Classical solutions for a class of degenerate elliptic operators with a parameter

By
Reiko Sakamoto

Boundary value problems are generally investigated for elliptic differential operators, degenerating on the boundary of a domain ([1], [2], [3], etc.), which are well posed in appropriate Hilbert spaces. On the other hand, classical solutions seem little investigated except for equations of second order ([4], [5], etc.). In this paper, we consider a class of degenerate elliptic differential operators with a positive parameter, and we seek classical solutions, restricting the parameter small enough.

In §1, the regularity of solutions are considered for F-type operators, analogously in [6]. In §2, two types of half space problems are set for F-type operators corresponding to the location of the invertible zone. In §3, the existence of solutions for half space problems is considered for F-type elliptic operators with a parameter, using the energy estimates for adjoint operators ([7]). In §4, some examples of 4th order operators are given.

§1. Regularity for F-type operators.

1.1. F-type operators. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x^{\prime}\right) \in R^{n}$, and let

$$
A(x ; D)=\sum_{\nu} a_{\nu}(x) D^{\nu}=\sum_{j=0}^{m} a_{j}\left(x ; D^{\prime}\right) D_{1}^{j},
$$

where

$$
\begin{aligned}
D= & \left(D_{1}, D_{2}, \ldots, D_{n}\right)=\left(D_{1}, D^{\prime}\right), D_{j}=D_{x_{j}}=-i \frac{\partial}{\partial x_{j}}, \\
& a_{\boldsymbol{v}}(x) \in \mathscr{B}^{\infty}\left(R^{n}\right), a_{m}\left(x ; \xi^{\prime}\right) \not \equiv 0 \text { near } x_{1}=0,
\end{aligned}
$$

and $a_{j_{0}}\left(0, x^{\prime} ; \xi^{\prime}\right) \not \equiv 0$ for some $j_{0}\left(0 \leqq j_{0} \leqq m\right)$. Let l_{j} be an integer such that

$$
D_{1}^{l} a_{j}\left(0, x^{\prime} ; \xi^{\prime}\right) \equiv 0 \text { for } l=0,1, \ldots, l_{j}-1
$$

and

$$
D_{1}^{I f} a_{j}\left(0, x^{\prime} ; \xi^{\prime}\right) \not \equiv 0,
$$

where we denote

$$
m^{\prime}=\max _{j}\left(j-l_{j}\right) \quad\left(0 \leqq m^{\prime} \leqq m\right) .
$$

Then we say that A is of order $\left(m, m^{\prime}\right)$ on $x_{1}=0$.
Let A be of order $\left(m, m^{\prime}\right)$ on $x_{1}=0$, then we have

$$
x_{1}^{m^{\prime}} A(x ; \xi)=\sum_{j=0}^{m} b_{j}\left(x ; \xi^{\prime}\right)\left(x_{1} \xi_{1}\right)^{j}=\sum_{\nu} b_{\nu}(x)\left(x_{1} \xi_{1}\right)^{\nu_{1} \xi^{\prime} \nu^{\prime}},
$$

where $b_{\nu}(x) \in \mathscr{B}^{\infty}\left((-1,1) \times R^{n-1}\right)$, therefore we have

$$
A(x, \xi)=\sum_{j=0}^{m-m^{\prime}} b_{j+m^{\prime}}\left(x ; \xi^{\prime}\right)\left(x_{1} \xi_{1}\right)^{j \xi_{1}^{m^{\prime}}}+\sum_{j=0}^{m^{\prime}-1} a_{j}\left(x ; \xi^{\prime}\right) \xi_{1}^{j} .
$$

Hence we have

$$
\begin{aligned}
A(x, D) & =\sum_{j=0}^{m-m^{\prime}} \beta_{j+m^{\prime}}\left(x, D^{\prime}\right)\left(x_{1} D_{1}\right)^{j} D_{1}^{m^{\prime}}+\sum_{j=0}^{m^{\prime}-1} a_{j}\left(x, D^{\prime}\right) D_{1}^{j} \\
& =\mathscr{B}\left(x ; x_{1} D_{1}, D^{\prime}\right) D_{1}^{m^{\prime}}+C\left(x ; D_{x}\right),
\end{aligned}
$$

where

$$
\begin{gathered}
\sum_{j} \beta_{j+m^{\prime}}\left(x ; \xi^{\prime}\right) \xi_{1}^{j}=\sum b_{j+m^{\prime}}\left(x ; \xi^{\prime}\right) \mathscr{M}^{j}\left(\xi_{1}\right), \\
\mathscr{M}^{j}\left(\xi_{1}\right)=\left(\xi_{1}+i(j-1)\right)\left(\xi_{1}+i(j-2)\right) \cdots\left(\xi_{1}+i\right) \xi_{1} .
\end{gathered}
$$

Let us say that $\mathrm{P}(x, \xi) \in \mathscr{F}_{m}$ if

$$
P(x ; \xi)=\sum_{\nu} p_{\nu}(x) \xi^{\nu}=\sum_{j=0}^{m} p_{j}\left(x ; \xi^{\prime}\right) \xi_{1}^{j},
$$

where $p_{\nu}(x) \in \mathscr{g}^{\infty}\left((-1,1) \times R^{n-1}\right)$, then we have
Lemma 1.1. Let A be of order $\left(m, m^{\prime}\right)$ on $x_{1}=0$, then it is represented by

$$
A(x ; D)=\mathscr{F}\left(x ; x_{1} D_{1}, D^{\prime}\right) D_{1}^{m^{\prime}}+C(x ; D),
$$

where $\mathscr{B}(x ; \zeta) \in \mathscr{F}_{m-m^{\prime}}$ and $C(x, \xi) \in \mathscr{F}_{m^{\prime}-1}$.
Let A be of order (m, m^{\prime}) on $x_{1}=0$, that is,

$$
A(x ; D)=\mathscr{F}\left(x ; x_{1} D_{1}, D^{\prime}\right) D_{1}^{m^{\prime}}+C(x, D)\left(\mathscr{B} \in \mathscr{F}_{m-m^{\prime}}, C \in \mathscr{F}_{m^{\prime}-1}\right),
$$

then we denote

$$
\Phi\left(x^{\prime} ; \zeta\right)=\mathscr{B}\left(0, x^{\prime} ; \zeta\right),
$$

and we call it a characteristic polynomial of A on $x_{1}=0$. Moreover, we say that the interval $\left(\alpha_{1}, \alpha_{2}\right)$ is an invertible zone of the characteristic operator $\Phi\left(z^{\prime} ; D_{z}\right)$ if, for any $\alpha \in\left(\alpha_{1}, \alpha_{2}\right), \Phi_{\alpha}\left(z^{\prime} ; D_{z}\right)$ is invertible in $L^{2}\left(R^{n}\right)$ and there exists $c>0$ such that

$$
\left\|\Phi_{\alpha}\left(z^{\prime} ; D_{z}\right) u\right\|_{L^{2}\left(R^{n}\right)} \geqq c\|u\|_{L^{2}\left(R^{n}\right)}
$$

for $u \in H^{\infty}\left(R^{n}\right)$, where

$$
\Phi_{\alpha}\left(z^{\prime} ; \zeta\right)=\Phi\left(z^{\prime} ; \zeta_{1}+i \alpha, \zeta^{\prime}\right) .
$$

We say that A is a F-type operator on $x_{1}=0$ of order (m, m^{\prime}), if there exists an invertible zone (α_{1}, α_{2}) of $\Phi\left(z^{\prime} ; D_{z}\right)$.

