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Rings of constants for k-derivations
in k[x, ..., x.]

By

Andrzej Nowickr and Masayoshi NacaTa

In this note we give several remarks on the rings of constants for a family
D of k-derivations in the rings of polynomials over a field £.

1. Preliminaries.

Let us recall at first ([1]) that if £[xy,..., x,] is the ring of polynomials over
a commutative ring £ and fi,..., fo€k[X1....,%,] then there exists a unique
k-derivation d of k[xi,..., x,] such that d(x;)=fi,..., d(xp)=jn. This derivation
d is defined by

d(h) = (0h[0x1) fr+ -+ (0h[dxn) fn.

for A€k[x1s..., Xn).

Let k£ be a field, 4 a commutative k-algebra with 1, and D a family of
k-derivations of 4. We denote by A” the set of constants of 4 with respect to
D, that is,

AP={ac A; d(a)=0 for any deD}.
If D has only one element d then we write A4 instead of Afdl, Tt is clear that

b= 4,
deD

The set AP is a k-subalgebra of A containing £. If 4 is a field then A4” is a
subfield of 4 containing £.

Assume now that 4 has no zero divisors and 4, is the field of quotients of
A. Denote by D the set {d; deD}, where d is the k-derivation of A, defined by

d(af8) = (d(a)b—ad(5))b™%,
for a, beA and b=:0. In this situation we have two subfields of A,:
(AP)y=the field of quotients of A2,
(4,)P=the field of constants of 4, with respect to D.

The following example shows that these subfields could be different
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Example 1.1. Let char(k)=0 and let d be the k-derivation of A=kix, y] such
that d(x)=x and d(y)=y. Then (A%)s==(4p)7.

Proof. Tt is casy to show that (44),=k and x/ye (4y)¢~k.
Proposition 1.2. If D is a family of k-derivations in a k-domain A then
1) kS APC (AP)o< (Ay)PS Ao,
(2) (AP),n A=(A4,)P N A=AP,

The proof is straightforward.

2. The case char(k)=0.
In this section % is always a field of characteristic zero.

Lemma 2.1. If D is a family of k-derivations in a k-domain A then the ring A” is
integrally closed in A.

Proof. Let a4 be an integral element over A” and let
a*+ca* 4 +epgatc, =0,
where ¢,..., c,€A4P and n is minimal. If deD then
0=d(0)=ud(a),

where u=na"'+(n—1)c;a"2+---+cp-1. Since u==0 (because 2 is minimal and
char(k)=0), d(a)=0 and hence, aedné'1d=AD.
(=3

As an immediate consequence of Lemma 2.1 we obtain

Proposition 2.2. If D is a family of k-derivations of A=k[x,..., xn), where k
is a field of characteristic zero, then the ring AP is integrally closed in A. In particular
AP is normal.

Note the following well known ([3] p. 177)

Lemma 2.3. Let LCK be a separable algebraic extension of fields. If d is an
L-derivation of K then d=0.

This lemma implies

Proposition 2.4. If D is a non-zero family of k-derivations of A=k[x,,..., xn],
where k is a field of characteristic zero, then tr.degp(4”)<n—1.

Proof. Let s=tr.degy(4?), K=k(xy,...., x,) and L=(4,)®. It is clear that
s<<n. Suppose now that s=n. Then LCK is a separable algebraic field extension.
If deD then d is an L-derivation of K so, by Lemma 2.3, d=0 and hence d=0;
that is, D=0 and we have a contradiction to our assumption.

Now let us recall a result due to Zariski ([9], see [5] p. 4l)

Zariski’s Theorem 2.5. Let k be a field and let L be a subfield of k(xy,..., x5)
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containing k. If tr.degi(L)<<2 then the ring LNk[x1,..., xy] 15 finitely generated over k.

As a consequence of the Zariski’s Theorem, Propositions 2.4 and 1.2(2) we
obtain the following

Theorem 2.6. Let D be a family of k-derivations of the polynomial ring
k(x1,..., xn] over a field k of characteristic zero. If n<(3 then there exest polynomials
Srseees fsEk[%1ye... ] such that k[xi,..., x,)°=k[ f1,.... f5]-

The next result is due to Zaks ([8], see also [2]).

Zaks’ Theorem 2.7. Let k be a fielld. If R is a Dedekind subring of k[x,..., xn)
containing k then there exist a polynomial fEk[xy,..., xn] such that R=Fk[f].

