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Representations of Lie superalgebras I
Extensions of representations of the even part
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Hirotoshi FURUTSU and Takeshi HIRAI

Introduction.

Lie superalgebras are becoming important both in mathematics and in physics.
The classification of finite-dimensional simple Lie superalgebras was done by Kac in
[8] and also by Kaplansky in [11]. K a c  also studied the finite-dimensional represen-
tations, especially character formulas for them, in  [9 ] and  [10]. T he infinite-
dimensional representations are much more interesting as in the case of usual Lie
groups. Unitary (or unitarizable) representations are of particular interest and
importance, dominantly in physical applications. As is well known, the classification
and the construction of irreducible unitary representations of Lie groups are of great
importance in the theory of infinite-dimensional representations. Therefore we
intend to study similar problems for (infinite-dimensional) representations of Lie
superalgebras from a general point of view.

In this paper we give a definition of unitarity of such representations, which is
methematically natural. Then we give a method of constructing irreducible represen-
tations of Lie superalgebras. This method gives a standard approach to classifying
irreducible (unitary) representations for any Lie superalgebras. In the second half
of this paper, we take some simple Lie superalgebras and give the classification and
the construction of their irreducible (unitary) representations.

Let g=g 0 - 1--gi  be a Lie superalgebra and (7r, V) be its representation on a Z 2 -
graded complex vector space V =V 0 H-V, in the sense of Kac [8]. Then, on the
even part V, and also on the odd part V, of V, we have representations of a usual Lie
algebra go. We consider the converse, expecting to utilize rich results on represen-
tations of go. More exactly, we take a  representation (p, V0 ) o f  go,  and then try
to construct a  representation (7r, V) of g such that its even part is isomorphic to
V, as g -modules. We call this (7r, V) an extension of (p, V0). We raise some
problems concerning this extension.

Problem 1  (Extensions of irreducible representations o f  go). Take an  ir-
reducible representation p of go o n  a  complex vector space V,. Then, do there
exist any irreducible representations (7r, V) of g=go+g, extending (p, V0 )? I f  they
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do exist, construct all of them.

Examining some types of simple Lie superalgebras, we recognize that for many
irreducible representations (7, V ), V= V0 + V1, of g, the restriction of  i t  to go on V,
or V, is not irreducible. As a matter of fact, when we take Lie superalgebras of
type A as g, already the adjoint representation is in this case, even though it is
finite-dimensional. So we generalize Problem 1 to Problem ibis, where we start with
a  representation (p, V0 ) of gc, not necessarily irreducible. Requiring (p, V0 )  and
(r , V) to be unitary in Problems 1 and ibis, we propose Problems 2 and 2bis. In
this approach, if we can solve Problem 2bis, the unitary extension problem, then,
as a result, all the irreducible unitary representations of a Lie superalgebra g will
be obtained.

To solve these extension problems, we introduce a  bilinear map B : g, x
gi(Vo) by means of 7, as

I 3(e , = (e) ar (77)1 vo CO •

We see that irreducible it is determined uniquely, up to equivalence, by this map B.
And then we give a  necessary and sufficient condition (EXT1)—(EXT3) for B , and
also a method of constructing (it, V ) using ( p ,  V 0) and B .  Thus Problems 1 and
ibis are reduced to the following: find a bilinear map B : g, x g,-->gI(V,,) satisfying
the system of equations (EXT1)—(EXT3). For Problems 2 and 2bis, a certain
positive-definiteness condition (UNI) on B is required in addition. In many cases,
the skew-symmetric bilinear map A : g, x (  V0 ),

A (e , 77) = B (e, 72)— B( 77, e) , 77 E 81)

is more convenient to treat with. So we rewrite (EXT1)—(EXT3) by means of A.
Further we give a  reduction of the system of equations (EXT1)—(EXT3).

After these general discussion of the problems, we give some examples in the
latter half of this paper.

Let us explain the contents of this paper in more detail.
In §1, we give some basic definitions in  1.1-4.2 and then define in  1.3 the

(infinitesimal) unitarity for representations of Lie superalgebras, which is a natural
extension of that for Lie algebras. Our unitarity is defined as follows. Let (r , V),
V= V 0 + V 1 , be a representation of g=g od- gi . We call (7, V ) unitary if  V is equip-
ped with a positive definite inner product <., • > satisfying the following:

(i) VOl  V1 (orthogonal) with respect to <., • >, and
(ii) <• , • > is g-invariant in the sense that

<i7c(X) v, = <v, i7c(X ) v'> (v, v' G V, X G go) ,
</r(e) y, = <v, /it(C) y'> (y, V, e ,

where i=  _1 and j  is a fixed forth root (depending only on 7) of —1. We call
j 2 the associated constant for it since the essential thing is not j  but j 2 =e i  with
5=1 O r - 1 .
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If (r, V) is unitary, restrictions r(go) I V, and r(go)  V, are (infinitesimally) unitary
representations of the Lie algebra go in the usual sense.

In §2, we introduce the extension problems, Problems 1, Ibis, 2 and 2bis men-
tioned above.

In §3, we define the bilinear map B, and give a necessary and sufficient condition
(PRO!)-(PRO3) for r to be irreducible in Lemma 3.1:

(PRO!) r ( g 1) V0 = V 1 , where r( 1) Vo denotes the linear span of f ir(e)v ; e  g,,
v c V0 )-  ;

(PRO2) an element v, e  V, is equal to 0 if and only if r(e)v 1=0  for any e  gi ;
(PRO3) the subalgebra <,o(go), B(g1, g,)>, generated by p(g0) and B(g,, gi )  of

gI( Vo), acts on V, irreducibly.
We give, in 3.2, a standard method of constructing (iv , V ) using (p, V 0) and B,

and obtain, in Theorem 3.3, a  necessary and sufficient condition (EXT1)-(EXT3)
to get a representation 7v of g with properties (PRO!) -(PRO2):

(E X T1 ) we, 7)+B(5, x77) = [p(X), p7)],
(E X T2 ) B(e, 77)+ B('7, e) p([C, 77])
(EXT3) B ( - r,w 7, C )+B (r, 77) B (e , C) = B (r, Et•''JC)+B(r, C) p ([e , n]) ,

for r, e, C gi  and Xc go, where xe=[x,
In 3.4, the algebraic irreducibility is discussed. In 3.5, we define a  skew-

symmetric bilinear map A  and rewrite (EXT1)-(EXT3) in terms of A .  Further we
give a  reduction of the system of equations (EXT1)-(EXT3) in  Theorem 3.11,
taking into account its g1-equivariance.

In  §4, we concern Problems 2 and 2bis, and get a  necessary and sufficient
condition (UNI) on B for r to be unitary in Theorem 4.2:

(UNI) j2 E <B(e„„ e vm>,, 0 f o r  e g,, vke V0 ,
k

where <., •>, is a g0-invariant positive definte inner product on V,. We give some
remarks and examples for unitary representations in 4.2.

In the latter half of this paper, §§5^-8, some examples are discussed.
In §5, we classify and construct all the irreducible (unitary) representations of

o (2/I). For our result for o4(2n/1) with 2, a real form of a simple Lie super-
algebra o4(1, 2n) of type B(0, n), we refer the readers to [6].

In §§6-8, we take gt(m, n) or a real form of it as g and study Problems 2 and
2bis. In §6, we first list up real forms of g(2, 1) up to isomorphism. There are
three types of them up to transition to their duals: (a) I(2, 1; R) , (b) s3u(2, 1; 2, 1)
and (c) it(2, 1; 1, 1), for which the even parts are gl(2; R), u(2) and u(1, 1) respec-
tively. In 6.3, we get the solution of Problem 2 for (a). More generally, we get
the solution of Problem 2bis for g=gi(m, n; R) in Theorem 6.2, which says that
g  has only a  unique irreducible unitary representation, the triv ia l one. In  6.5,
utilizing Theorem 3.11, we prepare some necessary conditions for existence of
irreducible extensions by means of B when g is one of real forms of g(2, 1).
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In §7, the solution of Problem 2 for (b) is given as follows.

Theorem 7.1. L e t  g=  (2 , 1 ; 2 , 1), then g0 = u (2 ). T ak e (p, V 0)  a finite-
dimensional irreducible unitary g0-module with highest weight A . Put n= A (H )+1=
dim V0 , and m— A (C), where H=diag(1, —1,0) and C=diag(1, 1,2) are elements of
b c , the com plex if ication of  a Cartan subalgebra b. Then there exist irreducible
unitary  extensions (=IUEs) of  p if  and only if  one of the following three conditions
holds:

(i) n 1 an d  m  = —2, 0, 2;
(ii) n  = 2  a n d  i n  R, Imi
(iii) n 3  an d  m  = ± (n -1 ) , ± (n +1 ) .
Moreover IUEs are unique up to isomorphism, except the cases n=2 and m =±3.

In these exceptional cases there exist exactly two lUEs up to isomorphism.

The solution of Problem 2 for (c) is given as fo llow s. FIere g=i1(2. 1; 1, 1)
and g0 =n(1, 1), and irreducible (infinite-dimensional) unitary (g0 , 1(0)-modules are
well-known (cf. [15]).

Proposition 7 .6 .  (i) If  (p, 1/0) is in the principal continuous series or in the com-
plementary series, then there does not exist any lUEs.

(ii) If (p, V0 ) is trivial, then there exists an IUE if and only if  A (C)=0. A ctually
an IUE is given by the trivial representation of g.

Theorem 7.7. L et (p, V 0) he in the holomorphic discrete series or its limit with
highest w eight A . Put 1= — A (H) and in— A (C). T hen there ex ist IUEs if  and
only if  one of the following conditions holds:

(i) 1 = 1 and m  = ± 1 ;
(ii) 1 = 2 and m  = 0, +2;
(iii) 1 3 and m  = ± 1, ± (1-2).
Moreover IUEs are unique up to isomorphism except the case 1=2 and m =0.

