Supplements to my previous papers; a refinement and applications

By

Masahiko Taniguchi

Introduction.

This article is supplements to my previous papers [2] and [3]. In §1, we give a refinement (Theorem 1) of a fundamental variational formula ([3, Theorem 1]), which leads us more precise formulas than those in [3, Theorems 2-4] and also gives another proof of [2, Theorem 2]. (See §2.) As direct applications of Theorem 1, we show in §3 a variational formula for the modified canonical injection, and in $\S 4$ formulas under variation by connecting boundary arcs.

§1. A refinement of the variational formula.

In this paper, we use the same notations as in [3], and show the following refinement of our previous formula in [3, Theorem 1].

Theorem 1. Under the same notations and assumptions as in [3, Theorem 1] (also cf. Remark at the end of [3, §1]), it holds that

$$
\begin{gathered}
\iint_{R_{0}^{\prime}} \omega_{t, s}=t \cdot \iint_{R_{0}^{\prime}} \varphi_{0,0} \cdot \mu \wedge * \psi+2 \pi \cdot \sum_{j=1}^{n} \eta_{j} \cdot s_{j}^{2}\left(a_{j, 1}(0) \cdot b_{j, 2}(0)+a_{j, 2}(0) \cdot b_{j, 1}(0)\right) \\
+o\left(t+\sum_{j=1}^{n} s_{j}^{2}\right)
\end{gathered}
$$

where $\varphi_{0,0}=a_{j, k}\left(z_{j, k}\right) d z_{j, k}$ and $\psi=b_{j, k}\left(z_{j, k}\right) d z_{j, k}$ on $\bar{U}_{j, k}=\left\{\left|z_{j, k}\right|<1\right\}$ for every j and k.
Proof. In the proof of [3, Theorem 1], we have shown that

$$
\begin{gathered}
\iint_{R_{0}^{\prime}} \omega_{t, s}=t \cdot \iint_{K} \varphi_{0,0} \cdot \mu \wedge^{*} \psi \\
+\sum_{j=1}^{n} \iint_{V_{j}} a_{t, s}\left(F_{t, s}(z)\right) \cdot\left(-s_{j} / 2\right) \cdot\left(\frac{z}{|z|}\right)^{2} \cdot(1 /|z|) d \bar{z} \wedge^{*} \psi+o(t),
\end{gathered}
$$

where $V_{j}=\left\{0<\left|z_{j, 1}\right|<1 / 2\right\} \cup\left\{0<\left|z_{j, 2}\right|<1 / 2\right\}$ for every j.
Set $a_{t, s}\left(z_{j, k, t, s}\right)=\sum_{n=-\infty}^{\infty} a_{n, j, k, t, s} \cdot z_{j, k, t, s}^{n}$ on $\left\{s_{j}<\left|z_{j, k, t, s}\right|<1\right\}$ and $b_{j, k}\left(z_{j, k}\right)=$ $\sum_{n=0}^{\infty} b_{n, j, k} \cdot z_{j, k^{n}}$ on $\bar{U}_{j, k}$ for every j and k. Fix j and k, then

$$
\begin{aligned}
I_{j, k} & =\iint_{\left(0<\left|z_{j, k}\right|<1 / 2 \mid\right.} a_{t, s}\left(F_{t, s}(z)\right)\left(-s_{j} / 2\right)\left(\frac{z}{|z|}\right)^{2}(1 /|z|) d \bar{z} \wedge^{*} \psi \\
& =\int_{0}^{1 / 2} \int_{0}^{2 \pi} a_{t, s}\left(F_{t, s}\left(r e^{i \theta}\right)\right) \cdot\left(-s_{j} / 2\right)\left(e^{i 2 \theta} / r\right)\left(2 b_{j, k}(z)\right) r d r d \theta \\
& =-s_{j} \cdot \int_{0}^{1 / 2} \int_{0}^{2 \pi} \sum_{n=-\infty}^{\infty} a_{n, j, k, t, s} \cdot\left(F_{t, s}(r) \cdot e^{i \theta}\right)^{n} \cdot \sum_{m=0}^{\infty} b_{m, j, k} \cdot r^{m} e^{i m \theta} \cdot e^{i z \theta} d r d \theta \\
& =-2 \pi s_{j} \cdot \sum_{n=0}^{\infty} b_{n, j, k} \cdot a_{-n-2, j, k, t, s} \cdot \int_{0}^{1 / 2}\left(r^{n} / F_{t, s}(r)^{n+2}\right) d r .
\end{aligned}
$$