Lemma 1.2. Let A be of order (m, m^{\prime}) on $x_{1}=0$ with a characteristic polynomial Φ, then $D_{1}^{h} A$ is of order $\left(m+h, m^{\prime}+h\right)$ on $x_{1}=0$ with a characteristic polynomial $\Phi_{-h} \quad(h=$ $0,1,2, \ldots)$. Namely,

$$
D_{1}^{h} A=\Phi_{-h}\left(x ; x_{1} D_{1}, D^{\prime}\right) D_{1}^{h+m^{\prime}}+x_{1} \tilde{\mathscr{B}}\left(x ; x_{1} D_{1}, D^{\prime}\right) D_{1}^{h+m^{\prime}}+\tilde{C}(x ; D),
$$

where $\tilde{\mathscr{G}}(x ; \zeta) \in \mathscr{F}_{m-m}$. and $\tilde{C}(x, \xi) \in \mathscr{F}_{h+m^{\prime}-1}$.
Proof. Denoting $t=\mathrm{x}_{1}$ and $\tau=\zeta_{1}$, we write

$$
A=\mathscr{B}\left(t, t D_{t}\right) D_{t}^{m^{\prime}}+\sum_{k=0}^{m^{\prime}-1} c_{k}(t) D_{t}^{k},
$$

and

$$
\mathscr{O}_{\mathscr{S}}^{(j)}(t, \tau)=D_{t}^{j} \mathscr{B}(t, \tau), c_{k}^{(j)}(t)=D_{i}^{j} c_{k}(t) .
$$

Remarking

$$
D_{t}\left(t D_{t}\right)^{k}=t^{-1}\left(t D_{t}\right)^{k} t D_{t}=\left(t D_{t}-i\right)^{k} D_{t},
$$

we have

$$
\begin{aligned}
D_{t}^{h} A u & =\sum_{j=0}^{h}\binom{h}{j} \mathscr{B}_{-j}^{(h-j)}\left(t, t D_{t}\right) D_{t}^{m^{\prime}+j} u+\sum_{k=0}^{m^{\prime}-1} \sum_{j=0}^{h}\left({ }_{j}^{h}\right) c_{k}^{(h-j)}(t) D_{t}^{m^{\prime}+j} u \\
& =\mathscr{O}_{-h}^{(0)}\left(t, t D_{t}\right) D_{t}^{h+m^{\prime}} u+\sum_{j=0}^{h-1}\left(C_{j}^{h}\right) \mathscr{B}_{-j}^{(h-j)}\left(t, t D_{t}\right) D_{t}^{m^{\prime}+j} u+\sum_{j=0}^{h+m^{\prime}-1} c_{j}^{\prime}(t) D_{t}^{j} u \\
& =I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where

$$
\begin{aligned}
I_{1} & =\mathscr{B}-h\left(0, t D_{t}\right) D_{t}^{h+m^{\prime}} u+t \mathscr{B}^{\prime}\left(t, t D_{t}\right) D_{t}^{h+m^{\prime}} u, \\
I_{2} & =\sum_{j=0}^{h-1}\left(\left(_{j}^{h}\right)^{m-m^{\prime}} \sum_{k=0}^{(h-j)} \beta_{k}^{(h-j}(t)\left(t D_{t}-i j\right)^{k} D_{t}^{m^{\prime}+j} u\right. \\
& =\sum_{j=0}^{h-1} \sum_{k=0}^{m-m^{\prime}} \beta_{j k}(t) t k D_{t}^{k+m^{\prime}+j} u \\
& =\sum_{j=0}^{h-1} \sum_{k=h-j}^{m-m^{\prime}} \beta_{j k}(t) t t^{k} D_{t}^{k+m^{\prime}+j} u+\sum_{j=0}^{h-1} \sum_{k=0}^{h-1-j} \beta_{j k}(t) t^{k} D_{t}^{k+m^{\prime}+j} u \\
& =t \mathscr{B}^{\prime \prime}\left(t, t D_{t}\right) D_{t}^{h+m^{\prime}} u+\sum_{j=m^{\prime}}^{h+m^{\prime}-1} c_{j}^{\prime \prime}(t) D_{t}^{j} u,
\end{aligned}
$$

where we have only to set

$$
\tilde{\mathscr{B}}=\mathscr{O}^{\prime}+\mathscr{B}^{\prime \prime}, \tilde{c}_{j}=c_{j}^{\prime}+c_{j}^{\prime \prime} .
$$

1.2. Regularity. Now, let us say that $u \in H_{b}^{s}\left(R_{+}^{n}\right)(s=0,1,2, \cdots, b \in R)$ if

$$
\hat{x}_{1}^{v_{1}+b-1 / 2} D^{v} u \in L^{2}\left(R_{+}^{n}\right) \quad(|\nu| \leqq s),
$$

where $\hat{x}_{1} \in \mathscr{F}^{\infty}(R)$ is an increasing function satisfying

$$
\hat{x}_{1}=\left\{\begin{array}{l}
x_{1} \text { if } x_{1}<1 \\
2 \text { if } x_{1}>2
\end{array}\right.
$$

Lemma 1.3. Let s, k be positive integers $(s \geqq k)$, and let supp $[u] \subset\left\{x_{1}<1\right\}$.
i) Let $u \in H_{-k+1 / 2}^{s}\left(R_{+}^{n}\right)$, then we have $u \in H^{k}\left(R_{+}^{n}\right)$ and

$$
\left.D_{1}^{j} u\right|_{x_{1}=0}=0 \quad(0 \leqq j \leqq k-1) .
$$

ii) Conversely, let $u \in H^{s}\left(R_{+}^{n}\right)$ and let

$$
\left.D_{1}^{j} u\right|_{x_{1}=0}=0 \quad(0 \leqq j \leqq k-1),
$$

then $u \in H_{-k+1 / 2+\varepsilon}^{s-k}\left(R_{+}^{n}\right)$ for any $\varepsilon>0$.
Proof. i) First, since

$$
\hat{x}^{v_{1}-k} D^{\nu} u \in L^{2}\left(R_{+}^{n}\right) \quad(|\nu| \leqq k),
$$

we have $D^{\nu} u \in L^{2}\left(R_{+}^{n}\right) \quad(|\nu| \leqq k)$. Next, denoting

$$
u_{j}=\left.D_{1}^{j} u\right|_{x_{1}=0},
$$

we have

$$
\left\|D_{1}^{j} u\left(x_{1}, \cdot\right)-u_{j}\right\|_{L^{2}\left(R^{n-1}\right)} \leqq C \hat{x}_{1}^{1 / 2}(0 \leqq j \leqq k-1) .
$$

If $u_{j} \neq 0$ for some $0 \leqq j \leqq k-1$, then we have

$$
\left\|D_{1}^{j} u\left(x_{1}, \cdot\right)\right\|_{L^{2}\left(R^{n-1}\right)} \geqq c(>0)
$$

near $x_{1}=0$. Therefore, we have

$$
\left\|\hat{x}_{1}^{-1} D_{1}^{j} u\right\|_{\nu\left(R_{1}^{\prime}\right)}=+\infty,
$$

which is a contradiction.
ii) There exists $C>0$ such that

$$
\left\|D^{\nu} u\left(x_{1}, \cdot\right)\right\|_{L^{2}\left(R^{n-1}\right)} \leqq C \hat{x}_{1}^{k-\nu_{1}-1 / 2}
$$

if $\nu_{1} \leqq k-1,|\nu| \leqq s-k$, and we have

$$
\left\|D^{\nu} u\left(x_{1}, \cdot\right)\right\|_{L^{2}\left(R^{n-1}\right)} \leqq C
$$

if $\nu_{1} \geqq k,|\nu| \leqq s-k$. Hence, we have

$$
\left\|\hat{x}_{1}^{\varepsilon-k+\nu_{1}} D^{\nu} u\right\|_{L^{2}\left(R^{n}\right)}<+\infty \quad(\varepsilon>0)
$$

if $|\nu| \leqq s-k$, that is,

$$
u \in H_{-k+1 / 2+\varepsilon}^{s-k}\left(R_{+}^{n}\right) .
$$

Proposition 1.4. Let A be a F-type operator of order (m, m^{\prime}) on $x_{1}=0$ with characteristic polynomial Φ. Let $\left(\alpha_{1}, \alpha_{2}\right)$ be an invertible zone of Φ. Let supp $[u] \subset\left\{x_{1}<1\right\}$, $A u=f \in H_{\alpha}^{s}\left(R_{+}^{n}\right)$ in R_{+}^{n} and $u \in H_{\beta-m^{\prime}}^{s}\left(R_{+}^{n}\right)$ (s: large), where $\alpha_{1}<\alpha \leqq \beta<\alpha_{2}$ and $\beta-\alpha$ is an integer, then we have $D_{1}^{m^{\prime}} u \in H_{\alpha}^{s-M(\beta-\alpha)}\left(R_{+}^{n}\right)$, where M is the differential order of A.

