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Some remarks on the C- --Goursat problem

By

Yukiko HASEGAWA

§ 1 .  Introduction.

Let us consider the following partial differential operator with constant coeffi-
cients.

(1.1) L--= E a tia A D D , x eR i, y eR n ,

.  a .  a.  a )

D e =  a t DY= ay i ' aY2
—2—ay,,

a ii a :  constant.

In  this paper we assume that the hypersurface t=0 is  s-tuple characteristics,
namely

(A)
E  am _s ,i c ee i e * O .

for i +  j+ lod= m , i> m — s, and

Under the assumption (A ), we consider the following problem. (We say Goursat
problem for 0)

Lu=0 xE R 1, yeR n

(P) Di,u(0, x, y)=g5i(x, y) E S(x, 3,), <  i < 771— s — 1

a l i t ( t ,  0, Y)=Sbi(t, Y)OESct,y),

where we impose among {O i }  and {Oi } the following compatibility condition;

(C) D"O1(0, y)=D'Ab i (0 , y), yeR n .

We say that the Goursat problem (P) is g-wellposed if fo r any data 
{ 0 i } , {0 i }

with compatibility condition (C ), there exists a unique solution u ( t ,  x, y)el(t,x ,y)
t > 0.

T. Nishitani [4] had considered the following operator:

(N) P= E aijaVi Di'Dy", ant-s,s,0*0.
i 5m— s
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And he had obtained a necessary and sufficient condition for the ‘-wellposedness.
For this operator (N) we obtained a Levi condition [2].

Let us call the operator (N) which was treated by Nishitani N-type. We have
the following conjecture:

Conjecture 1 .  If the Goursat problem for (P ) is g-wellposed then operator
L is N-type.

In this paper we are going to show that under some assumptions this con-
jecture 1 is true.

Remark 1 . 1 .  "Operator L is N-type" means that the coefficient of D sD s ,
doesn't vanish and the order of D t is at most m—s, namely a„,,,,, o *0  and aiia =0
for i>m—s.

Remark 1 .2 .  If the Goursat problem is 6a-wellposed then the linear mapping
{0i}}—> u(t, x, y ) is continuous from l l e , , , y , x l l e ( t, y )  into d'(t, x, y ) .

§ 2 . Result.

Firstly we show the following theorem:

Theorem 1 .  If the G oursat problem (P ) is  e -w e llp o s ed  then an , , , , , o * O .  Where

an ,_,,,, 0 i s  the coefficient of D r - sIY, in  (1.1).

P ro o f  Let us show that assuming am-s.s,o=0 there exists Goursat data {Oi},
{0j} such that (P) has no solution in e.

Consider the Goursat data:

tAu(O, x, y)=0  0< i< m — s —  1

Df,u(t, 0, y) , --- I's  g i ( y )  0 .. j _- s - 1 .

For any g i ( y ) e  e y ,  this Goursat data satisfy compatibility condition (C). Let u be

the solution of Lu=0 with (2.1). Because of am _s ,,, 0 = 0, we have

(2.2) Luit=x=o= E  am-s,i,« D y" g i( y ) .
i-1-1.1_ssi<s

Therefore

(2.3) E
i<s

By the assumption (A), (2.3) is some restriction {g,(y)}. So if  we take {g i (y )}

which does not satisfy (2.3) then (P) has no solution. q.e.d.

According to Theorem 1, if (P ) is e-well posed then L  is the following:

(2.4) E

(2.1)

am _5,s,0 * 0 ,  a --=--0 for i+ j+Ial=m and t>m—s
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Let Lm  be the principal part of L,

(2.5) Lm(r, e, 72) = E

Because of assumption (A),

(2.6) Lm(r, e, 0)==e0 Ei-0

By Theorem 1 L7,(z-, e, 0) is the polynomial of r of degree m—s. Let the roots of
L,„(r, e, 0)=0 be { aie; i = 1, 2,..., m—s} . Where { ai} are the roots of L„,(z-, 1, 0)
=0. W e have the following;

T herem  2. If the Goursat problem (P) is e-wellposed then the roots o f L m ( r,e ,  0)
=0 are real for eOEIV , i.e. la; i=1,..., m — s) are real.

Theorem 3 .  If the Goursat problem (P) is e-wellposed and the roots { aie, a=0}
o f L,„(z, Ç, 0) =0 a r e  real and have same sign then L is N-type.