In this exceptional case there exist exactly  two lUEs up to isom orphism . For all of
these representations, their associated constants are given by j 2 =i (e=1).

In case p is in the anti-holomorphic discrete series or its limit with lowest weight
A , put 1= A (H) and in= A (C ). Then the same assertions as above hold except
that / 2 = (e  = —  1) instead of j 2 =i (e = 1).

I n  §8, we realize representations classified in  §§6 and  7, that is , we give
standard orthonormal bases for V, and V1 ,  and write down the actions of g, and
g, o n  V explicitly with respect to these bases.

In a forthcoming paper, we study representations of real forms of M(n, 1) and
give a  complete classification of irreducible unitary representations in  case  of
I(2, 1) and  g(3, 1). Further the classification problems fo r  04 (2n/l) will be

discussed in another paper.

§ 1 .  Unitary representations of a Lie superalgebra.

1 .1 .  Basic definitions. A Lie superalgebra over a field K= R  or C is defined
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as a Z r graded algebra g=g o+ g , over K  whose product (or bracket) operation
satisfies the super-antisymmetry and the so-called Jacobi identity. More exactly,
it satisfies

(1.1) [gs, gsl c g s + t  (s, t e Z 2 ) ,

and
,  y -] i r x ) d ( n [ y ,

[X, [ Y, Z]] =  [[X , Y], Z ]+( -1 ) d ( x ) d ( Y) [ Y, [X, Z]]

for any X, Y, Z  in g, or g,. Here s+ t is calculated in Z 2 =- Z I2Z = {0, 1} , and d(X)
denotes the degree of X: d(X )=- s if X eg s (s=0, 1). We call go and g l  the even
part and the odd part of g respectively, and call an element in g, or g, homogeneous.
Note that go is a usual Lie algebra over K.

Let us give a  simplest and fundamental example of Lie superalgebra. Let
V =V 0 --1- V , be a Z 2-graded vector space over K , that is, V is a direct sum of sub-
spaces V , and V , .  Then we define the Lie superalgebra 1(V), with underlying
associative algebra gI(V) of all linear transformations of V, as follows: the subspaces
I(V), with degree s=0, 1 are given by

(1.3)1 ( V), =  Pire gl (V); XV, c  Vs + , f o r  t  = 0, ,

and the bracket operation is

(1.4) [X, Y] XY — ( -

0 d ( X ) d ( Y )  YX fo r  X, Ye% or g .

According to V. G. Kac, we define a  representation o f g  a s  follows. Let
V= V0 -1- V, be a Z,-graded complex vector space, possibly of infinite dimension.
A representation r  of g on V is by definition a homomorphism of g into 1(V) as
Lie superalgebras over K .  This means that

7r(X ) V, c Vs + , for X E g ,  (s, t G {0, 1}) ,

r([X , Y]) =- [r(X ), r(Y )] (X, Y  E g ) ,

[r(X), 7E(Y)] 7r(X ) 4 1 7 )— ( - 1 )d ( n d ( Y )  r( 17) r(X )
fo r  X , Y E g, or

We call 7C irreducible (resp. algebraically irreducible) if any graded invariant
subspace (resp. any invariant subspace) of V is equal to (0) or V.

For 2V, we have naturally two representations of the even part g„ one on V, and
the other on V,. They are usual representations of the usual Lie algebra g,. We
denote them by 741)1 V, and 2V(g0) I V, respectively and call 2V an extension to g of
each of them.

If we change the grading of V by exchanging the roles of V, and V, (i.e., V= V 6

(1.2)
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+V f, with V() =V ,, V Ç= V 0), then the roles of 7r(g0) I V, and r(g o) I V, are exchanged.
Taking this in mind, we refer usually only 7r(g0) I V, and say 2E an extension of 7r(g0) I V,,
in the following.

Let (7r', V '), V '=V 6H-V Ç, be another representation o f  g .  Then (7r, V ) and
(a ', V ') are said to be mutually equivalent if there exists a bijective linear map T  of
V onto V ' such that

T  V , = V 's , ,  ( s  =  0 ,  1) for a fixed t;
To7V(X)0 =  r c '( X )  ( X  E g) .

N ote . F o r a  representation (7r, V), define n _(X)=(— 
i ) d ( X )  x(X ) for any homo-

geneous X E g. Then (r_ , V ) is again a representation of g which is equivalent to
(7r, V), without change of grading of V.

1 .2 .  Representations contragradient or conjugate to 7E. Let (7C , V), V= V0+ VI ,
and (7 e, V '), V' =V6+VÇ, be two representations o f  g .  Then 2E is said to be con-
tragradient to  7E ' i f  there exists a  non-degenerate bilinear form (• , -) o n  V x V'
satisfying

(v , v ') = 0  i f  vE V, v'E V 't f o r  s *  t;

(7r(X) v, 1/ )+ (
d ( X )  (v, 7E'(X)11) = O ,

fo r any homogeneous element X E g, where i=  — 1. Note that, if we multiply
(• , •) I Vi  x VÇ by — 1, then (a_, V ) is  contragradient to  (a ', V ') under this new
pairing of V and V'.

Let (7r, V ), V= V 0 + V „ be as above. We define the conjugate vector space
P= Po + PI changing only th e  scalar multiplication on V  by its conjugate: put
P= {13; vE v }  a set of symbols and define addition and scalar multiplication by

(v+v ) -  , 710 -17' (2v) -  ,

where 17, v' E V, 2E C, and 13 is denoted also by Ir. For a linear operator T on V,
there corresponds uniquely that on P, denoted by r, as

(T v) -  P  w ith  v E V) .

Then, as we see easily, the addition of two such operators and the scalar multi-
plication, denoted by T--).2.T, are given as

(T ± S ) -  =  T ± s  ao T  =  ( T ) .

Thus, introducing canonically a Z 2-gradation in  P as 17 =V 0 --V 1, we get a represen-

tation (7T, '17 ) by Fr(X )=7V (X ) (X  g), which is said to be conjugate to (a, V).

1 .3 .  Unitary representations. In  accordance with some physicists, we call a
representation (a, V ) o f  g  unitary i f  V  is equipped with a positive definite inner
product <., • > satisfying the following:

(i) V ,iV , (orthogonal) under <., ->, and
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(ii) < •, •>  is g- invariant in the sense that

(1.8) <in(X) y , y'> = <y, i2v(X ) y '> (y, y ' e V, XE go)

(1.9) <jx( Y) v, V> = <Y , jr(Y ) v '> (y, v' e V ,  Y  eg i ) ,

where i= \ /  —1 and j  is  a  fixed forth root (depending only o n  r )  o f  —1, i.e.,
j 4 = —1. We call j 2 th e  associated constant fo r iv since the  essential thing is not
j  itself but j 2 =e i w ith  e= 1 o r  —1. N ote th a t  the second equality o f  th e  g-
invariance of <•, -> is equivalent to the following:

j 2<2v(Y) y, v'>—<v, r(Y ) =  0  (Y  eg i ) .

W e call 7c quasi-unitary if , in  th e  above definition, the condition "positive
definite" is replaced by "positive semi-definite".

Let (2v, V ) be unitary, then its conjugate representation P) is again unitary
if we introduce o n  P= Po+ P, the inner product <-, •>- canonically defined from
<•, • >: for 15, ir V with v, v'G V, put

, y>.
In this case, the associated constant for t is j 2 , because jo t(X )=(jx (X )) -  and so,
for XE gi ,

<joie(X) 15, TO-  =  <(fir(X ) ,  TO -  =<v' , jr(X ) =
<fir(X) V , y> = 0 , ( jr(X )  v r> -  = Jo (X ) .

Since ) 2 — e l ,  there corresponds —e to if, whereas e to n.
Note that, in this case, we have a natural bilinear form on  Vx P as

(v, <v, V >  (v E V, E P  w ith  v'E V) ,

and so, P) is  contragradient, under (-, •), to  ( r ,  V) or to  (r_, V ) according
as e = 1 or —1.

Remark 1.1. Physicists usually do not write down explicitly the multiplicative
factors i or j  in front of  2v(X) or r(Y), but they join them together with the latters,
maybe because they are interested only in self-adjoint operators as physical objects
under quantization, and so, to write down these factors explicitly is cumbersome
for them. Thus what they call a  representation o f  g  is usually something like Fe
given as follows: Ft(X )=i2v(X ) for XEN, and 1.'( Y )=jr(Y ) fo r  YE g,. Therefore
the property (1.6) of representation is rewritten as

(1.10) aq[X, Y]) = 1— [Ft(X), 7- r( Y)]__
for homogeneous X, Y E g  not both in g ,

(1 .1 0 ')  7 7 - ( [X ,  Y]) =  e [Ft (X ), i..(Y )], f o r  X, YE g, ,

where e = +1 with j 2 = e i .  The essential thing is not j  but j 2 , as we remarked above,
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and it is not natural from mathematical point of view to discard the case e= —1, as
is done by some physicists (cf. [2, §3.2]). The second author discussed seriously on
this point with C. Fronsdal when he was staying at RIMS, Kyoto Univ., 1983/84.

Remark 1.2. M. Duflo gave another formulation of unitarity in which there
does not appear the forth root j. In discussion with him at Paris, May 1986, we
found that our two different definitions of unitarity are equivalent to each other.

