# On the $L^{2}$-boundedness of pseudo-differential operators 

By<br>Yoshiki Higuchi and Michihiro Nagase

## §1. Introduction.

Let $\mathbf{R}^{n}$ denote the n-dimensional Euclidean space. Let $m, \rho$ and $\delta$ be real numbers with $0 \leq \rho, \delta \leq 1$. If a smooth function $p(x, \xi)$ on $\mathbf{R}_{x}^{n} \times \mathbf{R}_{\xi}^{n}$ satisfies

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{m-\rho|\alpha|+\delta|\beta|} \tag{1.1}
\end{equation*}
$$

for any multi-indices $\alpha$ and $\beta$, then we say that $p(x, \xi)$ belongs to Hörmander's class $S_{\rho, \delta}^{m}$ (see, for example, [5]). For $p(x, \xi)$ in $S_{\rho, \delta}^{m}$ we define the pseudodifferential operator $p\left(X, D_{x}\right)$ by

$$
\begin{equation*}
p\left(X, D_{x}\right) u(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi \tag{1.2}
\end{equation*}
$$

where $\hat{u}(\xi)$ denotes the Fourier transform of $u(x)$, that is, $\hat{u}(\xi)=\int e^{-i x \cdot \xi} u(x) d x$ and we denote $p\left(X, D_{x}\right) \in L_{\rho, \delta}^{m}$. The function $p(x, \xi)$ is called the symbol of the operator $p\left(X, D_{x}\right)$. In [4], Hörmander proved that if all of the operators in $L_{\rho, \delta}^{m}$ are $L^{2}\left(\mathbf{R}^{n}\right)$-bounded then $m \leq \min \left\{0, \frac{n}{2}(\rho-\delta)\right\}$, by giving counter examples. When $\delta<1$, Calderón and Vaillancourt in [1] showed that $m \leq \min \left\{0, \frac{n}{2}(\rho-\delta)\right\}$ implies the $L^{2}\left(\mathbf{R}^{n}\right)$-boundedness of the operators in $L_{\rho, \delta}^{m}$. Moreover, when $\rho=\delta<1$, there are many generalized theorems to the case of non-regular symbols (see, for example, [3], [7] and [12]). On the other hand, when $\delta=1$, Chin-Hung-Ching in [2] proved that $S_{1,1}^{0}$ does not always define $L^{2}\left(\mathbf{R}^{n}\right)$-bounded operators, and Rodino in [11] proved that the operator in $L_{p, 1}^{-n(1-\rho) / 2}$ is not always $L^{2}\left(\mathbf{R}^{n}\right)$ bounded, by constructing the counter examples.

In the present paper we give also an example of symbols which is in $S_{\rho, 1}^{-n(1-\rho) / 2}$ but define operators unbounded in $L^{2}\left(\mathbf{R}^{n}\right)$, and we show that the decreasing order $n(1-\rho) / 2$ of symbols is critical in a sense (see [6]). Our example is similar to the example constructed by Chin-Hung-Ching in the case $\rho=1$, and therefore a little different from the one of Rodino in [11].

In Section 2 we give an $L^{2}\left(\mathbf{R}^{n}\right)$-boundedness theorem and in Section 3 we construct an example of symbols to show that the theorem in Section 2 is critical.

## §2. $L^{2}$-boundedness theorem.

Let $\|f\|_{L^{2}}$ denote the norm of $L^{2}\left(\mathbf{R}^{n}\right)$. We use $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$. Let $S$ denote the set of Schwartz rapidly decreasing functions in $\mathbf{R}^{n}$. We assume that the symbols in the present paper are at least measurable in $\mathbf{R}_{x}^{n} \times \mathbf{R}_{\xi}^{n}$. Then the following lemma is shown in [10].