Here by [3, Lemma 2-i)], $a_{t, s}(z)$ is uniformly bounded on $\left\{s_{j}<\left|z_{j, k, t, s}\right|<1 / 2\right\}$, we can find, by Cauchy's integral formula, a constant M such that $\left|a_{n, j, k, t, s}\right| \leq$ M / s_{j}^{n} for every negative n. And since $r<F_{t, s}(r)$ and $\int_{0}^{1 / 2}\left(s_{j} / F_{t, s}(r)^{2}\right) d r=1$, we have

$$
\begin{aligned}
I_{j, k} & =-2 \pi b_{0, j, k} \cdot a_{-2, j, k, t, s}+O\left(\sum_{n=1}^{\infty} s_{j}^{n+2}\right) \\
& =-2 \pi b_{j, k}(0) \cdot a_{-2, j, k, t, s}+o\left(s_{j}^{2}\right) .
\end{aligned}
$$

Now since $z_{j, 1, t, s}=\eta_{j} \cdot s_{j}^{2} / z_{j, 2, t, s}$ on $\left\{s_{j}^{2}<\left|z_{j, k, t, s}\right|<1\right\}$, where $a_{t, s}(z)$ is welldefined and holomorphic, we can see that

$$
a_{-2, j, k, t, s}=-\eta_{j} \cdot s_{j}^{2} \cdot a_{0, j, s-k, t, s} .
$$

And since $a_{0, j, k, t, s}$ converges to $a_{j, k}(0)$ by [3, Lemma 2 -ii)], we conclude that

$$
I_{j, k}=2 \pi \eta_{j} \cdot s_{j}^{2} \cdot b_{j, k}(0) \cdot a_{j, 3-k}(0)+o\left(s_{j}^{2}\right) .
$$

Summing these $I_{j, k}$ up, we have the desired formula. q.e.d.

§2. Remarks on the formulas of Schiffer-Spencer's type.

First, using Theorem 1 instead of [3, Theorem 1] in the proofs of [3, Theorems 2-4], we can see the following

Remark 1. In [3, Theorems 2, 3 and 4], respectively, we can replace $o(\|(t, s)\|)$ by the following more precise quantities

$$
\begin{equation*}
2 \pi \cdot \operatorname{Re}\left[\sum_{h \in X} \eta_{h} s_{h}^{s}\left(a_{d, h, 1}(0) \cdot a_{d^{\prime}, h, 2}(0)+a_{d, h, 2}(0) \cdot a_{d^{\prime}, h, 1}(0)\right)\right]+o\left(\|(t, s)\|^{\prime}\right), \tag{Th2}
\end{equation*}
$$

$$
\begin{equation*}
2 \pi \cdot \operatorname{Im}\left[\sum_{h \in X} \eta_{h} s_{h}^{2}\left(b_{q, h, 1}(0) \cdot a_{d, h, 2}(0)+b_{q, h, 2}(0) \cdot a_{d, h, 1}(0)\right)\right]+o\left(\|(t, s)\|^{\prime}\right), \text { and } \tag{Th3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}\left[\sum_{h \in X} \eta_{h} s_{h}^{2}\left(b_{q, h, 1}(0) \cdot b_{q^{\prime}, h, 2}(0)+b_{q, h, 2}(0) \cdot b_{q^{\prime}, h, 1}(0)\right)\right]+o\left(\|(t, s)\|^{\prime}\right) \tag{Th4}
\end{equation*}
$$

Here we set $\theta\left(d^{(\prime)}, R_{0}\right)=a_{\left.d^{(}\right), h, k}\left(z_{h, k}\right) d z_{h, k}$ and $\phi\left(q^{(\prime)}, R_{0}\right)=b_{q(\cdot), h, k}\left(z_{h, k}\right) d z_{h, k}$ on $\bar{U}_{h, k}$ for every h and k,

$$
X=\left\{h \in[1, n]: C_{h} \text { is essentially trivial }\right\}
$$

(which we have assumed to be coincident with $\{m+1, \ldots, n\}$ in $[3, \S 2]$), and finally

$$
\|(t, s)\|^{\prime}=t+\sum_{j=1}^{H} \frac{1}{\log (1 / s(j))}+\sum_{h \in X} s_{h}^{2} .
$$

