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Representations of Lie superalgebras I

Extensions of representations of the even part
By

Hirotoshi FuruTsu and Takeshi HirAl

Introduction.

Lie superalgebras are becoming important both in mathematics and in physics.
The classification of finite-dimensional simple Lie superalgebras was done by Kac in
[8] and also by Kaplansky in [11]. Kac also studied the finite-dimensional represen-
tations, especially character formulas for them, in [9] and [10]. The infinite-
dimensional representations are much more interesting as in the case of usual Lie
groups. Unitary (or unitarizable) representations are of particular interest and
importance, dominantly in physical applications. As is well known, the classification
and the construction of irreducible unitary representations of Lie groups are of great
importance in the theory of infinite-dimensional representations. Therefore we
intend to study similar problems for (infinite-dimensional) representations of Lie
superalgebras from a general point of view.

In this paper we give a definition of unitarity of such representations, which is
methematically natural. Then we give a method of constructing irreducible represen-
tations of Lie superalgebras. This method gives a standard approach to classifying
irreducible (unitary) representations for any Lie superalgebras. In the second half
of this paper, we take some simple Lie superalgebras and give the classification and
the construction of their irreducible (unitary) representations.

Let g=g,+¢, be a Lie superalgebra and (z, V) be its representation on a Z,-
graded complex vector space V=V,+V, in the sense of Kac [8]. Then, on the
even part ¥, and also on the odd part V; of V, we have representations of a usual Lie
algebra g,, We consider the converse, expecting to utilize rich results on represen-
tations of g,, More exactly, we take a representation (o, V;) of @, and then try
to construct a representation (z, V) of g such that its even part is isomorphic to
V, as gy-modules. We call this (z, V) an extension of (o, V;). We raise some
problems concerning this extension.

Problem 1 (Extensions of irreducible representations of g,). Take an ir-
reducible representation o of g, on a complex vector space V,. Then, do there
exist any irreducible representations (z, V) of g=g,-g, extending (o, V)? If they
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do exist, construct all of them.

Examining some types of simple Lie superalgebras, we recognize that for many
irreducible representations (=, V), V=V,-+V,, of g, the restriction of = to g, on ¥,
or V, is not irreducible. As a matter of fact, when we take Lie superalgebras of
type A as g, already the adjoint representation is in this case, even though it is
finite-dimensional. So we generalize Problem 1 to Problem 1bis, where we start with
a representation (o, V) of g, not necessarily irreducible. Requiring (o, V;) and
(z, V) to be unitary in Problems 1 and 1bis, we propose Problems 2 and 2bis. In
this approach, if we can solve Problem 2bis, the unitary extension problem, then,
as a result, all the irreducible unitary representations of a Lie superalgebra g will
be obtained.

To solve these extension problems, we introduce a bilinear map B: g, xXg,—
gl(¥,) by means of =, as

BE 7)== x@|V, (€.7€8).

We see that irreducible = is determined uniquely, up to equivalence, by this map B.
And then we give a necessary and sufficient condition (EXT1)-(EXT3) for B, and
also a method of constructing (=, V) using (o, V,) and B. Thus Problems 1 and
1bis are reduced to the following: find a bilinear map B: g, x g,—gl(V,) satisfying
the system of equations (EXTI1)-(EXT3). For Problems 2 and 2bis, a certain
positive-definiteness condition (UNI) on B is required in addition. In many cases,
the skew-symmetric bilinear map 4: g, X g,~>gl(V,),

A, n)=BE&, 2)—B(@.§) (£ 71€4),

is more convenient to treat with. So we rewrite (EXT1)~(EXT3) by means of A.
Further we give a reduction of the system of equations (EXT1)-(EXT3).

After these general discussion of the problems, we give some examples in the
latter half of this paper.

Let us explain the contents of this paper in more detail.

In §1, we give some basic definitions in 1.1~1.2 and then define in 1.3 the
(infinitesimal) unitarity for representations of Lie superalgebras, which is a natural
extension of that for Lie algebras. Our unitarity is defined as follows. Let (=, V),
V=V,+V,, be a representation of g=g,4+q,. We call (=, V) unitary if V is equip-
ped with a positive definite inner product <-, > satisfying the following:

(i) V,_LV, (orthogonal) with respect to {-, ->, and

(i) <-, +>is g-invariant in the sense that

(X)) v, v> =<v, in(X) VD> (v, vVeEV, Xeg),
Ja@) v, v> =<y, jr(&)v> (' evV ey,

where i=+/—1 and j is a fixed forth root (depending only on z) of —1. We call
Jj? the associated constant for n since the essential thing is not j but j?=ei with
e=1or —1.
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If (=, V) is unitary, restrictions =(g,) | ¥, and =(g,) | V; are (infinitesimally) unitary
representations of the Lie algebra g, in the usual sense.
In §2, we introduce the extension problems, Problems 1, 1bis, 2 and 2bis men-
tioned above.
In §3, we define the bilinear map B, and give a necessary and sufficient condition
(PRO1)~(PRO?3) for = to be irreducible in Lemma 3.1:
(PRO1) =(g,) V,=V,, where =(g,) V, denotes the linear span of {z(¢)v; éEg,,
ve Vs
(PRO2) an element v,V is equal to 0if and only if z(¢)v,=0 for any £ Eg,;
(PRO3) the subalgebra <{o(g,), B(g,, 9,)), generated by o(g,) and B(g,, g,) of
gl(¥,), acts on ¥, irreducibly.
We give, in 3.2, a standard method of constructing (=, V) using (o, V,) and B,
and obtain, in Theorem 3.3, a necessary and sufficient condition (EXTI1)~(EXT3)
to get a representation = of g with properties (PRO1)~(PRO2):

(EXT1)  B(*¢, n)+B(&, *7) = [o(X), B, 7)],
(EXT2) B(&, n)+B(n, &) = o([&, 7)) ,
(EXT3) B(‘L’, 5) B(??, C)+B(T, 77) B(fa () = B(T, IE’”C)'l‘B(T’ c) ,0([5, 77]) 5

for 7, £, 7, { =g, and X Eg,, where ¥é=[X, £].

In 3.4, the algebraic irreducibility is discussed. In 3.5, we define a skew-
symmetric bilinear map 4 and rewrite (EXT1)~(EXT3) in terms of A. Further we
give a reduction of the system of equations (EXTI1)-(EXT3) in Theorem 3.11,
taking into account its g,-equivariance.

In §4, we concern Problems 2 and 2bis, and get a necessary and sufficient
condition (UNI) on B for = to be unitary in Theorem 4.2:

(UND) j? kE B, E)VEVD20  for £,egq, viEV,,
where {+, +>, is a gy-invariant positive definte inner product on ¥,. We give some
remarks and examples for unitary representations in 4.2.

In the latter half of this paper, §§5~8, some examples are discussed.

In §5, we classify and construct all the irreducible (unitary) representations of
08p(2/1). For our result for 08p(2n/1) with n=2, a real form of a simple Lie super-
algebra 03p(1, 2n) of type B(0, n), we refer the readers to [6].

In §§6~8, we take gl(m, 1) or a real form of it as g and study Problems 2 and
2bis. In §6, we first list up real forms of 3[(2, 1) up to isomorphism. There are
three types of them up to transition to their duals: (a) 8[(2, 1; R), (b) 8u(2, 1;2, 1)
and (c) 811(2, 1; 1, 1), for which the even parts are gl(2; R), w(2) and u(l1, 1) respec-
tively. In 6.3, we get the solution of Problem 2 for (a). More generally, we get
the solution of Problem 2bis for g=gl(m, n; R) in Theorem 6.2, which says that
g has only a unique irreducible unitary representation, the trivial one. In 6.5,
utilizing Theorem 3.11, we prepare some necessary conditions for existence of
irreducible extensions by means of B when g is one of real forms of 8[(2, 1).
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In §7, the solution of Problem 2 for (b) is given as follows.

Theorem 7.1. Let g=3u(2, 1; 2, 1), then g=u(2). Take (o, V,) a finite-
dimensional irreducible unitary g,-module with highest weight A. Put n=A(H)+1=
dim V,, and m=A(C), where H=diag(1l, —1, 0) and C=diag(l, 1, 2) are elements of
B¢, the complexification of a Cartan subalgebra Y). Then there exist irreducible
unitary extensions (=IUEs) of p if and only if one of the following three conditions
holds:

A n=1 and m=—-2,0,2;

(i) n=2 and meR, |ml =1;

(i) n=3 and m= 4+m—1), +(n+1).

Moreover IUEs are unique up to isomorphism, except the cases n=2 and m=-3.
In these exceptional cases there exist exactly two IUEs up to isomorphism.

The solution of Problem 2 for (c) is given as follows. Here g=38u(2, 1; 1, 1)
and g,=u(l, 1), and irreducible (infinite-dimensional) unitary (g,, K)-modules are
well-known (cf. [15]).

Proposition 7.6. (i) If (o, V,) is in the principal continuous series or in the com-
plementary series, then there does not exist any IUEs.

(i) If (o, Vy) is trivial, then there exists an IUE if and only if A(C)=0. Actually
an IUE is given by the trivial representation of g.

Theorem 7.7. Let (p, V,) be in the holomorphic discrete series or its limit with
highest weight A. Put I=—A(H) and m=A(C). Then there exist IUEs if and
only if one of the following conditions holds:

i) I=1 and m= 41;

(i) I=2 and m=0, £2;

(i) =3 and m= 41, +£(I—2).

Moreover IUEs are unique up to isomorphism except the case I=2 and m=0.
In this exceptional case there exist exactly two IUEs up to isomorphism. For all of
these representations, their associated constants are given by j*=i (e=1).

In case p is in the anti-holomorphic discrete series or its limit with lowest weight
A4, put I=A(H) and m=4A4(C). Then the same assertions as above hold except
that j2=—i (e=—1) instead of j?=i (e=1).

In §8, we realize representations classified in §§6 and 7, that is, we give
standard orthonormal bases for ¥, and V,, and write down the actions of g, and
g, on V explicitly with respect to these bases.

In a forthcoming paper, we study representations of real forms of 8l(n, 1) and
give a complete classification of irreducible unitary representations in case of
8[(2,1) and 8I(3, 1). Further the classification problems for o8p(2n/1) will be
discussed in another paper.

§1. Unitary representations of a Lie superalgebra.

1.1. Basic definitions. A Lie superalgebra over a field K=R or C is defined
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as a Z,graded algebra g=g,+g;, over K whose product (or bracket) operation
satisfies the super-antisymmetry and the so-called Jacobi identity. More exactly,
it satisfies

(11) [gv gt]CgsH (5'9 tEZz) ’

and

[X9 Y] = _(_l)d(XM(Y)[Ya X] ’

(1.9 X, [Y, Z]] = [[X, Y], Z)4+(— 1) [y, [X, Z]],

forany X, Y, Zing,or g, Here s+t is calculated in Z,=Z/2Z= {0, 1}, and d(X)
denotes the degree of X: d(X)=s if Xeg, (s=0, 1). We call g, and g, the even
part and the odd part of g respectively, and call an element in g, or g, homogeneous.
Note that g, is a usual Lie algebra over K.

Let us give a simplest and fundamental example of Lie superalgebra. Let
V=V,+V, be a Z,-graded vector space over K, that is, V is a direct sum of sub-
spaces V, and ¥,. Then we define the Lie superalgebra I(¥), with underlying
associative algebra gl(¥) of all linear transformations of ¥, as follows: the subspaces
(V), with degree s=0, 1 are given by

(1.3) [(V), = {Xegl(V); XV,C V. for t=0,1},
and the bracket operation is
(1.9 [X, Y] = XY—(—1){®¥® yx  for X, YEg,org,.

According to V. G. Kac, we define a representation of g as follows. Let
V=V,+V, be a Z,graded complex vector space, possibly of infinite dimension.
A representation = of g on V is by definition a homomorphism of g into [(V) as
Lie superalgebras over K. This means that

(1.5 (X)) V,CV,yy for Xeg,(s, 1€ {0, 1}),
(1.6) =([X, Y]) = [=(X), =(Y)] (X, YEg),

with

(1.7 [2(X), =(Y)] = (X) 2(¥)—(—1)*®4® #(Y) z(X)

for X,Ye&Eg,org.

We call = irreducible (resp. algebraically irreducible) if any graded invariant
subspace (resp. any invariant subspace) of V is equal to (0) or V.

For =, we have naturally two representations of the even part g,, one on ¥V, and
the other on V,. They are usual representations of the usual Lie algebra g, We
denote them by =(g,)| ¥, and =(g,) | ¥, respectively and call = an extension to g of
each of them.

If we change the grading of ¥ by exchanging the roles of ¥V, and V] (i.e., =V}
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+ V1 with Vi=V,, V{=V,), then the roles of =(g,)| ¥, and =(g,) | V; are exchanged.
Taking this in mind, we refer usually only #(g,) | ¥, and say = an extension of z(g,) | V5,
in the following.

Let (z', V'), V'=V{+ V1, be another representation of g. Then (z, V) and
(z', V') are said to be mutually equivalent if there exists a bijective linear map T of
V onto V' such that

TV,=Vi: (s=0,1) for a fixed ¢;
Ton(X)eT!'=7'(X) (XE9).

Note. For a representation (z, V), define z_(X)=(—1)?® z(X) for any homo-
geneous X €g. Then (z_, V) is again a representation of g which is equivalent to
(=, V), without change of grading of V.

1.2. Representations contragradient or conjugate to z. Let (=, V), V=V,+V,,
and (z', V'), V'=V§+ V], be two representations of g. Then = is said to be con-
tragradient to =’ if there exists a non-degenerate bilinear form (-, -) on VXV’
satisfying

vy)=0 if vev,veVr; for s==¢;
(=(X) v, V)+i*® (v, ' (X) v) =0,

for any homogeneous element X g, where i=+/—]1. Note that, if we multiply
(s, )| V,x Vi by —1, then (z_, V) is contragradient to (z’, V') under this new
pairing of V and V.

Let (=, V), V=V,+V,, be as above. We define the conjugate vector space
V=V,+V, changing only the scalar multiplication on ¥ by its conjugate: put
V={9; veV} a set of symbols and define addition and scalar multiplication by

VY = ()T, Ao = ()7,
where v, v eV, 2&eC, and 7 is denoted also by v~. For a linear operator T on V,
there corresponds uniquely that on V, denoted by T, as

Ty = (Iv)- (3&V with veV).

Then, as we see easily, the addition of two such operators and the scalar multi-
plication, denoted by T— 20T, are given as

(T+S)~ = T+S§, 20T = QT).
Thus, introducing canonically a Z,-gradation in ¥ as V=¥, we get a represen-
tation (z, V) by #(X Y==(X) (X €g), which is said to be conjugate to (z, V).

1.3. Unitary representations. In accordance with some physicists, we call a
representation (=, V) of g unitary if V is equipped with a positive definite inner
product -, +> satisfying the following:

(i) V,_LV, (orthogonal) under <-, ->, and



Representations of Lie superalgebras 701
(ii) <., +>is g-invariant in the sense that
(1.8) (X)) v, V> =<y, in(X)Vv)> @, veV Xeg),
(1.9 (Y)Y v, v> =<y, ja(Y)v) (v, vVEV, Yeg),

where i=+/—1 and j is a fixed forth root (depending only on z) of —I, i.e.,
Jj*=—1. We call j® the associated constant for = since the essential thing is not
J itself but j2=ei with e=1 or —1. Note that the second equality of the g-
invariance of {-, -> is equivalent to the following:

JKa(X) v, v>—=n, a(Y)v> =0 (YEg).

We call = quasi-unitary if, in the above definition, the condition ‘“‘positive
definite” is replaced by “‘positive semi-definite’.