Lemma 2.1. We assume that a symbol $p(x, \xi)$ satisfies that the support of $p(x, \xi)$ is contained in $\{\xi ;|\xi| \leq R\}$ and

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} p(x, \xi)\right| \leq N \quad \text { for } \quad|\alpha| \leq \kappa=\left[\frac{n}{2}\right]+1 \tag{2.1}
\end{equation*}
$$

Then the operator $p\left(X, D_{x}\right)$ is $L^{2}\left(\mathbf{R}^{n}\right)$-bounded and we have

$$
\begin{equation*}
\left\|p\left(X, D_{x}\right) u\right\|_{L^{2}} \leq C N\|u\|_{L^{2}} \quad \text { for } u \text { in } S, \tag{2.2}
\end{equation*}
$$

where the constant $C$ is independent of $p(x, \boldsymbol{\xi})$.
Theorem 2.2. Let $0 \leq \rho \leq 1$. Suppose that a symbol $p(x, \xi)$ satisfies that

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} p(x, \xi)\right| \leq N\langle\xi\rangle^{-n(1-\rho) / 2-\rho|\alpha|} \omega\left(\langle\xi\rangle^{-1}\right) \quad \text { for } \quad|\alpha| \leq \kappa \tag{2.3}
\end{equation*}
$$

where $\omega(t)$ is a non-negative and non-decreasing function on $[0, \infty)$ and satisfies

$$
\begin{equation*}
\int_{0}^{1} \frac{\omega(t)^{2}}{t} d t=M_{2}^{2}<\infty \tag{2.4}
\end{equation*}
$$

Then the operator $p\left(X, D_{x}\right)$ is $L^{2}\left(\mathbf{R}^{n}\right)$-bounded and we have

$$
\begin{equation*}
\left\|p\left(X, D_{x}\right) u\right\|_{L^{2}} \leq C\left(1+M_{2}\right) N\|u\|_{L^{2}} \quad \text { for } u \text { in } S, \tag{2.5}
\end{equation*}
$$

where the constant $C$ is independent of $p(x, \xi)$.
Proof. By the assumptions and Lemma 2.1 we may assume that the symbol $p(x, \xi)$ has the support in $\{\xi:|\xi| \geq 2\}$ and satisfies

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} p(x, \xi)\right| \leq N|\xi|^{-n(1-\rho) / 2-\rho|\alpha|} \omega(|\xi|)^{-1} \quad \text { for } \quad|\alpha| \leq \kappa . \tag{2.3}
\end{equation*}
$$

We take a smooth function $f(t)$ on $\mathbf{R}^{1}$ such that the support is contained in the interval $\left[\frac{1}{2}, 1\right]$ and $\int_{0}^{\infty} \frac{f(t)^{2}}{t} d t=1$. Then since $\int_{0}^{\infty} \frac{f(t|\xi|)^{2}}{t} d t=1$ for $\xi \neq 0$, we have

$$
\begin{aligned}
p\left(X, D_{x}\right) u(x) & =(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi \\
& =\int_{0}^{\infty} \frac{d t}{t} \int K_{t}(x, z) G_{t}(x-t z) d z
\end{aligned}
$$

where

$$
K_{t}(x, z)=(2 \pi)^{-n} \int e^{i_{2} \cdot \xi} p(x, \quad \vdots, ~ f(|\xi|) d \xi
$$

and

$$
G_{t}(x)=f\left(t\left|D_{x}\right|\right) u(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi} f(t|\xi|) \hat{u}(\xi) d \xi
$$

Since the support of $p\left(x, \frac{\xi}{t}\right) f(|\xi|)$ is contained in $\left\{\xi ; \frac{1}{2} \leq|\xi| \leq 1,|\xi| \geq 2 t\right\}$, we can write

$$
\begin{align*}
p\left(X, D_{x}\right) u(x)= & \int_{0}^{1 / 2} \frac{d t}{t} \int K_{t}(x, z) G_{t}(x-t z) d z  \tag{2.6}\\
= & \int_{0}^{1 / 2} \frac{d t}{t} \int_{|z| \leq t^{\rho-1}} K_{t}(x, z) G_{t}(x-t z) d z \\
& +\int_{0}^{1 / 2} \frac{d t}{t} \int_{|z| \geq t^{\rho-1}} K_{t}(x, z) G_{t}(x-t z) d z \\
= & I u(x)+I I u(x)
\end{align*}
$$