Proof. From Lemma 1. 2, we have

$$
\Phi_{-h}\left(t D_{t}\right) D_{t}^{h+m^{\prime}} u=D_{t}^{h} f-t \tilde{\mathscr{B}}(t, t D) D_{t}^{h+m^{\prime}} u-\sum_{k=0}^{h+m^{\prime}-1} \tilde{c}_{k}(t) D_{t}^{k} u .
$$

Hence, multiplying $t^{\sigma+h}$ on the both sides of the equality, we have

$$
\Phi_{\sigma}\left(t D_{t}\right) t^{\sigma+h} D_{t}^{h+m^{\prime}} u=t^{\sigma+h}\left\{D_{t}^{h} f-t \tilde{\mathscr{B}}\left(t, t D_{t}\right) D_{t}^{h+m^{\prime}} u-\sum_{k=0}^{h+m^{\prime}-1} \tilde{c}_{k}(t) D_{t}^{k} u\right\} .
$$

First, let $\sigma=\beta-1$, then we have

$$
\Phi_{\beta-1}\left(t D_{t}\right) t^{\beta-1+h} D_{t}^{h+m^{\prime}} u=t^{\beta-1+h}\left\{D_{t}^{h} f-t \tilde{\mathscr{B}}\left(t, t D_{t}\right) D_{t}^{h+m^{\prime}} u-\sum_{k=0}^{h+m^{\prime}-1} \tilde{c}_{k}(t) D_{t}^{k} u\right\} \in H_{0}^{s-M-h}
$$

if $\beta-1 \geqq \alpha$, therefore we have

$$
t^{\beta-1+h} D_{t}^{h+m^{\prime}} u \in H_{0}^{s-M-h} .
$$

Next, let $\sigma=\beta-2$, then we have

$$
\Phi_{\beta-2}\left(t D_{t}\right) t^{\beta-2+h} D_{t}^{h+m^{\prime}} u=t^{\beta-2+h}\left\{D_{t}^{h} f-t \tilde{\mathscr{B}}\left(t, t D_{t}\right) D_{t}^{h+m^{\prime}} u-\sum_{k=0}^{h+m^{\prime}-1} \tilde{c}_{k}(t) D_{t}^{k} u\right\} \in H_{0}^{s-M-h}
$$

if $\beta-2 \geqq \alpha$, therefore we have

$$
t^{\beta-2+h} D_{t}^{h+m m^{\prime}} u \in H_{0}^{s-2 M-h} .
$$

In the same way, we have

$$
t^{\alpha+h} D_{t}^{h+m^{\prime}} u \in H_{0}^{s-(\beta-\alpha) M-h} .
$$

Hence we have $D_{t}^{m^{\prime}} u \in H_{\alpha}^{s-(\beta-\alpha) M}$.
Collorary. Besides the assumptions in Prop. 1.4, we assume $\alpha<1$, then we have

$$
D_{1}^{j} u \in L^{2}\left(R_{+}^{n}\right)\left(0 \leqq j \leqq m^{\prime}-1\right) .
$$

§2. Boundary value problems for F-type operators.

2.1. Condition($\boldsymbol{\Phi})$. Let A be a F-type operator of order (m, m^{\prime}) on $x_{1}=0$ with symbol

$$
A(x ; \xi)=\left\{\sum_{\nu} b_{\nu}(x)\left(x_{1} \xi_{1}\right)^{\nu_{1} \xi^{\prime} \nu^{\prime}}\right\} \xi_{1}^{n^{\prime}}+\sum_{\nu_{1}<m^{\prime}} c_{\nu}(x) \xi^{\nu},
$$

where $b_{\boldsymbol{\nu}}, c_{\boldsymbol{\nu}} \in \mathscr{B}^{\infty}\left((0,1) \times R^{n-1}\right)$. Let $\Phi\left(x^{\prime} ; \zeta\right)$ be the characteristic polynomial of A
and let $\left(\alpha_{1}, \alpha_{2}\right)$ be an invertible zone of Φ. We assume
Condition (Φ). $0 \in\left(\alpha_{1}, \alpha_{2}\right)$, i.e. $\alpha_{1}<0<\alpha_{2}$.
Now, denoting

$$
\begin{aligned}
A(x ; D) & =\left\{\sum_{\nu} b_{\nu}(x) x_{1}^{\nu_{1}} D_{1}^{\nu_{1}} D^{\prime \nu^{\prime}}\right\} D_{1}^{m^{\prime}}+\sum_{\nu_{1}<m^{\prime}} c_{\nu}(x) D^{\nu} \\
& =\left\{\sum_{\nu} \beta_{\nu}(x)\left(x_{1} D_{1}\right)^{\nu_{1}} D^{\prime \nu^{\prime}}\right\} D_{1}^{m^{\prime}}+\sum_{\nu_{1}<m^{\prime}} c_{\nu}(x) D^{\nu} \\
& =\mathscr{B}\left(x ; x_{1} D_{1}, D^{\prime}\right) D_{1}^{m^{\prime}}+\sum_{j=0}^{m^{\prime}-1} C_{j}\left(x ; D^{\prime}\right) D_{1}^{j}
\end{aligned}
$$

we have

$$
\begin{aligned}
x_{1}^{m^{\prime}} A(x ; D)= & \mathscr{B}_{m^{\prime}}\left(x ; x_{1} D_{1}, D^{\prime}\right) \mathscr{M}^{m^{\prime}}\left(x_{1} D_{1}\right) \\
& +\sum_{j=0}^{m^{\prime}-1} C_{j}\left(x ; D^{\prime}\right) x_{1}^{m^{\prime}-j} \mathscr{M}^{j}\left(x_{1} D_{1}\right)=\mathscr{A}\left(x ; x_{1} D_{1}, D^{\prime}\right),
\end{aligned}
$$

where

$$
\mathscr{B}_{j}(x ; \zeta)=\mathscr{B}\left(x ; \zeta_{1}+i j, \zeta^{\prime}\right)
$$

Lemma 2.1. We have the asymptotic expansion of \mathscr{A} :
$\mathscr{A}\left(x ; x_{1} D_{1}, D^{\prime}\right) \sim \mathscr{A}_{0}\left(x^{\prime} ; x_{1} D_{1}, D^{\prime}\right)+x_{1} \mathscr{A}_{1}\left(x^{\prime} ; x_{1} D_{1}, D^{\prime}\right)+x_{1}^{2} \mathscr{A}_{2}\left(x^{\prime} ; x_{1} D_{1}, D^{\prime}\right)+\cdots$,
where $\mathscr{A}_{j}\left(x^{\prime} ; \zeta\right) \in \mathscr{F}_{m}$,

$$
\mathscr{A}_{0}\left(x^{\prime} ; \zeta\right)=\Phi_{m^{\prime}}\left(x^{\prime} ; \zeta\right) \mathscr{M}^{m^{\prime}}\left(\zeta_{1}\right)
$$

and

$$
\mathscr{A}_{j}\left(x^{\prime} ;-i h, \zeta^{\prime}\right)=0\left(j \geqq 0, h \geqq 0, j+h \leqq m^{\prime}-1\right)
$$

Proof. In the expression

$$
\mathscr{A}\left(x ; x_{1} D_{1}, D^{\prime}\right)=\mathscr{B}_{m^{\prime}}\left(x ; x_{1} D_{1}, D^{\prime}\right) \mathscr{M}^{m^{\prime}}\left(x_{1} D_{1}\right)+\sum_{j=0}^{m^{\prime}-1} C_{j}\left(x ; D^{\prime}\right) x_{1}^{m^{\prime}-j} \mathscr{M}^{j}\left(x_{1} D_{1}\right)
$$

we take the asymptotic expansions near $x_{1}=0$:

$$
\begin{aligned}
& \mathscr{B}_{m^{\prime}}(x ; \zeta) \sim \sum_{k=0}^{\infty} \mathscr{B}_{m^{\prime}}^{(k)}\left(x^{\prime} ; \zeta\right) x_{1}^{k} \\
& C_{j}\left(x ; \zeta^{\prime}\right) \sim \sum_{k=0}^{\infty} C_{m^{\prime}}^{(k)}\left(x^{\prime} ; \zeta^{\prime}\right) x_{1}^{k}
\end{aligned}
$$

then we have

$$
\begin{aligned}
\mathscr{A}(x ; \zeta) \sim \mathscr{B}_{m^{\prime}}^{(0)}\left(x^{\prime} ; \zeta\right) \mathscr{M}^{m^{\prime}}\left(\zeta_{1}\right) & +x_{1}\left\{\mathscr{B}_{m^{\prime}}^{(1)}\left(x^{\prime} ; \zeta\right) \mathscr{M}^{m^{\prime}}\left(\zeta_{1}\right)+C_{m^{\prime}-1}^{(0)}\left(x^{\prime} ; \zeta^{\prime}\right) \mathscr{M}^{m^{\prime}-1}\left(\zeta_{1}\right)\right\} \\
& +x_{1}^{2}\left\{\mathscr{B}_{m^{\prime}}^{(2)}\left(x^{\prime} ; \zeta\right) \mathscr{M}^{m^{\prime}}\left(\zeta_{1}\right)+C_{m^{\prime}-1}^{(1)}\left(x^{\prime} ; \zeta^{\prime}\right) \mathscr{M}^{m^{\prime}-1}\left(\zeta_{1}\right)\right. \\
& \left.+C_{m^{\prime}-2}^{(0)}\left(x^{\prime} ; \zeta^{\prime}\right) \mathscr{M}^{m^{\prime}-2}\left(\zeta_{1}\right)\right\}+\cdots \cdots
\end{aligned}
$$

$$
\sim \mathscr{A}_{0}\left(x^{\prime} ; \zeta\right)+x_{1} \mathscr{A}_{1}\left(x^{\prime} ; \zeta\right)+x_{1}^{2} \mathscr{A}_{2}\left(x^{\prime} ; \zeta\right)+\cdots,
$$

