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1. Let H" be hyperbolic n-space, and let L" denote the group of isometries of
H"; the orientation preserving half of L" is denoted by Lit. A parabolic element of
L" is a transformation which has exactly one fixed point in the Euclidean closure of
H " .  If we normalize so that H" is the upper half-space, and the parabolic element
j has its fixed point at co, then, in its action on E n -1 = E n -1  -u f o o l =O H ", j(x )= r(x)+
b, where r is an orthogonal transformation, and b is not in the range of 1 — r. If r = 1,
then j  is a pure parabolic transformation, or translation, while if r 1, j  is impure.

The following question was posed by John Morgan (oral communication).
Is there a  cofinite volume discrete subgroup G  of L", containing pure parabolic
elements, and a deformation 0  of G in some L'n, m>  n, where the corresponding
parabolic elements of 0  are impure?

Note that if m <4, then every parabolic element of L'n is pure.
For m =n+1 , it follows from a theorem of Cheeger and Gromoll [1] that a

discrete free abelian group of orientation preserving Euclidean motions of rank n — 1,
acting on E", contains only pure parabolic elements ; we outline an  elementary
proof of this fact below. It follows that if G is a discrete subgroup of L^, of cofinite
volume, and G contains only pure parabolic transformations, then no deformation
of G in L"± 1 contains impure parabolic elements.

For higher codimension, we give examples to show that one can deform a pure
parabolic subgroup into an impure one. These examples also serve as examples for
the following. For every n > 4, and for every positive kS  n — 3, there is a family
of non-conjugate discrete subgroups {G a } of L", with the following properties. The
family is parametrized by (S 1)" ; for n=4 and 5 the Ga a ll have the same limit set, a
Euclidean sphere of dimension k ; for all n 4 and for almost all a, the stabilizer in
GOE of the hyperbolic (k+1)-plane spanning the limit set is the identity (in particular,
for almost all a, G Œ is not conjugate in L" to a subgroup of L 1 +1) ; and all the G Œ

have the same finite sided fundamental polyhedron, with the same combinatorial
identifications.
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Examples of distinct discrete groups with the  same fundamental polyhedron
were first given by Wielenberg [3].

2. We start with a  canonical extension of L" into L" - " ,  and a  corresponding
extension of fundamental polyhedrons in H " to fundamental polyhedrons in  H"+'.

Consider H" as a  subset of t " ,  then an element of L" is a  conformal homeo-
morphism of P" = 

a H n +  1  . Every conformal homeomorphism of E. has a unique
extension to an isometry of H"+2 .

Similarly, let D" be a fundamental poly hedron in H" for the discrete subgroup G
of L " . Each side s of D" lies on a hyperbolic hyperplane in H", which in  turn lies
on  a  hypersphere H  in  E.. There is a unique hyperbolic hyperplane P  in  Ht1 + 1

whose Euclidean boundary is H .  The union of all the hyperspheres corresponding
to the sides of D" separates t"  into some number of components ; one or two of them
contain D" and its reflection in a H " . Call this component, or union of two com-
ponents, 13.. There is a  unique polyhedron D"±' in  H" 4 -1 whose boundary is B..
Each side s"+' of D '  contains, in its boundary, a  side s" of D"; if f  E G maps s"
onto (s)", then f ,  as an element of L" 4 1 ,  also maps s"± 1 onto (sr " .  It is clear
that D"± 1  is a fundamental polyhedron for the action of G on H"±'.

3. For our first example, we start with a finitely generated torsion-free Fuchsian
group G, of the first kind. We assume that G has signature (p, n), nO 1. Let A 1 ,
B ,,..., A p , Bp , C 1 ,..., C„ be a standard set of generators for G, where the A . and B„,
are hyperbolic, the Cm  a re  parabolic, and these generators satisfy the one defining
relation: 11[A m , Bm ][1C,—  1. Let D2 be a fundamental polygon in H2 for G, where
the sides of D2  are identified precisely by these generators.

Let D3 and  D4  be the extensions of D2 to H 3 and  H4  a s  above ; we regard G
as acting on H4  (i.e., H 2 = {(x, t)I t > 0} = {(x, t, 0, 0) E H4 }. For every 60,  let r(0)
be the rotation of E3 , through an angle 0, about the axis R= {x2  = x3 = 0}. Note
that /1=R  u {oo} = A (G), the limit set of G. Hence, as maps of t 3 , and also H 4 ,
every such rotation commutes with every element of G.

Let g  be a generator of G, where g  maps the side s of D2 to the side s'. The
extension of D2 to E3 , call it /53 , can be obtained from D 2 by rotating the boundary
about the line R .  Call the sides of D3 by the same names as the corresponding sides
of D2 . One sees at once that for every 0, r(0).g(s)=s'.

Choose arbitrary angles of rotation Om , 0Ç,, m =1,..., p , and (pm , m =1,..., n,
where E (p„, = O. Define the homomorphism p: G--+ L4  by p(A m )=r(0.).A ,,,, p(B„,)=

).B „„ and p(C ,„)=r(cp„).C . The sides o f D4  a r e  pairwise identified by the
generators of p(G); the one relation is satisfied, and it is easy to see that P(C m ) is
again parabolic. Hence, by Poincares polyhedron theorem, (see [2] for proof),
p(G) is discrete, and p is an isomorphism.