Remark 1.3. Let g=g o+ g, be a Lie superalgebra. Its dual algebra gd=gt+
gf is defined in [8, p. 98] as follows. We take gg=go , g l= g, as underlying vector
spaces, and introduce the bracket operation [•, •]d  as

[x-
,  y id  od(x)d(Y) y ]

for any homogeneous elements X ,  Y g .  N o te  that gd is realized in the corn-
plexification g c —COR  g of g as its real subalgebra go ± i•g,, where 10 X  and iO Y
are denoted by X and i • Y respectively.

Let (7r, V) be a representation of g, then we get naturally a representation 7rd  of
g d by putting

ndoo i d ( x )  r (g )  v /

for any homogeneous element x c g d .  When 7r is unitary with the associated
constant j 2 =ei, 7rd  is also unitary, with respect to the same inner product in  V, and
its associated constant is P=— ei.

Notation. For a vector space V, we put for A , BE gI(V), associative algebra,

(1.11) [A, B] = A B +B A  ,

and we omit the suffices "—" if it does not cause any confusion.

§ 2 .  Problems of extensions of representations of the even part.

2 . 1 .  Extension problems. We propose some problems initially due to  C.
Fronsdal (cf. [2, §1.3]) and also to G. Zuckermann.

Problem 1  (Extensions of irreducible representations o f g„ ). Take an  ir-
reducible representation p of the even part g, on a complex vector space V,. Then,
do there exist any irreducible representations (7r, V ) of g=g0-1-g1 extending (p, Vo)?
(More exactly, V , is imbedded into V  as its subspace of degree 0, and p  is eq-
uivalent to 7r(g0) I V, under this embedding.) If they do exist, construct all of them.

When we study this problem for some types of simple Lie superalgebras, we
recognize that the above extensions are not always possible or that the extensions
become rather difficult to exist in general according as the dimension of g increases.
On the other hand, we encounter frequently an irreducible representations 7C of g
for which 2V(g0) I V, is not irreducible. For instance, the adjoint representation of
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g itself is already in  such a case for some simple g's, eventhough it is finite-
dimensional.

Thus, to study irreducible representations of g in general or to classify all of
them, we are forced to start from representations of g, not necessarily irreducible.
Hence we come to the following problem generalizing Problem 1.

Problem ibis. Take a representation (p, V0)  of go not necessarily irreducible,
and study its irreducible extensions to g=go - Egi . Especially, analyse the splitting
of 7r(g0)  V, into irreducibles for an irreducible representation (2 r, V), V = Vo + V1, of g.

N o te . From a physical point of view, a reducible (p, Vo )  for an irreducible
(2 r , V), V = Vo + I/1, means that many elementary particles live together in a closed
physical world.

2.2. Unitary extension problems. As usual, we call a representation (p, Vo ) of
go (infinitesimally) unitary if  Vo is equipped with a positive definite inner product
<• •>, such that

(2.1) <ip(X) V, =  <y, ip(X) v'>0 (X E  go, y, v'E V0) .

It is a difficult problem to determine whether or not a unitary representation p
of g, can be lifted up (or globalized) to a connected Lie group G, with Lie algebra
g, (cf. [13, §9]). Putting this problem aside, we propose the following extension
problem of unitary representations on the algebra level. For convenience of later
references, we list up the problem for irreducible p separately.

Problem 2 (Extensions of irreducible unitary representations). Let (p, V0)  be
an irreducible unitary g0-module. Then do there exist any irreducible unitary
extensions of (p, V0) to g=g o+g i ?  If any, in which different ways can we extend
it?

Problem 2bis. How about the case where p  is  no longer irreducible? In
particular, study the branching rule for an irreducible representation 7C of g into
irreducibles when it is restricted to the even part g,.

2.3. Case of reductive g,. Now we restrict ourselves to more specialized
situation which we will treat in the following. Assume that g, be a real reductive
Lie algebra. Let Go be a  connected Lie group corresponding to g„, and Ko the
analytic subgroup of Go corresponding to a maximal compact subalgebra fo of g,.
We call a g 0-module (p , V 0)  an admissible (g0 ,  KO-module (or Harish-Chandra
module) if it satisfies the following conditions.

(i) p(f0) on V, is decomposed into a direct sum of finite-dimensional irreducible
representations of fo, which can be lifted up to Ko , with finite multiplicities.

(ii) V, is finitely generated as a g0-module.
From the results in [13] and [1], we know that any unitarizable admissible

(g0 , KO-module correspond canonically to a unitary representation of Go, which is
a finite direct sum of irreducible ones. Moreover, irreducible unitarizable (g0,
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modules correspond one-to-one way (up to equivalence) to irreducible unitary
representations of G0 . Here the equivalence for such (go, KO-modules is in purely
algebraic sen se . Furthermore, when the center o f G0 is finite, irreducible (g o, KO-
modules, not necessarily unitary, correspond one-to-one way (up to equivalence) to
quasi-simple irreducible representations o f  G, on Hilbert spaces (cf. for instance,
[1, § 8 ]).

In  later sections, we will study Problems ibis and 2bis for a real form g=
Op (2/1) of 1)4(1 , 2) with go= 4  (2 ;  R), and Problem 2 for those of g (2, 1) with go=
u(2) or u(1, 1) respectively. F o r g= o4 (2n /l) , a  real form of Op (1, 2n) of type
B(0, n) in the classification in [8], see also [6].

§ 3 .  Equations for an irreducible extensions.

In this section, we consider Problems 1 and ibis and obtain a system of equations
to solve these problems. Hereafter we use Greek letters e, 77, •••, to denote elements
in gi  when it is convenient to distinguish them from elements in go.

3 . 1 .  Conditions for irreducibility. Let (7r, V ), V =V0 +1/1, be a representation
of g=g o+ g , .  We define for e, 77e gi a  linear mapping B(e, 77) of V, into itself by

(3.1) B(e , 72) = 7407472) ( v e  V 0 ).

Then B (., •) is a  bilinear mapping from g, x g, into gt ( V0), which plays a  decisive
role in the following. We extend B by linearity to a complex bilinear map: g h e  g , , c

-->gf(VO, where gi,c=COR fir
Let us first study the irreducibility of 7r. Denote by 7r(g 1)  V , the subspace of

V, spanned by {7r(e) y; C g1 , y e  V0 } . T h e n  = 7 4 0  V o c  V , is a g o-submodule.
and V '= V 0 +-V1 is a g-submodule of V .  Moreover put

(3.2) M  =  {ye V1 ; 7c(e) o ce e g i »

then it is g o-invariant, and hence V'= 1/6+M w ith  V 6=(0)c V , is  a g-invariant
subspace of V .  Thus, we see that when (7r, V ) is irreducible, it necessarily has the
following properties:

(PRO1) 7r(g 1) V1, where 7r(g1)  V0 denotes the linear span of {p(X) y ; X
gl , v e ;

(PR O 2) M =(0), namely, an element y 1e  V, is equal to 0 if and only if r (7 7 ) y ,

=0 for any 77e g,.
Further pu t p= 7480 Vo, and denote by <p(g0 ), B(g i , g1)>  the subalgebra of

gt(V0 ) generated by -(p(X), B(e, 77); XG go, e, E g 11. T h e n  w e  have the following
criterion of irreducibility.

Lemma 3 . 1 .  L et (7r, V ), V=V0 +V„, be a  representation of  g. Then it is ir-
reducible if and only if it has the properties (PROD, (PRO2) and

(P R O 3) the subalgebra <7480), B(gi , PI)> of  gr(vo) acts o n  V, irreducibly.
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Pro o f . The necessity of the property (PRO3) is easy to see. Hence we prove
the sufficiency of these properties.

Let U be a non-zero graded invariant subspace of V : U= U,+ U, with U  U  n
(s=o, 1). If u 0 * (0 ) , then UoD<P(go), B(gi, U0— V0 b y  (PRO3) a n d  so

U0 = V0. I f  U1 *(0 ), then ( 0 ) * a r ( g 1 )  U1 C U 0 b y  (PRO2), whence U0 4 (0) a n d  so
we have U0=  V0 as above. Thus in each case, U0=  V0 and  so Ui Dx(g i )  Vo = V, by
(PRO1), whence U= V .  This means that 7r is irreducible. Q . E . D .

Corollary 3 . 2 .  L et (7v,  V ) be a  representation of  g  as  abov e . A ssume that
p=r(g o )i V, is irreducible. T h e n  7r is irreducible if  and only  if  it has the properties
(PRO 1) and (PRO2).

Corollary 3 . 3 .  Let (p, V 0) be a representation of go, and (ir, V ), V =V 0 +V 1, its
extension to  g  with properties (PRO I) and (PRO2), o r especially  a n  irreducible
ex tension. Then

( 0  any element of V , is expressed as a linear combination E i 7r(e 1)  v1 w ith e i e
g1 , vi E V,, and

(ii) this linear combination is equal to 0 if and only if

(3.3) E  B(72, e o for any

3 .2 .  Bilinear map B .  L et us now prove that the  bilinear map B: g, x
gI(Vo) ,  together with p  o n  V ,, determines completely the extension ir (up to
equivalence) if l r  has the properties (PRO 1) and (PRO2), hence especially if 7r is
irreducible.

Consider the complexification g,, c , of g, as go-module and put W =g 1,c 0 c  V,,
the tensor product as go-m odule. Let p  be the canonical go-homomophism of W
into V, given by

(3.4) p : W D Œ O V  r( e ) V E V i  (eGgis VG Vo) •

Then p  is surjective because of (P R O 1). Further, by Corollary 3.3, the kernel m
of p is given by

(3.5)u t  =  {E i e iO v i; e i e g i ,  vi E V ,  such that (3.3) holds} .

Let 72 g  then the map 7477): —* V1, factors through 77® : Vo B v 1—> 720 v  E
W, as follows, and similarly the map B(e, n )= 7 0 ) 4 77 ) Vo e gI(Vo):

B(Œ,72) :  v  7--L -7 ) ›.