where

$$
\begin{aligned}
\mathscr{A}_{j}\left(x^{\prime} ; \zeta\right)= & \mathscr{B}_{m^{\prime}}^{(j)}\left(x^{\prime} ; \zeta\right) \mathscr{M}^{m^{\prime}}\left(\zeta_{1}\right) \\
& +C_{m^{\prime}-1}^{(j,-1}\left(x^{\prime} ; \zeta^{\prime}\right) \mathscr{M}^{m^{\prime}-1}\left(\zeta_{1}\right)+\cdots+C_{m^{\prime}-j}^{(0)}\left(x^{\prime} ; \zeta^{\prime}\right) \mathscr{M}^{m^{\prime}-j}\left(\zeta_{1}\right)
\end{aligned}
$$

if $0 \leqq j \leqq m^{\prime}-1$, and

$$
\begin{aligned}
\mathscr{A}_{j}\left(x^{\prime} ; \zeta\right)= & \mathscr{B}_{m^{\prime}}^{(j)}\left(x^{\prime} ; \zeta\right) \mathscr{M}^{m^{\prime}}\left(\zeta_{1}\right) \\
& +C_{m^{\prime}-1}^{(j,-1)}\left(x^{\prime} ; \zeta^{\prime}\right) \mathscr{M}^{m^{\prime}-1}\left(\zeta_{1}\right)+\cdots+C_{0}^{\left(j-m^{\prime}\right)}\left(x^{\prime} ; \zeta^{\prime}\right)
\end{aligned}
$$

if $j \geqq m^{\prime}$. Especially, we have

$$
\mathscr{A}_{0}\left(x^{\prime} ; \zeta\right)=\Phi_{m^{\prime}}\left(x^{\prime} ; \zeta\right) \mathscr{M}^{m^{\prime}}\left(\zeta_{1}\right) .
$$

On the otherhand, since

$$
\mathscr{M}^{j}(-i h)=0 \quad(h=0,1, \ldots, j-1) .
$$

we have

$$
\mathscr{A}_{j}\left(x^{\prime} ;-i h, \zeta^{\prime}\right)=0\left(h=0,1, \ldots, m^{\prime}-j-1\right) .
$$

2.2. Half space problem. Let us consider the following two types of half space problems. The first problem is a problem with no boundary data on the boundary, that is, the first problem (P-I) is to find a solution $u \in H^{N}\left(R_{+}^{n}\right)$ satisfying

$$
A u=f \quad \text { in } R_{+}^{n}
$$

for any $f \in H^{N^{\prime}}\left(R_{+}^{n}\right)$. The second problem is a problem with full boundary data on the boundary, that is, the second problem (P-II) is to find a solution $u \in H^{N}\left(R_{+}^{n}\right)$ satisfying

$$
\left\{\begin{array}{l}
A u=f \quad \text { for } x \in R_{+}^{n}, \\
D_{1}^{j} u=\psi_{j}\left(0 \leqq j<m^{\prime}\right) \quad \text { for } x_{1}=0, x^{\prime} \in R^{n-1}
\end{array}\right.
$$

for any $f \in H^{N^{\prime}}\left(R_{+}^{n}\right)$ and $\phi_{j} \in H^{N^{\prime}}\left(R^{n-1}\right)\left(0 \leqq j<m^{\prime}\right)$.
Let u and f be smooth enough, satisfying $A u=f$, that is,

$$
\mathscr{A}\left(x^{\prime} ; x_{1} D_{1}, D^{\prime}\right) u=x_{1}^{m^{\prime}} f
$$

and let

$$
u \sim \sum x_{1}^{j} u_{j}, \quad f \sim \sum x_{1}^{j} f_{j},
$$

then we have

$$
\mathscr{A} u \sim \sum x_{1}^{j+k} \mathscr{A}_{j}\left(x^{\prime} ;-i k, D^{\prime}\right) u_{k},
$$

because $x_{1} D_{1} x_{1}^{k}=-i k x_{1}^{k}$. Hence, remarking

$$
\mathscr{A}_{j}\left(x^{\prime} ;-i k, D^{\prime}\right)=0 \text { if } j+k=l<m^{\prime}
$$

we have

$$
\sum_{j+k=l} \mathscr{A}_{j}\left(x^{\prime} ;-i k, D^{\prime}\right) u_{k}=f_{l-m^{\prime}} \quad \text { if } l \geqq m^{\prime}
$$

that is,

$$
(*)\left\{\begin{aligned}
\mathscr{A}_{0}\left(x^{\prime} ;\right. & \left.-i m^{\prime}, D^{\prime}\right) u_{m^{\prime}}+\mathscr{A}_{1}\left(x^{\prime} ;-i\left(m^{\prime}-1\right), D^{\prime}\right) u_{m^{\prime}-1}+\cdots \cdots \\
& +\mathscr{A}_{m^{\prime}}\left(x^{\prime} ; 0, D^{\prime}\right) u_{0}=f_{0}, \\
\mathscr{A}_{0}\left(x^{\prime} ;\right. & \left.-i\left(m^{\prime}+1\right), D^{\prime}\right) u_{m^{\prime}+1}+\mathscr{A}_{1}\left(x^{\prime} ;-i m^{\prime}, D^{\prime}\right) u_{m^{\prime}}+\cdots \cdots \\
& +\mathscr{A}_{m^{\prime}}\left(x^{\prime} ;-i, D^{\prime}\right) u_{1}=f_{1} \\
& \cdots \cdots \cdots \cdots
\end{aligned}\right.
$$

Now, we set $\phi_{l}=0\left(0 \leqq l \leqq m^{\prime}-1\right)$ (apparent boundary values) in case when we consider (P-I). First, we set $u_{l}=\phi_{l}\left(0 \leqq l \leqq m^{\prime}-1\right)$, then, since $\mathscr{A}_{0}\left(x^{\prime} ;-i l, D^{\prime}\right)$ is invertible for $m^{\prime} \leqq l<m^{\prime}+\left|\alpha_{1}\right|, \quad\left\{u_{l}\left(m^{\prime} \leqq l<m^{\prime}+\left|\alpha_{1}\right|\right)\right\}$ are defined by (*), using $\left\{\boldsymbol{\phi}_{l}\left(0 \leqq l<m^{\prime}\right)\right\}$ and $\left\{f\left(0 \leqq l<\left|\alpha_{1}\right|\right)\right\}$.

Lemma 2.2. For any $N>0$, there exists $N^{\prime}>0$ as follows. For any $f \in H^{N^{\prime \prime}}\left(R^{n}\right)$ and $\phi_{j} \in H^{N}\left(R^{n-1}\right)\left(0 \leqq j<m^{\prime}\right)$, there exists $\bar{u} \in H^{N}\left(R^{n}\right)$ such that

$$
\begin{gathered}
D_{1}^{j}(f-A \bar{u})=0\left(0 \leqq j<\left|\alpha_{1}\right|\right) \text { for } x_{1}=0, x^{\prime} \in R^{n-1}, \\
D_{1}^{j} \bar{u}=\phi_{j}\left(0 \leqq j<m^{\prime}\right) \text { for } x_{1}=0, x^{\prime} \in R^{n-1} .
\end{gathered}
$$

Proof. We define

$$
\bar{u}=\sum_{0 \leqq j<m^{\prime}+\left|\alpha_{1}\right|} x_{1}^{j} u_{j} \chi\left(x_{1}\right),
$$

where $\chi \in C_{0}^{\infty}(R)$ and $\chi=1$ near $x_{1}=0$. Then, defining

$$
g=f-A \bar{u} \sim \sum x_{1}^{j} g_{j},
$$

we remark

$$
g_{j}=0 \quad\left(0 \leqq j<\left|\alpha_{1}\right|\right) .
$$

From Lemma 2.2, the problems (P-I) and (P-II) can be reduced to the problems ($\mathrm{P}^{\prime}-\mathrm{I}$) and ($\left.\mathrm{P}^{\prime}-\mathrm{II}\right)$, where $\left(\mathrm{P}^{\prime}-\mathrm{I}\right)$ is to find a solution $u \in H^{N}\left({ }_{+}^{n} R\right)$ satisfying

$$
A u=f \quad \text { in } R_{+}^{n},
$$

and ($\mathrm{P}^{\prime}-\mathrm{II}$) is to the problem to find a solution $u \in H^{N}\left(R_{+}^{n}\right)$ satisfying

$$
\left\{\begin{array}{l}
A u=f \quad \text { for } x \in R_{+}^{n}, \\
D^{j} u=0 \quad\left(0 \leqq j<m^{\prime}\right) \quad \text { for } x_{1}=0, x^{\prime} \in R^{n-1}
\end{array}\right.
$$

for any $f \in H_{\alpha}^{N^{\prime \prime}}\left(R_{+}^{n}\right)$ satisfying

$$
D_{1}^{j} f=0 \quad\left(0 \leqq j<\left|\alpha_{1}\right|\right) \quad \text { for } x_{1}=0, x^{\prime} \in R^{n-1} .
$$

Moreover, remarking Lemma 1.3, the problem ($\mathrm{P}^{\prime}-\mathrm{I}$) and ($\mathrm{P}^{\prime}-\mathrm{II}$) are reduced to ($\mathrm{P}^{\prime \prime}-\mathrm{I}$) and ($\left.\mathrm{P}^{\prime \prime}-\mathrm{II}\right)$, where $\left(\mathrm{P}^{\prime \prime}-\mathrm{I}\right)$ is to find a solution $u \in H^{N}\left(R_{+}^{n}\right)$ and ($\left.\mathrm{P}^{\prime \prime}-\mathrm{II}\right)$ is to find a solution $u \in H_{-m^{\prime}+1 / 2}^{N}\left(R_{+}^{n}\right)$, satisfying

$$
A u=f \quad \text { in } R_{+}^{n},
$$

for any $f \in H_{\alpha}^{N^{\prime}}\left(R_{+}^{n}\right)\left(\alpha>\alpha_{1}\right)$.

