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O . Introduction.

In earlier work [13, 14, 15] we consider the problem of finding moduli for the
Teichmtiller space of marked Fuchsian groups, T (G ) . Our approach is to decompose
the Fuchsian group G  into two-generator subgroups. We construct fundamental
polygons for these subgroups and then combine them into a single fundamental
polygon P for the full group. Although the number of sides P has is bigger than the
minimum number of sides a polygon must have, it is not much bigger. "Geometric"
moduli are determined as lengths of certain of the sides of P, and distances between
particular pairs of the other sides. These geometric moduli also have an inter-
pretation as the traces of a particular set S  of elements G .  This parametrization
determines a real analytic equivalence between T(G) and a simply connected subset
of Euclidean space R P , for appropriate p .

In this paper, we generalize these results to a special class of quasifuchsian groups.
In the space of marked quasifuchsian groups, stability considerations tell us that the
same set of traces can be used as moduli in a neighborhood of the Fuchsian locus.
The number of faces of the fundamental polyhedra in H3 for these groups, however,
can be arbitrarily large. Our class contains quasifuchsian groups that have funda-
mental polyhedra with a constant "small" number of sides and no interior vertices,
and can be parametrized by this same set of traces. It extends out of the neighbor-
hood of the Fuchsian locus and intersects the boundary in B-groups.

1 .  Preliminaries.

In this section we recall some results about Fuchsian groups and set our notation.
Let G be a marked Fuchsian group of type (g, n). Denote the trace of an element
WE G by tr W . tr W is real since G is Fuchsian. We will assume for simplicity of
exposition that (tr W) 2 >4. I f  this is not the case, the constructions and theorems
must be slightly modified. We say something about this in the last section. If U is
the disk in C, invariant under G, the attracting fixed point qw  and repelling fixed
point pw  of W lie on its boundary, OU.
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A collection, {Fi }f3- 2 +", of two generator subgroups of G such that G can be
reconstructed from the F i by a series of free products with amalgamation is called a
subgroup decomposition of G .  The subgroups fall into two categories; the first,
denoted by T, of type (1, 1), and the second, denoted by P, of type (0, 3).

For the given marked Fuchsian group, G = <A i , B 1 ,..., A g , B g , M 1 ,..., M„;
ri7 mi fl (B i

- lA T'B i A )=id >, we form the canonical subgroup decomposition.
We have: {Ti = <A i , B i > i =1,..., g, P i =<C i , C i + ,>, j=1,..., g — 2+n} where the A i

and B i are the marked elements and the C 's  are defined as follows:

let i =1,..., g

K i+g = M i i =1,..., n,

set C i =K i , j=2,..., g + n — 2

Co-n -1 =
M n - l •

We define trace moduli for the group G from the canonical subgroup decom-
position. For each group Ti we have four parameters: x i = tr A i ,  y i =tr Bi , z •=
tr A,Bi and k.=2 —tr Ki . (The last is chosen this way to facilitate computation).
These satisfy the conditions:

(1.1) xi+ yf +zf —x i y i z i = 4 — ki ,

(1.2) xi>2, y i >2, z i >2, k i >4.

For each group Pi  w e  use three parameters: r;  = tr Ci ,  s;  = tr Ci + 1 ,  t;  =
trCJ 'C + 1 . These satisfy:

(1.3) risiti<O, iri l >2, IV >2, Iti l >2.

To reconstrust G from the subgroup decomposition, we perform a series of free
products with amalgamation. We call these gluing operations. Each requires one
parameter, or when using traces, two new traces and one new relation. Suppose we
have formed Gk _ i  G= - k- 2*13.1- 1 am <Ci > and now want G k = G k _ i* P i  am <Ci + ,>.
We introduce the traces li =tr Ci _ I CJ + ,  and m;  = tr Ki Ci + ,. These satisfy the
gluing relation

(1.2) 14+1714+ /4 — r.m .l.+Pr.+J?m .+Jq l.+P=0J J J J  J J  J J J J J J

where

./3 = si t;  + si+ j +1
12 _ t i t + 1 + s i s +

13_ f s  +  I t

=  s 3  t3 + + t3+ , +si ti si +  i ti +  —4

li < —2, mi < —2.
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In [13, 15] we prove

Theorem!. L e t  G be a marked Fuchsian group of type ( g ;  n ) .  Let IT, Pi } be
a canonical subgroup decomposition f o r G .  The set of  trace parameters f o r these
subgroups and the trace param eters f or the gluing operations together w ith their
relations form — taking repetitions into account—  a set .F (G )o f 9g-9+ 4n  moduli
which satisfy 3g —3+ n re latio n s . These moduli determine a real analytic embed-
ding of the T eichm iiller space of marked surfaces of type (g; n), T (G ), into a simply
connected domain in R 6 9 -

 6+3n .