Using the Schwarz ineuality we have

$$
|I u(x)|^{2} \leq\left(\int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int\left|K_{t}(x, z)\right|^{2} d z\right)\left(\int_{0}^{1 / 2} \frac{d l}{t} \int_{|z| \leq t^{\rho-1}} t^{-m}\left|G_{t}(x-t z)\right|^{2} d z\right)
$$

where $m=-n(1-\rho)$. By assumptions and the Parseval equality we have

$$
\begin{aligned}
& \int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int\left|K_{t}(x, z)\right|^{2} d z=(2 \pi)^{-n} \int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int\left|p\left(x, \frac{\xi}{t}\right) f(|\xi|)\right|^{2} d \xi \\
& \quad \leq C^{2} N^{2} \int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int_{1 / 2 \leq|\xi| \leq 1}\left(\frac{|\xi|}{t}\right)^{m} \omega\left(\left(\frac{|\xi|}{t}\right)^{-1}\right)^{2} d \xi \\
& \quad \leq C^{2} N^{2} \int_{0}^{1 / 2} \omega(2 t)^{2} \frac{d t}{t}=C^{2} N^{2} M_{2}^{2}
\end{aligned}
$$

Therefore we have

$$
\begin{align*}
& \|I u\|_{L^{2}}^{2} \leq C^{2} N^{2} M_{2}^{2} \int\left(\int_{0}^{1 / 2} t^{-m} \frac{d t}{t} \int_{|z| \leq t^{\rho-1}}\left|G_{t}(x-t z)\right|^{2} d z\right) d x  \tag{2.7}\\
& \quad=C_{2} N^{2} M_{2}^{2} \int_{0}^{1 / 2} t^{-m}\left(\int_{|z| \leq t^{\rho-1}}\left(\int\left|G_{t}(x)\right|^{2} d x\right) d z\right) \frac{d t}{t} \\
& \quad \leq C^{2} N^{2} M_{2}^{2} \int_{0}^{\infty}\left(\int|f(t|\xi|) \hat{u}(\xi)|^{2} d \xi\right) \frac{d t}{t} \\
& \quad=C^{2} N^{2} M_{2}^{2}\|u\|_{L^{2}}^{2}
\end{align*}
$$

Here and hereafter the constants C are not always the same at each occurence. In a similar way we have

$$
\begin{aligned}
|I I u(x)|^{2} \leq & \left(\int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int|z|^{2 \kappa}\left|K_{t}(x, z)\right|^{2} d z\right) \\
& \times\left(\int_{0}^{1 / 2} t^{-m} \frac{d t}{t} \int_{|z| \geq t^{\rho-1}}|z|^{-2 \kappa \mid}\left|G_{t}(x-t z)\right| d z\right)
\end{aligned}
$$

where $m=(2 \kappa-n)(1-\rho)$. By assumptions we have

$$
\begin{aligned}
& \left.\int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int|z|^{2 \kappa \mid} K_{t}(x, z)\right|^{2} d z=c_{n} \int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int\left|\nabla_{\xi}^{\kappa}\left\{p\left(x, \frac{\xi}{t}\right) f(|\xi|)\right\}\right|^{2} d \xi \\
& \quad \leq C^{2} N^{2} \int_{0}^{1 / 2} t^{m} \frac{d t}{t} \int_{1 / 2 \leq|\xi| \leq 1}\left|\frac{\xi}{t}\right|^{-n(1-\rho)-2 \kappa \rho} t^{-2 \kappa} \omega\left(\left|\frac{\xi}{t}\right|^{-1}\right)^{2} d \xi \\
& \quad \leq C^{2} N^{2} \int_{0}^{1 / 2} \omega(2 t)^{2} \frac{d t}{l}=C^{2} N^{2} M_{2}^{2} .
\end{aligned}
$$

Therefore we have

$$
\begin{align*}
& \|I I u\|_{L^{2}}^{2} \leq C^{2} N^{2} M_{2}^{2} \int\left(\int_{0}^{1 / 2} t^{-m} \frac{d t}{t} \int_{|z| \geq t^{\rho-1}}|z|^{-2 x}\left|G_{t}(x-t z)\right|^{2} d z\right) d x  \tag{2.8}\\
& \quad=C^{2} N^{2} M_{2}^{2} \int_{0}^{1 / 2} t^{-m}\left(\int_{|z| \geq t^{\rho-1}}|z|^{-2 x}\left(\int\left|G_{t}(x)\right|^{2} d x\right) d z\right) \frac{d t}{t} \\
& \quad \leq C^{2} N^{2} M_{2}^{2} \int_{0}^{\infty}\left(\int|f(t|\hat{\xi}|) \hat{u}(\xi)|^{2} d \xi\right) \frac{d t}{l} \\
& \quad=C^{2} N^{2} M_{2 \mid}^{2} \mid u \|_{L^{2}}^{2} .
\end{align*}
$$

From (2.6), (2.7) and (2.8) we obtain the estimate (2.5).
Q. E. D.