Remark 2 .1 .  In the case where the roots { ai; a *0 } of L in (r , 1, 0)=0 are
real and have different sign we can not show that the conjecture 1 is true. But
under some strong assumptions the conjecture 1 is true. About this case we study
in §6.

Let us assume

(2.6) a i*0  i =1, m—so, ai=0 i=m—so +1,..., m — s, so >s .

§ 3 . The properties of the roots of L(r, $, 0)=0.

Here we give a rouch sketch of the proof of Theorem 2 and Theorem 3. Assu-
ming that the conclusion of Theorem does not hold we construct a  sequence of
the solutions of (P) which shows the continuity from Goursat data to solutions
does not hold.

Firstly we consider the differential operator L (Dt, D x ,  0). Let us write

(3.1) L(Dt, D x ,  o)— r(D t , D i ).

(3.2)[ ' ( D i ,  D x ) =  E

where aii=aij o in (2.4), ai i =0  for i + j=m  and i>m— s,

Notice that if 1"(r, ) =0 for some (r, e) then exp(irt+iex ) is the solution of Tu=0.
In  this section we investigate the properties of the roots r(e) (ore(r)) of r(r,e)=0
considering that r(r , e ) is the polynomial of r  (or e).

By (3.2) we can write

(3.3) ( r,  e)= z E  aiieil +  E  rif Ei=.-s+1 p-o

Let us consider the roots of r(e) of r( r ,  e)=0 and it's Puiseux expansion in the
neighborhood of e= + co. Let
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(3.4) p=c1eP.+c2EP'+•••, p i > p 2 > • • • ,  c * O .

By the "Newton's polygon construction" we have the following (refer to A . Lax
[3]).

L e m m a  3.1. The roots o f  F ( r,  ) = 0  have the fo llow in g p rop erties:
i) the num ber cf roots w ith  p 1 =1 is m— s o a n d  they have the Puiseux expansion of (3.5)

(3.5) ri()=ai$d-c2,ieP2'id-c3,jePa•-i+•••,

1> p 2 ,i > p 8,i> •••, j= 1, m—so

ii) the number o f  roots w ith  p i < 1  is  s o —s, le t u s write them

(3.6) k  ( e )  =  k e P " k $P2' k  + • • •

1
> p 1 ,  k > P 2 , k > •

 k=m—s 0 + 1 ,..., m—s.

R e m a rk  3 .1 .  When
 p = 1 ,

 the coefficient c1 ( i n  ( 3 .4 ) )  is determined by

E So we have (3.5).
,=o

Next, we consider the roots e ( r )  of r ( r , e )  = 0  and it's Puiseux expansion in
the neighborhood of r = c o .  Let

(3.7) $=-bir'id-b21-'+•••, a1>72>•••, b i *O.

By the "Newton's polygon construction" we have the following:

L e m m a  3.2. The number o f  roots w ith  a i < 1  or E 0  is s .  L et them be

(3.8) ei(z-)=1)1,is-'10+62,ir°2,/+•••, a i ,j< 1 , j = 1 ,

(3.9) s,

Here we consider the case where r(Dt , Dx )  is not N -ty p e . In  this case there

exists ah„k such that

a h k * 0  for h>m— s, k•O , k-Fh<m

(3.10) l a i i = 0  for i> h

ah,i=0 for j> k

Then F(r, e) becomes (3.11)

(3.11) r (r, e)-=.-rh(ah,kek+ah,k-iE k - 1 +•••+ah,o)

h - 1

+  E  r i l  E aoeil + E rilE  acie-11.
i=p rt- s +1 1=01 = 0 1=-0

L e m m a  3 .3 . I f  (3 .1 0 )  holds then there ex ists a  ro o t e (n ) o f  ['(en , E ) = 0  such that

(3.12) (n) bitei+b2n°2-1-6803+•••,
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0<8 1 <1, 01>02>03>•••, Tin b1 < 0  for e=1 or e= —1.

Proof of Lemma 3 . 3  Let

A = {(i, j);

By (3.2) and (3.10) it holds

(m—s, s), (h, k)eA, h>m—s, h+k<m.

Consider Newton's polygon. Namely consider the convex hull of A .  There exists
( p ,  q ) E  A  and 0 (0 < 0 < 1)  such that

fP+q<m, p>m—s, p+0q=m—s+0s,

ti+0  j m—s+Os for V  ( i ,  j )  e  A.