Now note that $\phi\left(q, R_{0}\right)$ in [3] is identical with $-i \cdot \phi\left(q ; R_{0}\right)$ in [2], and that the classical Schiffer-Spencer's variation in [2] is a special case of pinching deformation, where $\mu_{t} \equiv 0, n=1$, and U and the parameter $s=s_{1}$ are chosen in a special manner. In particular, we see that

$$
\left\|\sigma\left(C_{j}, R_{t, s}\right)\right\|_{R_{t, s}^{\prime}}^{2}=\pi / \log (1 / s)
$$

Using this fact instead of [3, Theorem 5], we can realize the following
Remark 2. The formulas in [2, Theorem 2] can be shown by Theorem 1 and the same argument as in the proofs of [3, Theorems 2-4].

§3. A formula for the modified canonical injection.

In this section, we use also the notations in [1]. Fix (t, s) arbitrarily, and let $H_{t, s}(\omega)$ be the projection of $H_{f_{t, s}}(\omega)$ to the orthogonal complement $\Gamma_{t, s}$ of $\Gamma_{N}\left(R_{t, s}, R_{0}\right)$ in $\Gamma_{h}\left(R_{t, s}, R_{0}\right)$, and set

$$
A_{t, s}(\omega)=H_{t, s}(\omega)+i^{*} H_{t, s}(\omega)
$$

for every $\omega \in \Gamma_{h}\left(R_{0}\right)$. Also denote by $\Gamma_{a}\left(R_{t, s}, R_{0}\right)$ the real Hilbert space consisting of all square integrable holomorphic differentials φ on $R_{t, s}$ such that $\int_{c} \varphi=0$ for every $c \in L\left(R_{t, s}, R_{0}\right)$. Then we have the following

Proposition. The linear map $A_{t, s}$ is a (real) isomorphism between $\Gamma_{h}\left(R_{0}\right)$ and $\Gamma_{a}\left(R_{t, s}, R_{0}\right)$ for every (t, s). Moreover, it holds that

$$
\int_{d} \operatorname{Re} A_{t, s}(\omega)=\int_{d}{ }^{(\omega)}
$$

for every $\omega \in \Gamma_{h}\left(R_{0}\right)$ and 1-cycle d on R_{0}^{\prime}.
Proof. It is clear that $\Gamma_{t, s}$ is isomorphic to $\Gamma_{h}\left(R_{t, s}, R_{0}\right) / \Gamma_{N}\left(R_{t, s}, R_{0}\right)$. Hence by [1, Theorem 1-i)], $H_{t, s}$ is an isomorphism between $\Gamma_{t, s}$ and $\Gamma_{h}\left(R_{0}\right)$.

Next $\alpha \in \Gamma_{t, s}$ if and only if $\alpha \in \Gamma_{h}\left(R_{t, s}, R_{0}\right)$ and $-\left(*_{\alpha} \sigma(c)\right)_{R_{t, s}^{\prime}}=\left(\alpha, *_{\sigma}(c)\right)_{R_{t, s}^{\prime}}$ $=0$ for every $c \in L\left(R_{t, s}, R_{0}\right)$ by definition, which is equivalent to the condition that $\int_{c} *_{\alpha}=0$ for every $c \in L\left(R_{t, s}, R_{0}\right)$. Hence $\alpha \in \Gamma_{t, s}$ if and only if $\alpha+i^{*} \alpha \in$ $\Gamma_{a}\left(R_{t, s}, R_{0}\right)$, which shows the first assertion.

Finally, since $\int_{d} * \sigma(c)=0$ for every $c \in L\left(R_{t, s}, R_{0}\right)$ and l-cycle d on R_{0}^{\prime}, we have the second assertion by [1, Lemma 5]. q.e.d.