Let (z, V) be unitary, then its conjugate representation (%, ¥) is again unitary
if we introduce on ¥=V +V, the inner product <+, ->~ canonically defined from
(-, +>: for 3, ¥ €V with v, v EV, put

Hv>y = v,

In this case, the associated constant for # is j?, because joz(X)=(jz(X))~ and so,
for Xegq,,

{Jor(X) v, V)™ = (Jn(X) v)7, V>~ =V, ja(X) v)> =
= <.]77"(X) v, V> = <T’, (]z(X) vl)“>_ = <T” .]-Oi'(X) v,>_ .
Since j?=—c¢i, there corresponds —e¢ to #, whereas ¢ to =.
Note that, in this case, we have a natural bilinear form on Vx ¥ as

O, ¥) =<, vy (veV, VeV with vev),

and so, (%, V) is contragradient, under (-, +), to (z, ¥) or to (z_, V) according
as e=1or —1.

Remark 1.1. Physicists usually do not write down explicitly the multiplicative
factors i or j in front of z(X) or z(Y), but they join them together with the latters,
maybe because they are interested only in self-adjoint operators as physical objects
under quantization, and so, to write down these factors explicitly is cumbersome
for them. Thus what they call a representation of g is usually something like 7
given as follows: #(X)=iz(X) for Xeg, and #(Y)=jz(Y) for Y&g,. Therefore
the property (1.6) of representation is rewritten as

(1.10) #([X, Y]) = % [#(X), #(Y)]-

for homogeneous X, Y&g not both in g,,
(1.109 Z(X, Y]) = e[@(X), #(Y)]. for X, Yeg,,

where e=+1 with j?=e¢i. The essential thing is not j but j%, as we remarked above,
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and it is not natural from mathematical point of view to discard the case e=—1, as
is done by some physicists (cf. [2, §3.2]). The second author discussed seriously on
this point with C. Fronsdal when he was staying at RIMS, Kyoto Univ., 1983/84.

Remark 1.2. M. Duflo gave another formulation of unitarity in which there
does not appear the forth root j. In discussion with him at Paris, May 1986, we
found that our two different definitions of unitarity are equivalent to each other.

Remark 1.3. Let g=g,+4q, be a Lie superalgebra. Its dual algebra g*=g3-
¢ is defined in [8, p. 98] as follows. We take g§=g,, g¢=g, as underlying vector
spaces, and introduce the bracket operation [-, «]¢ as

[X, Y]d — (_l)d(X)d(Y) [X, Y]

for any homogeneous elements X, Y&g. Note that g? is realized in the com-
plexification g¢=C®p g of g as its real subalgebra g,-i-g,, where 1QX and iQ Y
are denoted by X and i- Y respectively.

Let (z, V) be a representation of g, then we get naturally a representation z? of
g¢ by putting

2i(x) = i'®a(X) ((=+v—-1)

for any homogeneous element Xeg?. When =z is unitary with the associated
constant j?=cei, z¢ is also unitary, with respect to the same inner product in ¥, and
its associated constant is j*= —ei.

Notation. For a vector space V, we put for 4, Begl(V), associative algebra,

and we omit the suffices “— if it does not cause any confusion.

§2. Problems of extensions of representations of the even part.

2.1. Extension problems. We propose some problems initially due to C.
Fronsdal (cf. [2, §1.3]) and also to G. Zuckermann.

Problem 1 (Extensions of irreducible representations of g,). Take an ir-
reducible representation p of the even part g, on a complex vector space V,. Then,
do there exist any irreducible representations (z, V) of g=g,+g, extending (o, V,)?
(More exactly, ¥V, is imbedded into ¥V as its subspace of degree 0, and o is eq-
uivalent to z(g,) | ¥, under this embedding.) If they do exist, construct all of them.

When we study this problem for some types of simple Lie superalgebras, we
recognize that the above extensions are not always possible or that the extensions
become rather difficult to exist in general according as the dimension of g increases.
On the other hand, we encounter frequently an irreducible representations = of g
for which z(g,)| ¥, is not irreducible. For instance, the adjoint representation of
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g itself is already in such a case for some simple g’s, eventhough it is finite-
dimensional.

Thus, to study irreducible representations of g in general or to classify all of
them, we are forced to start from representations of g, not necessarily irreducible.
Hence we come to the following problem generalizing Problem 1.

Problem 1bis. Take a representation (o, V;) of g, not necessarily irreducible,
and study its irreducible extensions to g=g,+@,. Especially, analyse the splitting
of z(g,) | V, into irreducibles for an irreducible representation (z, V), V=V,+V,, of g.

Note. From a physical point of view, a reducible (o, V;) for an irreducible
(=, V), V=V,+V,, means that many elementary particles live together in a closed
physical world.

2.2. Unitary extension problems. As usual, we call a representation (o, V;) of
@, (infinitesimally) unitary if V, is equipped with a positive definite inner product
<+, *>, such that

2.1 (X)) v, vV Dy = v, ip(X) v, (XEg, v,V EV.

It is a difficult problem to determine whether or not a unitary representation o
of g, can be lifted up (or globalized) to a connected Lie group G, with Lie algebra
g, (cf. [13, §9]). Putting this problem aside, we propose the following extension
problem of unitary representations on the algebra level. For convenience of later
references, we list up the problem for irreducible o separately.

Problem 2 (Extensions of irreducible unitary representations). Let (o, V) be
an irreducible unitary g,-module. Then do there exist any irreducible unitary
extensions of (o, V;) to g=g,+¢,? If any, in which different ways can we extend
it?

Problem 2bis. How about the case where p is no longer irreducible? In
particular, study the branching rule for an irreducible representation = of g into
irreducibles when it is restricted to the even part g,.

2.3. Case of reductive g,, Now we restrict ourselves to more specialized
situation which we will treat in the following. Assume that g, be a real reductive
Lie algebra. Let G, be a connected Lie group corresponding to g, and K, the
analytic subgroup of G, corresponding to a maximal compact subalgebra ¥, of g,.
We call a g-module (o, V) an admissible (g,, K;)-module (or Harish-Chandra
modaule) if it satisfies the following conditions.

(i) oty on V,is decomposed into a direct sum of finite-dimensional irreducible
representations of f,, which can be lifted up to K|, with finite multiplicities.

(ii) ¥, 1is finitely generated as a g,-module.

From the results in [13] and [1], we know that any unitarizable admissible
(g5, Kp)-module correspond canonically to a unitary representation of G,, which is
a finite direct sum of irreducible ones. Moreover, irreducible unitarizable (g,, K;)-
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modules correspond one-to-one way (up to equivalence) to irreducible unitary
representations of G,. Here the equivalence for such (g,, K;)-modules is in purely
algebraic sense. Furthermore, when the center of G, is finite, irreducible (g, K,)-
modules, not necessarily unitary, correspond one-to-one way (up to equivalence) to
quasi-simple irreducible representations of G, on Hilbert spaces (cf. for instance,
[1, §8).

In later sections, we will study Problems 1bis and 2bis for a real form g=
03p(2/1) of 08p (1, 2) with g,==8p(2; R), and Problem 2 for those of 8[(2, 1) with g,=
1(2) or u(l, 1) respectively. For g=08p(2n/1), a real form of 03p(1, 2n) of type
B(0, n) in the classification in [8], see also [6].

§3. Equations for an irreducible extensions.

In this section, we consider Problems 1 and 1bis and obtain a system of equations
to solve these problems. Hereafter we use Greek letters &, 7, -+, to denote elements
in g, when it is convenient to distinguish them from elements in g,.

3.1. Conditions for irreducibility. Let (x, V), V=V,+ V|, be a representation
of g=g,+4,, We define for &, nq, a linear mapping B(&, 7) of V, into itself by

(3.1) BE Ny =nr@)z()y (VEV,).

Then B(-, -) is a bilinear mapping from g, x g, into g{(¥}), which plays a decisive
role in the following. We extend B by linearity to a complex bilinear map: g, ¢ X g, ¢
—>gl(Vy), where g, c=CQ®r g,

Let us first study the irreducibility of =. Denote by =(g,) V, the subspace of
V, spanned by {z(¢) v; ég,, veVy}. Then Vi=z(g,) V,CV, is a g,-submodule,
and V'=V,+V1is a g-submodule of V. Moreover put

(3.2 M= {eV;a@)v=0 (€g)},

then it is g-invariant, and hence V'=V{4M with V{=(0)CV, is a g-invariant
subspace of V. Thus, we see that when (=, V) is irreducible, it necessarily has the
following properties:
(PRO1) =(g,) Vo=V,, where z(g,) ¥V, denotes the linear span of {o(X)v; X&
8, VEV};
(PRO2) M=(0), namely, an element v, ¥, is equal to 0 if and only if z(%) v,
=0 for any 7€g,.
Further put p==(g,)| ¥, and denote by <o(g,), B(g,, 8,)> the subalgebra of
gl(V,) generated by {o(X), B¢, 7); XEg,, £, nEg,}. Then we have the following
criterion of irreducibility.

Lemma 3.1. Let (z, V), V=V,+V,, be a representation of §. Then it is ir-
reducible if and only if it has the properties (PRO1), (PRO2) and
(PRO3) the subalgebra <{r(g,), B(g,, 8,))> of al(V,) acts on V, irreducibly.
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Proof. The necessity of the property (PRO3) is easy to see. Hence we prove
the sufficiency of these properties.

Let U be a non-zero graded invariant subspace of V: U=U,+ U, with U=UN
V, (s=0, 1). If U,=*(0), then U,D<0(g,), B(g,, g,)> U,=V, by (PRO3) and so
U=V, 1If U,=*(0), then (0)*=(g,) U,C U, by (PRO2), whence U;#(0) and so
we have U,=V, as above. Thus in each case, U=V, and so U,D=(g,) V,=V, by
(PRO1), whence U=V. This means that = is irreducible. Q.E.D.

Corollary 3.2. Let (z, V) be a representation of ¢ as above. Assume that
o=n(g,) | V, is irreducible. Then = is irreducible if and only if it has the properties
(PROI1) and (PRO2).

Corollary 3.3. Let (o, V,) be a representation of §,, and (=, V), V=V,+V,, its
extension to § with properties (PROIL) and (PRO2), or especially an irreducible
extension. Then

(1) any element of V, is expressed as a linear combination 3); n(&;) v* with &;€
g, v eV, and

(ii) this linear combination is equal to 0O if and only if

3.3) B, &)y =0  forany nEg,.

3.2. Bilinear map B. Let us now prove that the bilinear map B: g, X g,—
gl(V,), together with o on V¥, determines completely the extension = (up to
equivalence) if = has the properties (PRO1) and (PRO2), hence especially if = is
irreducible.

Consider the complexification g, o of g, as g,-module and put W=g, Q¢ Vs,
the tensor product as gi-module. Let p be the canonical g,-homomophism of W
into V| given by

(3.4) P WOEQRv o n(§)vEV, (E€g, vEV,).

Then p is surjective because of (PRO1). Further, by Corollary 3.3, the kernel m
of p is given by

3.5) m= {3}, ;QV; £;eg, vEV, such that (3.3) holds} .

Let 7=gq,, then the map =(%): V, — V,, factors through 7Q: V;3v = 2Qve
W, as follows, and similarly the map B(€, 7)=n(¢) =(7) | V,€gl(V}):

7(7) (§)

B(fa 77): Vo _—> Vl —_— I/0
7Q® PT /
w

Put W=W/m and denote by [w] the element in W represented by we W.
Then W=2V, as g,-modules through p. We define an action of g, on W as follows:
for £€g,,
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(3.6) Walh@v]— BE 1) veV, (eg,veV,).

Then this is well-defined because the kernel m is given by (3.5). Thus we get a
canonical realization of an extension (z, V) with properties (PRO1), (PRO2), by
the following method.

Method of construction using a bilinear map B: g, X g,—>gl(V}).

(MET1) Take W=g, ¢®¢ V, as gemodule, and determine its submodule m
by (3.5).

(MET2) Take W=W/m as the subspace V; of degree 1, and put V="V,+V,.
Define the action of £&g, on V;=W by (3.6) and that on ¥, by

3.7 VoDv i [EQvIEW .

3.3. Equations for the map B: g, xg,—gl(V,). Let (o, V) be a not neces-
sarily irreducible representation of g, We see above that an extension (z, V), V=
Vy4-V,, of it is determined by a bilinear map B: g, X g,—gl(V,) if = has properties
(PROI) and (PRO2), or especially if = is irreducible. Let us study conditions for
B to be satisfied.

First we list up the representation property (1.6) in three cases

(3.9) z([X, Y]) = z(X) z(V)—=(Y) z(X) (X, YEQ);
(3.10) z([X, €]) = z(X) z(6)—z () =(X) (XEgp, (E€BG);
@3.11) z([§, 7)) = (&) z(D+=x () =(&) (€ 72€8).

For simplicity, the cananical action of X on £ is denoted as *§=[X, £]. We
write down the above equalities for vE V, and v,==({) ve V, ({€g,, vEV)).

(3.9.0) p(X, YD) = p(X) p(Y)—0(Y) p(X),
3.9.1) z(X, YD) v =2X)z(Y)zn () v—=(Y) z(X) = ({) v;
(3.10.0) (&) v=naX)z () v—=(f) p(X) v,
(3.10.1) B*&,0)v=p(X) B, v—=(£) z(X) n({) v;
(B.11.0)  o(l&, 7)) = B¢, 0+B(,8),
(3.11.1) z(& )z Q) v=a@z@z)v+a@Dz@E) =) V.
From (3.10.0), we have
(3.12) z(X) () v = {z(*O)+= () p(X)} v.
Apply this to the right hand side of (3.9.1), then we get
z([X, YD) z({) v = {z (N O)+=(O) o (X, Y]} v.
Therefore (3.9.1) follows from (3.12) and (3.9.0). Again apply (3.12) to (3.10.1) and
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(3.11.1), and further apply =(r), rEg,, to the both sides of (3.11.1), then we get
respectively

(3.10.1) B(*¢, &) = p(X) B(E, n)—B(€, *O)— B, {) (X)),

(3.11.1) B(z, M)+ B(r, ) o (€, 7)) =
= B(z, &) B(n, {)+B(z, 1) B(£, <) .
Now we see that (3.12) shows how X&g, operates on v,==({) vV, and that
it corresponds exactly to the g,-action on W=W/m, W=g,¢®¢ Vo Further we

see that, under (3.12), the system of equations (3.9)—(3.11) for = with (PROI) and
(PRO2), is equivalent to the following one:

(EXT1)  B(*¢,n)+B(¢,*n) = [o(X), B¢, 1)] (XEg, ¢, 1€8)
(EXT2) B, n)+B(@, &) =o(&, 7)) (£, 7€q),

(EXT3) B(z, &) B(n, {)+B(z, 7) B(£, {) =
= B(z, B O+B(r, ) o€, 1) (7. &, 7,{E0),

where in the right hand side of (EXTI)
(3.13) [C, D] = CD—DC for C, Degl(Vy).

Note that C [o(X), C] (Cegl(V,)) gives a natural g,-module structure on
gl(Vy). Then the condition (EXTI) says that the bilinear map B, extended by
linearity,

B: g,cX8,c2(&, 1 BE, negl(Vy),

is a g;-homomorphism of g, ¢X @, ¢ into gL(V,).
Now we can state a theorem which is fundamental for our later study.

Theorem 3.4. Let (o, V,) be a representation of the even part g, of §=@a,+4,,
not necessarily irreducible.

(i) Let (=, V), V=V,+V,, be an extension of (p, V,) to §, having properties
(PRO1) and (PRO2). Put for £, 7€g,,

(.19 B, myv==a@rx@mv (vEV).

Then B satisfies the system of equations (EXTI1)-(EXT3).

(ii) Conversely, assume that we are given a bilinear map B from g,Xg, into
gl(Vy), which satisfies (EXTI)«(EXT3). Put W=g, Q¢ V, and define its gy
submodule m by (3.5). Take W=W|m as the space V, of degree 1, and define g,-
action on V=V,+V, by (3.6)-(3.7). Then we get an extension (z, V) of (o, V,) with
properties (PRO1), (PRO2). Moreover any such extension can be obtained in this
way up to equivalence.