W e put

A o ={(i, j); i+0 j=m — s+0s, (i,  j) EA , (i, j)*(m — s, s )}.

Let the formal solution of ['(en, e) = 0  be (3.14).

(3.14)

Substitute

(3.15)

e = c 2 n°' c  3 n° " + •••, 0>0'>0">•••.

(3.14) in  l'(en , e )=0  and notice the coefficient of nm-s-es.

am-s,sem - s c i +  E  aosici=-0.
(0)eA 0

Let us write

(3.16) q=- max j ,  p+8q=m—s+Os.
(ti) EA,

Then (3.15) becomes the following;

(3.15') an,_,,sem-sc+ap,q6Pel-F apT EP'<+•••=0

s>q>q/>•••.

By (3.13) we have (3.17).

(3.17) 0(s—q)=p—(m—s).1.

Because of the fact that p— (m— s) and s—q are integer and 0 < 0 < 1 , we have

(3.18)

Differentiating (3 .15 ') q times by c , we have

(3.19) crad-aleP-cm-"=0, aÇ*O.

Firstly we show that (3 .19) has a root c1 with  Tm  c i < 0 .  When s — q 3 ,  it is
obvious. Let us consider the case where s— q=2 . In  this case p— (m — s)= 1 . In
fact because of p + q _ m - 1  it holds p— (m—s)_m—l—q—(m—s)=s—q-1-=1. Then
(3.19) becomes (3.20).

(3.13)
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(3.20) c?-1-ale=0,

(3.20) has a root e l  with T m  c i < 0  if we take s  with a' e#  —1.
Because o f Lemma 3.4, (3.15) has a root e l  with Tm c i < 0 . q .e .d .

Lem m a 3 .4 .  Let P (z )  be the polynomial of degree m . Let the roots of  P(z ) =-0 be

z i , z 2,..., z ,,, and M  be the convex hull o f  Iz i; i= 1, 2,..., .  Then the roots of —
d

dz P ( z )

= 0  are contained in M .

§ 4 .  P roof of Teorem 2.

Suppose that a l  is a root of L .(7 ,1 , 0 )= 0  with Tm a i *O . In  (3.5), put

(4.1) e=-ne, s'=1 or —1,

where we determine s ' with Tm

W e put

(4.2) 7(n)=ri(ne')-= a l e' n+ o (n).

And substitute this r(n) for r  in  (3.8) and (3.9).

(4.3) ei(r(n)), 1 =1 , 2,..., s.

By Lemma 3.2

(4.4) ei(r(n))— cin°P.,, ap i<1, for 1 _< j<si

Ei(r(n))=0 for si  +1 j s.

Firstly we assume that ei (r(n )) (j=1, 2,..., )  are distinct for large n . Let

-=exp(ins'xd-ir(n)t){

it!, -= exp(ie(r(n))x+ ir(n)t)

And let

(4.6) un=i4+A 1zi'„+.,42u+ • • • +A 0,

where A i( i=1 ,2 , . . . ,  s )  are constant which depend o n  n. s)  are
solutions of L(Di, D x , D y )u= T (D i, D x )u= 0 , therefore un  is the solution, too. We
define {A i}  as follows;

(4.7) Dtun(t, 0) = {exp (ir(n)t)) { (ne)k  (M r(n)))k  A i+ .......

+(e s (r(n)))kA s ) =-0, k =0, s - 1 .

Ai(n) has at most polynomial order with respect to n. W e have

(4.5)

u'n=ex p(i4s(r(n))x +ir(n)t)
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D'u n (0, x)=  r(n))k {exp(ine x)+ Al exp(ie,(z(n))x)+ .......

(4.8) 4-A sexp(ies(r(n))x ), k=0, m — s —1 .

D u n ( t ,  0 )= 0 , j= 0 , s - 1.

So the order of data with respect to  n  is polynomial(of n) X  ex p (ce ) (0< i< 1 ,
c > 0 ) .  On the otherhand the order of 14, is exp  ( c in t )  ( c ' = ilm  (cri e ' ) ) .  Then the
continuity of data to solution does not hold.
In the case w h e re  (z  )= O  h a s  multiple roots, for instance e i (r) is p-tuple roots,
we put

u!= xk-' ex p  (ie i xx ir(n)t), k= 1, p - i .

And the nearly same way as the first case we can show that the continuity of
data to solution does not hold.

§ 5 . P roof of Theorem  3.