§3. Elliptic problems.

3.1. Assumptions. Let us consider F-typ e operators which are elliptic with a small positive parameter κ, degenerating on the boundary of a half space:

$$
R_{+}^{n}=\left\{x=\left(x_{1}, x^{\prime}\right) ; x_{1}>0, x^{\prime}=\left(x_{2}, \ldots, x\right) \in R^{n-1}\right\} .
$$

We assume the following conditions (A.1) and (A.2).
Condition (A.1). There exists $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ such that
i)

$$
\delta=\min _{1 \leqq i \leqq n} \delta_{i}>0
$$

ii)

$$
A\left(x, \kappa ; \kappa^{\delta} D\right)=\sum_{|\nu| \leqq m} a_{\nu}(x, \kappa)\left(\kappa^{\delta} D\right)^{\nu}
$$

where $a_{\nu}(x, \kappa) \in \mathscr{B}^{\infty}\left(R_{+}^{n} \times(0,1)\right)$ and $D=-i \partial_{x}$, iii) for any $\varepsilon>0$, there exists $c>0$ such that

$$
|A(x, 0 ; \tilde{\xi})| \geqq c(|\tilde{\xi}|+1)^{m}
$$

for $\varepsilon<x_{1}<+\infty, \quad x^{\prime} \in R^{n-1}, \tilde{\xi} \in R^{n}$.
Condition (A.2). There exist m^{\prime} and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ satisfying the following i) \sim iii).
i)

$$
0 \leqq m^{\prime} \leqq m, \sigma_{1}=1, \sigma_{j} \geqq 0(j=2, \ldots, n)
$$

ii)

$$
\begin{aligned}
x_{1}^{m^{\prime}} A(x, \kappa ; \tilde{\xi}) & =\sum_{|\nu| \leqq m} x_{1}^{m^{\prime}} a_{\nu}(x, \kappa) \tilde{\xi}^{\nu}=\sum_{|\nu| \leqq m} a_{\nu}^{\prime}(x, \kappa)\left(x_{1}^{x} \tilde{\xi}\right)^{\nu} \\
& =\sum_{|\nu| \leqq m} a_{\nu}^{\prime}(x, \kappa) \tilde{\tilde{\xi}}^{\nu}=A^{\prime}(x, \kappa ; \tilde{\tilde{\xi}}),
\end{aligned}
$$

where $a_{\nu}^{\prime}(x, \kappa)$ is bounded in $R_{+}^{n} \times(0,1)$ and

$$
\tilde{\tilde{\xi}}=x_{1}^{\sigma \tilde{\xi}}=\left(x_{1}^{\sigma_{1} \xi_{1}} \ldots, x_{1}^{\sigma_{n}} \tilde{\xi}_{n}\right)
$$

iii) There exists a non-zero zone (β_{1}, β_{2}) of A^{\prime}. Namely, for any $\beta \in\left(\beta_{1}, \beta_{2}\right)$ there exists $c>0$ such that

$$
\left|A^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\tilde{\xi}}_{1}+i \beta, \tilde{\tilde{\xi}}^{\prime}\right)\right| \geqq c(|\tilde{\tilde{\xi}}|+1)^{m}
$$

for $\tilde{\tilde{\xi}} \in R^{n}, x^{\prime} \in R^{n-1}$.
Remark 1. Let $\beta \in\left(\beta_{1}, \beta_{2}\right)$, then $m / 2$ of the roots of $A^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\tilde{\xi}}\right)=0$ satisfy $\operatorname{Im} \tilde{\tilde{\xi}}_{1}<\beta$ and the others satisfy $\operatorname{Im} \tilde{\tilde{\xi}}_{1}>\beta$ if $\tilde{\tilde{\xi}}^{\prime} \in R^{n-1}$, owing to the ellipticity of $A^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\tilde{\xi}}\right)$.

Remark 2. It holds $m^{\prime} \leqq m / 2$, because the multiplicity of the root $\tilde{\tilde{\xi}}_{1}=0$ of

$$
A^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\tilde{\xi}}_{1}, 0\right)=\sum_{j=m^{\prime}}^{m} a_{j 0}^{\prime}\left(0, x^{\prime}, 0\right) \tilde{\tilde{\xi}}_{1}^{j}=0
$$

is not smaller than m^{\prime}.
Remark 3. 0 does not belong to $\left(\beta_{1}, \beta_{2}\right)$ if $m^{\prime}>0$, because $A^{\prime}\left(0, x^{\prime}, 0 ; 0\right)$ $=0$.

Remark 4. $m^{\prime} \leqq \boldsymbol{\sigma} m$, owing to the ellipticity of $A^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\tilde{\xi}}\right)$, where $\sigma=\min _{i} \sigma_{i}$.

We say that A is of 0 -type if $m^{\prime}=0, A$ is of I-type if $\left(\beta_{1}, \beta_{2}\right) \subset[0, \infty)$, and A is of II-type if $\left(\beta_{1}, \beta_{2}\right) \subset(-\infty, 0]$. We consider the problem (P-I) if A is of 0-type or of I-type, and consider the problem (P-II) if A is of II-type.

Example. Let us consider

$$
A=\hat{x}_{1}\left(\kappa D_{1}\right)^{2}-i b\left(\kappa D_{1}\right)+\hat{x}_{1}^{n}\left(\kappa D_{2}\right)^{2}+1
$$

where b is a non-zero reai constant and n is a non-negative integer. Let us see that it satisfies (A.2). Setting

$$
\tilde{\xi}=\kappa \xi, \quad \tilde{\tilde{\xi}}_{1}=x_{1} \tilde{\xi}_{1}, \quad \tilde{\tilde{\xi}}_{2}=x_{1}^{(n+1) / 2} \tilde{\xi}_{2}
$$

we have

$$
A^{\prime}=\tilde{\tilde{\xi}}_{1}^{2}-i b \tilde{\tilde{\xi}}_{1}+\tilde{\tilde{\xi}}_{2}^{2}+x_{1}
$$

near $x_{1}=0$, where the zeros of $A^{\prime}(0 ; \tilde{\tilde{\xi}})$ are

$$
\tilde{\tilde{\xi}}_{1}=\frac{i}{2}\left\{b \pm\left(b^{2}+4 \tilde{\tilde{\xi}}_{2}^{2}\right)^{1 / 2}\right\}
$$

Hence, $(0, b)$ is the non-zero zone of A^{\prime} if $b>0$, and $(b, 0)$ is the non-zero zone of A^{\prime} if $b<0$. Moreover, if n is odd, L is invariant under the change of the variable x_{1} into $-x_{1}$.