In the proof we take a point in the moduli space and write down generators for
the group. We prove the group is FuchsiE n by constructing a fundamental polygon
for it. We construct the fundamental polygon from fundamental polygons for each
of the subgroups in the decomposition.

2.1. Quasifuchsian groups. Let F  be a  marked quasifuchsian group and let
Or  be its domain of discontinuity. L e t  be an isomorphism, 9: G-+F, which takes
the marking for G into the marking for F .  If G is of type (g, n) so is F .  (Note that
we include quasifuchsian groups of the second kind in our discusion). Since G is
quasiconformally stable, we have:

Theorem 2. Given G , th e re  is  a n  e> 0 ,  s u c h  th at  i f  Itr 9(W)—tr W <E,
for all We .F(G), then .9- (F ) is a set of  moduli for F.

Let 9* be the map induced by q,  on the traces of the elements of G .  Below, we
determine another set of necessary conditions which imply that ,F(F)= cp*(.fT(G)) is
a set of moduli for F.

Set Ti = 9(T i ) and p i = cp(P). We call these two generator quasifuchsian groups,
basic gu a s i fu ch s ia n  groups, and construct a  canonical fundamental polyhedron
for each of them in hyperbolic 3-space, H 3 . The subgroups IT, P i }  form a sub-
group decomposition for r, and the reconstruction of F from them by a series of free
products with amalgamation determines a set of gluing procedures for the canonical
polyhedra. Interpreting these gluing operations geometrically, we obtain a funda-
mental polyhedron for F.

Although the groups Tand P are not distinct types of quasifuchsian groups, their
Fuchsian preimages have different properties and we will use them differently. Each
of them, acting on C represents a Riemann surface of genus 2, and the Weierstrass
points of these surfaces play an important role in keeping our constructions intrinsic.

We carry out our construction for a group F  of type (2, 2). This is the least
complicated case for which all the different kinds of gluing occur. A convenient
(though not quite standard) presentation of r is:

B1, A2, B2, Ci, C2;

K2 = B i 1A i 1B2A2, K2C2K1C1 =  id> .

The subgroup decomposition we use is:
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{ T i=  < A i, B1>, T 2 —  (A 2 , B2> ,< C 1 9  ( K 1 C 1 )  1>5 P2 =  <K 1C1, C2>1 •

We perform the amalgamations in the following order:

F i  = TI *P i  am (K i > ; r, has type (1, 2);

F2 =F i *P2  am <KIC,> ; Fy  has type (1, 3);

r= 1 2 .T2  am <K2 > ; F has type (2, 2).
2 .2 .  In  this section we consider a  group P=<A ,B > and make special

assumptions about it. We assume it is again Fuchsian, and as a Fuchsian group, is
of type (0, 3). The trace moduli r, s, and t  are therefore all real; we assume P is
represented in SL (2, C) so that they satisfy r< —2, s >2, and t > 2 .  Such a group is
a Schottky group and we form the fundamental domain LI p  as the common exterior
of the isometric circles of A, B, A -

1 , 13- 1 respectively. We may noramlize so that P
fixes the upper half plane, and so that the hyperelliptic involution is of the form,
E : z -*—z  (see [17]). The lifted Weierstrass points are then 0, cc, a ,  a', fl,
They are colinear ; 0 and oo lie interior to 21 p and the others lie on its boundary. We
extend A p  to H 3 by erecting hemispheres on the isometric circles and obtain a
fundamental polyhedron which has no vertices. (See figure 1).