At first we remark that.

R em ark 5 .1 .  When L(Dt, Dx, DY)
consider that L(D t , D x ,  0 )  is not N-type.

is not N-type without loss o f  generality we can

In fact putting

(5.1) u(t, x , y)= v(t, x , y)exp(ipy)

where p  is a parameter, then

L (D t, D x ,  D y) u(t, x, .Y) ==exP(iPY) L(Dt, D x , D y )v

-=exP(iPY) L(Dt, Dx, P)vd-

So

(5.2)Î ( D ,  D x , 0)=L(D t, D x, P).

When L(Dt, D x , D y )  is not N-type, for suitable p, L(Dt, D x ,  p )  is not N -type. We
consider Î ( D ,  D x , D y )v= 0  instead of L(Dt, D x , D y )u = 0 . By (5.2), L(Dt,D x ,0 ) is
not N-type for suitable p.

Suppose that the roots of Lm (r, , 1, 0) = 0  are real and negative or O. Moreover
we assume L(Dt, D x ,  D A  is not N -type. Because o f Remark 5.1  we can assume
that (3.10) holds. Let us recall (3.12).

(3.12) (n)= bi n° , + bz iez+b 3n6 + • • • ,

O<Oi <1, O i >0 2>0 3>•••, Im  b 1 < 0 .

Substitute this e(n) for e  in (3 .5 ) and (3.6)

(3.5') j((n)) = crie(n) -F c 2 ,i(e(n))P ,, '4- • • •
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+

1m b i cri>0, O 1>0 2,i> •• • , j= 1 , m—so

(3.6') rk(e(n))=ci,k(E(n))P"k--1-c2,k(e(n))P.k+•••

+  F. 2, Ice '  k + • • • •

0 1> a 1 • k > 0 2,k >  • • , k=m—s0 +1,•.., m—s.

At first we assume that

(5.3)

rk (e )  (k=1, m—s) are distinct for large n . Let

=exp {ient+ie(n)x}

„= exp {it% (e(n))t-I-ie(n)x}

exp {irm _s (e(n))t ie(n)x}

(5.4) =  + B i u!, 4- • • • d-Bm _s u s.

We define the coefficient (Bk} as follows.

(5.5) gun(0, x)= {expie(n)x}{(En)k+B i eri (e(n)))k+

+B„,,(z-,,,_,(e(n)))k}-=0.

k=0,1, m —s-1.

Bk(n) has at most polynomial order of n. We have

g un (0, x)=0, k=0,1,..., m—s-1

(5.6) .13un(t, 0)=(e(n))i{exp(ient)+B i exp(ir i (e (n ))0+

+B i n _s exp(iv i n ,(e (n ))t )} , j= 0 ,1 ,..., s -1

Because o f t>  0 , the order of data with respect to  n  is polynomial (of n) X  exp
(c 'e ), w<0 1.
On the o th e rh a n d  the order of un  is  exp(cnûrx) (c>0). Then the continuity of
data to solution does not hold.
When T ( r,  e )= 0  has multiple roots we tre a te  in the same way as §4.

In the case where the roots of L n ,(r, 1, 0 ) = 0  are real and positive or 0  we
take e(n) with 1m b 1> 0  in Lemma 3 . 3 .  There exists such e(n) is proved in the
same way as Lemma 3.3.

§ 6 .  Rem ain ing Case.

Finally we consider the remaining case. Suppose Ln , ( r ,  1 ,  0 ) = 0  has real roots
with different sign. In this case we don't know that the conjecture is true or false.

Here we consider the simple example.

a na(6.1) P=ap!— a!+a, where a4 =-- ,  v x =  ax.
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Let the principal part of P  be P 4 ;

(6.2) P4(r, e)=D 2e2 — e4 .

The roots of P(r , 1 )=0  are z-= 1  and r=— l. And obviously this P  is not N-type.
Concerning this example, the conjecture 1 is true. Namely

Proposition 6.1. The Goursat problem f o r P  is n et ‘-wellposed.

P ro o f .  We prove this proposition by making the sequence of solutions of Pu
= 0  which does not hold the continuity of data to solution.

Let us consider the following Goursat problem.

(6.3) Pu=0

(6.4) u(t,0)-=exp(—tn), a x u(t, 0)=0, u(0 , x)-=1, atu(0, x)= — n.