Let us denote

$$
e(z)=\left(e\left(z_{1}\right), z_{2}, \ldots, z_{n}\right)
$$

where $e\left(z_{1}\right)$ is a strictly increasing function satisfying

$$
e\left(z_{1}\right)= \begin{cases}e^{z_{1}} & \text { if } z_{1}<-1 \\ z_{1} & \text { if } z_{1}>1\end{cases}
$$

Moreover, we define

$$
\tilde{\Lambda}^{s} u(x)=\left.\left(\left|\tilde{D}_{z}\right|^{2}+1\right)^{s / 2} u(e(z))\right|_{z=e^{-1}(x)}
$$

for $u \in C_{0}^{\infty}\left(R_{+}^{n}\right)$. Then we have
Lemma 3.1. ([7]) Assume the conditions (A.1), (A.2). Let $\beta_{1}<\beta<\beta_{2}$, and let s be real, then there exist $\kappa_{0}>0, C>0$ such that

$$
\sum_{|\nu| \leqq m}\left\|\hat{x}_{1}^{-1 / 2+\sigma \nu} D^{\nu} \tilde{\Lambda}^{s} \hat{x}_{1}^{\tilde{\beta}}\right\| \leqq C\left\|\hat{x}_{1}^{-1 / 2} \tilde{\Lambda^{s}} \hat{x}^{\tilde{\beta}+m^{\prime}} A(x, \kappa ; \tilde{D}) u\right\|
$$

for $0<\kappa<\kappa_{0}, u \in H_{\tilde{\beta}}^{\infty}\left(R_{+}^{n}\right)$, where $\tilde{\beta}=\beta \kappa^{-\delta_{1}}$ and $\tilde{D}=\kappa^{\delta} D$.
3.2. Existence theorem. Let A^{*} be the formal adjoint operator of A in L^{2} (R_{+}^{n}). Namely, let

$$
A=\Sigma a_{\nu}(x, \kappa) \tilde{D}^{\nu}
$$

then

$$
A^{*}=\Sigma \tilde{D}^{\nu} \overline{a_{\nu}(x, \kappa)} .
$$

Assume that the conditions (A.1) and (A.2) are satisfied for A, then they are also satisfied for A^{*} with the non-zero zone $\left(-\beta_{2},-\beta_{1}\right)$. Hence we have from [7]

Lemma 3.2. Let us assume the conditions (A.1) and (A.2). Let β satisfy $\beta_{1}<\beta$ $<\beta_{2}$ and let s be a real number, then there exist κ_{0} and C such that

$$
\sum_{|\nu| \leqq m}\left\|\hat{x}_{1}^{-1 / 2+\sigma \nu} D^{\nu} \tilde{\Lambda}^{s} \hat{x}_{1}^{-} \tilde{\beta}^{\prime}\right\| \leqq C\left\|\hat{x}_{1}^{-1 / 2} \tilde{\Lambda}^{s} \hat{x}_{1}^{-} \tilde{\beta}^{*} A^{*} u\right\|
$$

if $u \in H_{-\tilde{\mathcal{P}}}^{\infty}\left(R_{+}^{n}\right)$ and $0<\kappa<\kappa_{0}$.
Let us denote

$$
\Lambda^{s} u(x)=\left.\left(\left|D_{z}\right|^{2}+1\right)^{5 / 2} u(e(z))\right|_{z=e^{-1}(x)}
$$

and

$$
\Lambda^{\prime s} u(x)=\left.\left\{D_{2_{1}}^{2}+\left(e^{\prime}\left(z_{1}\right)^{\sigma_{2}} D_{z_{2}}\right)^{2}+\cdots+\left(e^{\prime}\left(z_{1}\right)^{\sigma_{n}} D_{z_{n}}\right)^{2}+1\right\}^{s / 2} u((z))\right|_{z=\theta^{-1}(x)}
$$

for $u \in C_{0}^{\infty}\left(R_{+}^{n}\right)$.
Setting s and κ^{-1} large enough, we define a Hilbert space H with an inner product:

$$
(w, \phi)_{H}=\left(\hat{x}_{1}^{-1 / 2} \Lambda^{-s} \hat{x}_{1}^{-\tilde{\beta}+m^{\prime}} A^{*} w, \hat{x}_{1}^{-1 / 2} \Lambda^{-s} \hat{x}_{1}^{-\tilde{\beta}+m^{\prime}} A^{*} \phi\right)_{L^{2}\left(R_{+}^{n}\right)},
$$

then $w \in H$ is equivalent to

$$
\left\|\hat{x}_{1}^{-1 / 2} \Lambda^{\prime m} \Lambda^{-s} \hat{x}_{1}^{-\widetilde{\beta}} w\right\|<+\infty .
$$

Proposition 3.3. Assume (A.1) and (A.2). Let $\beta_{1}<\beta<\beta_{2}, s>s_{0}, 0<\kappa<\kappa_{0}$, and

$$
\left\|\hat{x}_{1}^{-1 / 2} \Lambda^{\prime-m} \Lambda^{s} \hat{x}_{1}^{\tilde{\beta}} f\right\|<+\infty
$$

then there exists a solution satisfying

$$
A u=f \text { in } R_{+}^{n}
$$

and

$$
\left\|\hat{x}_{1}^{1 / 2} \Lambda^{s} \hat{x}_{1}^{\tilde{\beta}-m^{\prime}} u\right\|<+\infty .
$$

Proof. Let

$$
\left\|\hat{x}_{1}^{1 / 2} \Lambda^{\prime-m} \Lambda^{s} \tilde{x}_{1}^{\tilde{\beta}} f\right\|<+\infty,
$$

then we have for $\phi \in H$

$$
|(f, \phi)|=\left|\left(\hat{x}_{1}^{1 /} \Lambda^{\prime-m} \Lambda^{s} \hat{x}_{1}^{\tilde{\beta}} f, \hat{x}_{1}^{-1 / 2} \Lambda^{\prime m} \Lambda^{-s} \hat{x}_{1}^{-\tilde{\beta}} \phi\right)\right| \leqq\left\|\hat{x}_{1}^{1 / 2} \Lambda^{\prime-m} \Lambda^{s} \hat{x}_{1}^{\tilde{\beta}} f\right\| \quad\|\phi\|_{H} .
$$

Owing to Riesz' theorem, there exists $w \in H$ such that

$$
(f, \phi)=(w, \phi)_{H}=\left(\hat{x}_{1}^{-1 / 2} \Lambda^{-s} \hat{x}_{1}^{-\tilde{\beta}+m^{\prime}} A^{*} w, \hat{x}_{1}^{-1 / 2} \Lambda^{-s} \hat{x}_{1}^{-\tilde{\beta}+m^{\prime}} A^{*} \phi\right) .
$$

Let

$$
u=\hat{x}_{1}^{-\widetilde{\beta}+m^{0}} \Lambda^{-s} \hat{x}_{1}^{-1} \Lambda^{-s} \hat{x}_{1}^{-\tilde{\beta}+m^{\prime}} A^{*} w,
$$

then we have

$$
A u=f \text { in } R_{+}^{n}
$$

and

$$
\hat{x}_{1}^{1 / 2} \Lambda^{s} \hat{x}_{1}^{\beta-m^{\prime}} u=\hat{x}_{1}^{-1 / 2} \Lambda^{-s} \hat{x}_{1}^{-} \tilde{\beta}+m^{\prime} A^{*} w \in L^{2}\left(R_{+}^{n}\right) .
$$

3.3. Regularity. From the condition (A.2), A is of order (m, m^{\prime}) on $x_{1}=0$ and

$$
\begin{aligned}
A(x, \kappa ; \tilde{\xi}) & =\sum_{|\nu| \leqq m-m^{\prime}} b_{\nu}(x, \kappa)\left(x_{1} \tilde{\xi}_{1}\right)^{\nu^{\prime} \tilde{\xi}^{\prime} \tilde{\nu}^{\tilde{\xi}_{1}^{n^{\prime}}}+\sum_{\nu_{1}<m^{\prime}} a_{\nu}(x, \kappa) \tilde{\xi}^{\nu}} \\
& =B\left(x, \kappa ; x_{1} \tilde{\xi}_{1}, \tilde{\xi}^{\prime}\right) \tilde{\xi}_{1}^{n^{\prime}}+C(x, \kappa ; \tilde{\xi}),
\end{aligned}
$$

where $b_{\nu}(x, \kappa) \in \mathscr{R}^{\infty}\left(R_{+} \times(0,1)\right)$. Denoting

$$
A(x, \kappa ; \tilde{D})=\mathscr{B}\left(x, \kappa ; x_{1} \tilde{D}_{1}, \tilde{D}^{\prime}\right) \tilde{D}_{1}^{m^{\prime}}+C(x, \kappa ; \tilde{D})
$$

we have

$$
\mathscr{B}\left(0, x^{\prime}, 0 ; \tilde{\zeta}\right)=B\left(0, x^{\prime}, 0 ; \tilde{\zeta}\right)
$$

which we denote $\Phi\left(x^{\prime} ; \tilde{\zeta}\right)$. Let $\sigma_{2}=\cdots=\sigma_{k}=0<\sigma_{k+1} \leqq \cdots \leqq \sigma_{n}$, then

$$
\Phi\left(x^{\prime} ; \tilde{\zeta}\right) \tilde{\zeta}_{1}^{m^{\prime}}=A^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\zeta}_{1}, \tilde{\zeta}_{2}, \ldots, \tilde{\zeta}_{k}, 0, \ldots, 0\right)
$$

therefore

$$
\Phi\left(x^{\prime} ; \tilde{\zeta}\right) \neq 0 \text { if } \beta_{1}<\operatorname{Im} \tilde{\zeta}_{1}<\beta_{2}, \tilde{\zeta}^{\prime} \in R^{n-1} .
$$

Moreover, if $m^{\prime}>0$, then $\underline{\sigma}>0$, therefore $\Phi\left(x^{\prime}, \tilde{\zeta}\right)$ is independent of $\tilde{\zeta}^{\prime}$, which we denote $\Phi\left(x^{\prime} ; \tilde{\zeta}_{1}\right)$. Now, we assume

Condition (A.3).
i) In case when $m^{\prime}>0$, there exists (α_{1}, α_{2}) such that

$$
0 \in\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right) \subset\left(\alpha_{1}, \alpha_{2}\right)
$$

and $\Phi\left(x^{\prime} ; \tilde{\zeta}_{1}\right) \neq 0$ if $\alpha_{1}<\operatorname{Im} \tilde{\zeta}_{1}<\alpha_{2}$.
ii) In case when $m^{\prime}=0,0 \in\left(\beta_{1}, \beta_{2}\right)$.