Remark. (i) We note that when $\rho=1$ the estimate (2.5) has already been proved in [8].
(ii) If we replace the condition (2.4) by

$$
\begin{equation*}
\int_{0}^{1} \frac{\omega(t)}{t} d t=M_{1}<\infty \tag{2.4}
\end{equation*}
$$

then we can prove the $L^{p \text {-boundedness of the operator for } 2 \leq p \leq \infty \text { (see [9] and }}$ [10]). We can see easily that the condition (2.4)' is stronger than (2.4).

## §3. An example of pseudo-differential operators unbounded in $L^{2}\left(\mathbf{R}^{n}\right)$.

Let $l^{\infty}$ denote the set of bounded sequences $\left\{a_{j}\right\}_{i=1}^{\infty}$ and $l^{2}$ denote the set of sequences $\left\{a_{j}\right\}_{j=1}^{\infty}$ with $\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}<\infty$. We use these in the proof of the following

Theorem 3.1. Let $0 \leq \rho<1$ and let $\omega(t)$ be a non-negative and non-decreasing function on $\mathbf{R}^{1}$ which stisfies

$$
\begin{equation*}
\int_{0}^{1} \frac{\omega(t)^{2}}{t} d t=\infty . \tag{3.1}
\end{equation*}
$$

Then we can construct a symbol $p(x, \xi)$, which satisfies

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{-n(1-\rho) / 2-\rho|\alpha|+|\beta|} \omega\left(\langle\xi\rangle^{-1}\right) \tag{3.2}
\end{equation*}
$$

for any $\alpha$ and $\beta$, so that $p\left(X, D_{x}\right)$ is not bounded in $L^{2}\left(\mathbf{R}^{n}\right)$.
Proof. We choose a sequence $\left\{\tilde{\eta}_{j, k}\right\}_{i=1, k=1}^{\infty} j^{n-1}$ which has the following properties:

$$
\begin{equation*}
\left|\tilde{\eta}_{j, k}\right|=j, \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|\tilde{\eta}_{j, k}-\tilde{\eta}_{j, k^{\prime}}\right|>c_{n} \quad \text { if } k \neq k^{\prime} \tag{3.4}
\end{equation*}
$$

where $c_{n}$ is a constant independent of $j$ with $0<c_{n} \leq 1$.
We take a $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ function $\chi(\xi)$ with $\chi(\xi)=1$ for $|\xi| \leq 1 / 4$ and $\chi(\xi)=0$ for $|\xi| \geq 1 / 2$. We put $\eta_{j, k}=\left|\ddot{\eta}_{j, k}\right| \frac{\rho}{1-\rho} \tilde{\eta}_{j, k}$, then we note that

$$
\begin{equation*}
\left|\eta_{j, k}\right|=j^{\frac{1}{1-\rho}} \tag{3.5}
\end{equation*}
$$

We define $p(x, \xi)$ by

$$
\begin{equation*}
p(x, \xi)=\sum_{j=1, k=1}^{\infty} \sum_{j=1}^{j^{n-1}} a_{j}\left|\eta_{j, k}\right|^{-\frac{n}{2}(1-\rho)} e^{-i \eta_{j, k}, x} \chi\left(\left(c_{n}\left|\eta_{j, k}\right| \rho\right)^{-1}\left(\xi-\eta_{j, k}\right)\right), \tag{3.6}
\end{equation*}
$$

where $\left\{a_{j}\right\}_{j=1}^{\infty}$ is in $l^{\infty}$. We can see that
$\left\{\chi\left(\left(c_{n}\left|\eta_{j, k}\right|^{\rho}\right)^{-1}\left(\xi-\eta_{j, k}\right)\right)\right\}_{j, k}$ have disjoint supports and that

$$
\begin{equation*}
\frac{1}{2}\left|\eta_{j, k}\right| \leq|\xi| \leq \frac{3}{2}\left|\eta_{j, k}\right| \tag{3.7}
\end{equation*}
$$