Proof. The assertion (i) has been already proved. For the assertion (ii), it
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rests only to prove that we get from (EXT1)-(EXT3) the representation property
(1.6). As an example, take (EXT3). Then by the definition of m, we get on V; the
following equality

z(€) B(n, O)+=(n) B¢, {) = n(™1 &) +x(0) o (€, 7)) -

This, together with (3.12), gives the equality (3.11) on V,. Other details are om-
mitted here because they are a kind of repetition of former arguments. Q.E.D.

Corollary 3.5. Let (o, V,) be an irreducible representation of §,. Then, any
irreducible extension (z, V') of it can be obtained, up to equivalence, canonically from
a bilinear map B: g, x g,—>gl(V,), which satisfies (EXT1)-(EXT3). Here ‘“‘canoni-
cally” means “by the method (MET1)-(MET2)"”.

3.4. Algebraic irreducibility. Let us give here some remarks about two kinds
of irreducibility.

Lemma 3.6. Let (z, V), V=V,+V,, be a representation of g=g,+@a,. Then
it is algebraically irreducible if (1) it is irreducible (as a representation of a Lie super-
algebra), and (2) any intertwining operator from a gy invariant subspace of V, into
Vi1 as ge-modules, is trivial for s=0 or 1.

Proof. Assume that (1) and (2) hold for (z, V). Let UCV be a non-zero
g-invariant subspace of V. Take a non-zero ue U and express it as u=u,+u,
w.eV). Ifuy=0oru,=0,thenuecV,or ucsV, whence we get U=V from (1). So
we assume #,=%0, 1,#=0. Then we see from (2) that there exists a Z& U(g,,¢) such
that Zu,=0, Zu,,.,=0 for the s in the lemma, where U(g, ¢) denotes the envelop-
ing algebra of g, ¢. Hence UN V4, contains a non-zero element Zu=Zu,,,, and
so we get U=V by (1).

Thus we see that z is algebraically irreducible. Q.E.D.

Remark 3.7. The above sufficient condition for algebraic irreducibility is not
so special but rather general. In fact, in many cases, V, and W=g, Q¢ ¥, have
no irreducible components of g, in common, and so do ¥, and V,=W=W/m (see
for instance later sections §§5-8).

3.5. Equations for the map A:g,Ag,—gl(¥,). When we apply the system
of equations (EXTI1)-(EXT3) to certain types of simple Lie superalgebras, it is
more convenient to use, instead of B(-, +), a skew-symmetric bilinear map A(-, «):
for &, 7€g,,

(3.15) A&, 1) = B, 7)—B(n,§) .

We extend A4 by linearity to a complex linear map g, ¢ X g,,¢—>g{(Vy), if necessary.
Let us rewrite the system of equations (EXT1)«(EXT3) on B by means of A.
First of all, (EXT2) is equivalent to the skew-symmetricity of 4 and

(3.16) B, 7) = % (&, 1D+AE 1) (€ 18y .
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Therefore (EXT2) is dissolved into the condition that the bilinear map 4 is skew-
symmetric.

Next, (EXT1) is equivalent to the condition that the map A4 gives a g,-homo-
morphism of g, ¢/ gy, ¢, the exterior product of g, ¢ with g, ¢, into gl(¥}):

(EXT1A)  ACE, n)+AE *1) = [0(X), A¢, 1] (XEg, & 7€4) -

Assuming (EXT1A) or equivalently (EXT1), we get from (EXT3) two equations
(EXT3A,), (EXT3A.) as follows. First rewrite the right hand side of the equa-
tion (EXT3) by using (EXT1), then we get

= —B(®" 7, O)+p (¢, 7)) B(z,{) .
Then, exchanging = and ¢ in (EXT3) and (3.17) above, we get respectively

(3.17) B(¢, &) B(n, ©)+B(¢, 1) B¢, 7) =
= B(¢, ")+ B(C, 7) o (€, 7))
(3.17") B(¢, &) B(n, )+ B(C, 1) B(E, ©) =

= —B(&" L, 7)+p([&, 7)) B, 7).
Adding four equations (EXT3), (3.17)-(3.17"), side by side, we get

(EXT3A,) [A(z, &), A(n, Ol +[A(z, 1), A, O+
o ([z, €], A(z, Ol+[o (=, 7]), A, {)]
+le (€, ¢, A7, D+[e (7, <D, A, )]
o (=, €D, o ([, <DL +[o (=, 2D, £ (€, <D+
= 24(z, BN +2A4(C, BM)+2[o([z, {D), o€, 2D+,

where, for C, Degl(V,),
[C, D], = CD+DC, [C, D]= CD—DC.

Now, we add (EXT3) and (3.17), and deduct (3.17), (3.17") from it, side by side.
Then we obtain

(EXT3A.) [A(z, £), A(n, OI+[A(z, ), A¢, <))
+lo(lz, €D, A, Ol+e(z, 70), AE, Ol
+lo([7, <D, Az, Ol +o (&, €D, A(z, D]+
+lo(z, €. o ([, {DI+[o ([x, 71), o ([€, <D]
= 2[o([&, 7). A(z, Ol+20([z, & D20 (¢, &) .
Note that the equation (EXT3A,) is symmetric under the permutations £ <7

and 7 ¢, and that the equation (EXT3A_) is symmetric under £ <> and skew-
symmetric under 7> (.
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The system of equations (EXT1)~(EXT3) on B is now rewritten by means of 4
as follows.

Theorem 3.8. Let (o, V) be a representation of the even part g, of §=g,+3,.

(i) Assume that a bilinear map B: g, X g,—>gl(V,), satisfies the system of
equations (EXT1)-(EXT3). Then a map A: g,xg,—>al(V,), defined by (3.15) is
skew-symmetric, and it satisfies the system of equations (EXT1A), (EXT3A,),
(EXT3A.).

(ii) Conversely, assume that a skew-symmetric map A: g, xg,—>gl(Vy),
satisfies (EXT1A), (EXT3A,), (EXT3A_). Then the map B defined by (3.16) satisfies
(EXT1)-(EXT3).

Proof. 1t rests only to prove the assertion (ii). For this, it is enough to note
that (3.17) is equivalent to (EXT3) if we assume (EXT1A) which is equivalent to
(EXT1). Q.E.D.

Notation. The bilinear map 4 can be considered as a complex linear map
from the exterior product g, ¢ Ag, ¢ into gl(¥y). In the following, when we con-
sider it in this way, we denote, by abuse of notation, A(¢, 7) also by A(6 A7), and
further use the notation A(z) for z&g, ¢ A@g,,¢. Similarly we denote B(¢, ) also by
B(¢®7) and so on.

3.6. Reduction of (EXT3) by the g,-equivariance. Let us reduce the system of
equations (EXTI1)-(EXT3) to more simpler one, using g,equivariance property.
Here we take (EXT3).

Let B be a bilinear map from g, x g, to gl(¥;). First, assuming (EXT1) for B,
we reduce (EXT3). Taking into account the form of (EXT3), we define a linear map
Py from g{9=g, ¢®a,,c®8;,c®a,¢ to gl(Vy) as follows: for r@ERQ7RE with
7, &, 7, {Eq,

(3.18) Pz ®ERQ7QC) = B(z. §) B(z, )+ B(x, 7) B, €)
—B(r, 10— B(z, &) o (&, 7)) -

We denote by & *¢ the natural action of X&g, on { g, ¢, and similarly that on
ueg® by ur—>*u. Then we have the following

Lemma 3.9. Assume that B: g, x g,—>gl(V,) satisfies (EXT1), that is, B is gy
equivariant. Then Pg: gi"—qgl(V}) is also gy-equivariant:

(3.19) Py(*u) = [0 (X), Pyw)] (uegl®, XEq,).

Moreover, denote by S,, the automorphism of g{* exchanging the p-th and
g-th factors in decomposable vectors, for instance,

(3.20) Sp(r@EQ7QC) = 1R@1QERL (r. 7.6, {<g).

Then we have from the definition of Py that
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(3.21) Py(Spu) = Py(u) (ueg).

Denote by <U(g,¢). Sy the direct product of algebras U(gy ¢) and {Sp>=
C+C-S,. We make S, act on gl(¥,) as the identical transformation, then (3.19)
and (3.21) says that Py is a <U(@y¢), Syp-homomorphism from g{* to gl(¥j).
Therefore we get the following

Lemma 3.10. Assume that B: g, x g,—>gl(V,) satisfies (EXTI). Let {u,, u,, *++,
Uy} Cai® be a subset which generates the whole space §i* as <U(@y,¢), Syy-module.
Then, under (EXT1), the equation (EXT3) on B is equivalent to the following system
of equations on B:

(EXT3%) Pyu) =0 (ISj<M).

Proof. As is shown above, under the condition (EXT1) which says that B is
go-equivariant, the map Py is a <U(Go,¢), Spy-homomorphism from g{* to gl(V}).
This gives our assertion immediately. Q.E.D.

Similar reduction can be carried out for equations (EXT3A,) and (EXT3A_),
this time using {S,,, S, instead of {S,;> (cf. a remark just before Theorem 3.8).

3.7. Reduction of (EXT1). We now reduce the equation (EXTI) to more
simple one. First note that (EXT1) is equivalent to (EXTIA) which says that the
map A4: g, ¢ AG,c—>8l(Vy) is g-equivariant. Let us take a system of generators
{2}, 2, +++, zy} Of @;,¢ /A Gy, ¢ as go-module. Then the map 4 is uniquely determined
by its values on these generators, that is, by the system of operators {4,=A(z,)E
al(Vy); 1Sk=N}.

Conversely we have the following

Lemma 3.11. Assume that we are given a system of operators {A,=gl(V,);
1<k=N}. Put A(z))=A, for 1=k=N. Then it can be extended 10 a @,
homomorphic linear map A: g, ¢ \8,,¢—>8L(V,) if and only if it satisfies the following
condition:

(EXTI*) if Xisisn #2,=0 with x,& U(@y,¢), then necessarily

(3.22) Sisesy *4, =0,

where the action of x,& U(g,,¢) on A,EgL(Vy) is canonically induced from the action
of XEeg,: gl(Vy)DCr[p(X), Clegl(Vy). In particular, if 3\<icn $+z,=0 with
X,Eq,, then

(3.23) Shsusn [0(Xp), 4] =0.

We note here that, when A(z) is given for a zEg, ¢ Ag,¢, the corresponding
value of B(-. -) is defined as follows: express z as z=3),, £, A7,, and put z=33,
fm®7m691,0®gl.0’ then

(3.24) B(z) = % (0@+AR).
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where, by definition,

B(z) = 3 BEws 1m); 0(2) = s 0(E> 1m]) -

Thus, defining B and putting it into (EXT3*), we get a system of equations on
{A4,, A,, -+, Ay} which is again denoted by (EXT3%).
After these reductions of (EXT1)and (EXT3), we get finally the following result.

Theorem 3.12. Let {u;cgi¥; 1< j<M} be a system of generators of g\¥'=
81,c®8,c®81,c®81,¢ a5 <U(Qo,¢), Sopp-module, and {2, ¢, c A8, ¢; |Sk=N} that
of 8,,¢/\ Gy, ¢ as gy-module.

(i) Under the condition (EXT1) on B: g,x g,—>gl(V,), the equation (EXT3) on
B is equivalent to the equation (EXT3%).

(ii) Put, for §&,nE<g,

AE A7) = A, 7) = B¢, 1)—B(, €)

and A,=A(z,)€gl(V,), |<k=<N. Then the condition (EXT1) on B is equivalent to
the condition (EXT1*) on {4,, A,, +++, Ay}.

(iii) The system of equations (EXT1)-(EXT3) on B is equivalent to the system
of equations (EXT1%*), (EXT3¥), under the skew-symmetricity of A.

Note. In §§6-8, we treat irreducible unitary representations (=IURs) of real
forms of 8[(2, 1), and there we encounter the cases where all 4,=0 except only one
Ak0=A(zk0)°

§4. Conditions for unitarity of representations.

4.1. Positive definiteness for unitarity. In this section, we study unitary ex-
tensions. Let (o, V,) be an (infinitesimally) unitary representations of g, and
denote by <+, +>, a g,-invariant positive definite inner product on ¥,. Note that if
o is not irreducible, <+, <>, is not necessarily unique.

Let us first study a necessary condition for existence of unitary extentions.
Let (=, V), V=V,+V,, be a quasi-unitary extention of o, with properties (PRO1),
(PRO2)in 3.1. Denote by <+, +>a g-invariant positive semi-definite inner product
on V extending <+, +>, on ¥,. By (PRO1), any element v, E V] is expressed as

4.1 v= >, a(E) v with &g, veEV,.
Therefore. by (1.9),

<vl’ vl> = <Ek ”(Elz) vka Em ”(fm) Vm>0
= (jI7) § <z (Ey) m(ED VA, V™D
=j2 hE <B(Em, fk) vha vm>0 g O .

Here j is the fixed forth root of —1 in (1.9): j*=—1, whence j/j=j*=¢i.
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Thus we get the following

Lemma 4.1. Let (=, V), V=Vy+V,, be a quasi-unitary extension with pro-
perties (PRO1), (PRO2), of a unitary representation (p, V) of @, not necessarily
irreducible. Then the corresponding bilinear map B of g,X g, into gl(V,) satisfies

(UND  j23<KBE,E) VD2 0 (§,E8, *EV)),
k,m
where j is a constant depending only on =n, and j?=¢i, e=+1. In particular,
4.2) B, n)* = —B(n, &) (§,7€g),

where D* denotes the adjoint operator of Degl(V,) with respect to -, +>,, and
moreover

(UNI") J*B(,6)=0  forany (g,
where D=0 means that D& gl(V,) is positive semi-definite.
Now consider the kernel N of -, +>, that is,
4.3) N={peV;{n,up=0 forany ueV}.

Since <, +>, is positive definite, N is contained in V. Let vy&NCV,. Then,
taking u==(z) v’ with n&g,, v €V, we have

vy up = jKa(n) v, v = 0.

Since <, +), is definite, we get =(7) v,=0 for any yEg,;, and so v,=0 by (PRO2),
whence N=(0). Hence we see that <., +> must be definite, and so (z, V) is neces-
sarily unitary.

Thus we get the first half of the following theorem.

Theorem 4.2. Let (o, Vy) be a unitary representation of gy, and (z, V), V="V,+
V,, be its extension with (PROI), (PRO2), which is given canonically by B(-, +)
satisfying (EXT1)-(EXTS3).

(W) If (=, V) is quasi-unitary, then it is necessarily unitary. Moreover, for
v=>Ln(E)vieV, withé,eg, VeV,

4.4 v v =j2 ? CBE s € VA, V™.

(ii) (=, V) can be made unitary if and only if there exists a g -invariant positive
definite inner product -, <>, on V, for which the condition (UNI) holds for B(-, +).
In particular, it is necessary that the operator j:B(€, &) on V, is positive semi-definite
with respect to +, +>, for any E€g,: j?B(E, £)=0.

Proof. It rests only to prove the second assertion (ii). We must prove the
equalities (1.8) and (1.9). Remark that V;,_| ¥V, then these equalities reduce to the
following
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in(X) vy, vi> = vy, in(X) vi> (X Egy, vy, VIETY)),
<j7r(6) vO’ vl> = <v0’ j’r(f) V1> (feglv Vse Vg) .

The first equality follows from (EXT1) for B and (4.4), and the second one from
(4.2). Q.E.D.

Remark 4.3. Let = be a unitary representation extending a unitary (o, V), with
properties (PROI1), (PRO2), and put B(¢, 7)==(€) n(n)| V,. Assume that B satisfies
the condition (UNI). Then we can define on W=g, Q¢ ¥, a positive semi-definite
inner product by

(4'5) <2k €k®vk’ Em 77m®um>w =j2 % <B(77m’ fIz) vk’ um>0 >

where &,, 7,4, v, W"EV,. Then a calculation similar as above shows that the
kernel nt of {-, +> coincides with the gi-submodule m of W determined by (3.5).
This means that the method (MET1)-(MET2) in §3.2 is compatible with unitarity
of extensions, since V,=W=W/m, m=n.

