teichmiiller space T(G) has the holomorphic
automorphism group Mod (G) called th e  m odular group o f  G .  Each modular
transformation x E Mod (G) is defined as follows (cf. [6], [8]).

Let Iv, be a quasiconformal self-mapping of U with the Beltrami differential 0
such that w0G(w9) t = G .  Then for each it in M(G) we can define 0* (p) as the Beltrami
differential of A o w L o w 1  where A is a Möbius transformation chosen so that Aowu.
w-e 1- fixes 0, 1, and co. It is known that the mapping; [w/]1-*[w"( 10 ]  is well defined
on T(G) and isometry with respect to the Teichmiiller metric to . Furthermore, the
mapping depends only on 14/01R, and the homotopy class determined by a  quasi-
conformal self mapping of S 0 =UIG induces the above mapping uniquely.

Now, we shall introduce the Thurston-Bers classification of modular transfor-
mations.

A finite non-empty set of disjoint closed Jordan curves, C= {C,,..., Cs } on So

will be called admissible if no C. can be deformed to a point, a puncture or into Ck

with k 0 j .  An orientation preserving homeomorphism  f ;  S co -S c, is calles to be
reduced by C if f (C )= C . A self-mapping f  is called reducible if f  is isotopic to a
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reduced mapping, irreducible otherwise. When f  is reduced by C, each component
S,,k )  of So — C (k = m) is called a part of S o — C.

Let J(k ) be the smallest positive integer so that ft(k)1 V ) f ix ed  S W . Bers [7]
showed that if  f  is reduced by C, then for each part V )  fi(k)1Sk ) is irreducible as
a self-mapping of SW.

Let x be in Mod (G) and not the identity. We shall say that x is elliptic if x is
periodic, and a non-periodic x is hyperbolic if x is induced by an irreducible mapping,
parabolic if there exists a reduced mapping f  by some C such that f  induces x and for
each part SW of So — C ft ( k) 1Sf,k) is isotopic to a  periodic mapping of S W , and
pseudo-hyperbolic otherwise. These definitions are equivalent to those defined by
the Teichmtiller distance, and it is also known that a x e Mod (G) is a hyperbolic
modular transformation if and only if it leaves a Teichmiiller geodesic in T(G) (cf.
[7 ], [1 0 ]) . But we do not need these results in this paper.

§ 3. Infinte iterations of parabolic and pseudo-hyperbolic modular transformations

For each x e Mod (G) and for x e T(G) we denote by A (x ; x ) the set of all
+.0

accumulation points of {xn(x)}+„f_ 00 if x is not elliptic, and we set A (x; x)= J  X (x )
n=0

if x is elliptic. F ro m  the discontinuity of Mod (G), if x is not elliptic, then A (x; x)
is contained in OT(G).

Bers [9 ] showed that for a hyperbolic modular transformation x  every 0 of
A (X ; x) is (corresponding to) a totally degenerate group with no accidental parabolic
transformation (APT).

In this section, we shall study A (x; x) when x is parabolic or pseudo-hyperbolic.

Theorem 3 .1 .  L et xe Mod (G) be parabolic. Then A (x; x ) consists of regular
b-groups f or each x E T(G).

To prove Theorem 3.1 we note the following lemmas given in Abikoff [1] and
Bers [9].

Lemma 3 .1 .  Let Go be a K lein ian group. A ssum e that there ex ist a domain
D and homeomorphisms w„ of  C  (n=1 , 2,...) satisfy ing the follow ing conditions;
(a) for each g e Go , w„gw,Y  and lim w„gwT,' =q(g) are Möbius transformations and

n ,co

q is an isomorphism of  Go onto H =limw„G o wT,i, (b) w„ (n=1, 2,...) are  uniformly
n•co

quasiconformal m appings on D, that is, their m ax im al dilatations are uniformly
bounded on D, (c) there ex ist loxodrom ic transformations g 1 and  g 2  in  Go and  a
point z  in D such that g 1 og2 0 g 2 og 1 and g,(z ), g 2 (z) belong to D. T hen H  is either
discontinuous or non-discrete. Furtherm ore, if  H is discontinuous, then II w (D)=
q(Go ,D ), where w is the lim it function of { w . I D } 1  and H ,, ( D ) (c  H), Go ,D(c Go ) are
the stabilized subgroups of w(D) and D, respectively.

Lemma 3 .2 . Let {x i }r4i.f , and { y } 1 be sequences in T (G), w ith lim  x i =0
an d  lim  y =0 . A ssu m e  that t G (x i , y i ) <a< + oo  (j= 1, 2,...) and 0, tfr e OT(G).-
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Then boundary groups GO and G4' are quasiconformally equivalent, that is, there is
a quasiconform al self -m apping F of  e such that FG 0 E - 1 =G 4'. In particular,
if G4' is a regular b-group, partially  degenerate group, cusp, and totally degenerate
group, then Go is so respectively.

