Holomorphic families of isomorphisms of Möbius groups*

To Yukio Kusunoki on his 60th birthday

By

Lipman Bers

This note contains a new proof and a slight extension of a result by Sullivan (see Proposition 1 below).

The group PSL(2, C) may be identified with the group of all conformal selfmaps of the Riemann sphere $\hat{C} = C \cup \{\infty\}$ (Möbius transformations). In what follows G denotes a subgroup of PSL(2, C) and A a subset of \hat{C} invariant under G and containing at least 3 points. An isomorphism $X: G \rightarrow PSL(2, C)$ is said to be *induced* by an injection $f: A \rightarrow \hat{C}$ if

$$f \circ g(a) = X(g) \circ f(a)$$
 for $g \in G, a \in A$.

An isomorphism induced by a quasiconformal self-map of \hat{C} is called a *quasicon*formal deformation.

Let $D \subset C$ be a domain. A holomorphic family of injections $\{f_{\lambda}\}$ of A, defined over D, is a rule assigning an injection $f_{\lambda}: A \to C$ to every $\lambda \in D$ so that for every $a \in A$ the point $f_{\lambda}(a)$ depends holomorphically on λ . A holomorphic family of isomorphisms $\{X_{\lambda}\}$ of G, defined over D, is a rule assigning to each $\lambda \in D$ an isomorphisms $X_{\lambda}: G \to PSL(2, C)$ so that for every $a \in \hat{C}$ and every $g \in G$ the point $X_{\lambda}(g)(a)$ depends holomorphically on λ . The family $\{X_{\lambda}\}$ is induced by the family $\{f_{\lambda}\}$ if f_{λ} induces X_{λ} for every $\lambda \in D$.

Proposition 1. Let the holomorphic family $\{f_{\lambda}\}$ of injection of A induce the holomorphic family $\{X_{\lambda}\}$ of isomorphisms of G, both families being defined over a domain $D \subset C$. If there is a $\lambda_0 \in D$ such that X_{λ_0} is a quasiconformal deformation of G, so are all X_{λ} , $\lambda \in D$.

For a finitely generated group G this assertion is proved (though not formulated as a special proposition) in §6 of Sullivan's paper [3]. Sullivan observes that the proof involves a "delicate point".

We establish fiirst a more precise result.

Proposition 2. Under the hypotheses of Proposition 1, assume that D is the

Communicated by Prof. Kusunoki Oct. 29, 1984

^{*} Work partially supported by the National Science Foundation, Grant DMS84-02710.

unit disc $|\lambda| < 1$, $\lambda_0 = 0$ and $f_0 = id$ (so that $X_0 = id$). Then there is a holomorphic family $\{F_{\lambda}\}$ of quasiconformal self-maps of \hat{C} defined over the disc $|\lambda| < \frac{1}{3}$ such that $F_0 = id$ and F_{λ} induces X_{λ} (for $|\lambda| < \frac{1}{3}$).

The proof is based on Theorem 3 in Bers-Royden [1]. According to this theorem there exists a *unique* holomorphic family $\{F_{\lambda}\}$ of quasiconformal self-maps of \hat{C} , defined over $|\lambda| < \frac{1}{3}$, such that (i) $F_0 = id$, (ii) for $|\lambda| < \frac{1}{3}$ we have

 $F_{\lambda} \mid A = f_{\lambda},$

and (iii) the Beltrami coefficient of $F_{\lambda'}$ i.e.,

$$\mu_{\lambda} = (\partial F_{\lambda} / \partial \bar{z}) / (\partial F_{\lambda} / \partial z)$$

is harmonic in $\hat{C} \setminus \hat{A}$, where \hat{A} denotes the closure of A in \hat{C} .

Condition (iii) means that in any component of $\hat{C} \setminus \hat{A}$.

$$\mu_{\lambda}(z) = \rho(z)^{-2} \overline{\psi_{\lambda}(z)}$$

where $\rho(z)|dz|$ is the Pioncaré metric in the component of $\hat{C}\setminus\hat{A}$ containing z and $\psi_{\lambda}(z)$ is holomorphic in that component. (The condition is vacuous if $\hat{A} = \hat{C}$).

Set, for some $g \in G$,

$$\widetilde{F}_{\lambda} = X_{\lambda}(g)^{-1} \circ F_{\lambda} \circ g.$$

Then $\{\tilde{F}_{\lambda}\}$ is a holomorphic family of quasiconformal self-maps of \hat{C} , defined over $|\lambda| < \frac{1}{3}$, and $\tilde{F}_0 = id$. Since

$$f_{\lambda} \circ g \mid A = X_{\lambda}(g) \circ f_{\lambda}$$

we have that

$$\begin{split} \widetilde{F}_{\lambda} \mid A = X_{\lambda}(g)^{-1} \circ F_{\lambda} \circ g \mid A \\ = X_{\lambda}(g)^{-1} \circ f_{\lambda} \circ g \mid A = f_{\lambda} \,. \end{split}$$

Finally, the Beltrami coefficient $\tilde{\mu}_{\lambda}$ of \tilde{F}_{λ} (in $\hat{C}\setminus\hat{A}$) is easily computed to be

$$\begin{split} \tilde{\mu}_{\lambda}(z) &= \mu_{\lambda}(g(z))\overline{g'(z)}/g'(z) \\ &= \left[\rho(g(z))|g'(z)|\right]^{-2}\overline{\psi_{\lambda}(g(z))g'(z)^{2}} \\ &= \rho(z)^{-2}\overline{\varphi_{\lambda}(z)} \end{split}$$

where $\varphi_{\lambda}(z)$ is holomorphic in the component containing z. (Here we used the conformal invariance of the Poincaré metric).