Now by Theorem 1, we can show the following
Theorem 2. For every 1 -cycle d on R_{0}^{\prime} and $\omega \in \Gamma_{h}\left(R_{0}\right)$, it holds that

$$
\int_{d} \operatorname{Im} A_{t, \mathrm{~s}}(\omega)-\int_{d} \operatorname{Im} A_{0,0}(\omega)=t \cdot \operatorname{Im} \iint_{R^{\prime}} A_{0,0}(\omega) \cdot \mu \wedge * \theta\left(d, R_{0}\right)
$$

$$
+2 \pi \cdot \operatorname{Im}\left[\sum_{j=1}^{n} \eta_{j} s_{j}^{2}\left(a_{j, 1}(0) \cdot a_{d, j, 2}(0)+a_{j, 2}(0) \cdot a_{d, j, 1}(0)\right)\right]+o\left(t+\sum_{j=1}^{n} s_{j}^{2}\right)
$$

where $A_{0,0}(\omega)=\omega+i^{*}(1)=a_{j, k}\left(z_{j, k}\right) d z_{j, k}$ on $\ddot{U}_{j, k}$ for every j and k.
Proof. Fix a l-cycle d and $\omega \in \Gamma_{h}\left(R_{0}\right)$. We set $\theta_{t, s}=* H_{f_{t, s}}(\omega)-i \cdot H_{f_{l, s}}(\omega)$ and $\varphi_{t, s}=-i \cdot A_{t, s}(\omega)$. Then, letting $\left(a_{j: t, s}\right)_{j=1}^{H}$ be the unique solution (cf. [3, §4]) of the equations

$$
\int_{C_{j}} * H_{f_{t, s}}(\omega)=\sum_{k=1}^{\prime \prime} a_{k ; t, s} \cdot \int_{C_{j}} \phi\left(C_{k}, R_{t, s}\right) \quad(j=1, \ldots, H)
$$

it holds that

$$
\varphi_{t, s}=\theta_{t, s}-\sum_{j=1}^{\prime \prime} a_{j ; t, s} \cdot \phi\left(C_{j}, R_{t, s}\right)
$$

Here recall that $\theta_{t, s}$ converges to $\varphi_{0,0}$ strongly metrically as $|(t, s)|$ tends to 0 (cf. the proof of [1, Theorem 4]). In particular, every $\int_{c_{j}} * H_{f_{t, s}}(\omega)$ converges to $\int_{c_{j}}^{*}\left(\omega=0\right.$, hence so does every $a_{j ; t, s}$ as $|(t, s)|$ tends to 0 . Hence by $[3$, Theorem 6], $\varphi_{t, s}$ converges to $\varphi_{0,0}$ strongly metrically as $|(t, s)|$ tends to 0 . And since

$$
\left\|A_{t, s}(\omega)\right\|_{R_{t, s}^{\prime}} \leqq 2\left\|H_{t, s}(\omega)\right\|_{R_{t, s}^{\prime}} \leqq 2\left\|H_{f_{t, s}}(\omega)\right\|_{R_{t, s}^{\prime}}
$$

$\left\{\left\|A_{t, s}(\omega)\right\|_{R_{t, s}}\right\}$ is bounded by [1, Lemma 3]. Thus we conclude that $\varphi_{t, s}$ satisfies the conditions l)-3) in [3, Theorem 1].

Now set $\psi=\theta\left(d, R_{0}\right)$, then it is clear that ψ satisfies the conditions A$)$ and B$)$ in [3, Theorem 1]. And recalling that

$$
I_{f_{t, s}}\left(\operatorname{Im} \varphi_{t, s}\right)=-I_{f_{t, s}}\left(H_{f_{t, s}}(\omega)\right)=-\omega=\operatorname{Im} \varphi_{0,0}
$$

by [1, Lemmas 6 and 7], we can show similarly as in [3, §4] that

$$
\int_{d} \varphi_{t, \mathrm{~s}}-\int_{d} \varphi_{0,0}=\int_{d} \operatorname{Im} A_{t, s}(\omega)-\int_{d} \operatorname{Im} A_{0,0}(\omega)=\operatorname{Re} \iint_{R_{0}^{\prime}} \varphi_{t, \mathrm{~s}} \circ f_{t, \mathrm{~s}}^{-1} \wedge^{*} \psi
$$

Hence by Theorem 1, we conclude the desired formula. q.e.d.

§4. Variation by connecting boundary arcs.

