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On the existence and uniqueness of diffusion
processes with Wentzell' s boundary conditions

By
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1. Introduction.

It is well-known that a  diffusion process on  a  domain D  in  Rd (or more
generally, a d-dimensional manifold) with smooth boundary ap is determined by
a pair of analytical data (A , L )  where A is a second order differential operator
of elliptic type (possiblyde generate) and L  is a  Wentzell's boundary condition.
The problem of constructing diffusion process for given (A, L ) has been discussed
by many authors: Cf. e. g. Sato—Ueno [6], Bony—Courrège—Priouret [3] and Taira
[8] for analytical construction, Ikeda—Watanabe [5] and El Karoui [4] for con-
struction by the method of stochastic differential equations (SDE's), and Stroock-
Varadhan [7] and Anderson [1], [2] for construction by the method of martingale
problems. Also, a direct construction of path functions was discussed in Watanabe
[10] and Ikeda-Watanabe [5] by using the notion of Poisson point process of
Brownian excursions. This method can cover more general cases than the method
of SD E  but the problem to show that it is actually an (A , L)-diffusion, more
specifically, it is actually a unique solution of SDE, remains unanswered.

The purpose of the present paper is to answer this problem. For this, we
start with any solution of SDE and then show that it coincides with the process
constructed by the method of Poisson point process o f Brownian excursions just
mentioned. This shows that any solution of SDE is given as a well-determined
functional of a Poisson point process of Brownian excursions and some auxiliary
Brownian motions: Consequently, we can conclude that the solution of SDE is
unique and hence (A, L)-diffusion is unique. Also, we can conclude at the same
time that the process constructed by the method of Poisson point process of
Brownian excursions is actually this unique (A , L)-diffusion process. In this way,
we can show the unique existence of (A , L)-diffusions in the case when the
coefficient of the reflection may degenerate on some part of the boundary: So
far in the probabilistic construction by the methods of SDE and the martingale
problem, this coefficient is usually assumed to be positive everywhere on the
boundary.
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2 .  (A, L)-diffusions a s  s o lu t io n s  o f  stochastic differential equations
(SDE's).

Let D= (Rd)± ={x= (xl xd); xd>0}  .1) = i x  D ; xd>0}  and aD=Ixe D ; xd = 01.
Suppose we are given a second-order differential operator A  on D:

1 d . a . afA f (x)= iazi(x) a x i a -x-i -(x)+ bz (x)  x i  (x)

and Wentzell's boundary condition:

L f (x )= -L dg dai(x ) ax
aZ i  (x)+ ,.413 i (x) d

a'
x
f
i  (x )+1, (x ) a

af d (x)—p(x).AflaD(x)

where aii(x ) and bi(x) j ,  j= 1 ,  . . . ,  d  are bounded Borel-measurable functions on
D  such that aii(x )=aii(x ), E;' aii(x )eiei_O for all eeR d  and aii(x), Pi(x) j = 1 ,

d -1 , p (x )  and p(x ) are bounded Borel-measurable functions on aD such that
aii(x )=-aii(x ), V 1  i aii(x)eiej for all eeRd - 1 ,  p(x) 0  and p(x) 0.

Definition 2 .1 .  By an (A, L)-process starting at x E D , we mean a  D-valued
continuous (.Ft)-adapted process X (t) defined on  a  probability space (S2, P )
with a filtration ( )  such that X (0)=x  and, for every fOE C2, (D )  (:= the class of
twice continuously differentiable functions on D  with bounded derivatives), it
holds that

f  (X (t))—  f(x) = an (9 t)-m artingate+S :(A f )(X (s))ds+S :(L f )(X (s))4(s)

where w (t) is an  (g -t)-adapted continuous non-decreasing process with w(0)=0
such that

(2.1) S t/aD (X (s))4 (s)=0 ) for all t>0, as.

and

(2.2) $tolaD(X(s))ds= S t
o p(X(s))dço(s) for all t>0, as.