Put W = W /m  and denote by [w] the  element in  W  represented by wG W.
Then V, as go-modules through p .  We define an action of g, on W as follows:
f o r  e  gi,
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(3.6) V-VD[720v] , 72) v e vo ( 77egi, ve vo)

Then this is well-defined because the kernel m  is given by (3 .5 ) . Thus we get a
canonical realization of an extension (7r, V ) with properties (PRO!),  (PRO2), by
the following method.

Method of construction using a bilinear map B :  X c1- ->g1(V0)-
(MET] ) Take w = g 1,c 0 c  Vo a s  go-module, and determine its submodule m

by (3.5).
(M E T 2) Take -I,V= W/m as the subspace V, of degree 1, and put V= Vo+

Define the action of e e g i on V,— -142. by (3.6) and that on V, by

(3.7) V0Dvi— [eOv]EW.

3 .3 .  Equations for the m ap  B : g, x (V0). Let (P, V0)  be a not neces-
sarily irreducible representation of go. We see above that an extension (7r, V ), V =
VO 4- 17

1 , of it is determined by a bilinear map B : gi xg 1—>gf(Vo) if 7r has properties
(PRO1) and (PRO2), or especially if r is irreducible. Let us study conditions for
B to be satisfied.

First we list up the representation property (1.6) in three cases

(3.9) ({X, Y ])  =  (X ) r  n (IT ) v (X) ( X ,  Ye go);

(3.10) 7r ax, CD = 7r (X )  r(e) — x(e) r (X )  (X e e g i ) ;

(3.11) r([e,771) =  7r(e) 74 0 + 74 77) 7r(e) (e,

For simplicity, the cananical action of X  on e is denoted as xe=[X , e]. We
write down the above equalities for vE V, and v1 =7r(C) v e  V 1  (Cegi, ve vo).

(3 .9 .0 ) PO ', =  p(X ) P ( 17)—  P (Y ) p (X ),

(3.9.1) r([X , Y]) rc(C) (X) 7 r(Y ) (C) (Y) rc (X) r (C) v;

(3.10.0) 7r (ye) y = 7r (X) 7r (e) v-7r (e) p(x) V ,

(3.10.1) B (xe, C) v p (X) B  , v—r(e) 7r (X) r(C) y;

(3 .1 1 .0 ) p ([e , = B( C, 7 7)+B (n, C),

(3.11.1) a l e  , n ])  (C) y = r(e )  2r (7) r(C ) v+7472 )7 r(e )r(C )  V.

From (3.10.0), we have

(3.12) r (X) r(C) y = (x C)- (C )  p  (X )} y.

Apply this to the right hand side of (3.9.1), then we get

7r([X, Y]) 7E (C) V = t ( CX  '11 0+ r(C) p([X , Y]))- y .

Therefore (3.9.1) follows from (3.12) and (3.9.0). Again apply (3.12) to (3.10.1) and
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(3.11.1), and further apply r(r), E to the  both sides of (3.11.1), then we get
respectively

(3.10.1') B(xe, =  ,o (A-) B(e, 77) — B(e , x —13(e , ,o (x ),
(3.11.1') B(r,temC)+B(r, ([C, 1) =

= B (r, e) B(72, C)+B(r, 77) x e ,  .
Now we see that (3.12) shows how X e g ,  operates on v i =x(C) vE V , and that

it corresponds exactly to the go-action on -W = W /m,W = gi Vo. Further we.c c 
see that, under (3.12), the system of equations (3.9)-(3.11) fo r  r  with (PRO]) and
(PRO2), is equivalent to the following one:

(EXT1) B(x  , 77)+- R(e 7)) [P (X ), B(e , 77)] ( x E  go, e, 7) E  g1) ,

(EXT2) B(e, 7))+B(7), e) = P ([e , 72]) (e, n e g i )

(EXT3) B(r, e) B(71, C)+B(r, 77) B( C,, =
= B(r, tt. 9  C)+B(r, C.) P ([e , n]) (r, e, C e g i )

where in the right hand side of (EXTI)

(3.13) [C, D] = CD— DC f o r  C, DE gI(Vo) .

Note that C1-0 [p(X), C] (Cegf(Vo)) gives a  natural go-module structure on
gr(Vo). Then the condition (EXT1) says that th e  bilinear map B , extended by
linearity,

B: g i x  x g i ,c D(e , 77) F- 4  B( C,, 77)G At (Vo) ,

is a go-hom om orphism  of g„x g" into gT(Vo).
Now we can state a theorem which is fundamental for our later study.

Theorem 3 .4 . Let (p, V0) be a representation of the even part g , of  g= g 0H-gi ,
not necessarily irreducible.

(i) L et ( r, V ), V = V0 + V 1, be an extension of  (p, V 0)  to  g , having properties
(PRO1) and (P R O 2). Put for e, 7)E g1 ,

(3.14) B(e, 77) v (e) 7, (72) v ( v  v ) .

Then B satisfies the system of equations (EXT1)-(EXT3).
(ii) Conversely, assume that w e are given a bilinear m ap B f rom  gl x g , into

gi(V,), w hich satisf ies (EXT1)-(EXT3). P u t  W =g 1 . c 0 c . V , an d  def ine its go-
submodule m  by  (3.5). T ak e W = Wlm as the space V , of degree 1, and define gr

action on V = V 0 + V, by (3.6)-(3.7). Then we get an extension (r, V ) of (p, V0) with
properties (PRO I), (P R O 2 ) . Moreover any such extension can be obtained in this
way up to equivalence.

Pro o f . The assertion (i) has been already proved. For the assertion (ii), it
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rests only to prove that we get from (EXT1)-(EXT3) the representation property
(1.6). As an example, take (EXT3). Then by the definition of m, we get on  V, the
following equality

r(e) B(77, 0 + 0 7 )  B(e , 7 ( [ "  C)+ 7c(C) P ([ e , a])
This, together with (3.12), gives the equality (3.11) o n  V,. Other details are om-
mitted here because they are a kind of repetition of former arguments. Q.E.D.

Corollary 3 .5 . L et (,o, V,) be an  irreducible representation of go. Then, any
irreducible extension (7r, V ) of it can be obtained, up to equivalence, canonically from
a bilinear map B : gi x g1- 9.gI(V0) , which satisfies (EXT1)- (EXT3). Here "canoni-
cally" means "by the method (MET1) - (MET2)".

3 .4 .  Algebraic irreducibility. Let us give here some remarks about two kinds
of irreducibility.

Lemma 3 .6 . L et (7r, V ), V = V0 -+ V1, be a  representation of  g=g o + g , .  Then
it is algebraically irreducible if (1) it is irreducible (as a representation of a Lie super-
algebra), and (2) any intertwining operator from a N.-invariant subspace o f  V8 into

as N-modules, is trivial for s=0 or 1.

Pro o f . Assume that (1) and (2) hold fo r (7r, V ) .  L e t U c V be a non-zero
g-invariant subspace o f  V .  Take a non-zero uE U and express i t  a s  u=u o ±u,
(u, G V8). If 14=0 or u1 =0, then u G V, or u G V,, whence we get U= V from (1). So
we assume uo *O, u 1* 0 .  Then we see from (2) that there exists a Z E  U(g0 ) such
that Zus =0, Zu s+ , *  0 for the s in the lemma, where U(g0 ) denotes the envelop-
ing algebra of go . c . Hence u  n  5 + 1  contains a non-zero element Zu=Zu s , , ,  and
so we get U= V by (1).

Thus we see that r is algebraically irreducible. Q.E.D.

Remark 3 .7 . The above sufficient condition for algebraic irreducibility is not
so special but rather general. In fact, in many cases, V, and W=g 1,c 0 c , V, have
no irreducible components of go in  common, and so do  V, and V1 = fk= W/m (see
for instance later sections §§5-8).

3 .5 .  Equations for the m ap  A : g1 A g,--gi(Vo). W hen we apply the system
of equations (EXT1)-(EXT3) to certain types of simple Lie superalgebras, it is
more convenient to use, instead of B (., - ) , a  skew-symmetric bilinear map A (., •):
for C, 77E gi ,

(3.15) A(e , 77) B(e , ) — B ( , e) .

We extend A  by linearity to a complex linear map g 1 .c, x (V0), if necessary.
Let us rewrite the system of equations (EXT1)-(EXT3) on B by means of A.

First of all, (EXT2) is equivalent to the skew-symmetricity of A  and

1(3.16) B(e , 72) = (p  ([C, 771)+ A(e 77)) gi) •2
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Therefore (EXT2) is dissolved into the condition that the bilinear map A  is skew-
symmetric.

Next, (EXT1) is equivalent to the condition that the map A  gives a  gr homo-
morphism of gi ,c  A gi . c , the exterior product of g,,c  with gi ,c , into gi( V0 ):

(EXT1A) A(x e, n)+A(e, x n) = [P(x), A(e , 77)] ( X E  go, e, 7 E81)
Assuming (EXT1A) or equivalently (EXT1), we get from (EXT3) two equations

(EXT3A+ ), (EXT3A_) as follows. First rewrite the right hand side of the equa-
tion (EXT3) by using (EXT1), then we get

(3.17) B(r, B(72, C)+ B(r , 77) , =
r, 0+ p([e , n]) B(r, 0 .