4.2, A property of unitary representations. Let us give some remarks on a
property, peculiar to unitary representations of Lie superalgebras. Let £=g,, then
by (UNI),

JPa(&) a€) | Ve = j*B(E, £)20.

Note that [£, &l€q, o (&, ED)==(¢&, ]|V, and =([¢, ED)=[x (&), n(€)],=2x (&)
Then we see that j2o ([€, £])=0. Thus we get the following

Lemma 4.4. Let g,(+) be the subset of §, consisting of linear combinations of
[&, €], £ =g,, with non-negative real coefficients. If a unitary representation (p, Vy)
of @, has a unitary extention with the associated constant j*=cei (e=+1), then

(4.6) cip(X)=0  for Xeg(+).

Corollary 4.5. Assume that g, be reductive and (p, V,) be an admissible (g,, K,)-
module as in 2.3. Assume further that a compact Cartan subalgebra %); of g6=I[g,, 8]
is spanned by 93N go(+). Then, if o has a unitary extension to g=g,@,, then p is
a highest weight module or a lowest weight module according as e=1 or —1, with
respect to a lexicographic order comming from a basis {X,} of Y such that X, €

Ha N go(+)-

Note. When we turn to conjugate representations, we see that the condition
corresponding to (4.6) for the conjugate p of p is

(—e) )en(X)20 (XEg(+)),

that is, (¢ o(X))~ =0, which is equivalent to (4.6) itself (cf. §§1.2~1.3). Further,
if o has a unitary extension =z, then g has # as its unitary extension, and vice versa.
Note also that, if o is a highest weight module, then 7 is a lowest weight module.
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Corollary 4.6. Let g=g,+g, be a complex Lie superalgebra. Assume that a
unitary representation p of @, has a unitary extension to g. Then necessarily,

4.7 o(X)=0  forany Xe&{g(+),

where {g(+)> denotes the subalgebra generated by gi(+). Moreover if gy(+)
generates ¢, then p=0, or (dim Vy)-multiple of the 1-dimensional trivial representation.

Proof. Let &g, Then +[¢, £leg(+) because ié g, and [i€, i§]=—[¢, £].
Therefore 4-¢i p([¢, £])=0, whence o([€, £])=0. This proves the assertion.
Q.E.D.

Example 4.7. Let U=U,+-U, be a Z,-graded vector space over a field K. Let
Uy=K", U,=K", then the Lie superalgebra [(U) is denoted by [(m, n; K). We
define its subalgebra 8{(m, n; K) as

8l(m, n; K) = {Xl(m, n; K); str(X) = 0} .

Here str(X), the supertrace of X, is defined as follows: express X as X=X, P XD
X 0P X, with X, Homg(U,, U;), then

4.8) str(X) = tr(Xg)—tr(X,) -

We denote I(m, n; C) and 8l(m, n; C) also by [(m, n) and 8l(m, n) respectively.
Take here g=[(m, n; R) or 8l(m, n: R). Then the subset g,(+) of g, contains the
canonical basis for {X&g,; str(X)=0}, and actually it is so big that, for instance
for the latter g, we can prove in Theorem 6.2 that if a unitary representation o can
be extended to an irreducible unitary representation of g, then p=0, and that p=0
has a unique irreducible extension, the trivial representation of g (dim ¥,=0), if
and only if dim ¥y=1. The latter part is proved by using Theorem 3.4 (ii).

Example 4.8. Take g=I[(m, n) or 8l(m, n). Then g=<g,(+)>. Therefore we
are just in the last case of Corollary 4.6. Thus we conclude that if a unitary re-
presentation p of g, has a unitary extension, then p=0. Moreover, using Theorem

3.4 (ii), we see that we have a unique irreducible unitary extension, trivial one
(dim V,=0), if and only if dim Vy=1.

In §§5-8, we study some special cases. In §5, we study Problems 1bis and
2bis for g=08p (2/1), a real form of 08p(1, 2) (type B(0, 1)), and in §§6-8, Problem
2 mainly for g=real forms of 8[(2, 1) (type 4(1, 0)).

4.3. A remark on Wakimoto’s definition of unitarity. In [16], Wakimoto
defined and constructed unitarizable representations of complex Lie superalgebras
gl(plg). Let us explain that his definition coincides essentially with ours if we
introduce one of two real forms of gl(p|g), naturally attached to the definition.

His definition of unitarity is as follows. Let g=gal(p|q) (=l(p, q) in our
notation, but not necessarily finite-dimensional) and ® a certain involutive
conjugate-linear map from g into itself for which
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4.9) o ([X, Y]) = (—1)!*®I® [0 (X), @ (Y)]

for any homogeneous elements X, Y&g. Then a representation = of g on V is
called unitarizable if ¥ has a positive definite inner product <+, «> such that for
any Xeg,

(4.10) <z (X) v, vVO+y, a(@(X) VD=0 (v, vVEV).

Now define, for e=+-1, a real form of g=g,+g, as §(®, €)=g(®, €)y+g(o, ¢),
with

4.11) g(w, ¢), = {Xeg,; o(X) = (i)’X} .

We see easily that g (o, ¢) is actually a real subalgebra of g, and g=CQz g(®, ¢)
as Lie superalgebras. Moreover, put g,=®|g(®, ¢), then it is real linear and maps
g(w, €) to g(», —e) bijectively, and we have

¢, = the identity, on g(w, ¢), (= g(@, —¢)y) ,

Pe ([X, Y]) = (_ l)d(X)d(Y) [foe (X), ¢e(Y)]
for homogeneous X, Yeg(w, €) .

This means that g(w, —¢)=g@,(g (@, ¢)) is dual to g(w, ).
For Xeg(o, ¢), and § Eg(w, ¢),, the equality (4.10) takes the following form:

(X)) v, vI+n, (X)) v =0 (XEg(@, €)),
() <z (€) v, vO—n, 2@ vD> =0 (E€g(@,¢)).

This means that z|g(w, ¢) is a unitary representation of the real Lie superalgebra
g(@, €) in our sense with the associated constant j°=ei. Therefore his definition
coincides essentially with ours modulo the ambiguity of real forms: which of
g(o, ¢), e==+1, should be taken. Further note that the orthogonality between ¥,
and V; is not demanded apriori, contrary to (i) in our definition of unitarity in
1.3, whereas actually in his construction, V,_| V] is satisfied.

Let us consider in the converse way. Let g=g,+g, be a real Lie superalgebra
and (z, V) a unitary representation of g in our sense. Take the complexification
gc=C®p g of g and extend = to g¢ by linearity. Define an involutive conjugate-
linear map o, for a fixed £#=41 as

(4.12)

(4.13) 0 (X+is Y+E+ioq) = X—i+ Y+ri-(E—i-7)
(Xa YEQo, 5a 77691) E)

where i- Y=iQ®Y etc. Then w=uw, for a fixed « satisfies (4.9), and

gGt+6 =9 if e==«x,

g(@, €)= {go—l—i-g1 =g if e=—x.

Note that g¢ is dual to g under the correspondence X+£&—X-+i-£(XEg,, £ Eg).
Finally we remark that in Wakimoto’s case the real forms g(w, ¢) of gl(p|q)
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are respectively equal to 1 (p, ¢; p, g—1) and u(p, g; p, 1) with even parts iso-
morphic to u(p)xu(l, g—1).

§5. Some examples of irreducible representations.

In this section, we take a simple Lie superalgebra 08p(2n/1) with n=1 as an
example and study Problems 1bis and 2bis. The cases n=2 will be treated in
another paper.

5.1. Structure of 08p(2n/1). By definition, g=08p(2n/1)=g,-+g, are given as
follows:

g =8 @2n;R), ¢ =R",
with 8p(2n; R)={Xegl(2n; R); 'XJ4+JX=0} and the bracket operation
[X, &l = X¢ Xeg, teg),
€ 7] = —(E2+2'6)J (£,7€g),

where J is a 2nX2n matrix given by J=|:O" _1"] with #Xn zero matrix 0, and
n n

identity matrix 1,. The algebra 08p(2n/1) is a real form of a complex Lie super-
algebra 08p (1, 2n) of type B(0, n).

Introduce a canonical basis {£,, £5; 1=<a=<n, a=a-+n} for g,, and denote by
E,, an nXn matrix with entries 1 at (@, b) and O elsewhere. Put X, =[¢,, £,] for
1=<p, g<2n, then they span g, and, for 1=a, b=n,

On Eab_l_Eba On On _Eab On
X = » Xgp = » Xop = Xp, = .
On On —Lap _Eba On On Eba

Let g,(+) be as in Lemma 4.4 the subset of g, consisting of linear combina-
tions of [€, €], £ gq,, with non-negative real coefficients. Then g,(+) contains a
basis {X,,+X:z; | <a=<n} of a compact Cartan subalgebra of g, Therefore, when
we consider unitary extension problems, we are exactly in the case of Corollary 4.5.
Thus, to get an irreducible unitary representation of g, we should start from
unitarizable highest or lowest weight modules (o, V;) of g,.

5.2. Equations for extensions. Let (o, V) be an admissible (g,, K,)-module,
where K is a maximal compact subgroup of G;=Sp(2n; R). To study the extension
problems for (o, V;), we have to treat a g,-equivariant map B: g, X g,—>g[(¥,), which
satisfies the system of equations (EXT1)«(EXT3). We apply the reduction of these
equations, given in Theorem 3.12. Let 4 be the map g, ¢ A g, c—>al(V;) given by

AENAD) = A, 1) =2B¢, n)—p(&, 7)) for &, neg,,

which is again gi-equivariant. Put 4,,=A(,A¢)) for 1=<p, g=<2n.
For a reduced form of the equations, we refer [6] for general »n, and here we
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treat only the simplest case n=1.

Hereafter we put always n=1. Then, at first, the gymodule g, ¢/Ag; ¢, is
spanned by one element z,=& A&7 and carries the trivial representation. This
means that 4;=A(z,)Egl(V;) intertwines the representation o with itself. From
this fact, we get

Lemma 5.1. The representation (p, V) of §,=38p(2; R) should be irreducible to
get an irreducible extension of it to g=g,+g,=08p(2/1). Hence the operator A,; on
V, should be a scalar operator.

Proof. This follows from (PRO3) in the criterion of irreducibility in Lemma
3.1. Q.E.D.

Thus, in particular, for g=08p(2/1), Problems lbis and 2bis are equivalent to
Problems 1 and 2 respectively.

Now, examining g,-module structure of gi’=g, ¢®ga, ¢®g;,¢®3;,¢, We get the
following system of equations for irreducible extensions. This will lead to the
classification of all the irreducible representations.

Lemma 5.2. For g=08p(2/1), the system of equations (EXT1)-(EXT3) and
(PRO1)-(PRO3) is reduced to the following:

(1) (o, Vy) is irreducible and A,;glL(V,) is a scalar operator;

) put A=Ay, and p,=p(X,;), then
(5.2) [A4, Al4—44 = [p11, o11)s—[oys o171l -

- We note that the above equation (5.2) comes from (EXT3A,) for some &, 7, ¢,
regq, Itis rewritten as

(5.3) (A=I) = p(H+I1,

where I denotes the identity operator on ¥V, and 4= U(g, ¢) denotes a constant
multiple of the Casimir element given by

1 1
(5.4) 4 = (Xp1)’—— Xy Xrp+Xrr Xyy) = (X1 —— [Ny, Xl
2 2

" o [T 07, 00
t T = . = s _ = .
b TTL oo oo T T 20

5.3. Irreducible (g,, Ky)-modules. We list up here irreducible (g,, Ky)-modules
for g,=8p(2; R)=38[(2; R), K,CG,=Sp(2; R). Let {v,; m&L} be a basis of a
vector space ¥, over C, where 2 CZ will be specified later. Fix a complex number
ceC and aveZ,={0, 1}. Put

(5.5) Z @) = {meZ; m=v (mod 2)} .

Depending on the parameter (¢, ¥), we determine £ and so V), and define g,-action
pon V,as
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p(Xli) V = —iC,, vm+2_icm—2 Vm—2 5
(5.6) 0(X11) Vi = Cpy VotV —Cppy Viy s,
P(X11) Vi = —Cpy Vipag MYy +Cpy Vg »

where me 2, i=+/—1 and

5.7 ¢y =— V (m+17%—c (arg(c,) arbitrary but fixed).

1
2
Therefore we have
(5.8) o) =(*-DI.

We list up the sets 2 of weights, and the symbols for the irreducible (g, Kj)-
modules thus obtained. Note that we may assume that 0=<arg(c) <=, if necessary.

Case 1. Assume that c=v+1 mod 2. Then 2=Z(v), the g,-module 9, ,=
(0, V) corresponds to the representation of G, induced from a character of its
minimal parabolic subgroup.

Case 2. Assume that c&Z, ¢c=0 and c=v+1 mod 2. Then there exist three
kinds of 2 C Z(v):
2, = {meZ@y);, m=c+1},
2_={meZW); m<—(c+1)},
2,={meZ(); —(c—1)=m=Zc—1}.
Note that 2 =@ if (c, v)=(0, 1).
The corresponding representations, denoted by D}, Di and Fy, with g=(c+1)/2
and N=c=1, are in the discrete series (or in its limit if ¢=0 and so #=1/2) and

N-dimensional representations respectively.
We summarize known facts in the following two lemmas.

Lemma 5.3. Irreducible (g,, K,)-modules for g,=sp(2; R), K,C G,=Sp(2; R),
are isomorphic to one of the following modules:
Dy =9D_., with ceC,0=arg(c)<r, cEv+1 (mod 2);
v and Du with pne()Z={p/2;pEZ}, n=1/2;
Fy with NeZ, =1.
Lemma 5.4. Unitarizable modules among the above modules are given as follows:
Dy Wwith i=/—1,7€R, 1220 for v=0, and >0 for v=1;
Dy with 0<o0<1;

all D%, and the trivial representation F,.

For each of them. an invariant positive definite inner product is introduced in V,
by setring the standard basis {v,; me& 2} as a complete orthonormal system.
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For later convenience, we rewrite the formula for gi-action as follows. Let H,
X, and X_ be elements of g, ¢ given by
1 , 1
(5.9) H = ? (Xu"‘Xl‘i) , Xy= 1X1I:|:3 (Xu_Xﬁ) .

Then H spans a compact Cartan subalgebra of g, and

[H, X,]=2iX,, [H X]=-2iX_, [X,, X_]=4iH,
with i=+/—1, and the formula (5.6) takes the form
(5.10) O(H) vy = imvy, 06(Xy) Viy = 2Cp Vipsgy O(X) Viy = 2Cps_3 Vs
with 2¢,,=+/(m+12—c%. Moreover we have

.11) 4= —H2—~% (X, X_+X_X,) = —H2~% [X,, X1, .

5.4. The g,-module W=g, Q¢ V,. Here we determine the structure of g,
module W. First note that the g-module g, ¢ is F, and has the highest weight 1
and that the character of the corresponding representation of G, is equal to trace(g),
g€G, We see, as a matter of fact, that the simplest way to decompose W into
irreducibles, is to use the character of ¥, more exactly that of the corresponding
irreducible representation of G,. These characters are listed up, for instance, in [7,
pp. 50-51]. Thus we get

Lemma 5.5. The g,-module W=g, cQV, is decomposed into a direct sum of
mutually inequivalent irreducible ones, except when (o, V)=, 4, D32, Dij; or Fi:

(0, Vo) W=g,QV
Qc,‘v ((C, V):l:(o, 0)) Qc+1,\'+l®g—c+l.'v+l
Di(a=+, ) Di1 1@ Dii—yyy
Fy (N Z2) Fyu®Fy-
£ F,

Proof. For an admissible (g, K,)-module U, denote by »(U) the correspond-
ing character on G,, which is an invariant eigendistribution given by a locally sum-
mable function on G,. We know that for the tensor product W=g, ¢QV;, (W)=
2(8,.¢)* x(Vy). Then, by simple calculations, we get character identities

(W) = X(Qc+1,v+1)+l'(g)—c+1,v+1)

etc. corresponding to the right hand side of the above list. These character identi-
ties give irreducible components of W as subquotients.