Setting $\left(\alpha_{1}, \alpha_{2}\right)=\left(\beta_{1}, \beta_{2}\right)$ when $m^{\prime}=0$, we have
Lemma 3.4. Assume (A.2) and (A.3), then ($\left.\tilde{\alpha}_{1}, \alpha_{2}\right)$ is an invertible zone of $\Phi\left(z^{\prime}\right.$; \tilde{D}_{2}) for $0<\kappa<\kappa_{0}$, where

$$
\tilde{\alpha}_{j}=\kappa^{-\delta_{1}} \alpha_{j} \quad(j=1,2) .
$$

Theorem 3.5. Assume that the conditions (A.1)~(A.3) are satisfied. If A is of 0 -type or of I-type, then, for $N>0$, there exist $\kappa_{0}>0$ and $N^{\prime}>0$ such that there exists a unique solution $u \in H^{N}\left(R_{+}^{n}\right)$ of the half space problem (P-I), satisfying

$$
A u=f \in H^{N^{\prime}}\left(R_{+}^{n}\right) \text { in } R_{+}^{n},
$$

if $0<\kappa<\kappa_{0}$. If A is of II-type, then, for $N>0$, there exist $\kappa_{0}>0$ and $N^{\prime}>0$ such that there exists a unique solution $u \in H^{N}\left(R_{+}^{n}\right)$ of the half space problem (P-II), satisfying

$$
\left\{\begin{array}{l}
A u=f \in H^{N^{\prime}}\left(R_{+}^{n}\right) \text { in } R_{+}^{n}, \\
D_{1}^{j} u=\phi_{j} \in H^{N^{\prime}}\left(R^{n-1}\right) \text { on }\left\{x_{1}=0\right\} \times R^{n-1}\left(j=0,1, \ldots, m^{\prime}-1\right),
\end{array}\right.
$$

if $0<\kappa<\kappa_{0}$.
3.4. Whole space problem. Let us consider A in the whole space R^{n} :

$$
A=\sum_{\nu} a_{\nu}(x, \kappa) \tilde{D}^{\nu}, \quad a_{\nu}(x, \kappa) \in \mathscr{B}^{\infty}\left(R^{n} \times(0,1)\right) .
$$

Let us say that the conditions (A.1) $\sim(\mathrm{A} .3)$ are satisfied in $R_{+}^{n} \cup R_{-}^{n}$, if (A.1) \sim (A.3) are satisfied not only for A but also for \tilde{A}, where

$$
\tilde{A}(x, \kappa ; \tilde{D})=A\left(-x_{1}, x^{\prime}, \kappa ;-\tilde{D}_{1}, \tilde{D}^{\prime}\right)
$$

We remark that A and \tilde{A} are of the same type, because

$$
\tilde{A}^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\tilde{\xi}}_{1}, 0\right)=A^{\prime}\left(0, x^{\prime}, 0 ; \tilde{\tilde{\xi}}_{1}, 0\right) .
$$

Remarking Lemma 2.2, we have
Proposition 3.6. Assume that (A.1) $\sim(\mathrm{A} .3)$ are satisfied in $R_{+}^{n} \cup R_{-}^{n}$, and assume that A is of II-type. Then, for $N>0$, there exist $\kappa_{0}>0$ and $N^{\prime}>0$ such that there exists a unique solution $u \in H^{N}\left(R_{+}^{n}\right)$ of the whole space problem with datas on a intermediate hypersurface:

$$
\left\{\begin{array}{l}
A u=f \in H^{N^{\prime}}\left(R^{n}\right) \quad \text { in } R^{n}, \\
D_{1}^{j} u=\phi_{j} \in H^{N^{\prime}}\left(R^{n-1}\right) \quad \text { on }\left\{x_{1}=0\right\} \times R^{n-1}\left(j=0,1, \ldots, m^{\prime}-1\right),
\end{array}\right.
$$

if $0<\kappa<\kappa_{0}$.

Remarking the freedom of the choice of $\left\{\phi_{j}\right\}$, obviously we have
Corollary. Let A satisfy the assumptions of Prop. 3.6, then there exists $\kappa_{0}>0$ such that A is not hypoelliptic on $x_{1}=0$ if $0<\kappa<\kappa_{0}$.

§4. Examples.

Let

$$
P(\beta)=a \beta^{4}+b \beta^{3}+c \beta^{2}+d \beta+e
$$

be a polynomial of β, where $a(>0), b, c, d, e$ are real. Let us assume that zeros of $P(\beta)$ are real, where we denote

$$
P(\beta)=a \prod_{j=1}^{4}\left(\beta+b_{j}\right), b_{1} \leqq b_{2} \leqq b_{3} \leqq b_{4} .
$$

Lemma 4.1. Assume

$$
b_{1} \leqq b_{2}<b_{3} \leqq b_{4}
$$

then we have $b_{0} \in I$, where

$$
b_{0}=\left(b_{2}+b_{3}\right) / 2, I=\left(b_{2}, b_{3}\right) \cap\left[\left(b_{1}+b_{3}\right) / 2,\left(b_{2}+b_{4}\right) / 2\right] .
$$

Moreover, let $\beta \in I$, then

$$
\operatorname{Re} P(i \zeta) \geqq a\left(|\operatorname{Re} \zeta|^{2}+\delta^{2}\right)^{2} \quad \text { for } \operatorname{Im} \zeta=\beta,
$$

where $\delta=\min \left(\beta-b_{2}, b_{3}-\beta\right)(>0)$.
Proof. Let $\zeta=\xi+i \beta$, then

$$
P(i \zeta)=a \Pi\left(i \boldsymbol{\zeta}+b_{j}\right)=a \Pi\left(\zeta-i b_{j}\right)=a \Pi\left(\xi+i \beta-i b_{j}\right) .
$$

First, let us prove the inequality for $\xi \leqq 0$. Let us denote

$$
i b_{j}-(\xi+i \beta)=r_{j}(\xi) e^{i \theta} \theta_{j}(\xi) \quad\left(r_{j}>0,\left|\theta_{j}\right| \leqq \pi / 2\right)
$$

then $r_{j}(\xi), \theta_{j}(\xi)$ are continuous functions of $\xi(\leqq 0)$, and satisfy

$$
\begin{gathered}
r_{j}(\xi) \geqq\left(|\xi|^{2}+\delta^{2}\right)^{1 / 2}, \\
-\pi / 2 \leqq \theta_{j}(\xi)<0 \quad(j=1,2), 0<\theta_{j}(\xi) \leqq \pi / 2(j=3,4),
\end{gathered}
$$

and $\theta_{j}(\xi) \longrightarrow 0$ as $\xi \longrightarrow-\infty$. Since

$$
\left(b_{1}+b_{3}\right) / 2 \leqq \beta \leqq\left(b_{2}+b_{4}\right) / 2
$$

we have

$$
\left(b_{1}-\beta\right)+\left(b_{3}-\beta\right) \leqq 0, \quad\left(b_{2}-\beta\right)+\left(b_{4}-\beta\right) \geqq 0,
$$

that is,

$$
\theta_{1}+\theta_{3} \leqq 0, \theta_{2}+\theta_{4} \geqq 0
$$

Therefore we have

$$
-\pi / 2 \leqq \theta_{1}<\theta_{1}+\theta_{3} \leqq \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4} \leqq \theta_{2}+\theta_{4}<\theta_{4} \leqq \pi / 2 .
$$

Remarking that $\theta_{j} \longrightarrow 0$ as $\xi \longrightarrow-\infty$, we have

$$
\left|\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right| \leqq \delta^{\prime}(<\pi / 2) .
$$

Hence we have

$$
\operatorname{Re} \Pi\left(r_{j} e^{i \theta j}\right)=\left(\Pi r_{j}\right) \cos \left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \geqq\left(\cos \delta^{\prime}\right)\left(|\xi|^{2}+\delta^{2}\right)^{2} .
$$