Then, exchanging r  and C in (EXT3) and (3.17) above, we get respectively

(3.17') B(C, e) B(72, r)+B(C, 77) , r) =

=  B(C, [M] r)+B(C, r) n]),

(3.17") B(c , B(72, r)+B(C, 77) Ike, =
= B(It.v] C, , 77D B(C, r)

Adding four equations (EXT3), (3.17)-(3.17"), side by side, we get

(EXT3A+ ) [A (r , A(72, C)]+ ±[A(r, 77), A( C,, C)]+
▪ [p ([. r , C]), A(72, CA-F[par, 771), A(e ,
+[Pae , CD, A(77, r)1+[P ([77, c]), A(e r)]
± [Par, eD, pan, cpi++[p([1", 77]) P  (fe, CD4
2A(r, [e.] C)+2A(C, Ee;').1%-) +2 [P ([r , pae , 771)1+

where, for C, D E  V o ) ,

[C, = C D ± D C  , [C , D] = CD— DC.

Now, we add (EXT3) and (3.17), and deduct (3.17'), (3.17") from it, side by side.
Then we obtain

(EXT3A_) [A(r, , A(7, C)]+[A(r , 77), A(e 0 ]

+LP& eD , * 71, O h - HP& , 771), A(e , C)]+
+Loan, CD, A(r, e)[++[p , CD, A (r, 77)]+
± {P([T, CD, P ( [ i j , C1)1+[P([1- , 77]), Pae

= 2 [p ([e , 77]), A(z , C)]+ +2p , [t•''] CD —2p ac 11)

Note that the equation (EXT3A+ ) is symmetric under the permutations e <-)77
and r€-4C, and that the equation (EXT3A_) is symmetric under e . 9 7 and skew-
symmetric under r C.
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The system of equations (EXT1)—(EXT3) on B is now rewritten by means of A
as follows.

Theorem 3.8. Let (p, V0) be a representation of the even part go of g=go±gi.
( 0  A ssume that a  bilinear m ap B : g,xg,--->gi(V0),  satisf ies the  sy stem  of

equations (EXT1)—(EXT3). Then a  m ap A : g, x g,-3.gi(11,), def ined by  (3.15) is
skew -sym m etric, and it satisf ies the  sy stem  o f  equations (EXT1A), (EXT3A+ ),
(EXT3A_).

(ii) Conv ersely , assum e that a  sk ew -sy m m etric m ap A : g„ x WO,
satisfies (EXT1A), (EXT3A + ), (EXT3A_). Then the map B defined by (3.16) satisfies
(EXT1)—(EXT3).

Pro o f . It rests only to prove the assertion (ii). For this, it is enough to note
that (3.17) is equivalent to (EXT3) if  we assume (EXT1A) which is equivalent to
(EXT1). Q.E.D.

Notation. The bilinear map A  can be considered a s  a  complex linear map
from the exterior product gi ,c A gi ,c  in to  g1(17

0). In the following, when we con-
sider it in this way, we denote, by abuse of notation, A(e , 17) also by A(e AO, and
further use the notation A(z) for z e g i x Ag i x . Similarly we denote xe , 72) also by
B(e 72) and so on.

3 .6 .  Reduction of (EXT3) by the g,-equivariance. Let us reduce the system of
equations (EXT1)—(EXT3) to more simpler one, using gr equivariance property.
Here we take (EXT3).

Let B  be a bilinear map from g, x g, to gi(V0). First, assuming (EXT1) for B,
we reduce (EXT3). Taking into account the form of (EXT3), we define a linear map
P ,  from  e t ) = g 1 , C O g l , C 0 g 1 , C 0 g 1 , C  t o  gI(Vo)  a s  follows: fo r  rge0770C with

e‘, Ce g,,

(3.18) P5(1-0e0770C) B(r, e) B(77, C)+B(r, 77) B(e ,
—13(r , [M] C)— B(r , , 77]) .

We denote by ei—> xe the natural action of XE go on e G g,, c , and similarly that on
u e e ) by ui—" u .  T h e n  w e  have the following

Lemma 3.9. A ssume that B: g, x g,-->gi WO satisfies (EXT1), that is, B  is go-
equivariant. Then P , :  gY) -->gI (V0 ) is also go -equivariant:

(3.19) P,(x u) [ p  (X ), P ,(u)] (uee, XGg o) .

Moreover, denote by Sim, the automorphism o f g(
1
4 ) exchanging the p-th and

q-th factors in decomposable vectors, for instance,

(3.20) S23(.1-0 e 0 n 0 C ) = r0720e0C (r, 77, C, CEg1)

Then we have from the definition of P B  that
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(3.21) P B (S u) = P B (u) (u E el)) .
Denote by <U(go,c ), S„> the direct product o f  algebras U(g 0 )  and <S,>=

CH-C-S„. We make S„ act on gI W O as the identical transformation, then (3.19)
and (3.21) says that 13 ,  is  a  <U(go,c ), S„>-homomorphism from  e )  t o  i ( V 0).
Therefore we get the following

Lemma 3.10. Assume that B: g1 x g1—>gI WO satisfies (EX T1). L et -(u1, 142 , •••,
um } c g 4 ) be a subset which generates the whole space e )  as  <U(g,, c ), S„>-module.
Then, under (EXT1), the equation (EXT3) on B is equivalent to the following system
of equations on B:

(EXT3*) 1),(11 i ) =  0  ( 1 5 j 5 M ) .

Pro o f . As is shown above, under the condition (EXT1) which says that B is
gr equivariant, the map P , is a  <U(g,, c ), Sn >-homomorphism from gV)  t o  gi(V0).
This gives our assertion immediately. Q . E . D .

Similar reduction can be carried out for equations (EXT3A+ ) and (EXT3A_),
this time using <S14 , S„> instead of <S„> (cf. a remark just before Theorem 3.8).

3.7. Reduction of (EXT1). W e now reduce the  equation (EXT1) t o  more
sim ple one. First note that (EXT1) is equivalent to (EXT1A) which says that the
map A : g,, c , Ag,, c --->gl(Vo )  is gr equivariant. Let us take a  system o f generators
-(z1, z2 , •••, zb i l  of gi ,c A g c  as g0-m odule. Then the map A  is uniquely determined
by its values on these generators, that is, by the system of operators -fil„=A(z k) E
gi(Vo);

Conversely we have the following

Lemma 3.11. A ssume that w e are given a  system  of  operators {A4 Egi(V0);
1_-<_lcSATI. P u t  A(z,)=A, f o r  1 - k  S N . T hen  it can  be  ex tended  to  a  gr

homomorphic linear map A : g,,c  A gi ,c ->gi(V0) i f and only if  it satisfies the following
condition:

(EXT1*) i f  E 1 l ? 1 , 1 1  kzk = 0  with xk EU(g o ,c ), then necessarily

(3.22) i k N
X 

k A  k  =

where the action of  X4 U ( 0 ) 011 A k e  gt(Vo) is canonically induced from the action
of  XŒ g0 : gt ( Vo) B CI-> [p (X ), C] E gi (V0). In particular, if  7 x k z k = 0  with
X k E go , then

(3.23) I k N  [P(XJ, =  O.

We note here that, when A(z) is given fo r a  zEg,, c Ag i ,c , the corresponding
value of B (.. •) is defined as follows: express z as z= E „, e,,, A77„„ and put z=E„,
e,„®77„,E gi ,c (g)gi ,c , then

1B(z) = (p(z_)+ A(z)) ,
2

(3.24)
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where, by definition,

B(z) = E. B(e., P(Z ) = E. P Um, 77.1)

Thus, defining B and putting it into (EXT3*), we get a  system o f equations on
{A1, A,, •••, AM }  which is again denoted by (EXT3*).

After these reductions of (EXT1) and (EXT3), we get finally the following result.

Theorem 3.12. L et fu jeg (
1
4 ) ; j S M I  be a system of  generators of  e ) ---

g,,c 0g,, c 0g,, c Og l x  as <U(g o,c ), S„>-module, and {Z*  gi ,c  A g1,; 1 __.-Sk<AT} that
of gi,c A gi ,c  as go-module.

( 0  Under the condition (EXT1) on B: g, x g,—)14I( V0), the equation (EXT3) on
B is equivalent to the equation (EXT3*).

(ii) Pu t, f o r e, 7jeg i

A(CA) = A(e, n) = B(e, 77)—Boi,

and ilk =A (;)E gt(V0), 1 S k 5 N .  Then the condition (EXT1) on B is equivalent to
the condition (EXT1*) on {A„ 212, •-•,

(iii) The system of  equations (EXT1)—(EXT3) on B is equivalent to the system
of equations (EXT1*), (EXT3*), under the skew-symmetricity of A.

N o te . In §§6-8, we treat irreducible unitary representations (=IURs) of real
forms of g (2, 1), and there we encounter the cases where all Ak =0 except only one
Aho —A(zko).

§ 4 .  Conditions for unitarity of representations.

4 .1 .  Positive definiteness for unitarity. In  this section, we study unitary ex-
tensions. L et (p , Vo)  be a n  (infinitesimally) unitary representations o f go ,  and
denote by <• •> , a go-invariant positive definite inner product on V,. Note that if
p  is not irreducible, <., • >, is not necessarily unique.

L et us first study a  necessary condition for existence of unitary extentions.
Let (ir, V ), V.—T/0+V ,, be a  quasi-unitary extention of p, with properties (PRO1),
(PRO2) in 3.1. Denote by <', • > a g-invariant positive semi-definite inner product
on V extending <•, • >0 on  Vo . By (PRO!), any element v, E  V, is expressed as

(4.1) v1=  E i  r ( e  v i  with C i e gi , vi V0 .

Therefore, by (1.9),

<1,
1, 1> <E k  (OE k) Vk  , E. .(e.) vm >0
=  (//.1) E  <7r (Cm ) ( e  V k  V m >0

= j 2 E  <B(e „„ 0, v'n>, O.