The direct sum property is proved as follows. First, calculate the infinitesimal
character of each irreducible component. Since g, is of rank 1, it is determined
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by the scalar corresponding to 4+1. In this sense, the infinitesimal characters of
two irreducible components are exactly (c+1)? and (—c+1)%. (The parameters «
and N connect with ¢ as above.) These two values are different from each other if

and only if ¢==0.
Then we apply the general fact for Harish-Chandra modules that any such
module is a direct sum of its submodules with different infinitesimal characters.
Q.E.D.

Of course, an elementary proof, not using characters, is possible.
For the case (o, Vo)=Dy,0. DYy or D7j, we need more direct and detailed
calculations, and then get the following

Lemma 5.6. The gy-modules W=g, ¢®@V, for o=9,, D32 (¢=-+ or —) are
not semisimple. (i) For 9,,, W has only one non-trivial invariant subspace W, such
that both W, and W|W, carries 9D, ,. (ii) For D%, W has exactly two non-trivial
invariant subspaces W,, W, such that (0)C W,C W,C W, and that W, and W|W, carry
DY, and W,/W, carries F,.. Thus we have

(o, Vo) W=g,c8%
Do oOycw,cWw with Wi=W/W=9,,
Dip (@ = +) Ocwcw,cw
with W,=W|[W,=D}, W,/W,=F,

Proof. (i) One invariant subspace W, of W is easy to find, for instance, by a
kind of “analytic continuation” from the case (¢, 0) with small ¢#0. The uni-
queness of W, is proved by checking the weight subspace W(1) of W with weight
1 (=i"* (eigenvalue of H)).

(ii) According as a=-+ or —, we determine explicitly all the highest or lowest
weight vectors in W. Further, a little more detailed calculation shows that the only
proper submodules are W, and W,. To do this, we can apply for instance the
realization of p in [5]. Cf. also explicit calculations in the next subsection. Thus
we get the assertion. Q.E.D.

5.5. Explicit determination of module structure for W. To give explicitly g-
action on V=Vy+V,, V,=W/m, it is necessary to write down g,-action on W=
8,,c@V, with respect to its certain standard basis. First take a basis of the space
8.,¢ as gy-module. Put

(5.12) uy =& +ify, u, =i&+& (i=+V-=-1).
Then,

[y u] = 2X,, [u_y, uy] =2X_,

(5.13)
[u, u_\] = [u_,, u,] = 2iH,
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and the g, ¢-action on g, ¢ is given by
Huyy =iy, (I=41);
(5.14) X u, =0, Xou_, =2u;
X uy=—-2u,, X.u,=0.
Next, taking {u; v,,=u;®v,,; I=4-1, m& 2} as a basis of W, we get from (5.10)
and (5.14)
H(u;v,) = i(I4m) u; v, ,
(5.15) Xo(uyvm) = 2C Uy Vyg 5 XUy vy) = 2uyv,+2c, Uy Vimsz s
X (V) = 2Cp-p Uy Vpg— 201 Vs X (U1 V) = 2Cp gy Vpyoy
with 2¢,=+/(m+1%—¢. Thus, the weight space W(m+1) for weight m4-1 is
spanned by {u,v,, #_,v,..}, and we have by (5.11)
A(uyvy) = [2(m+ 1)+ vy t4c, Vi
AU_yVm1n) = —dCuthy V[ =2(m+ D+ u_ Vs -
CASE c¢#0. We decompose each W(m-+1), for me 2 such that m+2& 9,

into two eigenspaces W, [c+1], W, [—c+1] of 441 with eigenvalues (c+1)?,
(—c—+1)? respectively, then

(5.16)

G17) W= Wet+lI@W[—c+1]. Wltet+ll =3, Wy ltc+1],

gives the irreducible decomposition of g;-module W, given in Lemma 5.5 in several
cases. Note that, in the special case p=F,, we have W=W|[2], W[0]=(0). We see
easily that W,,,,[kc+1], k=1, is spanned by a vector

(5.18) Wi [kC+11=dp i1 Uy Vit Dy, U1 Vimsz s

where d, =/ p+kc for p=m-+1, k=41 with

(5.19) arg(dm+1,) 18 (dprr,-1) = 18 (piy,1 sy, 1) = arg(c,,) .
Hence we have d,,,, , dp,,-,=2c,, and moreover

Hy Wy [ke+1] = i(m+1) Wy [ke+1],
(5.20) X oy [ke+1] = 2€541 g1 Wasalke+1],
X_ wm+1[kc+]] = 2cm—l.kc+1 wm—l[kc+l] >

where 2¢,,41 401=V (m+2)?—(kc+1)? corresponds to 2c,,,, for kc+1 instead of c,
and arg(C4q,ze+,) is determined so as to hold

(5.21) 21 pe041 = m+3,k Apyr, -t +

The subspace W[kc+1] carries the following representation: in case cEv--1
@), Dicr1,yt1=Derr,v413 in case c=v+1 (2) and =1, Diiyyy, O Fypp (F=(0)).
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Further the g, ¢-action Vy— W is given with respect to {w,,,[kc+1]} as

1
Uy Vy = e {dm+1,1 Wi [€+1—dpiy, -y Wiy [—c+1]},
(5.22) :
Uy Vi = e {—dpsr,-1 Warr[e+ 1]+ dpiyy Whay[—c+1]} .

Case ¢=0. In this case, we can put 2c,=m+1, dpyy 1 =dps,-1=V m+1.
The gy,-invariant subspaces W[c+1] and W[—c+1] coincide with each other to get
an invariant subspace

(5-23) Wl = Em Cwm+1[1] ’ wm+1[1] =V m+l (ulvm+u—1vm+2) s

on which g, acts according to (5.20)-(5.21) with ¢=0. W, carries 9),, or DY ac-
cording as o is 9, or D7j,. Note that, in case of D7), with a=4, the vector
Wo[1]=0-uz,v,,=0 by the factor 0 in front of, and that the space W,=W,+
C(uz,v4,) carries DY+ F, which is not a direct sum since

Xo(u_yv) = 2uv,4u_vy), X_(u_,v) =0, in case a=-+4,
Xy )=0, X_(uv.)=—2(uv_stu_,v.), incase a=—.
Moreover, for instance, for a=+, since dim W (0)=dim(W(2)N W,)=1, dim W(2)

=2, X_-W(2)=W(0), Ker(X_ | W(2)=X, W (0)=W(2)N W,, there exist no proper
submodules except W, and W,=W,+ W (0).

5.6. Complete description of irreducible extensions. To solve Problem 1bis or
to get all the irreducible extensions of g=08p(2/1), it is now sufficient to determine
the scalar operator A=A,;gl(V,), and then the corresponding submodule mcC W
defined in (3.5). Thus we get a g,-module W=W/m. Put V,=W, V=V,+V,,
then the action of g, on V is given by (3.6)-(3.7), and more explicitly using (5.22)
above.

First, it follows from (5.3) and (5.8) that

(5.24) A-IEt=21.

Therefore there exist two choices of A4 except when ¢=0:

(5.25) A= (re+1)I with r=41.
Second, we have by (3.16) the following:

B, &) = o(Xy). B &) = % o(X1),

B, &) = % (o(Xy)+4), B &) = % (o(X,)—4) .

By means of the basis u;=¢,+i€y, u_,=ié,4-&; for g, ¢, this is rewritten as
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B(ul’ "1) = p(X+) ’ B(u—l’ u-l) = p(X-) >
B(u,, u_)) = p(iH)+A4, B(u_, u) = p(iH)—A4.

(5.26)

Using the formula (5.10) for o(H), p(X.), we rewrite the defining equation (3.5) for
m. Since m=3,(m N W(m-+1)), it is enough to determine w=xu, v,,+yu_, V1, E
mN W(m+1) for each m, where x, y&C. Then, for any 7€g, ¢,

B(n, xu) v+ B(@, yu_y) Vi = 0.
This is equivalent to
xB(uy, 1) v t+yB(uy, U_) Vi = 0,
XBQu_j, ) V- yBQ_y, 4_)) Vyyy = 0.
By (5.10) and (5.25)-(5.26), this, in turn, is written as

{2¢p x+H[—(m+2)4+-(rc+D] ¥} Ve =0,
{{—m—(@re+1D] x+2¢,, ¥} v =0.

(5.27)

Hence we get

2¢,, —m—1
(5.28) ( +”)<x)=o.
—m—1—7rc 2¢,, y

Note that 2¢,,=d,, 1 1 dpsy, -1 a0d dpyy ,=\/m~+1+kc, then we get the follow-
ing result.

CasE c¢=+0. We have (x, ¥)=2(dp11,—y» dy+1,y) With a constant A& C, whence
w=2w,, . [—rc+1], and therefore m=W[—rc+1]. In the special case p=F, (c=1),
m=W[0]=(0) or =W[2]=W according as r=-41 or —1.

CasE ¢=0. If m+150, we get similarly as above, w=2w,,[1], whence
mNW(m+1)cmnNW,. For p=9,, we conclude from this that m=W,. On
the other hand, for p=D7,, with a=4-, we should take into account m-+1=0, and
then get m=W,+C(ux,v.i)=W,.

Summarizing these results, we get the following

Lemma 5.7. For every irreducible (g, Ky)-module (o, V), the submodule m of
W=g, ¢®V, defined by (3.5) and the quotient module W=W/m are given as follows.

CAsE c¢=*+0. For A=(rc+1)1 with r=+1, m=W[—rc+1] and W=
Wrc-+1], another direct sum component. (For p=F,, W[0]=(0), W[2]=W.)

Cast ¢=0. In this case, A=1. For p=%Dyo Mm=W,=9D,, and W=, .
For p=D%,, M= W,=D}+F, and W==D%.

Now we put ¥V,=W as g-module and put V=V,+V,.

Case ¢=0. Denote by [w,,,] the element in W represented by (2¢)7!-
(Wi lc+1]1—W, [—c+1]).  Then, using the above lemma, we see that the gy-action
on V,=W comes from (5.20) for k=r: put 2(V,)={m-+1; [w,.,]50}, the set of
all weights for V,, then for me 2(V)),
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Hlw,] = im[w,],
(5.29)
X+[wm] = 2cm,'¥c+1 [Wm+z] s X_[W,,,] = 2cm—2,7c+1[wm—z] .

CasE ¢=0. In this case, [w,,,] is defined as the element in W represented
by @V m+1)"! (U Vy—ti_;Vmyy)- Then we get from (5.15) and (5.23) that for me
vy,

Hiw,] = im[w,] ,

(5.30)
X+[wm] = 2cm,1[wm+2] > X—[wm] = 2cm—z,l [Wm—2] >

where 2¢,, ,=V/ (m+17—1 = Vm -V m—2.

When the g-module V,=W is unitarizable, an invariant positive definite inner
product is introduced if we make the basis {[w,]; m€82(V,)} an orthonormal
system, thanks to Lemma 5.4.

Furthermore the g,-action on V is given by means of u,, u_, Eg, ¢ as follows.

CAse ¢=+0. The map g, ¢X Vy—V, is given by (5.22) as

(5.31) Uy Vi = dm+1.?[wm+1] s Uq*Vm = _dm—l.—y[wm-l] (meg).
The map g, ¢ X V=V, is given by (5.18), (5.26) as
(5'32) u1°[wm] = dm,—'Y Vit s u—l'[wm] = _dm,? Vm-1 (mE‘Q(Vl)) .

Case ¢=0. The maps g, ¢x Vy—V,; and g, ¢X V=V, can be calculated as
above and given respectively as follows.

(5.33) UV = Vm+1 Warl s U 1Ve= —Vm—1[Wa ] (MEL),
(534w whl = Vm Vs Uy Wl = —Vm Yoy (MEL(DV)).

Note that d,, y=+/m for any y=+1 if ¢=0, and so the formulas (5.33) and (5.34)
take the same form as (5.31) and (5.32) respectively.

Thus we get a complete answer for Problem 1bis of irreducible extensions as
follows, since we know Lemma 5.1.

Theorem 5.8. (i) Let (o, V;) be an irreducible (g,, K,)-module of g,=38p(2; R),
K,CSp(2; R). Then, p has exactly two inequivalent irreducible extensions except
Sor 0=9),, and DY), (a==), each of which has only a unique such extension.

(ii) Assume that p(d)=(c2—1) I with c&C. Then such an extension (z, V),
V=V,+V,, corresponds canonically one to one way to the choice of the operator
A=A,;=B(¢,, &) —B(¢1, &) as A=(rc+1) I, r=-41. The odd part V| of V as gy
module is given by the formula (5.29). The g,-actions Vy—V, and V=V, are given
respectively by the formulas (5.31) and (5.32). The case ¢c=0 can be included in this
statements.

To illustrate these results, we summarize them in a table.

TABLE 5.1. The operator A=A;;=(rc+1) I with =41 for ¢$0; A=I for
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¢=0, where we put c=2u4—1 and ¢=N for Dy and Fy, respectively.

(0, Vo) W=g,8V m "
g)c,v -@c+1,v+1®g—c+1.v+1 g)-w+1.v+1 g)‘fc+1,v+1
(c=Ev+1(2), (c, »*(0, 0))
D: Dz+1/2€BD:+1Iz :—‘7/2 D:+‘Y/2
we(l/2)Z, 21)
Fy Fy . &@Fy_, Fy—y Fyiy
NeZ, 22)
F, F, (0) or F, F, or (0)
(r=+1o0r —1)
Qo.o 2'-@1.1 g)l.l g)l.l
(not direct)
D3y (a=) F+2-D% F+D% D:
(not direct)

Further, we have a unified formula for the g, c-action on ¥, and V;, and that
for the key bilinear map B: g, ¢ X §,,¢—>8l(V;) as follows.

FormuULA 5.2. Formula for g, c-action:
UV = Wiy iy [Wet] (1= £1, mEQ),
(5.35)
u Wyl = ldy iy vy (= £1. me2(1)).
Formula for B: for [, I'=-+1, me L,
(5.36) B(uyr, wy) vy = W'y 1y A, 17y Vs 1417 -

5.7. Classification of irreducible representations. Now we get directly from
the above results the following classification theorem of irreducible representations
of 08p(2/1). Note that 9, ,=9)_, , in our convension.

Theorem 5.9. Any irreducible representation (z, V'), V=V,+V,, of the real Lie
superalgebra g=08p(2/1) is equivalent, modulo exchange of the roles of the even part
V, and the odd part V,, to one of V=V, 4V, in the following list.

V, as g,-module V, as g,-module
Qc,‘v (C$ V+1 (mOd 2)) Q—¢+1,v+1
Dg (u€(1/2) Z, 21/2) Dy
Fy(NeZ, =) Fy_, (F,=(0))

5.8. Irreducible unitary representations. As for unitary extension problem,
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Problem 2bis, we see easily from Theorem 5.8 and Table 5.1 that if an irreducible
unitary (g,, Kp)-module o has an irreducible unitary extension (=IUE) to g, then p
should belong to the discrete series or its limit Dy (#=1/2) or be the trivial repre-
sentation F, (cf. also the remark at the end of 5.1).

Let o=Dy and check if it actually has IUEs. For this, it is necessary and
sufficient to verify the invariance (1.9) and the positive definiteness (UNI) for the
go-invariant inner products on ¥, and ¥,. However the positive definiteness comes
from the very definition of inner products.