By Zaks’ Theorem and Theorem 2.6 we have

Thorem 2.8. Let char(k)=0 and let D be a non-zero family of k-derivations of
k[x, y]. Then there exists a polynomial fek([x, y|such that k[x, y]1°=k[f].

Proof. Let R=k[x, y]° and s=tr.degi(R). We know, by Proposition 2.4,
that s<C1. If s=0 then R=k, so R=k[f], where for example f=1. If s=1 then,
by Proposition 2.2 and Theorem 2.6, R is a Dedekind subring of k[x, »] con-
taining £ and hence, by Zaks’ Theorem, R=k[f], for some fek[x, y].

3. Closed polynomials in characteristic zero.
Consider the following family .# of subrings in k[x,,..., x,]:
A=k f]; fEkx1,..., xa]~k}.

If char(k)=0 and k[ f]Sk[g], for some polynomials f, g€k[xi,..., x,]~k, then
deg(f)>deg(g) and hence, we see that in the family .# there exist maximal
elements.

We shall say that a polynomial fek[x,,..., xa]~k is closed if the ring k[ f] is
integrally closed in k[xy,..., x5].

Lemma 3.1. Let char(k)=0 and f€k[x,,..., xa]~k. Then f is closed if and only
if the ring k[ f] is a maximal element in 4.

Proof. Let f be closed and assume that k[ f]<Sk[g] for some g€k[xi,..., x4].
Then fek[g], that is,

f_—_asg3+...+a1g+ao’
for some ay,..., as€k with a=+0. Hence
gtaitas,1 g7 4 tasta g+ (as'a— f) =0

and hence g is integral over k[ f]. Since k[ f] is integrally closed in k[x,,..., x,],
k[ f1=k[g] and we see that [ f] is maximal in .#.

Assume now that k[ f] is a maximal element in .# and denote by E the
integral closure of £[f] in k[xi,..., #4]. Then E is a Dedekind subring of
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k[x1,..., x,] containing k so, by Theorem 2, 7, E=k[k], for some h€k[x,..., ¥5].
Now, by the maximality of k[ f] in .#, k[ f]1=k[h]=F and so, f is closed.

Proposition 3.2. Let D be a family of k-derivations in A=k[x,,..., x,], where k
is a field of characteristic zero. If the ring AP is finitely generated over k (jfor example, if
n<<3) then AP=k or there exist closed polynomials fi,..., fs€ A such that AP=k[ fi,..., f5].

Proof. Assume that AP==k and let A?=k[k,,..., hs] for some hy,..., hy& A—k.
Let fi,..., fs be polynomials in A~k such that k[A;]CSk[f;] and k[f;] is a maxi-
mal element in .#, for i=1,..., s. Then there exist polynomials u(¢),..., u;(¢) €k[¢t]
such that A;=u;(f;), for ¢=1,..., s. We may assume that the polynomials
ui(t),..., us(t) have minimal degrees. Now, using the same argument as in the
proof of Lemma 2.1, we see that f;,..., ;€4”. Hence k[ fi,..., fs]SAP=k[h,..., k)
Ck[ fi...., fs], that is, AP=k[ f1...., f;] and, by Lemma 3.1, fi,..., f; are closed.

Proposition 3.3. Let D be a non-zero family of k-derivations in k[x, y], where
k is a field of characteristic zero. Denote R=k[x, y]°. If f € R~k, then R is the intergral
closure of the ring k[ f] in k[x, »].

Proof. 1If feR~k then R=:k and, by Theorem 2.8 and Proposition 3.2,
R=k[h], for some closed polynomial h€k[x, y]. Hence k[ f]1<k[h], k[A] is inte-
grally closed in k[x, »] and k[A] is integral over k[ f]. This means that R=k[A]
is the integral closure of k[ f] in k[x, y].

Theorem 3.4. Let k be a feld of characteristic zero and let A be a subring of
k[x, y] containing k, such that A is integrally closed in k[x, y]. If Krull-dim(4)<1
then there exists a k-derivation d of k[x, y] such that A=k[x, y]d.

Proof. Let s=Krull-dim(4). If s=0 then A=k and we have A=k[x, y]4,
where, for example, d is such k-derivation of k[x, y] that d(x)=x and d()=y.