Here ] is the fixed forth root of — lin   (1.9): j 4 = —1, whence j/j=j2=ei.
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Thus we get the following

Lemma 4 .1 .  L et (7r, V ), V = V0 -1-V1,  be  a  quasi-unitary ex tension with pro-
perties (PRO1), (PRO2), o f  a unitary representation (p, V0)  o f  go,  not necessarily
irreducible. T h e n  the corresponding bilinear map B of g, x g, into gi (V0) satisfies

(UNI) j 2 J  <B(E n„ C,,) vk, vm>o (C,, vk vo )
k ,m

where j is a constant depending only on 7r, and j 2 =ei, e= +1. In particular,

(4.2) B (e 77)*  = B(77, (e, g1)

where D * denotes the adjoint operator of  D g f (V 0)  with respect to <., •>,, and
moreover

(UNI') i2B(e , e) 0 f o r an y  e

where 0 means that DE gl ( V0) is positive semi-definite.

Now consider the kernel N of <•, •>, that is,

(4.3) N = Iv  EV ; <v, u> = 0 for a n y  uE  V} .

Since <•, •> 0 is  positive definite, N is contained in  V,. Let y ,E N c  vi . Then,
taking u=7472) y' with 77 E v' E  V0 , we have

u> = A7477) v1, v'>, = O.

Since < ., •> 0 is definite, we get 7477) v1 = 0  for any 72G  gi , and so v1 = 0  by (PRO2),
whence N = ( 0 ) .  Hence we see that <•, •> must be definite, and so (7r, V ) is neces-
sarily unitary.

Thus we get the first half of the following theorem.

Theorem 4.2. Let (p, V0) be a unitary representation of go, and (7r, V ), V = V0 +
V1, be its extension w ith (PRO1), (PRO2), which is given canonically  by B(.,  •)
satisfying (EXT1)—(EXT3).

( 0  I f  (7r, V ) is quasi-unitary , then it is necessarily  unitary . M oreov er, for
v 1 = E 1 r ( e  v 1 E V, with C1 1,g1 , vi E Vo,

(4.4) <v1, v1> = j 2<B(e „„ e , vkg>0 .
k,m

(ii)  ( 7 v ,  V ) can be made unitary if and only if  there exists a go-invariant positive
definite inner product <., •>, on V° for which the condition (UNI) holds for B (., -).
In particular, it is necessary that the operator i2B(e. e) on V, is positive semi-definite
with respect to <., •>, for any  e E g,: PB(e , O.

Pro o f . It rests only to prove the second assertion (ii). We must prove the
equalities (1.8) and (1.9). Remark that Vo l  V1, then these equalities reduce to the
following
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<in(X) 371 , = ix(X ) v i>  (X E g 0 , y l , vfe v1)

‹.1 7r(e) vo , 1, 1> <vo,./r(e) y1> (C g , v, e Vi).

The first equality follows from (EXTl) for B and (4.4). and the second one from
(4.2). Q.E.D.

Remark 4.3. Let 7r be a unitary representation extending a unitary (p, V0 ), with
properties (PRO1), (PRO2), and put B( C,, 72)=7r(e) 7477)1 V,. Assume that B satisfies
the condition (U N I) . Then we can define on W=g 1 . c 0 0  V , a positive semi-definite
inner product by

(4.5) e100, E. 72.0u'n >w j 2 E <B(71., e iim>0
k ,m

where C1, g„ V1 U m  E  V,. Then a  calculation similar as above shows that the
kernel n of <•, •> w  coincides with the go-submodule m of W determined by (3.5).
This means that the method (MET1)-(MET2) in §3.2 is compatible with unitarity
of extensions, since V,= W= W/m, m=n.

4 .2 .  A  property of unitary representations. Let us give some remarks on a
property, peculiar to unitary representations of Lie superalgebras. Let CE th, then
by (UNI'),

j2 r(e) x(e) I V, B(C, e.) o .

Note th a t  [e, e] e go, P O , el)=71- 0, el) I vc, and  r  , el)=[7r(e), (e)].4-= 2 7 r (0 2 .
Then we see that Pp (fe , ei) o. Thus we get the following

Lemma 4 .4 .  L et N(d-) be the subset of go consisting of  linear combinations of
[e, e], C  gi , with non-negative real coef f icients. If  a unitary representation (p, V0 )
of go has a unitary extention with the associated constant j 2 =ei (e = ±1), then

(4.6) e i p (X )..0 f o r  xe go(+) •

Corollary 4 .5 .  Assume that go be reductive and (p, V0 ) be an admissible (go, KO-
module as in 2.3. A ssume further that a compact Cartan subalgebra b6 of g6=[g0, go]
is spanned by 1-)6 n go(+ ) .  Then, if p has a unitary extension to g= g o + g i , then p is
a highest weight m odule or a lowest weight module according as e =1 or —1, with
respect to a  lexicographic order comming f rom  a  basis {X 1 } o f  b6 such that X k E

n go(+).

N o t e . When we turn to conjugate representations, we see that the condition
corresponding to (4.6) for the conjugate p of p is

((—e) i)0 p ( X )  0  (Xe g o(±)) ,

that is, (o- i p(X)) -  0 ,  which is equivalent to (4.6) itself (cf. § § 1 .2 -4 .3 ) .  Further,
if p has a unitary extension 7r, then 7)- has 71 as its unitary extension, and vice versa.
Note also that, if  p is a highest weight module, then A is a lowest weight module.
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Corollary 4.6. Let g=g 0 + g , be a complex Lie superalgebra. Assume that a
unitary representation p of g, has a unitary extension to g. Then necessarily,

(4.7) ,o(X) = 0 for a n y  X e<g 0(- 1- )> ,

where <g0(+ )>  denotes the subalgebra generated by  g ,( + ) .  M oreov er i f  g,(+)
generates g„, then p=0, or (dim VO-multiple of the 1-dimensional trivial representation.

Pro o f . Let e E g,. Then ±K , ei E go(+ ) because i e E g, and [i e , e]= —[e , e].
Therefore ± e i e]) 0, whence p([e, e ] ) = 0 . This proves the assertion.

Q.E.D.

Example 4 .7 .  Let U= U0 + U, be a Z2-graded vector space over a field K .  Let
then the Lie superalgebra 1(U) is denoted by i(m, n ; K ) .  We

define its subalgebra n; K ) as

f(rn, n; K ) = { X  El(m , n; K ); str(X) = 01 .

Here str(X), the supertrace of X , is defined as follows: express X  as X=X,0 0)X01 E[31
X10 X11 with X „ HOMK ( U,, .U,), then

(4.8) str (X ) = tr (X00— tr (4 )  .

We denote 1(m, n; C ) and g (m, n; C ) also by 1(m, n) a n d  I(m, n ) respectively.
Take here g =1(m, n; R) o r  I(m, R ).  Then the subset g a+ ) of g, contains the
canonical basis for {Xe go ; str(X)=0}, and actually it is so big that, for instance
for the latter g, we can prove in Theorem 6.2 that if a unitary representation p can
be extended to an irreducible unitary representation of g, then p =0 , and that p =0
has a unique irreducible extension, the trivial representation of g (dim V1=0), if
and only if dim V0 = 1 .  The latter part is proved by using Theorem 3.4 (ii).

Example 4.8. Take g=I(m, n) o r  I(rtz, n). Then g=<g o(± ) > .  Therefore we
are just in the last case of Corollary 4 .6 . Thus we conclude that if a  unitary re-
presentation p of g, has a unitary extension, then p =O. Moreover, using Theorem
3.4 (ii), we see that we have a unique irreducible unitary extension, trivial one
(dim V1=0), if and only if dim V0 =1.

In §§5-8, we study some special cases. In  §5, we study Problems ibis and
2bis for g=u4 (2/1), a real form of op (1, 2) (type B(0, 1)), and in §§6-8, Problem
2 mainly for g =real forms of g (2, 1) (type A(1, 0)).

4 .3 .  A  remark on Wakimoto's definition of unitarity. In  [16], Walcimoto
defined and constructed unitarizable representations of complex Lie superalgebras
gl(p I q). Let us explain that his definition coincides essentially with ours if we
introduce one of two real forms of gl(p I q), naturally attached to the definition.

His definition of unitarity is  a s  follows. Let g =gt(pj q) (=I(p, q) in  our
notation, but not necessarily finite-dimensional) a n d  co  a certain involutive
conjugate-linear map from g into itself for which
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(4.9) ([X, = ( - 1 )d ( x ) d ( Y )  [co (X ), co(Y)]

for any homogeneous elements X , Y E  g . T hen  a representation 2T of g on V  is
called unitarizable if  V  has a positive definite inner product <•, •> such that for
any XE g,

(4.10) <x(X ) v, v'>+<v, r(co(X )) V >  =  0  (v , v 'e  V ).

Now define, for e= +1, a real form of g=fl0+81 as il(co, 6 )= 8 (a ) ,  6 )0- 1- 8(ai ,  6 )1
with

(4.11) 8 (a , 6 )3 = {Ar e gs; co(X) — (ei)sX }  •

We see easily that g(a), e) is actually a real subalgebra of g, and g = C O R  g(co, e)
as Lie superalgebras. Moreover, put ço,=cojg (co, e), then it is real linear and maps
g(@, e) to  g(», — e )  bijectively, and we have

ço, =  the identity, o n  g(a), 6)0 ( =  g(o), —6)0) ,

Te([X , IT  = ( - 1 )a ( x ) d ( Y )  [Te(X ), 'MY)]
for homogeneous X , Ye g (a), 6).