The invariance can be proved by using the formulas (5.35) for g,-actions and
(5.36) for the bilinear map B as follows. First we see easily that, for the invariance
(1.9), it is enough to prove

(5.37) Ji Lz @) ", vO+O0, m(@) vy =0,

for any ueg, ¢, vV€V,(p=0, 1), where u— @ denotes the conjugation of 8¢ With
respect to g,. Since g, ¢, ¥, and V) are respectively spanned by {u;, u_.}, {v,;
m' €82} and {z(u;) v,; I=41, me R}, we put u=u;,, V=v,, and V== (u) v, =
u;+v,. Then, the 2nd term of (5.37) equals to

<vm’a 77-'(17,/) 75(14,) vm> = <Vm” B(al’: ul) vm> = i<vm” B(u—l” ul) V,,,>

because #,,=—iu_;r for I'=+1. Put j2=ei, then the equation (1.9) turns out final-
ly to

(5.38) 6<ul’°vm" ul'vm>+<vm’s B(u—l’7 ul) vm> =0.
Now apply the formulas (5.35)-(5.36), then we get the equation
(5.39) el'dyyr s ymy aTm+l.l‘Y W srds Wi >—

- _
=1l dm+1,17 dm+l,l"¥ Ity Vma-1> = 0.

Both sides equal to zero unless m'+-I'=m+1. So, assume m’4I'=m-+I, then we
come to

(5.40) (5dm+1,1"y“‘7m+1.1’v) aTm-H,l‘Y =0.

Note that J,,,+,',,=sgn(m+l—|-kc) Ay, if ¢ is real, and that, for po=Dg, we
have c=2x#—1 and so

it = V m+Il+ke = Vm+l+kQu—1) (= £1,k=41),
On the other hand, for p=Dj, the set of weights 2 is given by
2 = {m; mz2pn, m=2u (2)} for @ =+,
2= {m;m=—2u, m=-—2u )} for a= —.

Therefore we see that (5.40) is satisfied with e=1 or —1 according as a=-+ or —,
whence the invariance (1.9) holds with the associated constants j?=i and —i for D}
and Dy respectively.
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Thus we get a complete solution for Problem 2bis as follows.

Theorem 5.10. Let (o, V,) be an irreducible unitary representation (=IUR) of
8=39(2; R).

(i) (o, V) has an irreducible unitary extension (=IUE) if and only if p is a
highest or a lowest weight module.

(ii) For p=D; with a=+, ne(1/2) Z, =1, there exist exactly two IUEs
(=, V), V=V,+V,, up to equivalence, for which V,=Dj., or Di_,;, (as g,-modules)
in Table 5.1.

(iiiy For p=D%, (a==+) or p=F,, the trivial representation, there exists exactly
one IUE, up to equivalence, for which V,= DY or (0) respectively, in Table 5.1.

From this result for IUEs, we get directly the classification of IURs of g=
03P (2/1) as follows.

Theorem 5.11. For g=08p(2/1), any IUR (z, V), V=V,+V,, is equivalent, up
to exchange of the roles of V, and V,, to one of irreducible representations in the list
in Theorem 5.9 for which

(Voo V) = (D, D) with 2€(1/2) Z, 21/2, or
(Vo V) = (£, (0).

5.9. Irreducible representations with invariant inner products. There exist
many irreducible representations (x, V'), apart from unitary ones, which has a (non-
degenerate, hermitian) inner product <-, -> on ¥V such that ¥,_| ¥, and with the
invariance property (1.8)-(1.9). Let us make some remarks about this kind of
representations.

First we know all the irreducible (g, K;)-modules of g,=38p(2; R) admitting
an invariant inner product as follows.

Lemma 5.12. An irreducible (g,, Ky)-module (o, Vy) has a (non-degenerate)
invariant inner product if and only if it is equivalent to one of the following:

D., with c€R or €+ —1R,v=HI, cEv+1(Q2);
Dy with a=+,pe(l/2)Z, =1)2;
F, with NeZ, 1.

Moreover such an inner product on ¥, is given by making the standard basis
{v,,; me 8} for (5.10) an orthonormal system such that

(5-41) <vm7 vm’> =Ky 6m,m’ s

where 8, - is the Kronecker’s symbol and x,==«,(Vy)==1 is determined so as to
hold

(5.42) Epip = sgn((m+17°—A «, if mmi2€@.
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Put n (Vy)=4{m; £,>0}, n_(Vy)=#{m; x,, <0}, and call (n,(V,), n_(V,)) the
index of the inner product on V.

Remark 5.13. The set of irreducible (g,, K;)-modules in the above lemma
correspond canonically to the totality of irreducible components of the represen-
tations of G,==Sp(2; R) induced from real or unitary characters of a minimal para-
bolic subgroup.

Now consider irreducible extensions (z, V), V=V,+V,, of a (o, V) in the
above list. Then we get from Table 5.1 the following.

Lemma 5.14. In Table 5.1, the pairs (V,, V,) for which both Vy and V|, admit
@o-invariant inner products, are those with Vi=9,, (cER, cv+1(2)), Di (a=+,
ue(l/2) Z, 21/2) and Fy (NeZ, =1).

Let us study the g-invariance (1.9) for the pairs (¥, ¥;) in Lemma 5.14.
Then, similarly as in the unitary case, we see that (1.9) is equivalent to (5.39). Put

En(Vo) = Vs V> (MER), £, (V) = wal, [wal> (mE2(V)).
Then, «,,=«,(V,) satisfy (5.42) and «,,(V)) satisfy
(5.43) Emio(V)) = sgn((m+1P—(re+1)) £,(V)) .

Taking into account (5.41), we see that, in the present case, (5.39) is equivalent
to the following for m'+!'=m+1(m, m €2, I, I'=41):

(5.44) (Edm+1,1’1 Kt Vl)_d_m+l,l’7 Epy1-1A(V)) dm+I,I‘Y =0.

Recall that d, ,=+/p+kc, and d;',,=sgn(p+kc) d,; if c is real. Then the above
equations for /=+4-1, I'’=-+1, are in total equivalent to the following:

(5.45) ex,(V) = sgn(m+1+70) £,(Vy)  (mEQ),
(5.45) eEm(V) = sgn(m4-1—7¢) £,4(Vo) (m+2€2),

where we understand that if m--14-7c¢=0 or m-+1—rc=0 (each very rare), then the
corresponding equation does not exist. Using (5.42) for &, =x,(V;), and (5.43) for
£,(V)), we can prove that, when we choose e=+41 so that (5.45) holds for an
m=m,E R such that m,+1€2(V)), then, for this choice of ¢, (5.45) and (5.45)
hold for any possible m. Thus we have proved that for any pair (¥, ¥;) in Lemma
5.14, the corresponding representation (=, V), V=V,+V,, admits an invariant
inner product.
Summarizing these results, we get the following

Theorem 5.15. Let (o, Vy) be an irreducible (g,, K,)-module of g,=3p(2; R)
which admits a (non-degenerate) invariant inner product.

() Anirreducible extension (z, V), V=V,+V,, of (0, V,) to g=08p(2/1) admits
an invariant inner product if and only if p does not belong to the unitary continuous
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principal series with regular infinitesimal characters, i.e., X9, ,, for any 1€ R, #0,
v=0, 1. Or equivalently, p is equivalent to one of those in Lemma 5.14,

(ii) Assume that p is listed up in Lemma 5.14. Then any of its irreducible
extensions admits an invariant inner product which is given by (5.41)-(5.43). The
associated constant j2=cei is determined by (5.45) for an (or any) me 2 such that
m+1€2(V).

The associated constant j2=cei is changed to —ei if we multiply by —1 the inner
product on V,. Therefore, in case the index (n,.(V,), n_(V7)) of the inner product on
V, is equal to (oo, o0), there is no apriori standard to determine the sign e.

From the above result for extensions, we get the following classification of
irreducible representations with invariant inner products.

Theorem 5.16. Any irreducible representation (z, V), V=V,+V,, with (non-
degenerate) invariant inner product is equivalent, up to exchange of the roles of V, and
V,, to one of those corresponding to the following pairs (V,, V1) of g-modules.

V,y as gye-module V, as gy-module

g)c,v (CERa VZO) 1’ C$V—|—l(2)) g)—'t+1,v+l
D (ne(1/2) Z, 21/2) o
Fy(NeZ, z1) Fy-y (Fo=(0))

Remark 5.17. Let (o, V) be in the complementary series, that is, p=<9), , with
0<c<1. Then p is unitary but has not any irreducible unitary extension to
g=go+4g;,. However it has two irreducible extensions (z, V), V="V,+ ¥, with V=
D.s1,1 0t D4y, (as g-module), and both of them admit invariant inner products.
Note that the index (n.(¥)), n_(V})) of the inner product on V] is equal to (co, o)
in both cases. If we define an invariant inner product on ¥ in such a manner that
{wy], [w,]>>0 for the weight vector [w,] with weight 1, then we have always j?=i
for (=, V) with V=Dy.,,, r==1).

For p=9),, and its unique irreducible extension (z, V) with V,=49), , similar
statements are true.

§6. Irreducible unitary extensions for type A(1, 0), Part L.

In this section we take the complex Lie superalgebra of type A(1, 0), and also its
real form as the Lie superalgebra g in Problem 2, and determine all the irreducible
unitary extensions of irreducible representations of the even part g,. But, as is
shown in Example 4.8, when we take A(1, 0)=38[(2, 1) as g in the unitary extension
problem, there exists no irreducible unitary extensions (=IUEs) except for the
trivial representation which has the trivial extension. Thus we study irreducible
unitary extensions for each real form g (cf. [3]).

6.1. Definitions for A(m, n). First we define the Lie superalgebra of type
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A(m, n). We denote by M(p, q; K) the set of all matrices of type p X g with entries
ina field K. Let b=M(m+n, m+n; C), and let E; ;, 1 <i, j<m-n, be an element
of b with components 1 at (i, j) and 0 elsewhere. Let b, be a complex subspace of
b generated by

{E; ;s 1= i, j=m} U {E, j; m+1=i, j<m+n} .
Further let b, ,(resp. b, _) be a complex subspace of b generated by
{E;;; 1sism, m+1<jsSm+n},
(resp. {E;,j; m+1Sism-n, 1< j<m}),

and put b,=b, ,+b, _.
The bracket product

[X, Y] = XY—(—1)* YX for X€Eb, YEY,,

where s, ¢t are 0 or 1, makes b a Lie superalgebra, denoted by [(m, n), where
L(m, n),=b, (Example 4.7). We put l(m, n), ,=b, ;. On I(m, n), there defined
the supertrace str, a linear form on [(m, n), in (4.8). We defined 8l(m, n) as

8l(m, n) = {X&(m, n); str X =0} .

This is a subalgebra in [(m, n) of codimension 1. In case m=n, 8[(n, n) has one-
dimensional center 3 consisting of scalar matrices 2+1,, (A€C). We set

A(m, n) = 8l(m+1, n+1) for m, n=0, m=n,
A(n, n) = 8l(n+1, n+1)/3 for n>0.

We denote by g the complex algebra A(1, 0), keeping the symbol g to its real
form. For later use, we give two kinds of basis of a Cartan subalgebra §¢ of g¢:

(6.1) Hl,l = 1.1+E3.3 > Hz.z = Ez.z+Es,a P
and
6.2) H = EM—E.‘,_2 , C= E1,1+E2_2+2E3'3 .

6.2. Real forms of A(1, 0). Here we list up real forms g of gc=4(1, 0) (cf.
[8, §5]). We define two types of real subalgebras of a Lie superalgebra g;. A real
subalgebra of first type is

8[(2,1; R)=38I2, )NMB3,3; R).

Real subalgebras of second type are defined as follows. Let p{0, 1, 2} and
q€{0, 1}. Put for s=0, 1,

8u(2, 1;p, q), = {XE8L(Q2, 1),; J,, X+'X J, , J =0},

where ‘X is the transposed matrix of X, and
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J,, = diag(a, b, —(=1)'/—1), J,=diag(—1,—1,1),

with (a, b)=(—1, —1) for p=0, (a, b)=(1, —1) for p=1, (a, b)=(1, 1) for p=2,
where diag (-, ¢, <) denotes a diagonal matrix. Then 81 (2, 1; p, 9)=38u(2, 1; p, q),
@s1(2, 1; p, q), is a real Lie superalgebra for each (p, q).

Proposition 6.1 (cf. [8, §5]). Real forms of A(1, 0) are isomorphic, up to transi-
tion to their duals, to one of the following three types:

(@) 812,1; R); b 38u@,1;2,1); (¢) 8u(2,1;1,1).

6.3. Extension problem for the Case (a): g=31(2, 1; R). Let g=3[(2, 1; R).
Then there exist no IUEs except the case of the trivial representation which has a
trivial extension.

More generally, for this type of real form 3l(m, n; R) of 8l(m, n), we have a
similar situation as above, as shown in the next subsection.

6.4. Extension problem for 3l(m, n; R). Put g=38Il(m, n; R)=8l(m, n)N
M(m+n, m+n; R), and g, ,=gN1(m, n), ..

Theorem 6.2. Let g=8l(m, n; R), m, n=1. Then it has only a unique irre-
ducible unitary representation, the trivial one.

Proof. Let z be an irreducible unitary representation of g on V=V+V,, and
put p=n(g,)| V- Let B(-, +) be the bilinear map g, X g,—>gl(¥,), associated with z.

We examine four conditions (EXT1)-(EXT3) and (UNI). The condition
(EXT2) implies that

6.3) B(E; ;, E;;)=0 for E;;eg,,
6.4 B(E; ;, E, )+B(E,, E; ;) =0

for E;; E, €9, (or E;; E, ;Eq, ),
(6.5) B(E; ;, E; )+B(E; . E; ;) = o(E; ;+E; ;)  for E;;egq,,
(6.6) B(E; ;, Ey,)+B(Ey,, Ei,j) = 00, By, j+04,; E; )

for E;;egq,+ and E,,Egq, _,
where 8; ; denotes Kronecker’s 8. Now apply the condition
(UNI) J*B(E,&)=0 (j4=—1)
for £=E; ;+-E;;Eg,, and use (6.3) and (6.6), then
J%e(E; ;+E; )=0 and —j%(E;;+E;;)=0.
Therefore

6.7) o(E;;+E;;) =0 for 1ZiEm;m+1Zj=<m+n.
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Similarly as above, apply (UNI’) to

£ = EjmpitEps,; (ISijs=m,i%j),
and use (6.3) and (6.6), then
(6.8) p(E;,)=0 for 1<i j<m,i%j.
Similarly, using

£ =E;+E,, (m+1=ijsm+n,i%j),

and (6.3) and (6.6), we get
(6.9) o(E;))=0 for m+1=i,j<m+n,izkj.

Equations (6.7)-(6.9) imply that po=0, or dim Vg -multiple of the one-dimensional
trivial representation of g.

We now prove that p=0 has an [UE, the trivial representation, if and only if
dim Vy=1. We show B(¢, 7)=0 for any &, 7Eg,, case by case.

Case 1. Put

then
(6.10) [C, &l = +(n—m) €& for éeg,..

We apply the condition (EXT1) for X=C, &, n€q, 4 (or &, 7Eg,,-), and use (6.10),
then,

(n—m) B(&, n)+(n—m) B¢, 7) =0.
Hence
(6.11) B¢,7) =0 for &, 7€g,, (or & 7Eg,.),

for m==n. Even when m=n, we can see that (6.11) still holds.
Case 2. Apply (EXT1) for X=E;;—E; ; (i j), §=E; ,€8,4, 1=E;;Eg,,-
(i, jEm; m+1=k, ISm-+n), then

B(Ei,k’ El,j)+B(Ei,ln El.j) =0.
Hence
B(E,"k, EI,]) = 0 fOI' E;_,,Egl.+, E,’iEgl'_, i=|:j .

Case 3. Apply (EXT1) for X=E, ,—E, (k=*]), =E; E¢,,+, 1=E; ;E¢,,-
(=i, j=m; m+1=k, [ISm+n), then

B(E; 1> E;,)+B(E; 4 Ey,5) = 0,
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whence
B(E,"k, El,j) = 0 fOI’ E,'.,,Egl,_,_, E,.ngl’_, k=':l.

Case 4. We apply (EXT3) for t=E;,, {=E;,, 1=E, ;, {=E,; 1=i,j=m;
m+1=k, ISm+n, i=j or k=1, (i, k)#(J, 1)), then

(6.12) B(Ei,lv Ej,l) B(El,j’ Ek,i)+B(Ei,k’ El,j) B(Ej,u Ek,i) = B(E; s, Ek,s‘) .