for any $\xi$ in the support of $\chi\left(\left(c_{n}\left|\eta_{j, k}\right|^{\rho}\right)^{-1}\left(\xi-\eta_{j, k}\right)\right)$.
Hence $p(x, \xi)$ is well-defined as a $C^{\infty}$-function on $\mathbf{R}_{x}^{n} \times \mathbf{R}_{\xi}^{n}$.
Moreover we have

$$
\begin{align*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(x, \xi)\right|= & \sum_{j=1, k=1}^{\infty} \sum_{j=1}^{j^{n-1}} a_{j}\left|\eta_{j, k}\right|^{-\frac{n}{2}(1-\rho)}\left(-i \eta_{j, k}\right)^{\beta}\left(c_{n}\left|\eta_{j, k}\right|^{\rho}\right)^{-|\alpha|}  \tag{3.8}\\
& \times e^{-i \eta_{j, k} \cdot x}\left(\partial^{\alpha} \chi j\left(\left(c_{n}\left|\eta_{j, k}\right|^{\rho}\right)^{-1}\left(\xi-\eta_{j, k}\right)\right) .\right.
\end{align*}
$$

Hence we have

$$
\begin{align*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(x, \xi)\right| & \leq \sum_{j=1, k=1}^{\infty} \sum_{i=1}^{j^{n-1}}\left|a_{j}\right|\left|\eta_{j, k}\right|^{-\frac{n}{2}(1-\rho)+|\beta|-\rho|\alpha|}  \tag{3.9}\\
& \times c_{n}^{-|\alpha|}\left|\left(\partial^{\alpha} \chi\right)\left(\left(c_{n}\left|\eta_{j, k}\right|{ }^{p}\right)^{-1}\left(\xi-\eta_{j, k}\right)\right)\right| .
\end{align*}
$$

Here we set $t_{j}=\left(1+4 j^{\frac{2}{1-\rho}}\right)^{-1 / 2}$ and $a_{j}=\omega\left(t_{j}\right) j=1,2, \cdots \cdots$. Then we can see by (3.5) and (3.7) that $p(x, \xi)$ satisfies (3.2). We note that $\left\{a_{j}\right\}_{j=1}^{\infty}$ is bounded but $\left\{j^{-1 / 2} a_{j}\right\}_{j=1}^{\infty}$ is not in $l^{2}$.

Next we take $\varphi(x)$ in $S$ such that $\varphi(x) \neq 0$ and the support of $\hat{\varphi}(\xi)$ is contained in $\left\{\xi ;|\xi| \leq c_{n} / 4\right\}$, and we define $u_{m}(x)$ in $S$ by

$$
\begin{equation*}
\hat{u}_{m}(\xi)=\sum_{j=1, k=1}^{m} \sum_{j}^{j^{n-1}} b_{j} \hat{\varphi}\left(\xi-\eta_{j, k}\right), \quad m=1,2, \cdots \cdots, \tag{3.10}
\end{equation*}
$$

where $\left\{b_{j}\right\}_{j=1}^{\infty}$ is a sequence in $l^{\infty}$. We note also that $\left\{\hat{\varphi}\left(\xi-\eta_{j, k}\right)\right\}$ have disjoint supports. Therefore we have

$$
\begin{equation*}
\left\|u_{m}\right\|_{L^{2}}^{2}=(2 \pi)^{-n} \sum_{j=1, k, 1}^{m} \sum_{k=1}^{n^{n-1}}\left|b_{j}\right|^{2} \int\left|\hat{\varphi}\left(\xi-\eta_{j, k}\right)\right|^{2} d \xi \tag{3.11}
\end{equation*}
$$

$$
=\left(\sum_{j=1}^{m} j^{n-1}\left|b_{j}\right|^{2}\right)\|\varphi\|_{L^{2} .}^{2}
$$