Thus, an (A , L)-process X (t) is always accompanied by an auxiliary increas-
ing process ço(t). (A , L)-processes can be given equivalently as solutions of the
following stochastic differential equations (SD E 's). To formulate SDE, we first
choose arbitrarily but fix some bounded Borel-measurable functions a (x )=
(odk(x)), =1 ,...,, on D  and r(x).= (1- (x)),=1,..., d _i on  aD such that

(2.3) E c i (x )c (x )= a i (x ) j  =1 , . . . ,  d , x eD
k=1

and

(2.4) ‘s-1,(x)rik(x).=aii(x) j= 1 , d—1, x E aD .
k=1
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We consider th e  follow ing SDE to be satisfied by a  D-valued continuous
(" t)-semimartingale X(t)=-.(X l(t), X d (t ) )  together with r-dimensional con-
tinuous (9 - t)-martingale B (t)= (.8 '(t), Br(t)), q-dimensional continuous

(g - t)-martingale M (1 )= (M 1 (t), M g (t ) )  a n d  ("t)-adapted continuous non-
decreasing process yo(t) with yo(0)=0 as.,

dX i(t)= *(X (t)).1b(X (t))dBk(t)d -bi(X (t))1 ,6 (X (t))dt

(2.5)

'±'21(X (0)IaD(X (t))dMk (t) 19 i  (X (0).TaD(X (t)) 4 ( t )
k =1

i =1, d-1

dXd(t)=Eali (X(t))Ib(X(t))dBk(t)d-bd(X(t))1") (X (t))dt
k =1

p (X (t)) IaD(X (1)) 4 (1 )

X(0)-=x

with subsidiary conditions: (2.1), (2.2) and

(2.6) <Bk, BI>t=ahtt, <B k  M 1>t=0 and <Mk, M I >t= 3 0 0 (t)•

Thus, yo(t) is an increasing process, called the local t im e  o f  X (t )  on the boundary,
which increases only when the process X ( t )  is  o n  th e  boundary. B (t )  is  an
r-dimensional (9 - 0-Brownian m otion  and M ( t )  is  a  q-dimensional Brownian
motion if the time is measured by the local time yo(t) on the boundary. More
precisely, we give the following

Definition 2 .2 . By a solution X (t )  of  (2.5), we mean a  D-valued continuous
(g - t)-semimartingale defined on  a  probability space (Q, P )  with a filtration
(, t )  such that X (0 )= x  a.s. and the following is satisfied: There exist an  r-di-
mensional continuous (9 - t)-martingale B (t), a q-dimensional continuous (,F g)-mar-
tingale M (t )  and a continuous (9 - 0-adapted non-decreasing process yo(t) satisfying
(2.1), (2.2) and (2.6), and stochastic differentials of this system of semimartingales
(X (t), B (t), M (t), w (t)) satisfy the relation (2.5).

By standard representation theorems of martingales, it is not difficult to show
the following (c f. [5])

Proposition 2 .1 .  I f  X (t ) i s  a  soltion to  the SDE (2.5), then X (t ) i s  an  (A,L)-
process. C onversely , i f  X (t )  i s  an (A , L)-process, th en  (en la rgin g (Q, P )  and ( )  in
the sense of  [5], D ef. II-7.1 if  necessary) X (t ) i s  a solution to  the above SDE (2.5).

We say that the uniqueness holds for (A,L)-processes or solutions of  SDE (2.5) if,
for each fixed x e D , the law on C([0, 00)--D) of any (A , L)-process X (t ) or any
solution X (t ) o f (2.5) such that X (0 )= x  a.s. is unquie. It is well-known that if,
fo r  every x E D , a n  (A , L)-process starting at x  exists a n d  furthermore, the
uniqueness holds, then this system o f (A , L)-processes defines a diffusion process
(i.e. strong Markov continuous process) on D . It is  ca lled  the (A,L)-diffusion
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process. Thus, to show the unique existence of (A, L)-diffusion process is equivalent
to show the unique existence of solutions of SDE (2.5).