Fig. 1

2 .3 .  Now we describe a fundamental domain for the basic quasifuchsian group
T =<A , B >. The special assumptions we make now are that the trace moduli
x ,  y , z ,  k  satisfy z  real, z > 2, k  real and k > 4. The philosophy behind the
assumption that certain traces are real is the following. Each group element cor-
responds to a free homotopy class of curves on a Riemann surface associated to the
group. The free product with amalgamation of two groups corresponds to gluing
two surfaces together along a  curve in the homotopy class corresponding to the



A B=
[ z - (z2 + k - 4)1z

B A - —
2

(z2 +k -4)1z

z  - k

1 2 -  k + iz f rc (z2 + k  -4 )i0 c lz
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and
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2
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generator of the amalgamated subgroup. We assume that the elements correspond-
ing to curves we glue along are real. The group T is assumed to have been obtained
from its subgroup P= <A B, BA > by gluing along the curves corresponding to AB
and B A . This construction is similar to free product with amalgamation and
is called the HNN  construction. (See [20] for a discussion of HNN  constructions).

Using the normalization described in the previous section we write down elements
of T as follows:

x  -  Xs [ y  Yt1 1A = —
2

B 2- x Y / t  y

where

PA =  - RA =  P B =  - q = t  a n d  ( P x + q x ) / 2 =  -1 .

and

           

Px=( -  z+iNI k - 4 ) /z , qK = ( - i\ lk  -4)1z , p i ,=(z+i NI k - 4 ) / z  and

qz,=(z -  iN/k -4)1z.

The Weierstrass points a, a', /3, fl' are:

a =(y - 2)0 Y  a' =(y + 2)t/Y,

fl=(x -  2)s1 X 13' =(x + 2)s1 X

We note for further use that

13 .48-( -  Z - i Nik )1z , q A B =( + Z - i Nik )1z , p B A =(-  Z + qB A =(Z +i,d-c)lz

The points a, /3, oc' and /3' again lie on a circle which we call CBA since it also con-
tains pB A  and qB A . To see that this is so, we compute the cross-ratios:

(P B A ) RBA , a, ce)=(PBA, RBA, 13, I3')= —1 , (cc, cc', fl, 13')=---(z + 2 )/4 .

Similarly we call the circle through -cc, - -f i', PAB and qA B , C A B .  A and B
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map these circles onto one another; that is A(C,A).= CAB, B(CAB)=CBA• The
involution E interchanges these circles. We can compute the centers of these circles
easily. T h e  center of CBA is ic where — c=  IPBAI 2  — #12 IPBA

2[Im 13 — Im
12 H P 2  

P B A] 2 Ehn — lin PAB]
IP,412 -1(1 12F1

-

IPBAl2-1OE'12 . The center of CAB is — iC. These
- 2 [Im — Imp B A ] 2 [Im — Im pB A ]
circles are the natural generalization of the axes of the elements A B  and BA
when the group is Fuchsian. To keep the number of faces down, we require that
the circles be disjoint. It is an easy exercise to compute that they will be disjoint if
and only if c>(z 2 + k —4)12\ tic-z. In terms of the moduli, this inequality becomes:

_
(2.1) 11x12+1y12—z Re (4 ) +  

( +z2-4+k)  Im (x y ) <
2s k

(z 2  +k — 4) lz Im x— 2 Im y— k Re xl
2,/k

From the formulas in section 2 we see that the points pK , qK , pA B , qA B , qL ,
pB A  and q B A

 all lie on a circle 2 ' of radius (z 2 +k— 4) 1 1 2 /z centered at the origin.
There is a circle E uniquely defined by the conditions:

i) E is orthogonal to CBA.
ii) E is orthogonal to 2 .
iii) pK  and pB A  are interior to E.

Similarly there is a unique circle D defined by the conditions :
i) D is orthogonal to CAB.
ii) D is orthogonal to 2 .
iii) qK  and pA B  are interior to D.

Let E'=B A (E) and D' = AB (D ). By the symmetries of the normalization these
circles occur as they are shown in figure 2. Also by these symmetries these four
circles are all the same size and are therefore isometric circles of the respective trans-
formations. If x = y then I =  A(E)=B(D) is the imaginary ax is . It is invariant under
the hyperelliptic involution and, more important for our purposes, it is orthogonal to
both the circles CAB and C B A . Call the common exterior of the six circles D, CAB,

D', E, CBA and E ', A T . We claim it is a fundamental domain for T. Looking at
the identifications (see figure 2), we see that this follows from a standard argument
on combining groups. (See for example, [1, p. 103]).