We remark that, independent of the choice of rotations, p(G) and G have the
same limit set,

4 .  For our next example, let 1)1 ,—, b„_ I be the standard basis vectors in En - 2 ,
and let h1 ,..., b„_, be the standard dual basis. Let j„,(x)= x + \ /2b„„ and let J
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015.••>/n-1>, the group generated by the j„,. In Efl - 1 , choose the standard funda-
mental polyhedron for J to be bounded by the hyperplanes s„,= {xi 6„,(x)=1/V2},
and s„={xIb n i (x )= — 1/V2} .  These hyperplanes s n, and s'„, have canonical extensions
to H", where they bound a fundamental polyhedron for J .  We call the extensions
and the original hyperplanes by the same names.

Let g  be the reflection in the unit sphere in E"; i.e., g(x)=xl1xI 2 , and let s2 „_
be the intersection of the Euclidean unit sphere in En with H " .  The hyperbolic
hyperplanes s 1 , si,..., sn— 1, s

'n— 1, and s2 ,,_
1
 bound a polyhedron D " H ", whose sides

are identified by the elements i j n -1 , and g; that is, if we denote the side of D"
which lies on 5, by gk, then j„,(§,„)=3„,' , and a(K 2n— 1) =

 1 *  Let G =  g>, the
group generated by J and g .  Of course, g  is an involution, and one easily sees that
G has the relations indicated by the sum of the angles at each cycle of edges of D";
that is, G  satisfies the relations: j m ojk = jkoj., g 2 =  1 ,  ( i  )mogoi;logs 2 = 1. Hence by
PoincarCs polyhedron theorem, G is discrete, and we have listed all the relations in
G.

Extend the action of G to En+1 , and write a point in E"+ 1 as (x , z ), where x e
E" - 1 -, and z e C .  Define the rotation r(0) by r(0)(x, z)=(x, eiez). Choose some
set of rotation angles 1, and set 1„,=r(0„,)0j„„ where, as usual, j„,(x, z)=
(j,,,(x), z). Then, using the canonical extension, C = —1,•••,Jr1-11 g >  acts on 1/17+2 .
Use the canonical extension of D" to Dn+2 , and observe that, since every r(0) com-
mutes with every j„, and with g ,  the sides of D"+ 2 are identified by the generators of
C .  One easily verifies that the map p: G - +C, mapping 1„, to 1„„ and g  to g ,  is a
homomorphism. Hence we can again apply PoincarCs theorem to conclude that C
is discrete, that p  is an isomorphism, and that D"+2 is  a fundamental polyhedron
for the action of 0 on H"+ 2 .

Of course D " - 2  is also a fundamental polyhedron for the action of G on Hn+ 2 ,
so we have produced a deformation space of discrete groups, of real dimension n - 1,
where all the groups in the space have the same fundamental polyhedron, with the
same combinatorial identifications of the sides. It is clear that the orientation
preserving halves of these groups have the same properties.

5 .  Now let G be a discrete subgroup of L" of cofinite volume, where every para-
bolic element of G is pure, and let C be a deformation of G in L"+1 . We outline a
proof of the fact that every parabolic element of C is pure.

We start with the remark that every element of Li' either has a fixed point in the
interior of H" (i.e., it is elliptic), or it has exactly one fixed point on the sphere at co
(i.e., it is parabolic), or it has exactly two fixed points on the sphere at oo (i.e., it is
loxodromic).

It is easy to see that since G has cofinite volume, and every parabolic element
of G is pure, G is either cocompact, in which case it contains no parabolic elements,
or every subgroup of G containing only parabolic elements is free Abelian, of rank
n - 1. Hence it suffices to prove that if G is a group of Euclidean isometries, acting
on E", where G is free Abelian of rank n — 1, then every element of G is pure.

We next remark that we can normalize G so that for some parabolic element
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j(x )=r(x )+b , r(b )=  b. Let j'(x)= r(x)+ b' be some parabolic element of G .  Since
j ' has no finite fixed point, b' is not in the range of 1 — r. Since the range and null-
space of 1—r are orthogonal, there is a translation t, so that j= tofot - ' has the form
j(x )= r(x)+ b, where r(b)=b.

Choose a set of free generators j „ _  for G; write j m (x)= r,,,(x)+ b„„ and
normalize so that r 1 (b 1 )= b 1 . Assume that r 1 01.

Since j i  and j„, commute, r i  and rm  commute, and we also obtain

(ri —1)(bm )-= (r. - 1)(b i) •

Notice that

(r i -1 ) 2 (b„,)=(ri — 1) (r . - 1)(b1)

= (r m — 1)(r — 1) (b

=0.

Since the range and nullspace of r  — 1 are orthogonal, r,(b„,)=b m .
Let N , be the nullspace of ri  —1. We have shown that every bm  E N 1 , and one

easily sees that N 1 is preserved by every r m . Hence G acts on N i , and, in its action
on N 1 , j 1 is pure. Regard  N 1 as a  Euclidean space, note that G acts as a group of
parabolic elements on N 1 , normalize so that r2 (b2 )= b 2 , note that this renormalization
leaves j i  as a pure translation, and continue inductively. At the end, we have an
m-dimensional Euclidean space N, on which G acts as a group of pure translations.

Since every element of G preserves orientation, the codimension of N 1 >1; i.e.,
the dimension of N is < n -2 .  Also since for each j m , b„, is not in the range of 1 — rm ,
the dimension of N is > 1. Since G is discrete, and of rank n-1 , there is a non-trivial
element j e G with fIN =1.

Write En= N M, where M is  orthogonal to  N .  Then j  stabilizes both N
and M, and, since all the vectors b,„ lie in N, JIM  is orthogonal, and so j  has finite
o rder. This contradicts the assumption that J is free Abelian.
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