Proof of Theorem 3.1. Let f  be a self-mapping of So = UIG inducing x. Then
we may assume that f  is reduced by certain C= {C,, C 2 ,..., Cs } and each C. ( j= 1,

s) is a simple geodesic curve on So . For each part S ) of S 0 - C ,  there is an
integer nk such that fnkj g c ) is  a  self-mapping and isotopic to the identity on S,,k )

because x  is parabolic. Therefore, there exists an integer N  such that for all parts
fNIV ) is  a self mapping and isotopic to the identity on S W . Then, we can

easily construct a quasiconformal mappingh; S 0 l->S0  which is isotopic to f N  , equal to
the identity on So - U  where U 1, s) are annular neighbourhoods of

t
Ci . Hence I N induces x N . Denote by FN the self-mapping of U being a lift of I N ,
i.e. F N= 'N o n , and by kt„, the Beltrami differential of F m  (M  E  Z ) .  Then {w"-, z}
o n  L  i s  xmN(0) from the definitions. Obviously, w g- (m  = 0, + 1, +  2,...) are
conformal on V = i - 1 (S 0 - \  L I ) .  Thus, the conditions of Lemma 3.1 are satisfied
for {vvii-}„,+T_09 and for each component Vk of V corresponding to SW  n (S0 — j  U; )f=i
via 7C. By using the classification of b-groups in M askit [11], we verify that every

e A ; 0) must be a regular b-group.
Let {xnP(0)} be a  subsequence of {x.(0)}+„f_ co which converges to a  boundary

group (Y. Set np =N k p + i p  with 0  Vp<N where N is the integer defined as above,
then tG(Xn P (0)5 xN k p(0" = tG(X2  P (0 ) , 0 )  ( 6 ( 0 ,  X(0)) t6(X(0), X2 (0)) + • • • t  G ( X  P

x(0))= pt G(x ) ,  0)<Nt G (x(0), 0). Hence from Lemma 3 .2  a n d  th e  above
argument we conclude that if is a regular b-group.

Since tG (xn(x), xn(0))= tG (x , 0) for x e T(G), by using Lemma 3.2 again, we can
show the statement for every x e T(G). q. e. d.

As for the infinite iterations of a pseudo-hyperbolic modular transformation,
we have

Theorem 3.2. Let z  e Mod (G) be pseudo-hyperbolic. Then for each x e T(G)
A (x; x) consists of cusps and contains a degenerate cusp.

Remarks. 1 ) We can construct examples so that (a) A (x; x) contains a totally
degenerate cusp and (b) A (x; x) contains a partially  degenerate group (see §4).

2 )  The author does not know whether or not A(x; x) consists of degenerate
cusps.

P ro o f . Let f  be a homeomorphism of S o inducing x. We may assume that f
is reduced by certain C= { C,, C2 ,..., Cs }  and each Ci  ( j=1 ,  s )  is  a simple
geodesic curve on So .

Assume that e A (x; 0) is the limit of {x̂ , (0)} and Go is a totally degenerate
group without an accidental parabolic transformation. Let gi e G (j = 1, s)
be hyperbolic transformations determined by and set gio-W x.(0).gio(W x„(,))-1.
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Then each gi ,„ is associated with f "(CA .and the axis of g C— Wi e ,( 0 ) (L) is a lift
of f n(Ci ).

Now, we take a  Fuchsian equivalent H„ = (p»-Gx"(° ) 0„ of Gx"(°) where ()on ;
U1-+C—Wx , ) (L ) is a  conformal mapping, and let Ai ,  (> 1 ) be the multiplier of
rin= (19 n 1 V  ° ( P n •  Since log A  is equal to Poincaré length of .fn(C i ) on S o , we have

(3.1) l < A i , p < M <  +  c o , j=1, 2,...,s, n= +1, +2,...

Set lim E G4',  then g i must be loxodromic. Therefore from Abikoff
' P

[2] Theorem 2, we have urn = + oc. This contradicts with (3.1). Hence Go
np-.00 P

is a  cusp . By using Lemma 3.2 as in the proof of Theorem 3.1, we verify that for
every x e T(G) A(x; x) consists of cusps.

Next, we take an integer N  as in the proof of Theorem 3.1. For simplicity,
we set i= xN  and f = f N  .