When m+n=3, for any (i, k) there is at least one pair (j, /) satisfying the above
conditions, and so we get from (6.12) and (6.11)

B(E;;, E; ) =0 forall E;,Eg,..E,;Eq,-.

When m=n=1, this also holds.
We see from Cases 1~4,

B(E,' Ek,l) = 0 fOl' all E~

i

E, =g, .

»Jj?

Therefore the subalgebra m in W=g, (Q¢V; is equal to W itself. Hence V,=
W/m=(0) and the extension = is trivial. Q.E.D.

6.5. The conditions (EXT1)-(EXT3) for a real form of 3[(2, 1). Before ex-
amining Cases (b) and (c), we write down the conditions (EXT1)~(EXT3) using
{E;,;}, the basis of gc. Then we see that for any real form, they have the same
form.

For i, je{l, 2}, put

Bi'] = B(Ei'a’ Ej'3) ’ B"':—J' = B(Es,i, Es,j) 5
B = B(Ei,a’ Ea,j > B—i,j = B(Es"-, Ej,a) ;

i'—j

and for k, /e {41, +2}, put

(6.13) Ay = By — B,
Lemma 6.3. For i, je{l, 2},

Bi,j=B—f,—j=O; Ai,j=A =0.

=i~

Proof. Let (z, V), V=V, V,, be an extension of (o, V). Decompose V into
eigenspaces for C=E, ,+E, ,-+2E, ,, an element of the center of g, . Then the ir-
reducibility of ¥, implies that Vj is in a unique eigenspace for C.

On the other hand, we get from (EXT1),

(6.14) [0(C), B; ;] = —2B;;, [o(C),B_;_1=2B; _;,

for i, je {1, 2}. It follows from this that B; ;=B_; _;=0. In fact, assume B; ;=0.
Then there is a v& ¥, such that B; ; v==0. We see from (6.14) that C-eigenvalues
of vand B; ;vEV, are different. This contradiction gives B; ;=0. Similarly we
get B_; _;=0.
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The assertion 4; j=A_; _;=0 is implied from the above result through the
defintion (6.13). Q.E.D.

Consider g, ¢ as a g, c-module. Then the condition (EXT1) is equivalent to
the condition that the map B: g, ¢®g,,¢c—>8l(V,) is a g, c-homomorphism. This
@o,c-equivariance is very important to simplify the condition (EXT3), as seen in the
proof of the following proposition.

Proposition 6.4. Suppose that a map B: g, ¢®@,,c—>8L(Vy), is 8, c-equivariant
and that the condition (EXT2) holds. Then the condition (EXT3) is equivalent to the
Sollowing conditions (EXT3.1)~(EXT3.8) modulo @, c-equivariance in the sense in
§3.6:

(EXT3.1) B, _,B,_,= B, _,0(H,)),
(EXT3.2) By B, ;= —B, _+B,_,0(E,,),
(EXT3.3) B, B, _,= B, _,+B,_,0(H,,),
(EXT3.4) By _\B,_, =B, _ 0E,),
(EXT3.5) B, B_,, = B_,,n(H,),
(EXT3.6) B2 By, =B_  ,+B_,0(E.,),
(EXT3.7) B_,,B_, = B_,,0(E,),
(EXT3.8) B_, B_,= —B_i,+B_,n0(H,,).

Proof. Since the condition (EXT3) is multilinear in 7, £, 7, {Eg, ¢, it can be
considered as a condition for tQ£&R 7R in

8t = 6,,c®8,,c®8:,c P8¢ -

Taking into account the g, c-equivariance of (EXT3), we study the structure of g{*
as a gy ¢c-module. The space gi* is decomposed into 16 invariant subspaces

QW (%, %, *, %) = 91,*®91.*®91.*®91.* >

where each * denotes + or — and g, .=@,,¢N{(2, 1);,,. It is sufficient to consider
the condition (EXT3) on each subspace.

On the other hand, B(¢, 7)=0 and [&, 7]=0 for &, nEg, ., or &, 7€q,, -.
Therefore the condition (EXT3) is trivial on the subspace gi* (¥, *, *, %) with

(*, *, %, *) = (+9 —l-s +’ +)’ (_’ T T _)s (+’ +, +y _)9 (_, T T +)9
(+7 +7 ) +)s (_7 ) +9 _), (+’ . +5 +)7 (_’ +7 T —)>
(—) +, +, +)a (+- Ty T —‘) .
Moreover, since (EXT3) is symmetric with respect to the second variable £ and

the third one 7, the condition (EXT3) on each of the following subspaces are
mutually equivalent:



736 Hirotoshi Furutsu and Takeshi Hirai

Qﬁ“ (+’ T _I', —) and QS“ (+: +a I _) >
(resp' QS” ('—’ +’ ) +) and 94) (_, T +’ +)) .

Now the condition (EXT3) on the subspaces g{” (+, —, —, +) and g{¥
(=, -+, +, —) is induced in total from that on the subspaces g{*) (+, —, +, —) and
gt (—, +, —, +), using (EXT2). So it is sufficient to consider (EXT3) on the
following two subspaces:
6" (+. — +, —) = 6,+ @9, -Q4,+: ®g,, -,
61 (= +, = ) = 6,-©8,+®8,,-®,,+ -

The invariant subspace g{* (+, —, +, —) is generated, as g, c-module, by the
following four elements:

B sQE QE R s, E3QFE, QE,sQE;, .
El,3®E3,l®El,3®E3.2 ’ E1.3®E3.1®E2,3®E3,1 .

Therefore (EXT3) on the subspace i (+, —, 4, —) is equivalent to the conditions
(EXT3.1)«(EXT3.4).

Similarly we get (EXT3.5)-(EXT3.8) from the condition (EXT3) on the subspace
gt (—, 4+, —, +). Q.E.D.

§7. Irreducible unitary extensions for type A(1, 0), Part II.

7.1. Extension problem for the Case (b): g=3u(2, 1; 2, 1). The even part
8o==1(2) and the odd part g, of g=381(2, 1; 2, 1) are spanned respectively by

{\/j Hl.v VvV —1 Hz,z’ vV —1 E1,2+ \/:—1— Ez,v EZ,I—EI,Z} >

and
{E1,3+ V _1 E3,1’ \/_—1 E1,3+E3.1’ E2,3+ \/:—1 E3,2’ \/__l E2,3+E3.2} .

The conditions (EXT1)-(EXT3) can be considered for g, instead of g through
complex linearity. Since g,=<11(2), an irreducible unitarizable gi-module (o, V) is
finite-dimensional, and it has a highest weight 4€%¥, and is of dimension
n=A(H)+1, where H=E, ,—F,,. Choosing appropriately an orthonormal basis
{v,, **+, v,} of ¥, such that each v, is a weight vector with weight 4—(k—1) @, where
a is the positive root of [gy ¢, 8o,c]=38[(2; C), we have

o(H)v, = (n+1-2k) v,
(7.1 P(E)vi = V (k—1) (n+1—k) Viy>
o(Ey ) v = V k(n—k) Vi1 >

for 1=k=n, where vy=v,,,=0. Put m=A4(C), then o(C)=m-Iy, where I, de-
notes the identity operator on V.
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The results in Case (b) are summarized in the following theorem.

Theorem 7.1. Let g=3u(2, 1; 2, 1), and (p, V) be the finite-dimensional
irreducible unitary g,-module with highest weight A. Put n=A(H)+1=dim V,, and
m=A(C). Then there exist its irreducible unitary extensions (=IUEs) if and only if
one of the following three conditions holds:

(i) n=land m=-2,0,2;

(i) n=2and meR, |m|=1;

(iii) n=3 and m=4+m—1), +(n+1).

Moreover IUEs are unique up to isomorphism, except the cases n=2 and m=43.
In these exceptional cases there exist exactly two IUEs up to isomorphism.

We prepare three lemmas for the proof of this theorem.

Lemma 7.2. The operator A=A, _, determines B; ;, i, j€ {41, +2}, as follows:

(7.2) By = o ((H)4+A4).

(1.3) By, = —In(E, ), Byl

(7.4) By = [0(E,), By,

(1.5) By y = [0(Ey). Byl 4B, -y,

(7.6) B_; ;= o(E;;+9;; Es’s)—B,-'_,- s

(7.7 B;,;=B__;=0 for i,je{l, 2}.

Proof. The equation (7.2) follows from the definition of 4; ;. (EXT1) implies
(7.3)(7.5). (7.6) is from (EXT2), and (7.7) was shown in Lemma 6.3. Q.E.D.

These B; ; are well-defined when (EXT1%*) is satisfied for 4.
Lemma 7.3. The operator A=A, _, is diagonal. Moreover
(7.8) Avy = o(H, ) v, (6= £1).

Proof. Now (EXTI) gives [o(H), A]=0. So each H-eigenspace is 4-invariant.
As we see from (7.1), each H-eigenspace is one-dimensional. Hence A4 is diagonal
with respect to the basis {v,}.

From the equation (EXT3.1) and (7.2),

A = (P(Hl,l))2 .

On the other hand, p(Hm)z—;— (0(C)+o(H)) is also diagonal. So we get (7.8).
Q.E.D.

Lemma 7.4. A, _,+4A, _, is a scalar operator on V.

Proof. From the equation (EXT1), we get



738 Hirotoshi Furutsu and Takeshi Hirai
[o(X), A4),_,+A4, ] =0 forany Xegc-
Therefore A4, _,+ A4, _, is a scalar operator. Q.E.D.

Proof of Theorem 7.1. (1°) Similarly as in Lemma 7.3, we see that 4, _, is
also a diagonal operator and

Ay, 2 vy = eto(H, ) vy,
where e;=+-1. Therefore from (7.1) and o(C)=m-1I,,
(Ay,-1+A4, ) v, = eo(Hy,) vi+-eio(H,,) v,
= % {ey(m~+n+1-2k)+ep(m—n—14+2k)} v, .
On the other hand, 4, _,+4, _, is a scalar operator by Lemma 7.4. Hence
d, = e, (m+n+1-2k)+ey(m—n—142k)
= (ep+¢1) m+(e,—ei) (n+1—2k)

should be a constant independent of k.

(2°) From this criterion, we deduce a necessary condition for (n, m), n=
A(H)+1, m=A(C), to have an IUE. Let us discuss case by case.

Case I: m==0and n==1,2. In this case we can take ¢,=e¢}, for all k, and then
they are all equal to 1 or —1 at the same time. Therefore

A=p(H,) or A= —p(H, ).

Case I1: m=0 and n==1, 2. In this case d,=(¢e,—e}) (n+1—2k). We see
first e,=e¢;, for all k, whence d,=0. So

(7.9 Ay, +A4;,-,=0.
Equation (EXT1) together with (7.9) gives
[o(E,, ), [0(E,,,), A1 —24 = 0.
Apply the left hand side to the vector v,, then
{[o(E,,); [0(E,,p), Al =24}y, = ¢, v, =0,

where

¢y = (n—2k+3) (k—1) (n—k+1) (6,—&4_))+(n—2k—1) k(n—k) (64—¢44,) -

Suppose &,=¢,=-++-=¢;, then we obtain from ¢,=0

I(n—1) (n—21—1) (e,—¢€;4,) = 0.

When n=1], 2/41, we have clearly ¢;=¢,,,. When n=/, the number ¢,,, and the
equation itself do not exist. Let n=2/+1, then ¢, appears only in Av, =
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&14(n—21—1) v;1,=0, so we can set &;,,=¢,.
Altogether we get

A=p(H,) or A= —p(H,).
Case ITI: n=1. Here p is one-dimensional. Hence
A=p(H, or A= —p(H,,.
Case IV: n=2. This case is exceptional at the point that there may happen
A% +p(H,)) .

Except the cases A=+p(H,,), we have e,=—¢,=—e{=¢}, since A, _,+4,_, is a
scalar operator.

Until now, we studied case by case the operator A=4, _, and found that there
exist three cases A=p(H,,), A=—p(H,,), and one exceptional case.

(3°) As the second step, we apply Lemma 7.2 to these A’s.

CASE A=p(H,,). In this case

(7.10) B;,_j = o(E; ;406 ;Ey3), B_;;=0,

for i, je{l, 2}. They altogether satisfy the conditions (EXT3.1)~(EXT3.8) except
(EXT3.2). We insert (7.10) into (EXT3.2), then obtain

o(H,,1) o(H, 2)+o(Hy ) —p(E, ) p(E,;) = 0.
We apply this to the vector v,, and get
0= {p(Hl,l) p(H2,2)+p(Hl,l)_p(El.2) p(EZ,l)} Vi
= % (m+n+1)(m—n+1)v,.
Therefore m=+4n—1.
CAsE A=—p(H,,). In this case
(7.11) B;_;=0, B_;;=p(E;;+0;;Es3),

for all i, je{l, 2}. They satisfy the conditions (EXT3.1)-(EXT3.8) except
(EXT3.6). Insert (7.11) into (EXT3.6), then we get

(7.12) o(H, ) p(H,5)—p(H, ) —p(E,,) p(E,z) = 0.

Apply this to v,, then

0= {p(Hl.l) P(Hz.z)_P(H 1.1)—/’(Ez,1) p(El,z)} Vi
— % (m—4-n—1) (m—n—1) v, .

Hence we get m=-4-n+-1.
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EXCEPTIONAL CASE n=2 and A= 4p(H,,). When &,=1, all the conditions
(EXT3.1)«(EXT3.8) hold for B;;. Their exact form is simple but not written
down here. When &,=—1, there is no m, for which B; ;s satisfy the conditions
(EXT3.2) and (EXT3.6).

(4°) Finally we check the condition (UNI) in each case. This holds in the
case A=4p(H,,). In the exceptional case n=2 and A= -+p(H, ), the condition
(UNI) implies that me R, |m|>1. (f |m|=1, we have A=4p(H,,), neces-
sarily.)

This completes the proof of Theorem 7.1. Q.E.D.

7.2. Extension problem for the Case (c): g=38u(2, 1; 1, 1). The even part g,
and the odd part g, of g=38u(2, 1; 1, 1) are spanned respectively by

{\/—:-—lHl,p \/——le,za \/——lEz,l— ——lEl,z’ E1,2+E2.1} >

and
{E\ s+ —1Es;, V—1E 3+Esy, Eyy—~/—1Es; —V/ —1Ey3+Es ).

Note that gy==u(l, 1), and that u(1, 1) is isomorphic to 8[(2; R) plus one-dimen-
sional center. From the classification of irreducible Harish-Chandra modules for
8l(2; R), we may take as (o, V) the unitarizable (g,, K;)-modules listed up below.

Notations here follow those in [15, Chap. V].

M trivial representation;

(PCS) principal continuous series (V'", H), where

1=0,1/2, s€C, Re(s)=1/2, ( )*(/2,1/2);

(LDS) limit of discrete series (V¥* 2| H*, H%);

(DS)  discrete series (U", H,), where ne(1/2)Z, |n| =1;

(CS)  complementary series (V°, H,), 1/2<s<l.
For convenience to treat the limit of discrete series together with discrete series, we
introduce new notation for the former:

(U™, H_yp) = (V" P|H¥, HY)
v
(U¥*, Hy) = VY2V \H- H).
1/

For details of the actions of g, on these modules, we refer the book [loc. cit.],
however, for our later calculations, we list up some of them.

Case (PCS). Let {f,: pZ} be the standard orthonormal basis of H given
in [15, p. 216], then

Vl's(\/——lH)fp = _2\/—_1(P+l)fp .

Case (LDS) and (DS). Let {f%: p€Z, p=0} and {f%; p€Z, p=0} be the
standard orthonormal bases of H, and H_, respectively (cf. [15, p. 237]), then
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U'(V=1H)f}; = =27/ =1(n+D)f}
U ”(\/—_IEZ,I_ \/:TEl.z)f;

= V=1Vt (p+ D) 31 +V =1V @ntp—1pfi-1,
U"(Erat+Ep)f3 = V@ntp)(p+ DS 31—V @nt+p—Dpfi-1
U™(V—1H)f} =2v/=1(n+p) f3,
U™V —1E,—V—1E)f}

= —VZAIV@Hp)p+ D) 31—V =1V @ntp—Dp f3-1
U-"(E1,2+Ez,1)fz = \/mfz+l_\/mf;-l .