We remark that this Goursat data satisfy compatibility conditions. Let the formal
solution of Problem (6.3)—(6.4) be the following:

(6.5) u n =E { u 5 Ij!k !lti

Substituting (6.5) in  (6.3) we have

(6.6) 1151-)2, k+ 2 =  U 5  k + U5714 4 .1, k > 0 .

By (6.4) it holds

(— n) u5"?= 0  for j>_.0,
(6.7)

uin2=0 for k > 1.

Concerning u 5 ,  we have the following lemma.

L e m m a  6.1. It holds i) ,  ii)  and iii).
i) B y  (6.6) and (6.7), {u } are  determined unique, and fo rm a l solution (6.5) converge
in (t,x )ŒR 2 .

ii) 10 = 0  when k  is odd.
144

iii) (-1  )i {ni+k + n3+ k- s} for 2 , where AW , k)
s=1

Let us notice aun (o, x). By (6.5) and Lemma 6.1,

(6.8) au„(0, x )= p i n  k! {und (2k)!} x 2k

Using Lemma 6.1  again, we have

(6.9) 112+ lc.

Then for x > 0  it holds

(6.10)5 N(n)(0, {n2'/ (2k) 1} x2k
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n2 ( s/7z x) 2k/ (2k) !> (n2/2) exp (s/72 x).

Consider the sequence of solutions {un } .  B y  (6.4), when n--, 00 the order o f n  of
Goursat data is at most polynomial. But b y  (6.10), the order of solution is
exponential. This show that the continuity of data to solution does not hold. q.e.d.

Proof o f  Lemma 6 .1 . 1 ) Suppose { u ,,k ; j+ k < p + q  or j - l -k = p + q , j< p }  are
determined then by (6.6) up, q is determined unique. The convergence of the
formal solution is obvious (refer to [1]).
2) Goursat data (6.7) satisfy ii). Notice (6.6). I f  k4-2 is odd then k  and k+4
are odd. So by induction we prove ii).
3) By (6.6), we have

(6.11) ,,C»)+ 2, 2k + 2 = UW3, 2k + Z15,1k + 4

By (6.7)

(6.12) un + 4 =0 for j=0, 1,

(6.13) u5"+)
3,,= (— n)i"= (-1 )i+ 30+ 3

then u5V3,0 has the form of iii) in Lemma 6.1. Suppose u5"+)
3,2k has the form of iii)

and un + , has the form o f iii) or zero, then 2 4 '+ ) 2 , 2 k + 2  
becomes the following;

1/5+2,2k+2= — ( - 1 ) .5+8 tni+3 +k-Ej 4E bps`i+ 3 4 ) 0 1 -3 + k- s }
s=1

i+k+2
+ ( -1 ) i f p n 5 +k + 2 +  E  p s ci,k

s=1

= 1)5+2 fdi÷2)+(k+1)+ (Ai+3,k)± p) 0 + 2 + k

:1-1-3+k(e +3 ,k )  p 7 , t +) ) ) n j+k+3-S}
s=2

where p = 0  for 5 = 0 , 1, p = 1  for j 2.

Putting

(6.12)

Then

(6.13)

tp +3 ,k ) + p =  A il-2,k+1)

py  +3,0 + py71+2) = +2 ,k +1 )

i+ 2 + k + 1

U 7 + 2 , 2 k  + 2  =  —1)j+ 2 1n( i + 2 ) *( k+ 1 ) +  E  p ( i+ 3 .k)n i+k+3—sl.
s=1

So U1V2, 2k + 2 has the form of iii). q.e.d.

Next, let us consider the following example.

(6.14)
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About this operator 13 , we don't know that the conjecture 1 is true of false. But
we have

Proposition 6.2. The Goursat problem f o r P is  not e-wellposed f or t O. Namely

f iu=0 x E R ', t<0

a;u(o, x)=0,(x), i=o, 1
(6.15)

au(t, o)=0 i (t), j=o, 1

ao,; (o)—afoi (o), i=o, 1 , j 0 ,  1

the problem (6.15) is not e-wellposed.

Pro o f . Let Proposition 6.2 is reduced to Proposition 6.1.

Hereafter assuming e-wellposedness for t > 0  and t  0  we consider the con-
jecture:

Conjecture 2 .  If the Goursat problem (P) is g-wellposed for t.>_ 0 and t O,
then the operator L  is N-type.

R em ark 6 .1 .  When t= 0  is  simple characteristic, the operator is always
N-type.