We extend this domain to H3 in the usual way, by erecting hemispheres. Since
both A  and B- 1  map CBA onto CAB, we see that (figure 2) the polyhedron we have
constructed has 8 faces.

3 .1 . In this section we describe how we glue groups T= <A 1 , 131 )  and P=
<M, N> together using a gluing parameter. The moduli x 1 , y i , z 1 , k, for T satisfy
the inequalities, z 1 >2, k 1 > 4 and (2.1) while the moduli t1 , t2 , t3 for P satisfy t i  > 2,
t2  > 2 and t 3 < —2. I n  order to glue, we must also have t, = 2 —1(1 . We construct
the normalized fundamental domains A T  and Ap as in sections 2.2 and 2.3.

These constructions use more normalization parameters than we are allowed.
Therefore, we use our gluing parameter 5 to determine the element R in SL (2, C)
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Fig. 2

which conjugates P into an unnormalized group P1 = (K 1 , C1>, so that we may form
F, = T *P, am <K1>. We take (5= q c , the attracting fixed point of the element C1

in P1 , and determine R  by the conditions :

R: q l ( 1 ,  R :  q m  p K i ,  R :  q N

To form the new fundamental domain, we choose (5 so that:
i) (5 is interior to E, and p c , the other fixed point of C1 is exterior to E.

ii) The circle D separates the fixed points of K1 C1 .
R  then maps the real axis R  onto a  circle X  through the points pK , q K  and (5.

Conditions (i) and (ii) imply that the circles E, E l = Cji(E), D and D I =(1C1 C1) - 1 (D)
are mutually disjoint and bound a fundamental domain A p i for P1 .

To obtain a fundamental domain for f ,  we choose a circle, /1 , which is ortho-
gonal to X  and which separates the circles D and E from D , and E r  I  is then
interior to both A p i a n d  A T ; moreover, so is the  circle =B i A ,C ,( I , ) .  Again,
using standard combination arguments, we see that the domain A c i ,  bounded by
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the circles CA i g i , D, 441 131 (D), CE L A I , E, B l A i (E), I I  and is indeed a fundamental
domain for F 1 . (See figure 3).

The polyhedron in H3 bounded by hemispheres over these circles has two new
faces (the hemispheres over I, and I D .  It has no interior vertices.

CB,111

Fig. 3

3 .2 . Next, we use moduli, t2 , t 3 , t4  w h e re  t2 > 2, t 3 > 2 ,  t <  —2, to form
another normalized group 13 = <M, N>. Again, we are not allowed to normalize,
so we use the gluing parameter to conjugate P into a group P2=  <K i Ci , C2>, which
we amalgamate to r i ; tha t is, we form 1 2 =F i *P2 am <K 1C ,> . As above, the
gluing parameter v determines the element R  in  SL (2, C )  which performs the
conjugation. W e take v as the attracting fixed point q c  of the element C2 in P2,
and find R by the conditions:

R : PM N aK ,C, R : a M N P K , C ,  R :  P N V .

To form the new fundamental domain, we choose v so that:
i) The circle E separates the fixed points of C2 and v is  no t in  dr i  while

qc  is.
ii) The circle I separates the fixed points of C2 K 1 C1 , and qc ,„, c , is inside

Ac i  while pc 2 K
1
c

1
 is not.

R  then maps the real axis R  onto a circle X ' through the points picici , a_Kici and
v. Conditions (i) and (ii) imply that the circles D, D2= C 2(D), /1 and l'; =C2K1C1(11)
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are mutually disjoint and bound a fundamental domain F.2 for P2.

Now to find a fundamental domain for F 2 , we choose a  circle, 1 2 , which is
orthogonal to X ' and which separates the circles D 2 and 17 from D and I .  12 must
be interior to A,-; moreover, so is the circle F2  = A ,B ,C il( / 2 ). Again, using
standard combination arguments, we see that the domain .41-2 ,  defined as the
intersection of A1-1 and the common exteriors of 12 and 12' is  a fundamental domain
for F2.

The new polyhedron in H3 bounded by these circles has two new faces and no
new vertices.

3 .3 .  The last amalgamation we perform in the construction of T, is of another
group T = <A2 , B 2 > .  Having done this, it will be clear how to amalgamate any
number of basic groups, P, or T, to obtain a  quasifuchsian group of type (g, n)
(except for the case (2, 0) which we treat in the next section).