3 .  Existence and uniqueness of SDE (2.5),

It is proved in  [ 5 ]  that, if  o l(x ) , b (x )  are Lipschitz continuous on D  and
pi(x ), p(x ) are Lipschitz continuous on aD and if

(3.1) a d d ( x ) =E 4 ( x ) 4 ( x ) >0  f o r  a ll x eaD
k  1

and

(3.2) inf p(x)>O,
x eaD

then a solution X ( t )  to  S D E  (2 .5 ) exists fo r every initial point x e a D  and
furthermore, the uniqueness of solutions holds. The main result of this paper is
to weaken the condition (3 .2 ) to the following one:

(3.3) in f [p(x )+ p(x )]>0.
x eaD

Namely, we have

Theorem 3 .1 .  I f  a(x ) and bi(x ) are bounded Lipschitz continuous on D and z. (x),
pi(x), p(x ) are bounded Lipschitz continuous on aD and if, fu rtherm ore, (3 .1 ) and (3.3)
are satisfied, then the existence and uniqueness of solutions to S D E  (2 .5 ) hold.

C o ro lla ry . For a g iv en  (A ,L ), i f  we can choose  o ( x )  and r ( x )  su ch  tha t (2.3),
(2 .4) and a ll the conditions in  Theorem 3 .1  are satisfied, then th e  (A ,L)-diffusion exists
uniquely.

R em ark 3 .1 .  The condition (3 .3) is known as a transversality condition . This
implies that everywhere on the boundary, there occurs either reflection or sojourn.

The rest of this paper is devoted to the proof of Theorem 3.1.
The existence of solutions can be verified in  several ways: By the transfor-

mations of solutions (cf. [5 ] ,  Chap I V  §7 ), we can reduce the problem to the

case al(x)=-- ai k , k =1, r , and bd(x)=-0. If we set p (x )=p (x )+--- , x eaD , n =1 ,2 ,

. . . ,  then we know that solution X ° ( t )  exists for (a , b , r, A, pi, ,  p )  together with
auxiliary processes (B n(t), M 4 ( t) , w n (t)) . We can easily show that 3en(t)=(X n(t),
B n(t). M n(t), son(t)), n=1, 2, ••• are tight and  a  limiting process (t)=(X (t),
B (t), M (t), ço(t)) in the sense of probability law satisfies (2 .1 ) , (2 .2 ) , (2 .5 )  and
(2.6).

In [5] and [10 ], we gave a direct construction of D-valued continuous process
from a Poisson point process of Brownian excursions. If we apply the results of
[1 2 ] (cf. [11 ]), we can show that this process is a solution to  S D E  (2 .5 ). Thus,
this is another way to obtain the existence of solutions. We recall this construc-
tion here because it play an important role in the proof o f uniqueness given
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below.
As we remarked above, we may and do assume that

(3.4) k=1, r , and bd( x ) 0.

Let

IweC([0, oo)—>[0, 00) x Rr - ') ; w (0 )= 0 and 3 a(w)e (0 , co) such

that w l(t )> 0  if t e  (0 , a (w )) and 0 .( t )= 0  if t__a(w)}

and n+ be the r-dimensional Brownian positive excursion law, i.e., (r-finite measure
on (Yrr  a(ii/r+ ) )  given as in  [5 ]  p . 2 1 5 . On the measure space (1.7 r  n + ) ,  we
consider the following "SD E " (cf. [9 ], [10])

X = x i + el; ol(X s )dwk(s)-FciC t A u ( w ) bi(X s )ds
k 1.,O 30

i =1, d -1

X = c w 1 (t)

where c > 0  is  a  given constant and (x 1 , ..., xd - -1 , 0) e a D .  The solution X (t)
= X c (t, x , w ), t> 0 , x= (x l,  x d - ',  0 )e a D ,  t v e Y r 1 „  is a  well-determined n'-me-
asurable functional such that for all xeaD  and almost all w eY ,(n + ), ti---+X ( t )e D
is continuous, X (0 )= x  and X (tA a (w ))=  X (1 ).  Define O x (t)= 0 (t, x , w ), t> 0 ,
xeaD, w eYr„. by

(3.5) 0(t, x, w )=
{X ‘ 'x)(t /p(x) 2 , x, w) if  p (x )> 0

if  p (x )=0 .