Let $\left\{S_{i}\right\}_{i=1}^{l}$ be a finite set of Riemann surfaces with (not necessarily closed) boundary, and $P=\left\{p_{j, k}\right\}_{j=1, k=1}^{2}$ be a finite set of mutually disjoint boundary points of them such that $S_{i} \cap P \neq \phi$ for every i. Fix a neighborhood $W_{j, k}$ of $p_{j, k}$ and a local coordinate $z_{j, k}$ on $W_{j, k}$ such that $z_{j, k}\left(W_{j, k}\right)=W=\{|z|<1, \operatorname{Im} z \geq 0\}$ and $z_{j, k}\left(p_{j, k}\right)=0$ for every j and k, where we also assume that $\bar{W}_{j, k}$ are mutually disjoint.

Let μ_{t} be a Beltrami differential on $S_{0,0}-W$, where $W=\bigcup_{j, k} W_{j, k}$ and $S_{0,0}$ is the interior of $\bigcup_{i=1}^{t} S_{i}$, satisfying the conditions a) and b) in [3, §1] with $R_{0}=S_{0,0}$
and $U=W$. Let f_{t} be the quasiconformal mapping of $S_{0,0}$ onto another $S_{t, 0}$ with the complex dilatation μ_{t}. Set $S_{t, s}$ be the union of Riemann surfaces with boundary obtained from $S_{t, 0}$ by deleting $f_{t^{\circ}} z_{j, k}^{-1}\left(\left\{|z|<s_{j} ; \operatorname{Im} z \geqq 0\right\}\right)$ from $S_{t, 0}$ and identifying the newly resulting borders by the mapping $z_{j, 2}^{-1}\left(-s_{j}^{2} / z_{j, 1}(p)\right)$ for every (t, s) with $t \geqq 0$ and $s_{j} \in[0,1 / 2)$. Here we assume that $S_{t, s}$ is connected when every $s_{j}>0$.

Now set $B_{j, k}=z_{j, k}^{-1}(\{|z|<1 ; \operatorname{Im} z=0\})$ for every j and k, and let $\overline{R_{0}^{\prime}}$ be the double of $S_{0,0}$ with respect to $\cup \cup_{j, k} B_{j, k}$, and R_{0} be the Riemann surface with nodes resulting from $\overline{R_{0}^{\prime}}$ by identifying $p_{j, 1}$ with $p_{j, 2}$ for every j. Then we see that above variation of $S_{0,0}$ by connecting boundary arcs is nothing but pinching deformation of R_{0} in [3] (, where $U_{j, k}$ is the double of $W_{j, k}$ with respect to $B_{j, k}$ $-\left\{p_{j, k}\right\}$ for every j and k, and μ_{t} and f_{t} are the natural symmetric extension of the above μ_{t} and $\left.f_{t}\right)$. Here, for every $(t, s), \theta\left(d, S_{t, s}\right)$ and $\phi\left(q, S_{t, s}\right)$ can be extended to meromorphic differentials on $R_{t, s}$, and it holds that

$$
\begin{aligned}
& \theta\left(d, S_{t, s}\right)=\theta\left(d, R_{t, s}\right)+\theta\left(I_{t, s}(d), R_{t, s}\right), \text { and } \\
& \phi\left(q, S_{t, s}\right)=\phi\left(q, R_{t, s}\right)-\phi\left(I_{t, s}(q), R_{t, s}\right)
\end{aligned}
$$

for every 1-cycle d and point q on $S_{0,0}$, where $I_{t, s}$ is the canonical anti-conformal involution of $R_{t, s}$ onto itself fixing the border of $S_{t, s}$ pointwise. Hence we can see the following

Theorem 3. i) Let d and d^{\prime} be 1-cycles on $S_{0,0}$, then it holds that

$$
\begin{aligned}
& \int_{d^{\prime}} \sigma\left(d, S_{t, s}\right)-\int_{d^{\prime}} \sigma\left(d, S_{0,0}\right)=2 t \cdot \operatorname{Re} \iint_{S_{v_{0}, 0}} \theta\left(d, S_{0,0}\right) \cdot \mu \wedge^{*} \theta\left(d^{\prime}, S_{0,0}\right) \\
& \quad-2 \pi \cdot \operatorname{Re}\left[\sum_{j=1}^{n} s_{j}^{2}\left(a_{d, j, 1}(0) \cdot a_{d^{\prime}, j, 2}(0)+a_{d, j, 2}(0) \cdot a_{d^{\prime}, j, 1}(0)\right)\right]+o\left(t+\sum_{j=1}^{n} s_{j}^{2}\right) .
\end{aligned}
$$