R em ark 6 .2 .  In the case where the order o f differential operator is 3 , the
conjecture 1 is true (because of Theorem 2 , Theorem 3  and Remark 6.1).

Let us consider the operator of order 4  with double characteristic.

(6.16) M=ap2x— faa+ba ta,
x +cal+ E  aij aan a i i ; real constant.

i+.153

We are going to show that the cinjecture 2 is true for M  with b * 0  and aii small.
The characteristic equation of principal part of M  is

(6.17) r 2e2=  br e3+ eV .

Suppose the roots of z-2 — br —c=0 are real and have different sygn.
Then

(6.18) c>0.

Here we assume

(6.19) a * 0  and b*O.

Without loss o f generality, under the assumption (6.19), we can consider a> 0 ,
b > 0  in (6.16) if necessary replacing t---> — t and x-+ —x. Let

(6 .2 0 )  mA  =ap!— +  b a ta!+ ca! + E  a g a —  E a,b,c>0,
1^ 2 z 2

where ai ,  and a  are the following;
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when we put a r= a i i ,

when ai i < 0  we put a5=

Concerning the coefficient ai i  we impose the following assumption;

{131(ab2 )1 3 - c±ai, i (2 ( b) a12,

(6.21) f a,T,1141(ab)14-s c12 ands=1

ai: 1 {41(ab)} 2 +aT, 2 {41(ab)1-F a l (21a)

T h e o r e m  4 .  I f  a ,b ,c> 0  and (6.21) hold then the Goursat problem  for f l  f o r
is not e-wellposed.

§ 7 .  P r o o f  of T h e o r e m  4.

Suppose that the Goursat problem for k is e-w ellposed. Let us consider the
following Goursat problem;

u= 0,

u (t , 0)-=exp(n 2 t) — {1+ n2 t ( n 2 t) 2 !}  ,

(7.1) a ,u(t, 0) = n{exp (n 2 t) — (1 d-n2 t+ (n 4 t 2 )12!)}

u(0,x)= 0,

at u(0, x) =0.

Let un  be the solution of (7.1), and (7.2) be the formal solution of (7.1).

(7.2) un(t, x)=Eittik/(j!k!)Itixk

By (7.1) we have

(7.3)

Substituting (7.2)

fuo,k=0, u1,k= 0  for k > 0 ,

tui 3 O =7/ 2 i ,  u ,1 = 7 1 for j > 3 .

into /1//u=0 it holds

(7.4) ui+2,k+2=aui+3,k+bui,1,k+3+cui,k+4+
2
(a,+s —tç,)ui+r,k÷s for j ,  k

r + ss 
r

Here we remark that by (7.3) and (7.4) the formal solution (7.2) is determined
unique.

L e m m a  7 .1 .  I f  a, b , c> 0  and (6.21) hold then  the fo llow in g f our estimates hold
for large n  and for j ,

(7.5) Ili+2,k+2 (a/2) 0 +2 )/2 1  n 2(i+ 2)-1-k +2

(7.6) ui+2,k+2___(a/2)ui+3,k
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(7.7) ui + 2 ,k+ 2 > (b/2)n3+1.,k+3

(7.8) (c/2)u3,k+4.

We prove this lemma later. By (7 .2 )  we have

(7.9) 2_11 ,kXk l k ! .
k a 0

By Lemma 7 .1  we have the following estimate;

CO

(7.10) alun(o, x)> E  (a/2) [ ( k + 2 ) / 2 ] , 1 4 - 1 -
k+ 2 X kik  ! for x > 0 .

This shows that azz(0, x )  grows with exponential order o f n  for x > 0 .  On the
o th e rh a n d  the Goursat data of (7 .1 )  have polynomial order for t 0. Therefore

A
the Goursat problem for M  is not S -w ellposed  for t.< 0 .

Proof of L em m a 7 . 1 .  A t first we remark that ui,k  is the polynomial of n  of
degree at most 2j+k. W e rewrite (7.4).

ui+2,k+2=(7.4') (a/2)U j+3,k+ { (b/2)up-1, k+3+ (c/2)//idc + 4

E a,t,sui+r,k+4+ (a/2)ui+3,k+ ( b/ 9 ) ni+ 1,1c+3
r+ S53

+(c/2)74 ; ,k + 4 —  E aTsui+r,k+s} •
r +s

2

Let us write Sf, k  the term {........ in  (7 .4 ').