Assume that s=1. Then 4 is a Dedekind subring of k[x, y] containing &
(see [2] Theorem 1) hence, by Theorem 2.7, A=k[/] for some closed polynomial
hek[x, y]~k. Consider k-derivation d of k[x, y] such that d(x)=0dk/dy, d(y)=
—oh/ox. Then hek[x, y]¢~k and we see, by Proposition 3.3, that A=k[x, y]d.

4. The case char(k)=p>0.

Throughout this section £ is a field of characteristic p>0.
Denote A=k[x1,..., x,], R=k[x%,..., x%]. It is well known that 4 is a free
R-module on the basis (p-basis)

{x{“.,xin; i1<p,..-, in<p}

and hence, in particular, 4 is a noetherian R-module.
If D is a family of k-derivations of 4 then RCA” and so, A? is an R-sub-
module of 4. Therefore we have

Proposition 4.1. If D is a family of k-derivations of A=k[x:,..., xn], where k
is a field of characteristic p>>0, then there exist polynomials fi,..., fs€A such that
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AP=k[xf...., x4, fi.. 5]

If char(k)=2 and n=2 then the following proposition shows (if D=0 and s
is as in Proposition 4.1) that s=1.

Proposition 4.2. Let k be a field of characteristic two and let D be a non-zero
family of k-derivations in k[x, y]. Then there exists a polynomial feEk[x, y] such that

k[x, y17=k[#%. 5%, f].

Proof. 1f k[x, y]°=k[x%, »?], then k[x, y]°=k[x%, »%, f], where f=1. Assume
that k[x, y]°==k[x2, 3*]. Let fi,..., fs be as in Proposition 4.1, and let fi=a;x+
b; y+cixy+u;, where a;, bs, ¢;, u;ek[x?, »?], for i=1...., s.

We may assume that

(1) fi...., fs do not belong to k[x?, »?],

(2) wyy=+=u=0.
Moreover, we may assume that
(3) there is no elements v;Ek[x%, y*]~k such that »;] f;, for i=1,..., s.

In fact, if for example f,=vg, where vek[x? »¥]~k and gek[x, y], then for any
deD, 0=d( f;)=vd(g), that is, d(g)=0 and hence gek[x, y]? and we have £[x, y]°
=k[x% 3%, g, foseres S5]-

Denote by L the field k(x?, »¥)[fi,..., fs] and let m=[L :k(x% »?)]. Then
m=4, 2 or 1. If m=4 then L=k(x, ») and we have a contradiction to the
assumption that D==0. If m=1, then k[x, y]°=Fk[x?, »2].

Assume now that m=2. Then L=k(x?, »*)[f;], for some i=1,..., s (since
k(x%, y)[ fi] is a two-dimensional subspace of L over k(x%, 3?)), and, in particu-
lar, we have af;=bfs+¢, where a and b are non-zero elements in £[x%, »?] and
cek[x?, »*]. But ¢=0, by (2), hence afi=bf;. Let u=gcd(a, b), a=ua’, b=ub’,
for a’, b’€k[x, y]. Then a/f;=0bf;, gcd(a’, b’)=1 and it is easy to show that
k~{0}. k[x%, »¥]. This implies that a’| f;, &’| f1 so, by (3), @’ and &’ belong to
a’, b’eTherefore fi=¢f;, for some cek~{0} and we have

k[x, y1°=k[x%, 3%, fa fo..., fl
Repeating the above argument we see that k[x, y]?=k[x?% »2, fi].
If char(k)=p>2 then the assertion of Proposition 4.2 is not true, in general.

Example 4.3. Let char(k)=p>2 and let d be the k-derivation of k[x, y] such
that d(x)=x, and d(y)=y. Then there is no polynomial fek(x, y] such that k[x, y]¢

=k[x?, y?, f].

Proof. Suppose that k[x, y]¢=k[x?, y?, f], for some fE€k[x, y], and consider
the monomials x?-!y and xy?-!. We see that these monomials belong to k[x, y]¢.
Therefore

o y=u(f) and gri=a(f),

for some polynomials u(¢), v(t) €k[x?, y?][t], and we have

—xP"ly=(0/0x) (x*~y) =u'( ) (3f]0x)
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xb=1=(3/3y) (x* ) =’ (f) (3f]y)
yP1=(3[ax) (xy?~1) =0’ (f) (af]ox)

—xpp=2=(0/3y) (xy?~1) =0’ (f) (3f]3y),

where u/(t), v'(¢) are derivatives of u(¢) and v(t), respectively. This implies, in
particular, that u/(f)=ax?2, for some ack~{0}. Hence xP-ick[x?, y?, f]=
k[x, y]¢. But it is a contradiction, because d(x?-%)=—2x#-2==0,

Observe that if n=2 and p=2 then, by Proposition 4.2, every ring of
constants is a free k[x?, y#]-module. Now we shall show that it is also true for
an arbitrary p>0 and D={d}.