Then O x (tA a x (w ))= V (t ) where 9x (w )=p (x ) 20 .(w ). Now the construction o f the
D-valued continuous process X  which should be the (A , L)-diffusion process will
be carried out as follows: Firstly, we take a  sufficiently big probability space
(Q, F ,  P )  with a filtration ( F t )  on  which we can realize the following objects:
i) A filtration (g ) on  Q such thet g t c g - 0 for every t ..0 and an r-dimensional
( t)-Brownian motion B (t ).

ii) A  stationary (9 i)-Po isson  point process p[t] on 'C . with the characteristic
measure n+, i.e., a Poisson point process of r-dimensional positive Brownian
excursions.

iii) A  q-dimensional (.90-Brownian motion (fi(t)).
Let x e D  be given and let x ( t )  be the solution to the SDE

d xi(t)= k ale (x(t))dhk(t)-Fbi(x(t))d t i =1, d -1

(3.6) dxd(t)=df31(t)

x (0 )=x .
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Set a°=inf { t: xd(t)=0}  and eo =x(a°). Note that a° and e0 EaD are P o-measurable
random variables. N ex t, we consider the following SDE on aD of the jump-type

ei(t)—c,+ St rik (e(s))dijk(s)-4-ri3-i(e(s))ds
lc = 1  0 0

t +

+  o S 11 , 4195i(E(s—), w)I ww).<1).1%-,T p(dsdw)

+$t+ $ Oi(e(s—), rv)1(,-/(w)>1)N p(dsdw) i = 1 ,  d - 10 Yril

—p(x)Sv i S oaq(XA(x)(t, x, w))dwi(t)1I(0.(w)i)n+ (dw).

where

(3.7)

and

(3.8)

Cd (t)

v5(x, w)=0(ax(w), x, w)—x=XAcx ) (a(w), x , w)— xedD

fli(x)=f1i(x) p(x) bi(XA(x)(t, x, w))dt1.1 ww).<1}e(dw)

We can show as in [9], [10] that i-ii(x) is bounded, Lipschitz continuous and also
that

Sl i 4 n t , ( w ) < 1 } 10(x , w )-0(y , w)I 2 n+ (dw)_<const. x —y12 .

Hence the solution e(t) exists uniquely as a well-determined functional of eo , -fi(t)
and p[t]. Thirdly, define an  (Pt)-adapted right-continuous increasing process
A (t) by

St+ s
A( t)=-a°+ 0T e a (w)Np(dsdw)+S op(E (s))ds.

By virtue of the assumption (3.3), we can show ([10]) that t A (t)  is strictly
increasing and limt i  A ( t ) = 0 0  with probability one. For every t .0, there exists
a unique s_.0 such that A(s —) t<A (s) . I f  s=0, i.e., O t a°, then we define
X (t) to be the solution x ( t )  to  SDE (3.6). I f  s>0 and A (s — )<A (s), then this
implies that seDp and we set X (t)=0(t— A (s— ), Ç(s— ), p[s]). If s>0 and A(s—)
=A (s), then e(s)=E(s— ) and we set X (t)=e(s)=E(s— ). In  this way, a D-valued
process X (t) is constructed and it is not d ifficu lt to show (cf. [12]) that t

X ( t)E D  is continuous a.s. And X (t) is  a  well-determined functional o f f3(t),
f i(t), p[t]:

(3.9) X =(1 3 , h, p).

W e are now  going to show the uniqueness of solutions of SDE (2.5). For
this, we start with any solution X  of (2.5) and then construct (by enlarging (9,

P) if  necessary) h , i ,  p  as above such that X  is g iven  by (3 .9 ). Since the
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joint law of (E, sij,, p ) is unique as mutually independent Brownian motions and
a Poisson point process, this clearly implies the uniqueness of solutions.