ii) Let q be a point on $S_{0,0}-W$. Let d be a 1-cycle on $S_{0,0}-\{q\}$ and assume that $\mu_{t} \equiv 0$ on some neighborhood of q on $S_{0,0}$. Then it holds that

$$
\begin{aligned}
& \int_{d} *^{d} d g\left(\cdot, f_{t, s}^{-1}(q)\right)-\int_{d} * d g(\cdot, q)=2 t \cdot \operatorname{Im} \iint_{s a 00} \phi\left(q, S_{0,0}\right) \cdot \mu \wedge * \theta\left(d, S_{0,0}\right) \\
& \quad-2 \pi \cdot \operatorname{Im}\left[\sum_{i=1}^{n} s_{j}^{2}\left(b_{q, j, 1}(0) \cdot a_{d, j, 2}(0)+b_{q, j, 2}(0) \cdot a_{d, j, 1}(0)\right)\right]+o\left(t+\sum_{j=1}^{n} s_{j}^{2}\right)
\end{aligned}
$$

iii) Let q and q^{\prime} be distinct points on $S_{0,0}-W$, and assume that $\mu_{t} \equiv 0$ in some neighborhood of $\left\{q, q^{\prime}\right\}$ on $S_{0,0}$. Then it holds that

$$
\begin{aligned}
& g\left(f_{t, s}^{-1}\left(q^{\prime}\right), f_{t, s}^{-1}(q)\right)-g\left(q^{\prime}, q\right)=(t / \pi) \cdot \operatorname{Re} \iint_{S_{m_{0}}} \phi\left(q, S_{0,0}\right) \cdot \mu \wedge \wedge^{*} \phi\left(q^{\prime}, S_{0,0}\right) \\
& \quad-\operatorname{Re}\left[\sum_{j=1}^{n} s_{j}^{2}\left(b_{q, j, 1}(0) \cdot b_{q^{\prime}, j, 2}(0)+b_{q, j, 2}(0) \cdot b_{q^{\prime}, j, 1}(0)\right)\right]+o\left(t+\sum_{j=1}^{n} s_{j}^{2}\right)
\end{aligned}
$$

where $\theta\left(d^{(\prime)}, S_{0,0}\right)=a_{d^{(\prime)}, j, k}\left(z_{j, k}\right) d z_{j, k}$ and $\phi\left(q^{(\prime)}, S_{0,0}\right)=b_{q}\left({ }^{(}\right), j, k\left(z_{j, k}\right) d z_{j, k}$ on $\bar{U}_{j, k}$ for every j and k.

Proof. Since $I\left(C_{j}\right)=-C_{j}$ for every j and $\left.\theta\left(d, R_{t, s}\right) \circ I=\overline{\theta\left(I(d), R_{t, s}\right.}\right)$ for every
(t, s) with $I=I_{t, s}$, we have

$$
\int_{C_{j}} \theta\left(d, S_{t, s}\right)=\int_{C_{j}} \sigma\left(d, R_{t, s}\right)+\sigma\left(d, R_{t, s}\right) \circ I=\int_{C_{j}+I\left(C_{j}\right)} \sigma\left(d, R_{t, s}\right)=0 \quad \text { for every } j
$$

Similarly, since $\phi\left(q, R_{t, s}\right) \circ I=\overline{\phi(I(q), ~} \overline{\left.R_{t, s}\right)}$, we have $\int_{c_{j}} \phi\left(q, S_{t, s}\right)=0$ for every j.
Hence Theorem 1 and the same arguments as in the proofs of [3, Theorems 2-4] gives the desired formulas.
q.e.d.

Department of Mathematics Kyoto University

References

[1] M. Taniguchi, Square integrable harmonic differentials on arbitrary Riemann surfaces with a finite number of nodes, J. Math. Kyoto Univ., 25 (1985), 597-617.
[2] M. Taniguchi, Continuity of certain differentials on finitely augmented Teichmüller spaces and variational formulas of Schiffer-Spencer's type, Tohoku Math. J., 38 (1986), 281-295.
[3] M. Taniguchi, Variational formulas on arbitrary Riemann surfaces under pinching deformation, J. Math. Kyoto Univ., 27 (1987), 507-530.