Theorem 4.4. Let k be a field of characteristic p>0 and d a k-derivation of
k[x, y]. Then the ring k[x, y]¢ is a free k[x?, y?]-module.

Before the proof of Theorem 4.4 we recall a few facts for AM-sequences in
regular local rings (see [6]).

Let R be a commutative ring and M a non-zero R-module. We denote by
hd(M) the projective dimension of M. An element reR is called a zero divisor
with respect to M if there is a nonzero element m of M such that rm=0.

Assume now that R is a regular local ring with the maximal ideal m and
M=:0 is a finitely generated R-module.

We say that a sequence {y,..., I, of elements of m is an M-sequence if ¢; is

i-1
not a zero divisor with respect to M|3t;M, for each i=1,..., n. It is known
i=1

(see [6] p.97) that all maximal M-sequences have the same length, this length
we denote by s(M).

Note the following theorem which is due to Auslander, Buchsbaum and
Serre (see [6] p.98)

Theorem 4.5. Let (R, m) be a regular local ring and M a finitely generated
R-module different from zero. Then

hd(M)=Krull-dim(R) —s(M).
Proof of Theorem 4.4. Denote R=k[x?, y?], A=k[x, y], M =d(4), K=k[x, y]¢
and consider the following exact sequence of R-modules:
(1) 0— K—A4-2 M—o.

Let m be a maximal ideal of R. Then the sequence (1) induces the exact
sequence of Rm-modules:

@) 0 —> Kn —> A~ My —> 0.

Since Rm is a regular local ring and Mnm is a finitely generated Rm-module
different from zero, we have (by Theorem 4.5)

hd(Mm) =2—$(Mm).
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But Mn is contained in the ring Am which is an integral domain and so, s(Mm)

>1. Therefore hd(Mun)<l and hence, by the sequence (2) (since 4m is a free

Rn-module), #d(Km)=0 and we have hd(K)=sup hd(Mn)=0. This implies that
m

K is a projective R-module and hence, by [7] (see [4]), K=k[x, y]¢ is a free

k[x?, y?]-module.

The next example shows that if n>>3 then the assertion of Theorem 4.4 is
not true, in general.

Example 4.6. Let char(k)=p>0, n>3, and let d be the k-derivation of
klx1,..., x] such that d(x;)=x!, for i=1,..., n. Then the ring k[xi,..., x5]¢ is not a

Sree k[x%,..., xE]-module.

Proof. Denote R=k[x%,..., 8], A=k[x1,..., xn], M =d(A) and K=A%¢ Let m
be the maximal ideal of R generated by x4,..., x5 and consider the exact sequences
(I) and (2) as in the proof of Theorem 4.4. We shall show that s(Mm)=1.

Let ty=x?/1...., to=x%/1. The elements ¢,,..., {, generate the maximal ideal
mRm. Observe that ¢, is not a zero divisor with respect to Mm, and t,€ Mmn~
t:Mm (since 1M). If u is an arbitrary element of mRm, then u=ajt;+---+agty,
for some aj,..., a,€Rm and we have

u=adm(x:/1) 4 +andm(xn/1)
=dm(ar(%:/1)+-++an(xa/1)),

that is, u€ Mm and hence, t,uct;Mn.

Therefore ¢; is a maximal Mmn-sequence and hence (since all maximal Mm
-sequences have the same length), s(Mw)=1. Now, by Theorem 4.5, hd(Mm)
=n—12>2 and hence, hd(Km)>1. This implies that hd(K)=sup hd(Km)>1, that
is, K=k[x4,..., x,]¢ is not a free k[%,..., x]-module.

Remaek 4.7. Using the same argument as in the proof of Example 4.6 we
may prove that if n2>3 and d(x;)=x%;,, where v is a permutation of {l,..., n},
then the ring k[xy,..., x,]¢ is not a free k[xf,..., x%]-module.
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