The uniqueness statement of Theorem 3 in [1] implies that $\tilde{F}_{\lambda} = F_{\lambda}$ for every g. Thus

$$X_{\lambda}(g) = F_{\lambda} \circ g \circ F_{\lambda}^{-1}$$
 for $|\lambda| < \frac{1}{3}$.

Corollary 1. Under the hypotheses of Proposition 1, assume that D is the unit disc and $\lambda_0 = 0$. For $|\lambda| < \frac{1}{3}$ the isomorphism X_{λ} is a quasiconformal deformation.

Proof. Set $\tilde{A} = f_0(A)$, $\tilde{G} = X_0(G)$, $\tilde{f}_{\lambda} = f_{\lambda} \circ f_0^{-1}$, and $\tilde{X}_{\lambda} = X_{\lambda} \circ X_0^{-1}$. Now apply Proposition 2 to the holomorphic families $\{\tilde{f}_{\lambda}\}$ and $\{\tilde{X}_{\lambda}\}$ of injections of \tilde{A} and of isomorphisms of \tilde{G} , respectively.

Corollary 2. Under the hypotheses of Proposition 1, assume that D is simply connected and $D \neq C$. For every λ inside the Poincaré disc (in D) with center λ_0 and radius log 2 the isomorphism X_{λ} is a quasiconformal deformation.

Proof. Map D conformally onto the unit disc, taking λ_0 into the origin. Then apply Corollary 1 and note that the Poincaré distance (in the unit disc) from 0 to a point ξ with $|\xi| = \frac{1}{3}$ is log 2.

Proof of Proposition 1. It suffices to prove the proposition for the case when D is simply connected and $D \neq C$ since given any λ_1 in D there is a bounded simply connected domain $D_0 \subset D$ containing λ_0 and λ_1 .

If $D \neq C$ and D is simply connected, let Θ denote the set of all λ in D for which X_{λ} is a quasiconformal deformation. Then $\lambda_0 \in \Theta$, by hypothesis, and Θ is open and closed, by Corollary 2. Hence $\Theta = D$, q.e.d.

Here is an application of Proposition 1.

Theorem. Let G contain two loxodromic (including hyperbolic) elements with 4 distinct fixed points.

Let $\{X_{\lambda}\}$ be a holomorphic family of isomorphisms of G defined over D, with X_{λ_0} a quasiconformal deformation for some $\lambda_0 \in D$. Assume that, for all $\lambda \in D$, (i) $X_{\lambda}(G)$ is discrete and (ii) $X_{\lambda}(g)$ is parabolic if and only if $g \in G$ is. Then each X_{λ} is a quasiconformal deformation.

Proof. By (i) and (ii), $X_{\lambda}(g)$ is elliptic if and only if $g \in G$ is. Let A be the set of fixed points of loxodromic elements of G. Recalling that two loxodromic Möbius transformations with precisely 3 distinct fixed points generate a non-discrete group, we conclude from (i) and (ii) that the map f_{λ} which takes an attracting fixed point of a loxodromic element $g \in G$ into the attracting fixed point of $X_{\lambda}(g)$ is a well-defined injections of A.

Next we verify that f_{λ} induces X_{λ} . Let us denote the attracting fixed point of a loxodromic $h \in G$ by $\alpha[h]$. If g is any element of G, then

$$f_{\lambda} \circ g(\alpha[h]) = f_{\lambda}(\alpha[g \circ h \circ g^{-1}])$$

= $\alpha[X_{\lambda}(g \circ h \circ g^{-1})] = \alpha[X_{\lambda}(g) \circ X_{\lambda}(h) \circ X_{\lambda}(g)^{-1}]$
= $X_{\lambda}(g)(\alpha[X_{\lambda}(h)]) = X_{\lambda}(g) \circ f_{\lambda}(\alpha[h])$

as required.

Lipman Bers

Clearly, $f_{\lambda_0} = id$. and $f_{\lambda}(\alpha[h]) = \alpha[X_{\lambda}(h)]$ depends holomorphically on λ , for a fixed loxodromic h. Now apply Proposition 1.

(Stronger results hold for finitely generated G, see [2]).

DEPARTMENT OF MATHEMATICS, Columbia University

References

- [1] L. Bers and H. S. Royden, Holomorphic families of injections, to appear.
- [2] D. Sullivan, Quasiconformal homeomorphisms and dynamics II. Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985), 243-260.

Added in proof. Hypothesis (ii) in the theorem follows easily from the others (as observed by C. McMullen).