The trace moduli, x 2 , y 2 , z 2 , k 2 , satisfy z 2 >2, k 2  > 4, and inequality 2 .1 .  They
determine a  normalized group, T = <A, B>, with fundamental domain A 1,  as in
section 2.2. The gluing param eter ,is chosen as the repelling fixed point, PB2A2,
of B2 A2 . It determines the conjugating transformation R , T 2 =R T R - 1 = <A 2, B 2>

so that RKR - 1 =C 2 K 1 C1 , provided that t4  =2 — k2 . We choose so that:
i) 12 separates the fixed points of B 2 A 2  in such a way that does not lie in Ar,

and qB 2 A 2  does.
ii) ./1 separates the fixed points of A2 B2  so that pA 2 , 2 lies in A,-2 ,  and q A 2 ,3 2

does not.
iii) The image of the imaginary axis I 3 =R (I) does not intersect any of the

circles bounding 211-2 except I ,  and 12.

The circles C, 2„2 and CB 2 A 2  are canonically defined ; the circles I , and 12 are not.
They are therefore not necessarily the images of the circles D and E of A T . We note,
however, that the circles B2

- 1 (/3 )  and A2
- '(/ 3 )  intersect the circles CA 2 B 2  and CB 2 A 2

orthogonally. Moreover, we may replace the circles I ,  and 12 by these circles, and
I ', and 1'2  by their images under B I A ,C , and A 1 B 1 C2

- 1  respectively, without changing
the rest of the configuration. Call the replaced circles, /1 , 12 , /1 and I  aga in . It is
clear that 1 3  does not intersect either I ,  or 12  now, and furthermore, that the con-
struction is now canonical.

We complete our fundamental domain for I ' by adding the circles C 2 , 2 =
B 1 A 1 C 1 (CA 2 B 2 ) and CB' 2 A 2  = A ,B•„ C C B 2 A 2 ) •

- Comparing the identifications on the
circles, we again apply standard combination techniques to conclude that the common
exterior of all of the circles is a fundamental domain for F = F 2 *T2  am <K2 >.

The new polyhedron in H3 bounded by hemispheres over the circles bounding
A 1- has eight faces more than that of z1,2 , for a total of tw enty. It has no interior
vertices.

3 .4 .  The final combination construction is to form a group of type (2, 0) from
moduli, x i , y i , z i ,k i , i= 1, 2 which satisfy z i real, z i > 2, k i real, k 1 =k 2 > 4. Moreover,
each quadruple satisfies relation 1.1 and inequality 2.1.

We form the normalized groups i = <A i , B i >, i =1, 2. We set T1 = T 1 . Next,
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we use a gluing parameter .5 to find a transformation R =R (.5) and set T 2= R T
(5 is the repelling fixed point p A 2 B 2  of A 2 B 2 . R  is defined by:

R: PK 2 "- - - )(1K 1 , q 2 - 3  PICO PA2B2 - 4  6 .

We choose (5 inside the circle E  of 4 Ti  subject to the conditions:
i) E  separates the fixed points of A 2 B2 ,
ii) D separates the fixed points of B2 A 2 ,
iii) C B 2 A 2  and CA 2 B 2  are disjoint from CA i g , and C B ,A i .

We can find a one-parameter family of circles orthogonal to both CB,A, and CA 2 132 ;
denote this family E ( T ) .  Set /(T)= A 2 (E(T)) and D(T )=B 2

- 1 (/(x)). D ( T )  must separate
the various fixed points of elements of T1 and T 2 the same way D does. D (t) is
orthogonal to C8 2 A 2 . We can choose r= To so that D(t 0 ) is also orthogonal to CA I B i .
Replace the circles D and E  by D(T 0 )  and E(T 0 ). Let 1 '( r 0 ) =B I A I (A 2 B 2 ) -  W O ).
Replace D' and E ' by D '(r o ).= A i B i (D(T 0 )) and E'( -r0 )=B I A I (E(T0 )). We now drop
the To from our notation. Set CA' 2 B 2 =A i Bi (CB 2 A 2 ) =B i A l Ail(C A 2 8 2 )  and CB' 2 A 2 =
Bi  A  (CA 2 B 2 ) = A ,B ,B 2 (C B 2 A 2 ).