We assume that 0= lim  277, (0) and /i lirn inP+ 1 (0) exist fo r a  subsequence
np- , 00

{np }  and both are regular b-groups. Let ni  (1=1, s) be accidental parabolic
transformations in G4'  such that gol f  r i i ori; GOD and every accidental parabolic
transformation in G4' is conjugate to some lb, and let C . (j = 1, s) be geodesic
closed curves on So  associated with axes of in the invariant component of G4'.
Then C= {C,, C 2 ,..., Cs} is admissible (cf. [1], [11]) and furthermore we can take
as f  a self-mapping of So reduced by C (cf. [9] Lemma 5).

Since 0, = lim knP+ 1 (0)= lim i(iflP(0)), from [8 ]  Propositions 3.2 and 3.8
np - .70

there exists a quasiconformal self-mapping F of C such that

=0,p , o n  L ,  and

Fon4'ogor2-010E-1=g-24'1cw0ogovvvog-2-thi (g  E G ) on S2,,,(L),

where 14,0  is a quasiconformal self mapping of L which corresponds to x and has the
continuous Beltrami differential 0, and ,Q0 , 0 01 are univalent functions on L taking
(— i, —21, —31)  into (0, 1, co) with {Q 0 , z} =0(z), z } =0 ,(z ) respectively.
Furthermore, F is conformal on f2(G4')—zI(G 4') where Q(Go) and zl(Go) are the region
of discontinuity and the invariant component of G4', respectively.

For each part S P  of So — C (k = 1, m), denote by N , a  component of 7Z- 1

(V ) ), then N k is a Nielsen convex region on U bounded by some geodesics in R- 1 -(C).
Since in the equation (3.2) 0 need not be continuous any longer, we may assume that
Nke= Wo(Nk) is a component of n -1 (V ))

Since z  is pseudo-hyperbolic, there exists a part of So — C, say S,V) , such that
f  s 1 )  is an irreducible and non-periodic self-mapping of V ) • W e  m ay  assume that
the stabilized subgroup GNk  of N,, in G is corresponding to a non-invariant component
subgroup of G4' ([1] Theorem 1), that is, there exists a non-invariant component Zik
such that (G 4'),,, =h 4'(G p ik ). Since we GNk w 1 = GN k , e  and for some Möbius trans-
formation A cp , S20 = A. W o  (4)e T(G) UOT(G)), we have from (3.2) W* i  = FoNow -

0
1

and

(3.3) Folz4'(GpOoP-1=h4'1(GN0,o)=h4't(weGN„w(;'),

(3.2)
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where 1' =
A quasiconformal self-mapping f  Is,k) is naturally deformed to a quasiconformal

self-mapping f ,  of z1,/(G4,) ,,, because SW is homeomorphic to  Ak/(Go), k . Each
f k (k = 1, 2,..., m) is lifted to a  self-mapping I, of G4'(z1,) satisfying f koh,/,(g)ofil =
ho (ww lgw,) for all g e G as follows.

Let Ak ,0 be a non-invariant component of Go which is invariant by h4,(GNk ,8).
From the definition of ] ,  we can construct a mapping f k : zik —>zIk e  satisfying

fk°h0(9)4k- A z)= ho(w  '9  we) (z)

for every h4,(g)E(G 4') Ak = ho(Gryk) and for every z E Ak ,o .
Next, for each representative g' of G/GNk , we define

f k  h o (g') (A k )-- -4 1 0 (w -
o

l g'w e ) ( 4 ,, 0 ) as

f k (z )=h 0 (w -
0
 4 0) ° (fk  I A k ) 41 0 ( 0 -1 ( z )

for every z e ho (g')(A k).
I f  g:„G,„,k 0g;,GArk , th en  ho (g ;„)(zik)  n ho (g;,)(4)= 0  a n d  ho(wwigwo)(e k,o) n

ho (w-o- Ig„wo (A k e )  = 0 .  Furthermore, G4'(.40= J ho (g') (A k) =
g 'E G O /G ivk g'eG4V0Nk

(WW 1gW 0 )(A k , 0). Hence f k is a self mapping of GO(zIk) for a fixed coset representation
G = E

n=0

For each z e Go(zI k) and for each g E G there exist g, g, g ,  representatives of
G/GN k as above such that z is  in  ho (w ilg'i wo )(A k , ,) ,  g  =g 0 g  and g;og i o g i= g 0 g 2

for some g,, g 2  e G .  Then we have

fk°h0(9)4i 1(z)=Ac'h4,(9'2.91) 4 7 0(9)V kl AO—
 1 oho (w  'g  14,0)- 1(z)

=fkoh4,(g0g

= jk 0h4,(g'3 0g 2 )4 41.40 -  loh,p (ww g'„w e ) - 1 (z)

=h4,(rq l gw0)°(fklAk)°h0(92)°(.1kizik) - 1 .ho(wii'g'irvo) - 1 (z)

= ho (ww 1 g'3we)oho (wW1 g 2w0).ho (wWig'iweYi

= h4,(w,31 (g .g o g ', - ')%70)=14(w -
kiqgog ON)

= ho (wz,' gwo).