On the other hand, by the definition, we have

$$
\begin{align*}
& p\left(X, D_{x}\right) u_{m}(x)=\sum_{j=1, k=1}^{m} \sum_{j}^{j^{n-1}} b_{j}(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{\varphi}\left(\xi-\eta_{j, k}\right) d \xi  \tag{3.12}\\
= & \sum_{j=1, k=1}^{m} \sum_{k=1}^{j^{n-1}} b_{j} \sum_{j^{\prime}=1, k^{\prime}=1}^{m} \sum_{k^{n-1}}^{j^{n-1}} a_{j^{\prime}}(2 \pi)^{-n} \int\left|\eta_{j^{\prime}, k^{\prime}}\right|^{-n(1-\rho) / 2} \\
\times & e^{i\left(\xi-\eta_{\left.j^{\prime}, k^{\prime}\right) \cdot x} \chi\right.}\left(\left(c_{n}\left|\eta_{j^{\prime}, k^{\prime}}\right|^{\rho}\right)^{-1}\left(\xi-\eta_{j^{\prime}, k^{\prime}}\right)\right) \hat{\varphi}\left(\xi-\eta_{j, k}\right) d \xi \\
= & \sum_{j=1, k=1}^{m} \sum_{k=1}^{j^{n-1}} a_{j} b_{j}\left|\eta_{j, k}\right|^{-n(1-\rho) / 2}(2 \pi)^{-n} \int e^{i\left(\xi-\eta_{j, k}\right) \cdot x} \hat{\varphi}\left(\xi-\eta_{j, k}\right) d \xi \\
= & \left(\sum_{j=1}^{m} j^{n / 2-1} a_{j} b_{j}\right) \varphi(x) .
\end{align*}
$$

Here we assume that $p\left(X, D_{x}\right)$ is $L^{2}$-bounded, that is,

$$
\left\|p\left(X, D_{x}\right) u\right\|_{L^{2}} \leq C_{0}\|u\|_{L^{2}} \quad \text { for any } u \text { in } S
$$

Then, equalities (3.11) and (3.12) imply

$$
\begin{equation*}
\left|\sum_{j=1}^{m} j^{n / 2-1} a_{j} b_{j}\right|^{2} \leq C_{0}^{2}\left(\sum_{j=1}^{m}\left|b_{j}\right|^{2} j^{n-1}\right) \quad \text { for any } m \tag{3.13}
\end{equation*}
$$

Now by taking $b_{j}=j^{-n / 2} a_{j}$, we obtain

$$
\sum_{j=1}^{m} j^{-1}\left|a_{j}\right|^{2} \leq C_{0}^{2} \quad \text { for any } m
$$

This contradicts that $\left\{j^{-1 / 2} a_{j}\right\}_{i=1}^{\infty}$ does not belong to $l^{2}$.
Therefore the operator $p\left(X, D_{x}\right)$ is not $L^{2}\left(\mathbf{R}^{n}\right)$-bounded.
Q. E. D.

## Department of Mathematics Kobe University of Commerce

## Department of Mathematics College of General Education Osaka University

## References

[1] A. Calderón and R. Vaillancourt, A class of bounded pscudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), 1185-1187.
[2] Chin-Hung Ching, Pseudo-differential operators with non-regular symbols, J. Differential Equations, 11 (1972), 436-447.
[3] R.R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-differentiels, Astérisque, 57 (1978), 1-85.
[4] L. Hörmander, On the L2-continuity of pseudo-differential operators, Comm. Pure Appl. Math., 24 (1971), 529-535.
[5] H. Kumano-go, Pseudo-differential operators, MIT Press, Cambridge, Mass. and London,

England, 1982.
[6] J. Marschall, Pseudo-differential operators with nonregular symbols of the class $\mathrm{S}_{\rho, \delta, \delta}^{m}$ to appear.
[7] T. Muramatsu, Estimates for the norm of pseudo-differential operators by means of Besov spaces $I, L_{2}$-theory, to appear.
[8] T. Muramatsu and M. Nagase, L ${ }^{2}$-boundedness of pseudo-differential operators with nonregular symbols, Canadian Math. Soc. Conference Proccedings, 1 (1981), 135-144.
[9] M. Nagase, On the boundedness of pseudo-differential operators in $L^{p}$-spaces, Sci. Rep. College Gen. Ed. Osaka Univ., 32 (1983), 9-19.
[10] M. Nagase, On some classes of $L^{p}$-bounded pseudo-differential operators, Osaka J. Math., 23 (1986), 425-440.
[11] L. Rodino, On the boundedness of pseudo-differential operators in the class $L_{\rho, 1}^{m}$, Proc. A. M.S., 58 (1976), 211-215.
[12] M. Sugimoto, $L^{p}$-boundedness of pscudo-differential operators satisfying Besov estimates I, to appear.