(7.11) S j,k=  (al2)11 j+ 3,k+  ( 1)12)Z1 j+1.ki-3 + (C 12)U j,k+4 —  E , +r,k+s•
r -Fs S 3

Suppose ui±2,k+2 with j+ k < p ± q  or j+ k = p + q , x p  satisfy Lemma 7 .1 .  We shall
show that up+ 2 ,q + 2  satisfy Lemma 7.1.

If Sp, q 0  then up+ 2 ,+ 2  satisfy Lemma 7 .1 . So we want to show Sp, q _ 0.
Case 1. p -E q S N  where N  is some finite number.
By the assumption of induction

(7.12) (a/2)up+3,q>((2/2) [(4+2)/2 ] n 2 p+q+6

And E a u p ,, q ,  is the polynomial of degree at most 2 p -F q + 5 . Then for sufficient

large n we have Sp, q >0.
Case 2 - 1 .  where p-i-q>N  and p=0.
By (7 .3 )  it holds

(7.13) S 0, q =  (a12)113 ,q — (Cli-oU 2,q+

By the assumption of induction

(7.14) 112,q+1 (216)118 ,q

(7.15) u ,q( 2 / b ) u 3 ,q-1<  (2/b)(2/a)u 2 ,q+ 1 S_ (2/b)(2/b)(2/a)us,q.
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By (6 .2 ) and (7 .13 ), (7 .14 ), (7 .15 ) it holds

(7.16) {(a/2)—(21b)cq,1—(81ab2),01 u3 ,q >0.

Case 2 - 2 .  where p+ q > N  and q= 0  or q= 1 .
2

(7.17)S (a/2)up+3,q— a0up+ro llr =0

( b /2 ) 11P + 1 ,4 ± 3  (ai-Jup+i,q+i-Fai, 2uP+1,q+2-Fai-J up+2,q+i)}

{(c/2)2lp, q + 4 — ai r-,,Up, q + s }=-S (A +S (p%-l-S

Here S ( ',) , stands for the first {....... } in the right handside o f (7 .17), and 4 , ),  stands
for the second {....... } , 4 3 ,  stands for the last {....... } . First, we consider S. By
(7 .3 ) we hauve

(7.18) up+q=n2cp+n+q fo r  q = 0  or q= 1.

Then

2
(7.19) S(i,),=(a/2)Up+3,q—Ea021p+r,q

r

=(a12)n 2 ( P*"+q on"P+r)+q
r 0

2
= n 2 ( P+ S ) + q  (a12) —Ea 0 n2 cr - "I .

r =0

So for large n  we have

(7.20) S > 0 .

Next, we consider S .  By the assumption of induction we have

(7.21) up+1,q+1. (2/a)up, q + 3 _< (2/a) (2/b)up + i ,q + 2

(2/a)(2/b)(2/b)up+2 ,q + 1 (2 /a ) (2 /b ) (2 /b ) (2 /a )u p + 1 ,q ,

In the same way we have

up+ 1 ,q + 2 S  (4/ab)Up+ 1 ,q + 3 ,  Up + 2,q + 1 (21a)up± 1 ,q + 3 .

Therefore

(7.22) .55,2,), _[(21b) — I ab) 2 a ,-
2 (4 1 ab)-1- a- ,(2/a) } up± i ,q .

Then by (6 .21) it holds

(7.23) S >0.

Lastly we consider S .  B y  the assumption of induction we have

up, q + 3 S_ (41ab)up, q + 4 , up, q + 2 (41 ab) 2 up, q  + 4 , up, q + 1 _(41ab)aup, q , .

Then by (6 .21) we have
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,S1,% (c/2)— ao
-,3 (41ab)— <,(41ab) 2 — a(T,i (41 ab) 3 1 up, q + 4 O.

Case 2-3 where p+ q> N and 2.
In this case we separate Sp, q  into three parts in the same way as Case 2-2. We
can estimate S 4 and S;,3,), in the very same way as Case 2-2. By the assumption
of induction we have

S(„124, 1(a/2)— i ,ai.,0(8/ab2 ) 2 .- luP+3,q.

Because o f (6.21), it holds

S1,12,>0.

Thus we complete the proof of Lemma 7.1.

Remark 7.1. In  (6.21) we can replace 4/b2 b y  2/c.

Remark 7.2. When b=0 we don't know that the conjecture 2 is true or
false except special case (c.f (6.1), (6.14)).
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