This means that g (co, -- e) =9),(g (co, 6)) is dual to g (co, e).
For Xe g (co, e), and 5 E g (co, e),, the equality (4.10) takes the following form:

<x(X ) y , y '>+<v, n(X ) -0  =  0 (Xe g (co, e)),

(ci) <r(e) v, v'>— <v, r(e) V >  =  0  (e e  g (co, e)) .

This means that it I g(co, e) is a unitary representation of the real Lie superalgebra
g(co, e) in our sense with the associated constant j 2= e i .  Therefore his definition
coincides essentially with ours modulo the ambiguity of real forms: which of
g(ø, e), e= +1, should be taken. Further note that the orthogonality between V0

and V, is not demanded apriori, contrary to (i) in our definition of unitarity in
1.3, whereas actually in his construction, Vo i_V, is satisfied.

Let us consider in the converse way. Let g=g 0+ g i  be a real Lie superalgebra
and (r, V ) a unitary representation of g in our sense. Take the complexification
gc — CØ R  g of g and extend r  to g c  by linearity. Define an involutive conjugate-
linear map co,, for a fixed x= +1 as

(4.13) co„(X +i• Y +e+i• 72) = .A7- i • 144-xi.(e— i•n)

(X , Ye go, e, 71G gi) ,

where i• Y = i® Y etc. T h e n  co=co,, for a fixed x  satisfies (4.9), and

go),  e )  ___ go+gi — g i f  6 = x  ,{
go±i•gi =- S d i f  6  =  — X .

Note that gd is dual to g under the correspondence X +e--->X +i•e(X eg o , e e g l).
Finally we remark that in Wakimoto's case the real forms g (co, e) of gi(p I q)

(4.12)
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are respectively equal to It (p, q; p, q-1) and u(p, q; p, 1) with even parts iso-
morphic to u(p)xu(1, q-1).

§5. Some examples of irreducible representations.

In this section, we take a simple Lie superalgebra 04 (2n/1) with n= 1  as an
example and study Problems ibis and 2 b is . The cases n 2  will be treated in
another paper.

5.1. Structure of 04 (2n/1). By definition, g= (2n/1)=g0-1-g, are given as
follows:

g, =  4  (2n; R )  ,  g, R 2 ,

with ( 2 n ;  R )=  { e gI (2n; R ); tX J+JX =0}  and the bracket operation

[X, e] x e (XG go,

[e, 77] —(et 77+72te) J  (e, 77 f3,) ,

where J is a  2n x 2n matrix given by J=[°: —11  with n x n  zero matrix 0„ and
1. 0.

identity matrix 1„. The algebra Op (2n/l) is a  real form of a complex Lie super-
algebra 04 (1, 2n) of type B(0, n).

Introduce a canonical basis {e a , e,; I S a n, a = a + n }  for gi ,  and denote by
E., an n x n  matrix with entries 1 at (a, b) and 0 elsewhere. Put x t ,=[e  eq] for
1S p, qS  2n, then they span g, and, for 1S a, bS n,

Xab —

rOn Enb+Ebal
, = [

0 b0 .
°n

]  5 Xab X ba — [LOn
En0 On

—E 0„ E0 ,

Let go(+ )  be as in Lemma 4.4 the subset of g, consisting of linear combina-
tions of [e, e], f Eg i ,  with non-negative real coefficients. Then g,(+ ) contains a
basis {Ara d + X7,a ; 1 S aS n}  of a compact Cartan subalgebra of go. Therefore, when
we consider unitary extension problems, we are exactly in the case of Corollary 4.5.
Thus, to get an irreducible unitary representation o f g , we should start from
unitarizable highest or lowest weight modules (p, V0 of go.

5.2. Equations for extensions. Let (p, V0)  be an admissible (g„, 1C0)-module,
where K0 is a maximal compact subgroup of Go = Sp(2n; R ) .  To study the extension
problems for (p, V0), we have to treat a gr equivariant map B: g, VA which
satisfies the system of equations (EXT1)-(EXT3). We apply the reduction of these
equations, given in Theorem 3 .1 2 . Let A be the map g,, c  A g,, c -*.gI(Vo) given by

A(Œ A 77) A(e , 7)) 2B (e 77)— P({e, 72]) for C, j g1 ,

which is again gr equivariant. Put Ap g —A(Œp AŒ,) for 1 S p, qS 2n.
For a reduced form of the equations, we refer [6] for general n, and here we
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treat only the simplest case n=1.
Hereafter we put always n = 1 .  Then, at first, the go-module gi ,c  A gi ,c ,  is

spanned by one element z ,=e,A CT  and carries the trivial representation. This
means that Ai i—A(zi) Egf(Vo) intertwines the representation p  with itself. From
this fact, we get

Lemma 5.1. The representation (p, V0) of go= 4 (2 ; R ) should be irreducible to
get an irreducible extension of it to g=g o + g ,= o 4 (2 /1 ) . Hence the operator A11 on
V, should be a scalar operator.

Pro o f . This follows from (PRO3) in the criterion of irreducibility in Lemma
3.1. Q.E.D.

Thus, in particular, for g=o4(2/1), Problems ibis and 2bis are equivalent to
Problems 1 and 2 respectively.

Now, examining go-module structure of we get the
following system of equations for irreducible extensions. This will lead to the
classification of all the irreducible representations.

Lemma 5.2. For g =o4 (2/1), the sy stem  of  equations (EXT1)-(EXT3) and
(PRO1)- (PRO3) is reduced to the following:

(1) (p, V0) is irreducible and il l y E g I(V o) is a scalar operator;
(2) put A = A ,  and po ,---p(X,,,), then

(5.2) [A , A] -4 A  =  [pit, pid+ — [P11, Pill+ •

We note that the above equation (5.2) comes from (EXT3A+ ) for some e , 71, C,
rE g i . It is rewritten as

(5.3) (A —I)2  =  p (4 )+ I ,

where I  denotes the identity operator on V , and zIE U( 0 ) denotes a constant
multiple of the Casimir element given by

1 1(5.4) = (Xii)2— 
2  

(X11 X11+ X11 X11) (X 1 D 2 - -

2  
[X11,

with
- - 1  0 1

, Xi l  =
0 1

-0  2
0 0

[ -2 0  001 .

, XII —

  

5 .3 . Irreducible (go, K0)-modules. We list up here irreducible (g o, K0)-modules
for go= 4 (2 ;  R )= g (2 ;  R ), Ko c G o = S p (2 ; R ). Let Iv .; mE121 be a  basis of a
vector space Vo over C, where 2 CZ will be specified later. Fix a complex number
c E C  and a v e Z 2= {0, 1 1 .  Put

(5.5) Z (v ) =  N E Z ; m -- v (mod 2» .

Depending on the parameter (c, I)), we determine 9 and so V0 , and define go-action
p on V, as
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p (X i ' ) = —ic,„ ,

(5.6) p (X„) v„, = cm  v„,+ 2 +imv,n — c„v„,_ 2 ,

p (X1)  V .  =  -  C .  V„,+ 2 C „ ,  _2 V. _2 ,

where m ED, i= \ / _ i  and

(5.7) c
m 2

=  —

1  

V (m+1) 2 — (arg(c.) arbitrary but fixed).

Therefore we have

(5.8)p ( 4 ) ( c e  — 1 )  I .

We list up the sets 52 of weights, and the symbols for the irreducible (g o, KO-
modules thus obtained. Note that we may assume that 0 .< arg(c)< r, if necessary.

Case 1. Assume that c$1)± 1 mod 2. Then D =Z (v ), the g o-module 2 ,,v=
(p, VO corresponds to the representation of Go induced from a  character of its
minimal parabolic subgroup.

Case 2. Assume that c E Z ;  c 0 and c = v + 1  mod 2. Then there exist three
kinds of 2 OEZ(v):

12+  {m E Z (v ); m > ..c+ 1 } ,

12_ = -(mEZ(v); m5—(c+1))-

12 f  =  Im E Z (v ); .

Note that .9 J.= 0 if (c, v)—(0, 1).
The corresponding representations, denoted by Di., D iT and FN  with it= (c+  1)/2

and N  = c  1, are in the discrete series (or in its limit if c = 0  and so u=1/2) and
N-dimensional representations respectively.

We summarize known facts in the following two lemmas.

Lemma 5.3. Irreducible (go, KO-modules for go =gp (2; R), K0 CG 0 =Sp(2; R),
are isomorphic to one of the following modules:

.0_ 4 , w ith  cE C, 0.. arg(c)<r, c u-F1 (mod 2);
a n d  D T, w ith  it E(1/2)Z - - { p /2 ;  p E Z } „ u 1 /2 ;

F ,  with N E Z ,  1 .

Lemma 5.4. Unitarizable modules among the above modules are given as follows:

w ith  i = nER,7.1 0  f o r  y = 0 , and n > 0  f o r  y  = 1;

4.. 0 w i t h  0<cr<1;

all D , and the trivial representation

For each of  them, an invariant positive definite inner product is introduced in V,
by setting the standard basis {v„,; M E D }  as a complete orthonormal system.
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For later convenience, we rewrite the formula for gr action as fo llow s. Let H,
and X_ be elements of go,c  given by

(5.9) H = —

1  
(X „4-X f ï ) , = (X11—Xli) .