So let X (t )  be a solution to SDE (2.5). By the assumption (3.4), we have

(3.10) Xd( t) =xd S t
o /6 (X (s )) d B' (s) + o

t p(X(s))4(s)

Let e(t)=S
t

I,(X (s ))ds and e- 1 ( t )  be the right continuous inverse of t e(t)
e- ,ct)

o D

defined on (0, e (00)) . Let i l i ( t )= S 0 /b (X (s ))dB i(s ) i =1  , . , r. Then it is well-

known ([5]) that h(t)=(13(t))o<t<e(.) is a part of r-dimensional Brownian motion
(:6(t)) 0 st<0.. From (3.10), we have

(3.11) d (t\ = x d) ( t)  +7(0 t Œ [ 0 ,  e ( 0 0 ) )

where X- d(t)-= Xd(e - 1 ( t ) )  and T(t)=S c - '( t ) p(X(s)) 4 (s ) .  Clearly, îd ( t )  is continuous0
in t and hence 1(0 is continuous. Also T(t) increases only when .k(t)=0. From
this we can conclude that (3.11) is a part of Skorohod equation: d ( t )  and T(t) can

be extended continuously on [0, co ), 2Y- d ( t ) .0 ,  T ( t )  is non-decreasing, S t
0/

(
2 d ( s ) = 0 )

d7(s)=-T(t) and (3.11) holds for every te [0, co). It is known that 1(t)=1im e  10 2
1

St 1(0,e) (fe d(s))ds, and lint, AO= 0 0  a. s. (cf. [5]). Let a°-=inf It; Xd(t)=01. If 7- '( t)

is the right-continuous inverse of t T ( t ) ,  then T- 1-(0)=a°. Set

(3.12) D p= It>0; 1_1 (t)>1- 1 (t—)1
and

13(s+1-1(t—))—B-(1-'(t—)) a (p [t])
(3.13) p[t](s)=1,_

B(1- i(t))—B(1 - , (t—)) s cr(p[t]).

Then p [ t ] E ' ,  teD p  and it defines a  stationary Poisson point process with

characteristic measure n+ (cf. [5 ] ) .  W e  have 7 (e (t))= S :p (X (s ))4 (s ) and

Sot hp(X(s))ds= t — e(t)=- S t
o p (X (s ) )4 (s ) .  Hence it is easy to conclude from (3.3)

that lim t t ooso(t) =00 a.s. Also we can easily deduce that a°=inf It; so(t)>01.
Let A (t ) be the right-continuous inverse of t 1—* ço(t). Then, with probability

one, A (0+ )=6°, t A ( t )  is strictly increasing and Hint t.A (t)=cc . W e now
define point processes qi  and q2 on C([0, c c )R r )  and C([0, co) --->D ), respec-
tively, by

Dq =D q ,= fte (0 , co); A(t — )<A(t)}

and for tED q Dq „

{B(A(t— )+s)—B(A(t— )) O s A (t )— A (t— )
qi [t ](s )=

B(A(t))— B(A(t— )) s>A(t)—A(t—),
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{ X (A (t— )+s) O s A (t)— A (t— )
q2 [t](s)=

X (A (t)) s>A (t)— A (t— ).

Let =Fa (t).

L e m m a  3 . 1 .  ( 1 )  qi [t] is  an (.it)-adapted point process on of the class (QL)
( c f .  [5 ]) with the compensator g q , (dsdw)-- p(X (A (s)))dsn+(dw).

( 2 )  B y  en la rg in g  (D, F ,  P )  and j) i f  necessary, there ex ists a n  (..it)-stationary
Poisson point process -I) on irr+ w ith  the characteristic measure n+ such that qi [t] is given
by

t+
(3.14) N q ,((0 , t] x E) =$ IE(r,(x(A( w)Ngdsdw)y r ,+s - - » )

Ee.4(117 '1.)

and q2 [t] is given by

(3.15) N q,((0 , t]x E )= $ o
t +  y rr,l -E(O X ( A ( ' - ) ) (1 0 )N -fi(dsdw)

EOEM(C([0, co) D))

where 0 '(w )=0 ( •  , x , w )  is defined by (3.5) and s-c : irr+Y V .,.t.1 {0} is defined by

fcw( • lc') i f  c>0

i f  c=0.