Let 4 r
 be the exterior of the domain bounded by the twelve circles (see figure 4)

E ',  Cg i Ai ,  E, C'B 2 A 2 , /',
connected components.

CBI AI

Fig. 4

Again combination arguments show that A r  is a fundamental domain for I'.
Erecting hemispheres on these circles we obtain a polyhedron with 16 faces and no
interior vertices.

CA' 2 B 2 , D ', CA i n i ,  D , C B 2 A 2 ,  I ,  CA 2 B 2 . The region has two

4 . 1 .  In the previous sections we gave geometric conditions on the gluing
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parameters, (5, y, a n d  so that the constructions would work. One can explicitly
write them down as inequalities. Each condition involves all of the traces and
gluing parameters used up to that point. They are however, not very instructive.

An examination of the conditions shows that only those which insist on the
reality of a trace cut down the local dimension of the space of groups we have defined.

4.2. Gluing Moduli as Trace Parameters. In [13] we showed how to translate
the twist parameters for Fuchsian groups into trace moduli. Although all the
computations assumed that the variables were real they are valid if the variables are
complex. The twist parameters of that work are algebraically the same as our
gluing moduli. In the generic case we had two groups Gi =<C i , C2> and G 2 =
<C3 , C4> and formed the product G=-G 1 *G2  am <CI C2 = (C3C4) -  1 >. The normal-
ization put the fixed points of CI C2  a t 0 , co and the fixed point of C2 at 1. The
fixed point of C3 was the gluing parameter. The trace parameters were x i = tr Ci ,
i = 1,..., 4, k =tr C i  C2, I = tr C i  C3 and m =tr C2 C3 . These satisfy a relation just
like 1.2. I and m can be expressed as linear functions o f an d  1  so that if is
real and negative, 1 and m are complex if and only if i s .  Also, as varies in the
simply connected domain defined by the inequalities in chapter 3 , 1 and m vary in a
simply connected domain M  in C 2 . Therefore, the set of moduli for T (T ) defined
by the trace parameters and gluing parameters is equivalent to a set of moduli consist-
ing only of traces.

Main Theorem. L e t r be a m arked quasifuchsian group of type (g ; n) with a
standard subgroup decomposition {(p 1). L et 3 - (T) be the set of traces for T defined
in section 2.1. We suppose these 9g — 9 + 4n traces satisfy the following constraints:
we assume the traces of the generators of the basic quasifuchsian groups P i are real
and satisfy  conditions 1.3; w e also assume those of the groups 71 satisfy conditions
1.1, that z i , k i are  real and that inequality  2.1 holds; we further assume that those
corresponding to gluing m oduli satisfy  the inequalities described in section 4.1.
T he set N  in Y (T ) so def ined is real analy tically  em bedded in the space of quasi-
f uchsian groups T (F). It contains the Fuchsian locus and has real codimension
3g —3+n.

P ro o f . Given a particular subgroup decomposition {(pi l ,  the conditions above
determine a set N , in 3 - ( T ) .  N  is the union of the sets No defined for all possible
subgroup decompositions. By the constructions of section 3, to each point in N,
we can assign a group in T ( F ) .  This group has a fundamental polyhedron with no
interior vertices and small number of faces (depending only on the type).

N  clearly contains the Fuchsian locus. We may allow each coordinate to vary
in an open neighborhood of this locus by choosing an appropriate subgroup decom-
position (depending on the point). Each point of N  is defined by 3g —3 + n real
analytic equalities, therefore N  is  a  submanifold of ,F (F ) of rea l codimension
3 g -3 + n .
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5 .  Concluding Remarks.

The groups in the domain N  are quasifuchsian groups which have particularly
simple geometric properties. We call them n ic e  g ro u p s . We describe these
properties as follows :

Each nice group F has a fundamental polyhedron which has no interior vertices.
For each subgroup (p i of F we defined points a i , c4, f l ,  ,6 , yi and y;, which are the
preimages of Weierstrass points. These points, which lie on C, can be connected
in pairs, a i to a;, f3i to t3;, yi to y; by geodesics in H .  These geodesics lie on faces of
the canonically defined fundamental polyhedron for cpi . Since the factor space
(H 3 u 52,)/(p i = S x [0, 1], there is a natural identification of the surfaces S x {0} and
S x {1} which is determined by the marking. With this identification we can think
of the geodesics joining the Weierstrass points as forming a generalized braid. It is
clear from the existence of the canonical fundamental polyhedron that for nice groups
this braid is trivial. These braids exist not only for the elementary groups cpi but
for the full group F .  In the latter situation they have many strands, in fact three
for each basic subgroup. It follows from the constructions that if F is nice these
many-stranded braids are trivial.

