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Some remarks on the positivity o f fundamental
solutions for certain parabolic equations with

constant coefficients

By

Masahiro KIMURA and Ken'ichi OTSUKA

§ 1 .  Introduction and results.

It is well known that the fundamental solution (4rt) - n /2 exp (-1x1 2 / 4 t )  of the
aheat operator — A  is nonnegative . In  this note we will show that this propertyat

does never hold for the parabolic equations o f higher order with respect to the
space variables. Here we will restrict ourselves to the case of single equations
with constant coefficients. The general case of parabolic systems with variable
coefficients will be treated in the other paper by the latter author.

Let us consider the Cauchy problem

a(1.1) L u =— u ( t  x )—  E  acc(—n

a Y u(t, x )=0 0<t _<T (< co), x E ll' .{ at '' l a j S 2 m uX

(1.2) 

W e assume that:

(i) m  is  a positive integer and a 0  a r e  real constants,
(ii) L  is parabolic, i.e. there exists a positive constant (3 such that for any e e R n  we have

A2m(ie) ==-
1aN . ace(ie) ° <_—_

We say that E (t, x )  is a fundamental solution of L  if it satisfies

L E (t, x )=0 0 <t T , x O E

and lim  E(t, x)=-5(x),
t4H-o

where (3(x) is Dirac's d e lta . Since the coefficients of L  are constant, one of the
fundamental solutions is explicitly given by means of the Fourier transform:

E 0 (t, x )=S ex ptix e+t{ A 2„,(i)+A ' (ie)}} de,
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u(0, x =) u0 (x) .
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where A' (ie) =l a i g , aa (ie)a ,

de= (270 -  n d e  and the integration is extended over the whole space R".

There are many works on the uniqueness of the solution of the problem
(1.1)—(1.2). Here we only mention the following theorems.

Theorem 1 .1  (Tacklind. See [1 ] Chap. 3  Sec. 2 . ) .  Let u(t, x) be the solution
o f  (1.1) with in itia l da ta  uo (x)=-0, and satisfy th e inequality

sup ;u(t, x)l _expaxlhax1))
0 5 t

where h(r) is  a  continuous function such that the integralS
o

h(r) 1 - - 2 mdr diverges. Then u(t,

x ) is identically equal to zero.

It follows from this theorem that for each initial data uo (x ) in  C 7(R n), there
exists a unique solution of (1.1)—(1.2) which is bounded in [0 , 7 ] x

As for the distribution solution, we can easily show the following theorem.

Theorem 1 .2  (See [2 ]  Chap. 5  Sec. 2 ) .  F or ea ch  uo (x ) in .9" , there ex ists a
unique solution u(t, x ) o f  (1.1)—(1.2) which belongs to C1 ([0 , T ];  . 9 1 .  Here i s  the
space o f  temperate distributions.

In  each case, the unique solution is given by

u(t, x)=-E,(t, x) * u(x) -- -- - SE 0(t, x— y)uo (y)dy.

So, E o (t, x ) is the unique fundamental solution which gives the unique solution
in  each space mentioned above. And it is easily shown that E 0 ( t , x )  is real-
valued, because the coefficients of L  are real constants.

Now our main result is the following.

Theorem 1 .3 . I f  771>_ 2 , then E 0(t, x ) is not nonnegative. More precisely, there exist
positive constants t o a n d  c o su ch that f o r  any t  i n  (0, to ) there ex ists som e xErtn which
satisfies

Eo(t, x) — c o t -71121n .

§ 2 . Proof of Theorem 1.3.

In order to prove Theorem 1.3, let us introduce an auxiliary function

F(t, x )=0 1 2 mEo (t, t 1 1 2 mx), T, xeR n.

Then we have following propositions on this F(t, x).

Proposition 2 .1 .  As t  tends to 0 , F(t, x ) converges uniformly to the function

„(x) =exp[ixvid-A 2 „,(iri )]dri .

Proposition 2.2. 0 (x) satisfies
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SF o (x)dx=-1,

and SxaFo (x)dx=0 if  0<la I <2m.

Proof of proposition 2 .1 .  Introducing new variables >2= tinm e, we have

F(t, x )=0 1 2 1nSexp[it'I'mxe+t{A 2.(iE)-FA'(i)}].de

=Sexp[ixr)+A o „,(i7)) +IA'(it - 1 1 2 '71)]dv.

Now, there exists some constant M  such that

I tA'(it -1 1 2 1 7 1 72)1<___ 4O/2n  >7 12 ' 1 + 1) if 0 < t< 1 .

So, using the estimate I ez — 1 I I z I el z1 with zE C , we have

F(t, x) — F o(x)1-5—. SI exP(A2m(i71))11exp {LA' (it - 1 1 2 m 7))} — 1 l

<  m t 1/21(l ,7l 2m- 1 +1)exp[--51,21 2m+M{I)71 2m- ' +1}].ch7.

= m , t 1/27113

where 0 < t< 1  and M ' does not depend on (t, x). Thus, F(t, x) converges uniformly
to F o (x), a s  t tends to O.

Proof of proposition 2 .2 .  By the formula of the Fourier transformation, we have

(2.1) SeF 0 (x)dx=(ik) exp {A2m(ie)}

On the other hand, we can write as

( 4-)a exp {itin(ie)} = pa(e)exp {A2.(ie)} ,

where pa (e) is a polynomial in e  o f degree (2m— 1)la 1. It is easily shown by in-
duction that pa (e) is the linear combination of monomials of degree 2mj—1 al with
j=  1, 2,..., I a I. So it does not contain the constant term unless la I=2km, k=0, 1,

That is, the right hand side o f (2.1) is equal to 0 if 0 < la l< 2 m , and equal
to  1 if la1=0.

Proof o f  Theorem 1.3. From the Proposition 2.2 , it follows that

SF0 (x)dx=1

and SI x 12F 0 (x)dx= 0

if m  2 .  So F o (x ) must change its sign, i.e. there exist two points x(°) and x(i) in
Rn  and a positive constant co such that



90 Masahiro Kimura and Ken'ichi Otsuka

F 5 (x")) -2 c 0 a n d  F o (x( ") 2 c 0.

Since F o (x )  is continuous a n d  F (t ,  x )  co n v e rg e s  to  F o (x ) uniformly, there exist
some s> 0  a n d  t 0 > 0  such that

F o (t, x)  Ç  —co f o r  0 < t< t 0 , x — x")1<s.

Then

Eo(t, x)=1 - ' 1 2 m.F(t, t - 1 1 2 mx) —co t - 1 '1 2 m

if 0 < t< t o ,  I x— t'l 2 m x  < t " 2 "'E. Thus our theorem is proved.
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