Here 0  denotes the path defined by 0 ( t)= 0 E ltr  f o r  a ll t

P ro o f .  As for the proof o f (1 ) , we consider the point process p  defined by
(3.12) and (3 .13 ). We know that it is a stationary Poisson point process on

with the characteristic measure n+(dw), i.e., the compensator g p(dsdw) 8--:dso n+(dw).
I f  A (s— )<A (s), then, on  th e interval (A (s— ), A (s)), 9)(u) is  flat and since

laD(X (u))du=p(X (u))dio(u), de(u)=du on this interval. Also, since ei(t)=S p(X (s))

d4o(s), d7(u) = 0  on the interval (e(A (s— )), e(A (s))=e(A (s— ))+A (s)— A (s— )). It is
also clear that, if 1 '(s— )< 7 '(s),— )<-1- 1 ( s ) ,  then dço(e - 1 (u)) = 0  on the interval (7_1(s_),
ill( s )) . From this we can conclude that A (s — )<A (s) if and only if 7- (t — )< i-- '(t)
where t =r(e(A (s)))=S o

s  p(X(A(0)))c10 and that the intervals (e(A (s— )), e(A (s))) and

(7- '(t— ),7 - '( t ) )  coincide. This shows that s e D q , if and only if t=S s
op(X(A(u)))du

e D p  and q 1 [s ]= p [t ]. In  other words, qi  is obtained from p  by the time change

s t = S
o
p(X(A(0)))clO . Now the assertion of (1) follows at once from the general

theory of time change.
To prove (3.14), define a *'-valued  point process q3 by

N St ]x E )  
— t + S  

1--(=,(x(A(s_)))-iw)Ilp(x(A(s_)))>O1N0,(dsdw)
0 i f

(rcw) (  •  ) =
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Then it is easy to see that its compensator is given by

'1\‘r q ,(dtdtv).= It,(x(A(t)))>o)dtn+ (dw).

Take an (i - t)-stationary Poisson point process q4 o n  r+ with the compensator n±
defined o n  a  probability space (D, P )  w ith  a filtration W e form  the
canonical extension

.e2=Qx‘2- , P = P x P ,  t = X k t

o f (Q, P )  and ( i t ) and, on this extension, we define a Poisson point process

f r on I r .+ by

N ((0 , t]x E )= T  q ,( (0 , t]x E )+ St: Syr ! fp(x(A(s-))).o} IE(w)X q ,(dsdw).

It is easy to see ([5 ]) that i s  (9‘- t)-stationary Poisson point process on IV, with
the characteristic measure n + an d  (3.14) holds. F inally, (3.15) is intuitively
obvious and can be proved rigorously as in [9]. Q.E.D.

Now it is easy to deduce from (2.2) that

t+
A (t)=a 0 - -j 0 S y r ,,..p(e(s—)) 2 cr(w)NT,(dsdw)+S op(e(s))ds

where e ( t)= X (A ( t) ) . S e t M (A ( t) )=È ( t) .  B y  (2.6), / 3 ( t )  is a  q-dimensional
(it)-Brownian motion and finally, we can show, in exactly the same way as in
[9], that

ei(t)--e(0) + :40,- (e(s))d (s) +Sto pi(e(s))ds

+ w)Itg(w)_<_iigr,(dsdw)

(e (s —), w). 4 7(w )>1) Nj3(dsdw) i =1, d —1
• o 11/

where 02:(x, w) and pi(x) are the same as g iven  by (3.7) and (3 .8). N ote that
e(0)=X(a°) is .i- - 0-measurable and hence is independent o f  (I-3, fi). Now we can
conclude that X  is obtained by (3.9) from  (fi, :64 )  where Ê is any r-dimensional
Brownian motion independent of -f i )  such that (i3(t))0<tsu0 coincides with
(B(t))0 ,0. Th is completes th e proof o f th e  uniqueness of solutions of SDE
(2.5).
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