The rest of the proof for $\xi \geqq 0$ is shown just in the same way as for $\xi \leqq 0$.
Example 1: $\left(m, m^{\prime}\right)=(4,0)$. Let us consider

$$
A=a x_{1}^{4} \tilde{1}_{1}^{4}+b x_{1}^{3} \tilde{\partial}_{1}^{3}+c x_{1}^{2} \tilde{\partial}_{1}^{2}+d x_{1} \tilde{\partial}_{1}+e+\tilde{\partial}_{2}^{4}\left(0<x_{1}<1\right),
$$

where $a(>0), b, c, d, e$ are rea constants and $\tilde{\partial}_{j}=\kappa \partial_{j}$. Then

$$
\begin{aligned}
A(x, \xi) & =a x_{1}^{4} \tilde{\xi}_{1}^{4}-i b x_{1}^{3} \tilde{\xi}_{1}^{3}-c x_{1}^{2} \tilde{\xi}_{1}^{2}+i d x_{1} \tilde{\xi}_{1}+e+\tilde{\xi}_{2}^{4} \\
& =a \tilde{\tilde{\xi}}_{1}^{4}-i b \tilde{\tilde{\xi}}_{1}^{3}-\tilde{\tilde{\xi}}_{1}^{2}+i d \tilde{\xi}_{1}+e+\tilde{\tilde{\xi}}_{2}^{4}=A^{\prime}\left(\tilde{\tilde{\xi}}_{\xi}\right) .
\end{aligned}
$$

Let us denote

$$
a \beta^{4}+b \beta^{3}+c \beta^{2}+d \beta+e=a \prod_{j=1}^{4}\left(\beta+b_{j}\right),
$$

where we assume

$$
\left(* \left\{\begin{array}{l}
b_{1} \leqq b_{2}<b_{8} \leqq b_{4} \\
0 \in\left(b_{2}, b_{3}\right) \cap\left[\left(b_{1}+b_{3}\right) / 2,\left(b_{2}+b_{4}\right) / 2\right] .
\end{array}\right.\right.
$$

Then (A.2) and (A.3) are satisfied. In fact, let

$$
\beta \in\left(b_{2}, b_{3}\right) \cap\left[\left(b_{1}+b_{3}\right) / 2,\left(b_{2}+b_{4}\right) / 2\right],
$$

then we have from Lemma 4.1

$$
\operatorname{Re} A^{\prime}\left(\xi_{1}+i \beta, \xi_{2}\right)=\operatorname{Re}\left\{a{ }_{j} \Pi\left(\xi_{1}+i \beta-i b_{j}\right)+\xi_{2}^{4}\right\} \geq \delta\left(\xi_{1}^{2}+\delta^{2}\right)^{2}+\xi_{2}^{4}(\delta>0)
$$

for $\left(\xi_{1}, \xi_{2}\right) \in R^{2}$.
Example 2: $\left(m, m^{\prime}\right)=(4,1)$. Let us consider

$$
A=a x_{1}^{3} \tilde{\partial}_{1}^{4}+b x_{1}^{2} \tilde{\partial}_{1}^{3}+c x_{1} \tilde{\partial}_{1}^{2}+d \tilde{d}_{1}+\tilde{\partial}_{2}^{4}\left(0<x_{1}<1\right),
$$

where $a(>0), b, c, d$ are real constants. Then we have

$$
\begin{aligned}
x_{1} A(x, \tilde{\xi}) & =a x_{1}^{4} \tilde{\xi}_{1}^{4}-i b x_{1}^{\tilde{\xi}^{3}}-c x_{1}^{2} \tilde{\xi}_{1}^{2}+i d x_{1} \tilde{\xi}_{1}+x_{1} \tilde{\xi}_{2}^{4} \\
& =a \tilde{\tilde{\xi}}_{1}^{4}-i b \tilde{\tilde{\xi}}_{1}^{3}-c \tilde{\tilde{\xi}}_{1}^{2}+i d \tilde{\tilde{\xi}}_{1}+\tilde{\tilde{\xi}}_{2}^{4}=A^{\prime}(\tilde{\tilde{\xi}}) .
\end{aligned}
$$

Let us denote

$$
a \beta^{3}+b \beta^{2}+c \beta+d=a \prod_{j=1}^{3}\left(\beta+b_{j}^{\prime}\right)
$$

where we assume

$$
\text { (*) } \begin{cases}\text { i) } & b_{1}^{\prime}<0<b_{2}^{\prime} \leqq b_{3}^{\prime} \\ & \text { or } \\ \text { ii) } & b^{\prime} \leqq b_{2}^{\prime}<0<b_{3}^{\prime} .\end{cases}
$$

Then (A.2) and (A.3) are satisfied, setting

$$
\left(\alpha_{1}, \alpha_{2}\right)= \begin{cases}\left(b_{1}^{\prime}, b_{2}^{\prime}\right) & \text { in case of i) } \\ \left(b_{2}^{\prime}, b_{3}^{\prime}\right) & \text { in case of ii) } .\end{cases}
$$

In fact, we remark that $b_{0}=b_{2}^{\prime} / 2 \in\left(\alpha_{1}, \alpha_{2}\right)$ and we have from lemma 4.1

$$
\operatorname{Re} A^{\prime}\left(\xi_{1}+i b_{0}, \xi_{2}\right) \geqq \delta\left(\xi_{1}^{2}+\delta^{2}\right)^{2}+\xi_{2}^{4} \quad(\delta>0)
$$

for $\left(\xi_{1}, \xi_{2}\right) \in R^{2}$.
Example 3: $\left(m, m^{\prime}\right)=(4,2)$. Let us consider

$$
A=a x_{1}^{2} \tilde{\partial}_{1}^{4}+b x_{1} \tilde{\partial}_{1}^{3}+c \tilde{\partial}_{1}^{2}+\tilde{\partial}_{2}^{4}\left(0<x_{1}<1\right)
$$

where $a(>0), b, c$ are real constants. Then we have

$$
x_{1}^{2} A(x, \tilde{\xi})=a x_{1}^{4} \tilde{\xi}_{1}^{4}-i b x_{1}^{3} \tilde{\xi}_{1}^{3}-c x_{1}^{2} \tilde{\xi}_{1}^{2}+x_{1}^{2} \tilde{\xi}_{1}^{4}=a \tilde{\tilde{\xi}}_{1}^{4}-i b \tilde{\xi}_{1}^{3}-\tilde{\tilde{\xi}}_{1}^{2}+\tilde{\xi}_{2}^{4}=A^{\prime}(\tilde{\tilde{\xi}})
$$

Let us denote

$$
a \beta^{2}+b \beta+c=a \prod_{j=1}^{2}\left(\beta+b_{j}^{\prime \prime}\right)
$$

where we assume

$$
\text { (*) } \begin{cases}\text { i) } & 0<b_{1}^{\prime \prime} \leqq b_{2}^{\prime \prime} \\ & \text { or } \\ \text { ii) } & b_{1}^{\prime \prime} \leqq b_{2}^{\prime \prime}<0\end{cases}
$$

Then (A.2) and (A.3) are satisfied, setting

$$
\left(\alpha_{1}, \alpha_{2}\right)= \begin{cases}\left(-\infty, b_{1}^{\prime \prime}\right) & \text { in case of i) } \\ \left(b_{2}^{\prime \prime},+\infty\right) & \text { in case of ii) }\end{cases}
$$

In fact, setting

$$
b_{0}= \begin{cases}b_{1}^{\prime \prime} / 2 & \text { in case of i) } \\ b_{2}^{\prime \prime} / 2 & \text { in case of ii) }\end{cases}
$$

we have $b_{0} \in\left(\alpha_{1}, \alpha_{2}\right)$ and

$$
\operatorname{Re} A^{\prime}\left(\xi_{1}+i b_{0}, \xi_{2}\right) \geqq \delta\left(\xi_{1}^{2}+\delta^{2}\right)^{2}+\xi_{2}^{4}(\delta>0)
$$

for $\left(\xi_{1}, \xi_{2}\right) \in R$.

References

[1] M.I. Visik and V.V. Grusin, Boundary value problems for elliptic equations degenerate on the boundary of a domain, Math. USSR Sbornik, 9 (1969).
[2] N. Shimakura, Problèmes aux limites généraux du type elliptique dégénéré, J. Math. Kyoto Univ., 9 (1969).
[3] P. Bolley and J. Camus, Quelques propriétés des opérateurs maximaux associés à une classe d'opérateurs elliptiques et dégénérés, Ann. Scuola Norm. Sup. Pisa Serie IV, 1 (1974).
[4] O.A. Oleinik, Linear equations of second order with nonnegative characteristic form, Amer. Math. Soc. Transl., 65 (1967).
[5] J.J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math., 20 (1967).
[6] M.S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973).
[7] R. Sakamoto, A class of pseudo-differential operators with weight functions and its applications to energy estimates for degenerate elliptic operators, J. Math. Kyoto Univ., 27 (1987).