Case (CS). Let {f,; p2Z} be the standard orthonormal basis of H, [15, p.
243], then

VIV =1H)f, =2/ —10f, -
Case (T). One-dimensional representation, i.e.
o(H) = p(Ex,z) = p(E,,) = 0.

For each (o, Vy), let o(C)=m-I,,. Because of the (infinitesimal) unitarity of
o, m must be a real number.

Lemma 7.5. If the condition (UNI) holds, then one of the following cases
oceurs:

(i) o(H)Z|m|-Iy, and j>=~/—1,

(i) o(H)=—|m|-Iy,and j’=—+/—1,
where C =D for C, DEgl(V,) means that C-D is positive definite.

Proof. From the condition (UNI), we have
(7’13) j2<B(E, 6)1’, v>020 ’

for all veV,, where £ =E, ;++/—1E;, and j*=—1. Using (EXT2), we rewrite
the above operator B(£, &) as

B(f’ 5) = B(E1,3+ \/-—_lEs.v E1.3+ V —1E3.1)

- %p([El.aw——lEa.p E otV Z1E,)

= V=Ta(H,) = V=T p(H+C).
Therefore (7.13) is rewritten as
7V —=1(p(H)+m-I,)=0.

Similarly as above, we get from the inequality for B(¢, €), §=E, 3;—/—1E,,,
7V =1(e(H)—m-1,;)=0 .
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From these two inequalities, we arrive at the case (i) or (ii) in the lemma. Q.E.D.

Comparing the range of the weights of o with the conditions in the above
lemma, we get

Proposition 7.6. (i) If (0, V) is in (PCS) or in (CS), then there does not exist
any IUEs.

(i) If (o, Vy) is (T), then there exists an IUE if and only if m=0. Actually an
1UE is given by the trivial representation of g.

In case (o, V) is in (LDS) or in (DS), we get the following result.

Theorem 7.7. Let (p, V,) be (U*", H,,), where nE(1/2)Z, n>0. Then there
exist IUEs if and only if one of the following conditions holds:

(i) rn=1/2 and m=41;

(i) n=1 and m=0, £2;

(iii) n=3/2 and m=42n, +-2(n—1).

Moreover IUEs are unique up to isomorphism except the case n=1 and m=0.
In the exceptional case there exist exactly two IUEs up to isomorphism.

Remark 7.8. When p is U" (n>0), o is a highest weight representation of g,
with highest weight 4, where A(H)=—2ne Z, <0, and 4(C) =m.

Proof of Theorem 17.7. Lemmas 7.2, 7.3 and 7.4 are also true in this case.
Similarly as in the proof of Theorem 7.1, we can conclude that A=p(H,,) or A=
—o(H,,), this time without exception because Vj is infinite-dimensional.

CASE A=p(H,;). In this case, we get

(7.14) B ;= p(E;;+0;;Ey), B_;;=0,

for all i, j&{l, 2}. These operators satisfy the conditions (EXT3.1)-(EXT3.8)
except (EXT3.2). We insert (7.14) into (EXT3.2) to get

(7.15) p(Hl.l)P(Hz,z)+p(H1,1)—P(E1,2)p(E ,1) =0.
In case of U”", n>-0, apply the above operator to the vector /7, then
0= {o(H. LP(H, )+ o(H, 1.1)_9(E1,2)P(E2.1)} I3
- %(m+2n)(m——2n+2)f}§.

Therefore, there should be m=2n—2, —2n.
In case of U~", n>0, we apply the operator in (7.15) to f%, and get

%(m+2)z)(nz—2n+2) =0,

whence m=2n—2, —2n.
CasE A=—p(H,,;). In this case, we have
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(7.16) Bi,—i =0, B—i,j = p(Ej,i+3j,iE3,3) s

for all i, j& {1, 2}. These operators satisfy the conditions (EXT3.1)~(EXT3.8)
except (EXT3.6). We insert (7.16) into (EXT3.6) to get

o(H, )o(H,y ) —o(H) ) —o(Ey )e(E, ;) = 0.
Apply this to f=f% or to f=f%, according to p=U" or U™", n>0, then
0 = {o(H,,))0(H, ;) —o(H,,)—o(E, )o(E, )} f
- %(m—Zn)(m—l—Zn—Z)f.

Thus, we get m=—2n+-2, 2n.
The condition (UNI) is satisfied in any case. So we get the theorem. Q.E.D.

§ 8. Explicit construction of irreducible unitary extensions.

In this section we give explicit realizations of 1UEs classified in § 7 for real
forms g of 81(2, 1).

Denote by L(A) an irreducible highest weight representation of g, ¢ with
highest weight A€h%. Two positive roots £, r €H¥ of g, other than the positive
root @ of [gy ¢, @o,cl. are given by

B(H) = (C) = —1, and r(H)=1, rC)=—1,

where H, C €Y are as in (6.2).

Let v, be a non-zero highest weight vector of L(A4). When L(A) is finite-
dimensional, we define {v,},<,<,. a standard orthonormal basis of V,, starting from
v, as

\/k(n—k) Vet = p(Ez,l)Vk for 1ZkZn—1,

where n=dim L(A)=A(H)+1. When L(A) is infinite-dimensional, we set v,=f%,,
in 7.2.

In the following, we construct the odd part V, from the even part Vy==L(A)
and thus realize (z, V), V=V,+V,, explicitly case by case. An orthonormal basis
{w,; k&I}, I an index set, of V; will be given canonically in the following. We
can check (EXT1¥*) each time when A=4, _,, a generator of B; ;, is given.

Since TUEs of 8u(2, 1;1,1) can be realized in the same way as those of
3u(2, 1; 2, 1), we give these realizations at the same time for convenience. In case
of g=8u(2, 1; 2, 1), we have dim V,<<co, and this is devided into Cases A, B, E, F,
Iand J. Incase of g=38u(2, 1; 1, 1), we have dim V=00, and this is devided into
Cases C, D, G and H. In 8.4, the results for these cases are summarized in two
tables.

8.1. Case of = for which 4, ,=p(H, ). In this case we have already shown



744 Hirotoshi Furutsu and Takeshi Hirai

in the proof of Theorem 7.1 that
Bi’—i = p(E‘oi+6i.iE3,3) , B_;;=0,

=i,
for all i, j& {1, 2}, and that, if V,=<L(A) has extensions, then
A(C) = A(H) or A(C)= —A(H)—2.
This and B_; ;=0 show
8.1 m(E; )V, = (0) and =z(E; )V, = (0) for i=1,2.

We construct ¥, in each of the following four cases, Cases A~D, classified
by whether A(C)=A(H) or —A(H)—2 and whether dim ¥, is finite or infinite.
Elements of V= W/m is expressed by linear combinations of [x®V], xQve W=
81,cQc Vo

Case A: A(C)=A(H) and Vj is finite-dimensional.

In this case, we give a basis {w,; kI} of ¥, by

Vn—kwy = [E;,,@V] for kel= {k;15k=<n—1},

and so, as g, c-modules, V;=L(A—7), using the results in [3] on the subalgebra m
in 3.2.

The action of g, ¢ is given by (8.1) and (8.2) below:
n(ES,l)vlt = Vn—k W ”(Es,z)vk = \/k—l Wiy
(Eygwy = Vn—kvi, m™EpdWe = V kViey -
Case B: A(C)=—A(H)—2 and V, is finite-dimensional.
In this case, {W,} ;s is given by
Viaw = —[E,@v], VkWi, = [E;, Qv
for 1=k=n, I= {k; 1Zk<n+1},

(8.2)

and thus, as g, ¢-modules, V=< L(4—p), and the action of g, ¢ is given by (8.1)
and (8.3) below:

(E3,1)Vk Vk Wit ”(Es,z)"k = - \/n+1——k Wi,
”(E1.3)Wk = —Vk—1 Vie-1> ”(Ez,s)wk = vVn+l—kV.

Case C: A(C)=A(H) and V, is infinite-dimensional.
In this case, {w;} . is given by

(8.3

Vontk—1w, = [E,®@v]  for kel={1,2,3, -},

and so, as g, c-modules, V,=L(4—7).
The action of g, ¢ is given by (8.1) and (8.4) below:
”(Es,l)vk =V2nt+k—1w,, (E3 vy = Vk—1We g

8.4)
(E Wy = —V2n+k—1Ve, a(EydWpy = V k Vigy -
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Case D: A(C)=—A(H)—2 and V| is infinite-dimensional (4(H)= —2).
In this case, {w,}e; is given by

Vontk—2wy = [Ea,@v]  for I={1,2 3},

and thus, as g, c-modules, V,=I(4—g), and the action of g, ¢ is given by 8.1)
and (8.5) below:

”(Es,l)"k = V?wk+1 s ”(Es,z)vk = \/2n+k—2 W,
T(E, )W, = — Vk—1V-y, m(EWp = V2n+k—2 V.

Remark 8.1. When V,=I(A) is infinite-dimensional, we have A(H)EZ and
A(H)<—1. And when A(H)=—1 in Case D, this is already contained in Case C.

8.5

8.2. Case of = for which A, _,——p(H,,). In this case we have shown in the
proof of Theorem 7.1 that

B, _;=0, B_;;=p(E;;+0;;E,),
for i, j& {1, 2}, and that if there exist extensions, then
A(C) = A(H)+2 or A(C)= —A(H).
Therefore we get
(8.6) n(E;)Vo=(0) and =(E;3)V; = (0) for i=1,2.

We construct ¥, in each of the following four cases, Cases E~H, classified by
whether A(C)=—A(H) or A(H)+2 and whether dim ¥} is finite or infinite.

Case E: A(C)=—A(H) and Vj is finite-dimensional.

In this case, {w,},e; is given by

Vn—kw, = [E, ;Q] for kel= {k; 1Z<k=<n—1},
and so, as g, c-modules, V,==L(A+8).
The action of g, ¢ is given by (8.6) and (8.7) below:
”(El,a)"/e = —Vk—1 We-1> ”(Ez,a)vk = Vn—kw,,

8.7
”(Es,l)wk =V k Vi1 ”(Es,z)wk = —Vn—kV.

Case F: A(C)=A(H)+2 and ¥, is finite-dimensional.
In this case, {w;},e; is given by

Vnw = [Ey3nl s Vk Wiy = [E;,;Q]
for 1Zkgn, I= {k; 1Z2k<n+1},

and thus, as g, ¢-modules, V,=<L(A+7).
The action of g, ¢ is given by (8.6) and (8.8) below:
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38.8) "’(El.a)"k = Vn+1—k W, ”(Ez,s)vk = \/7€_Wk+1 s
7L'(E‘.'i,l)wlz = \/n+1—k vl: > ”(Es,z)wk = \/k—‘l vle—l .

Case G: A(C)=—A(H) and V, is infinite-dimensional.
In this case, {w,},c; is given by

\/2n+k—ka = [E2,3®vk] fOr {I: l’ 2, 3, '"} k)

and so, as g, c-modules, V,=<L(A4+5).
The action of g, ¢ is given by (8.6) and (8.9) below:

7""(El,s)vlz = —Vk—1 Wi-1s ”(Ez,a)vk = \/2n+k—1 W,
(Ey )Wy = VK Visr (B Wi = V2n+-k—1 v .

Case H: A(C)=A(H)+2 and V¥, is infinite-dimensional (A(H)< —2).
In this case, {w,},; is given by

Voantk—2wy=[E ®v] for kel={l,2, 3},

(8.9)

and so, as g, c-modules, V;=L(A+7).
The action of g, ¢ is given by (8.6) and (8.10) below:

™(E v = V2n+-k—2 W, (Ey Vs = —V k Wiy »

(8.10) - -
”(Es,l)wk = - \/211-|- k—2V, ”(Ea.z)wk = —Vk—1 V-1

8.3. The Exceptional Case: dim V=2 and A% +p(H,,). In this case we
have already shown that m=A(C)eR, |m|>1. We construct ¥, in each case of
m=A(C)>1 and m=A(C)< —1.

Case I: A(C)>1.

In this case, {w},e;={w,, w_}, I={+, —}, is given by

\/m—1W+ = \/7[E1,3®V2] s \/m—i-l w_ = \/7[E3,1®V1] 5

and thus, as g, c-modules, V=< L(44-8)DL(A—7).
We represent the action of g, o by matrices with respect to the basis {v,, v,;
w_, wy} of V:

00 p O 0 0 0 O
() 0 0 0 O ) 0 p O
R0 0 0 off T 0 0 0 of
0 g 00 —q 0 0 O
n(Ey,) = '“(El,a) > n(Ey ;) = 'a(E,y) ,
where p=\/2';+2, q=\/2’;1_2 and ‘X denotes the transposed of a matrix X.

Case J: A(C)<—1.
In this case, {W;}er={ws, w_}, I={+, —}, is given by
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vV —mt+1lwy= \/7[E1,3®V2] s V—m—1w_ = \/_2 [E3,1®V1] s

and so, as g, c-modules, V=< L(A+B)BL(A—r).
We represent the action of g, ¢ by matrices with respect to the basis {v;, v,;
w_, wy} of V:

0 0—r O 00 00
E. 00 00 B 0—r O
PRI 0 0 off TR T o o ol
0 s 0O —s 0 0 O
z(Ey,y) = —'n(Ey,) , w(Esp) = —'n(Ey,y) ,
vV—2m—2 vV=2m+2
where r= > , §= 5 .

8.4. Summary. At the end, in each Case of real forms 3u(2, 1; 2, 1) and
8u(2, 1; 1, 1), we list up, for Vy=<L(4), (1) the condition on A for existence of an
IUE, (2) V, as gmodule, and (3) the operator 4= A, _; which determines the
g,-action on V=V +V,.

1°) g=38u(2,1;2,1)

Cases | the value of v, the operator
A(C) (as go-module) A=A, _,
A A(H) L(4—7) o(Hy,)
B —AH)—2 L(A—p) o(Hy,y)
E —A(H) L(4+5) —o(H,,,)
F A(H)+2 L(4+7) —o(H,,)
LJ (x1) L(4+8)DL(4+T) (+2)

(*1) In this case, A(C)ER, | A(C)|>1.

(%2) In this case, A=i<1+m 0 ), where m=A(C).
2V 0 1—m/
dim V=2 for Cases I and J.
(2°) g=8u2, 1; 1, 1)
Cases | the value of V, the operator
A(C) (as go-module) A=A, _,
C A(H) L(4A—7) o(H,,)
D | —4(H)-2 L(4—p) o(Hy,)
G —A(H) L(4+8) —p(H,,)
H A(H)+2 LA+7) —n(H,,,)
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Remark 8.2. As a g-module, we can exchange the roles of ¥, and ¥, so each
g-module is counted twice except the Cases I and J, in the above lists of extensions.

8.5. Concluding Remarks. We solved Problem 2 completely for the case g
is 8I(2, 1) itself or a real form of it. In the case of a real form, for each irreducible
highest weight representation, there exists at least one irreducible extension when
the value for the center is suitably chosen. But this phenomenon is rather special
from a general point of view. In fact, when we consider a real form of 8l(n, 1) for
n=3, there are few irreducible unitary representations o of g, which can be extended
to those of g. For finite-dimensional o’s, a part of them have unique extensions,
and for infinite-dimensional highest weight representations p, they have no ex-
tensions in general.

In this way, we are naturally forced to extend the problem of irreducible unitary
extensions to the case where o is not necessarily irreducible (Problem 2bis). Note
that the adjoint representation of g itself is already in such a case. Solving this
generalized problem, Problem 2bis, we can classify all the irreducible unitary re-
presentation of g completely. In a forthcoming paper, we give a complete results
in the case of real forms of gl(2, 1) (cf. [4]) and 8I(3, 1).
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