We define

(3.4) wo)(,)= Fof k (z)

P. wo ow ' o(wd,)- 1 (z)

Z E Go(A k), k = 1 , . . . ,m .

z E4(G 4
) .

Then W( ' ) is a quasiconformal mapping of Q(Go) onto 52(G4,i ) .  Therefore, from [1]
§4 Corollary, Wm can be extended to a  quasi-conformal self-mapping Wo ) o f  è
with the Beltrami differential y('). Furthermore, W (1 )h4,(g)(W( 1 ))- 1 =h 4, 1(g) for all
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g e G by (3.3) and (3.4). In particular, W( ' )i s  a lift of a quasiconformal self-
mapping f1 o f 4 l /(G') A 1 .

B y  u s in g  th e  a r g u m e n t  a s  above  f o r  ( a  convergent subsequence of)
{XnP±i(0)1+„;°_, (j=2, 3,...), we can construct a quasiconformal self-mapping W(i)

of e with the Beltrami differential pm  so that Wco1z1 is a lift of ( .7i )i of A l /(G4') A 1 .

On the other hand, there exists a canonical injection i; T(G k )1-0T(G) where
k=1

Gk (k= 1, m) are Fuchsian equivalents of (G 0 )4  ([1] §5 Corollary 1). Further-
more, if i((x (i n) , xS" ) ,..., x ))—>(/) 0T(G) as n—> oo for a sequence {(4n ) , x20)}

fi T (G ) and {x (
i n) } converges to  a  totally degenerate group on  aT(G,), then G4'

k=1
is a degenerate group ([1] §6 Theorem 7). From the above consideration, we have
/i = ,  4 i )  , .X ;P )) for each j  and may assume that there exists a  hyperbolic
m odular transformation x i  e  Mod (G O  su c h  th a t x (

i i ) = Z1(x - 1 ) ). T herefore ,
{x (ii ) } 1 converges to a totally degenerate group on aT(G1 ) by [9] Theorem 1, and

=  Ern i n P± i ( 0 )  converges t o  a  degenerate group e 3 T (G ) as c o .  This
n„, co

implies 0 e A(x; 0). By using Lemma 3.2 again, we verify that A(x; x) contains a
degenerate group for each x e T (G ).  Thus we have completely proved the theorem.

Theorem 3 .3 .  L et x be in  Mod (G ) .  Then
x is elliptic <=>A(x; x) consists of quasi-Fuchsian groups f o r all (or som e) x  in

T(G),
x is parabolic<=>A(x; x) consists o f  regular b-groups f o r a l l  (or som e) x  in

T(G),
x is pseudo-hyperbolic<=>A(x; x) consists of  cusps and contains a  degenerate

cusp for all (or some) x in T(G),
x  i s  hyperbolic<=>A(x; x) consists o f  to tally  degenerate  groups w ith  no

accidental parabolic transform ations for all (or some) x in T(G).

P ro o f . If x is elliptic, then A(x; x) is contained in  T(G) because x is of finite
order. H ence th e  statements a re  easily obtained by Theorem 3.1, Theorem 3.2
and [9] Theorem 1.

§ 4 . Examples

In this section, we shall give examples mentioned at §3 Remark 1).
Let So = U/G, be a Riemann surface of type (p, 1) and let P o be the puncture of

So . It is known that there exists a quasi-conformal self-mapping f '  of So such that
P P 0)=  P o a n d  f '  induces a  hyperbolic transformation o f  Mod (G0 ) , say  x ' (cf.
[10] Theorem 2). Furthermore, we may assume that f '  fixes each point in a small
disk D with the center P o (cf. [10] Proof of Proposition 1). Set S' = So — D, then

Is' is also an irreducible self-mapping o f  S '. L e t  S be the Schottky  double of S'
with respect to  as- =0D and let go be the indirectly conformal mapping of S .  We
define f = f '  on S' U OS' and = 94'09 on S—S' U as'. Then f  is a reduced mapping
by C= {0S'} and induces a pseudo-hyperbolic modular transformation x in Mod (G),
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where G is a Fuchsian group with U IG = S. Considering the proof of Theorem 3.2
and the symmetricity off, we conclude that A (x; x) contains a totally degenerate cusp.

In the above case, we set f o =f ' on S' U aS' and = id. on S— S' U as% then f o is
also a  reduced self-mapping of S  snd induces a  pseudo-hyperbolic transformation
xo in  Mod ( G ) .  By using Lemma 3.1 as in the proof of Theorem 3.1, we verify that
A(x0 ; x) contains no totally degenerate group, and contains a  partially degenerate
group by Theorem 3.2.
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