Jorgensen and Marden [11] have considered these braids in their work on
Kleinian groups. They have shown that when the group is geometrically infinite
these braids are infinite. S in ce  the geometrically infinite groups are the most difficult
to understand, one can use these braids as a measure of the complexity of these groups.
The nice groups are the simplest in this scheme. It would be interesting to char-
acterize further the relationship between the trace moduli and these braids.

Consider the gluing parameters as fixed points. Denote a generic one by
We have seen that when is real we obtain a Fuchsian subgroup in F bigger than any
we began with. This real can be throught of as follows. In the gluing procedure
we amalgamate over a cyclic subgroup of F which we denote here by <K>. <K>
determines a free homotopy class on each of the boundary surfaces of the quotient.
Let S be one of these surfaces and let y be a geodesic in this free homotopy class.
Let S be cut along y, then twisted and glued back together. I f  is real, it measures
this twist. The imaginary part of corresponds to a bending of the surface before
it is reglued. Changing only the param eter changes the conformal structure of
both of the boundary surfaces. This follows easily from the formulas in [24] and
[25].

Using the fundamental polyhedra we can obtain an explicit construction of some
groups which are on the boundary of T (F). Let F 0 be a fixed nice group. If the
trace of the element A,B, of F0 is Z0 , set zr = (1 — t)z, + 2t, t E [0, 1). Varying the
other moduli continuously subject to the conditions which make the group nice
and letting the trace of A ,B , take the values zt we obtain a path in T (F). At the
endpoint of the path (t=1) z 1 =2 and the element 413 1 is parabolic. E a c h  point
of the path corresponds to a nice group and the boundary point is a cusp (see [5, 22]).
In the fundamental regions 4 1-, the circles E  and E ' (of the construction of z1T1)
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become tangent at the now single fixed point of B 1 A 1 . S im ilarly  the circles D and D'
become tangent at the single fixed point of A i Bl . On one of the boundary surfaces of
(H u St x [0, 1] a curve on a handle has become pinched. Bers describes
this as "acquiring a node" (see [6]). We can perform an analogous deformation to
a cusp on the boundary by starting with any element of F0 which has a real trace.
We must make sure that our normalization does not fix the fixed points of the element
we are making parabolic. If we insist on keeping the path on the Fuchsian locus
g 22 we will "lose" part of the group — that is, the limit group will no longer be
isomorphic to F o . However we can vary through quasifuchsian nice groups to obtain
a cusp group which is isomorphic to F o .

These groups on the boundary are again nice groups since they have fundamental
polyhedra with no interior vertices. Suppose now we fix such a group F 1 on the
boundary — that is F 1 is an isomorphic image of Fo and there is a parabolic element
in F 1 whose preimage in F o  is loxodromic. We can vary the parameters of F 1 so
that we remain on the boundary of T(T) and obtain a subspace of nice groups in this
boundary. In the main body of this paper we assumed that all the group elements
were loxodromic. If our original marked group had parabolic elements all the
constructions would take place in this subspace. The basic canonical fundamental
domains for the basic groups of the subgroup decomposition would be modified
somewhat. The constructions for these groups are easily adapted from those for
punctured tori and degenerate punctured tori described in [16] and those described
as canonical polygons without accidental vertices in  [12]. The latter can also be
adapted if the original marked group contains elliptic elements.

The trace moduli we have defined are global in the following sense. The same
set of traces can be used for any "nice" group. The number of traces we have had
to use is greater than the dimension. Therefore our space is defined in terms of
traces and relations. In [18], we indicated why, for Fuchsian groups, starting with
a standard marking, this must be s o .  Recently, Wolpert [26] has shown that, for
Fuchsian groups of type (g, 0), no set of 6g —6 trace can serve as global moduli.
It follows then that the same is true for quasifuchsian groups.

HERBERT H. LEHMAN COLLEGE
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