2 2

Then H spans a compact Cartan subalgebra of g, and

[H, X + ] = 2iX + , [H, X _] = — 2iX _, [X + , X _] = 4iH ,

with i=  — 1 ,  and the formula (5.6) takes the form

(5.10) p(H) v„, = imv,„, p (X +) v,„ = 2c„, v„,+ 2 , p (X ) v„, = 2e,„-2 1 ' t1S - 2 •

with 2 c . =  ( m +  02 —c2 . Moreover we have

(5.11)4  = — 11 2- 1 (X ,X _--FX _X + ) = — 112- 1

2

[X + , X_]+ .
2 

5 .4 .  The go-module W =g 1,c 0 c  V , .  Here we determine the structure of &-
module W . First note that the p0-module g c  is  F2 and has the highest weight 1
and that the character of the corresponding representation of G, is equal to trace(g),
g E G „. We see, as a matter of fact, that the simplest way to decompose W into
irreducibles, is to use the character of V0,  more exactly that of the corresponding
irreducible representation of Go . These characters are listed up, for instance, in [7,
pp. 5 0 -5 1 ]. Thus we get

Lemma 5.5. The go-m odule W =g i ,c 0V , is decom posed into a direct sum  of
mutually inequivalent irreducible ones, except when (p, V o )= go,o, DP/2, DT/2 or F1 :

(o , Vo) 1,0® v0

((c, v)*(0, 0))

14 . (a=± , A G 1)

FN (N 2)
Dr1 +1120 14-1/2

FN+1EDFN--1

Pro o f . For an admissible (go, KO-module U, denote by x (U) the correspond-
ing character on G0 , which is an invariant eigendistribution given by a locally sum-
mable function on G0. We know that for the tensor product W =g 1 .0 0  V0, z (W )=
x(g 1,c )•x(V0). Then, by simple calculations, we get character identities

x(W ) = X(-0,+i,v+i)+2'CO-c+i,v+i)

etc. corresponding to the right hand side of the above list. These character identi-
ties give irreducible components of W as subquotients.

The direct sum property is proved as follows. First, calculate the infinitesimal
character of each irreducible component. Since g o is  of rank 1, it is determined
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by the scalar corresponding to 4 + 1 .  In this sense, the infinitesimal characters of
two irreducible components are exactly (c+1) 2 and (—c+1) 2 . (The parameters it
and N connect with c as above.) These two values are different from each other if
and only if c*O.

Then we apply the general fact for Harish-Chandra modules that any such
module is a direct sum of its submodules with different infinitesimal characters.

Q.E.D.

Of course, an elementary proof, not using characters, is possible.
For the case (p , V 0)=g0,0 , D +112 or D 112, we need more direct and detailed

calculations, and then get the following

Lemma 5.6. The gc modules W =g 1,c 0 V 0 f or p = 2 0 , D7.12 ( a =+  o r —) are
not semisimple. (i) For g o,o , W has only one non-trivial invariant subspace W, such
that both W , and WIW, carries (ii) For D712 , W  has exactly two non-trivial
invariant subspaces W„ W, such that (0) C W1 C W2 C W, and that W, and WI W2 carry
D?, and W 2 / W1 carries F1. T hus w e have

(p , V 0) W =  gi, c  Vo

-00,0
Di /2 (a = ±)

(0)c W ,OEW  w ith W ,=W IW ,L
(0)c W , c W 2 c W

w ith W 1 L._--W 1W2 =DT,

Proo f . (i) One invariant subspace W, of W is easy to find, for instance, by a
kind of "analytic continuation" from the case (c, 0) with small c * O .  The uni-
queness of W, is proved by checking the weight subspace W(1) of W with weight
1 ( = i " .  (eigenvalue of H)).

(ii) According as a = +  or —, we determine explicitly all the highest or lowest
weight vectors in  W . Further, a little more detailed calculation shows that the only
proper submodules are W, and W2. To do this, we can apply for instance the
realization of p  in [5]. Cf. also explicit calculations in the next subsection. Thus
we get the assertion. Q.E.D.

5.5. Explicit determination of module structure for W . To give explicitly g-
action on V = V o H -

 V1, V 1 = W lm , it is necessary to write down gr action on W=
g,,c 0 Vo with respect to its certain standard basis. First take a  basis of the space
g,, c  as g0-module. P u t

(5.12) = u _ ,  =  =

Then,

(5.13)
 [up  - - - -  2X+ , [u _ 1, u_ 1] = 2X _,

[u„ u_ 1] = [u_ 1, u1] = 2iH ,



722 Hirotoshi Furutsu and Takeshi Hirai

and the k c -action on g„,c . is given by

Hu i  =  i ii,, ( 1 =  + 1 );

(5.14) X+ u, 0 , X+ u_, 2u, ;

X_ u, — 2 u _ 1 , X  _u_ 1 =  0 .

Next, taking fui v„,—ul Ov„,; 1=+1, m S2} as a basis of W, we get from (5.10)
and (5.14)

H(u i v„,) =- i(l+m )u l v„,,

(5.15) ) ( J u l y .)  = 2c„,u 1 v. + 2 , X+(u „v„,) = 2u1
-17.+2c.tt_ i v„,+ 2 ,

X _(ui v„,) = 2c.„u 1 v„,_2 -2u „ v . ,  X _(u „ v . )  =

with 2c„,--Y (rn +1)2 — c2 . Thus, the  weight space W (m +1) for weight m + 1  is
spanned by { I -v., v,,,+ 2 }, and we have by (5.11)

(5.16)
4(11 v.) [2 (m+ 1) + c9 v„,+4c,„ u_, v,„+ , ,
4(u_ i v„,+ 2 ) = — 4cm ui v.+[ — 2 (m+ 1) + c2] u_1 17.+ 2 .

CASE c * O .  We decompose each W(m+1), for rri ,g such that m +2
into two eigenspaces W. + Jc+11,W„, + 1 [—c+1] o f 4 + 1  with eigenvalues (c+1) 2 ,
(—c+1) 2 respectively, then

(5.17) W  W [c+ 1 ]E [)W [—  c+1 ] , W [+c+1 ] E .  W„,,,[+c+11 ,

gives the irreducible decomposition of p 0 -module W, given in Lemma 5.5 in  several
cases. N ote that, in the special case p = F 1 , we have W = W [2], W [0]=(0). We see
easily that W„,+ ,[kc+1], k=±1, is spanned by a vector

(5.18) w.+1[kc+1 ] d—= m+i,k 14111.+4+1,-ku- 1vm+2

where dp.k =  p + k c  for p=m+1, k= +1 with

(5.19) arg arg =  arg (d ,,, d . + 1 . _1)  =  arg (c,n ) .

Hence we have 4 + ,,, d,,,+ „,_,-2c,,,, and moreover

H+  W„,+ ,[kc+ 1] = i(m+1)w. + 1 [kc+1] ,

(5.20) X+ = ii,,,,+,[kc+  1] ,

X_ w.± i [kc+1] 2c= m-i,ke-1-1 Wm _ i [kCH-11 ,

where 2c,n + ,, k,+ 1 =
and arg(c,n + ,,n n + ,) is determined so as to hold

(5.21) 2 Cm+1,kc+1 = dm+3,k dm-I-1,-k •

(m+2)2—(kc+1)2 corresponds to 2c,,,+ , for kc +1 instead of c,

The subspace W[kc+1] carries the following representation: in case c$ 1)+1
(2 ), ghc+i,v+1=-Wc+h,v+1; in case c - v+1 (2) and c l, .1),.%k h  or FN+k (F,--=(0)).
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Further the g "-ac tio n  V,-->W is given with respect to {w„,+ ,[kc+1]}  as

fdm+1,1 wm+i[c+ 1] - 4 1-1.-1 ,

—   1 wm-Fi [c+ 1 ] +4+1,i w.+1[ —  c+ •2c

CASE c = 0 .  In this case, we can put 2 c = m + 1 , V m + 1 .
The g0-invariant subspaces W[c+1] and W[—c+1] coincide with each other to get
an invariant subspace

(5.23)W 1 = Em Cwm+1[ 1] wm-1-1[1] = (uivm+u-ivm+2)

on which go acts according to (5.20)-(5.21) with c = 0 .  W 1 carries or Del ac-
cording as p  is --ano,o or D712 . Note that, in case of D el12 with the vector
wo [11=0- u,, v + ,= 0  by the factor 0  in front of, and that the space W2= Wri -

C(iTi v+ )  carries Del+F, which is not a direct sum since

v„) = 2(u1 vi d-u_, vo) , X_(u_, vi )  =  O, in case  a—+

X+ (u, v_,) = O, X _(u, v_,) = —2(u 1 v_o +u_, , in case a - -

Moreover, for instance, for a= +, since dim W(0)=dim (W(2) n W1)=1, dim W(2)
= 2 , X_ W(2)= W(0), Ker (X_ I W(2))=X+W(0)= W(2) n W1,  there exist no proper
submodules except W, and Ply-- W1+ W(0).

5 .6 .  Complete description of irreducible extensions. To solve Problem Ibis or
to get all the irreducible extensions of g=o4 (2/1), it is now sufficient to determine
the scalar operator A= A n  E (If ( K), and then the corresponding submodule m c W
defined in  (3.5). Thus we get a  go-module 17l7 =  W /m . Put Vi = a?, V = 1/0 4-V1,
then the action of g, on V is given by (3.6)-(3.7), and more explicitly using (5.22)
above.

First, it follows from (5.3) and (5.8) that

(5.24) (A—I)2 = c2 1.

Therefore there exist two choices of A except when c=0:

(5.25) A = (rc+1) I  w ith  r  =  ±1.

Second, we have by (3.16) the following:

B(e,, e1) —  1 p(xil) ,2
xer, Cr) =  2

1 p(x fl)

B(ei, e ) =
2
 (p (x 10+ A) , B(Œ r , e1) = —

2  
(P (XID — A).

By means of the basis ul =e i +ie f , i+e, for g ,,,, this is rewritten as

V M

(5.22)

1
2c
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(5.26)
B(u„, ti,) = p(X.„), B(u_ i , u ) =

B(u i , u_1) = p(iH)+A, B(u_ i , u1) = p(iH)— A  .

Using the formula (5.10) for p(H), p(X,), we rewrite the defining equation (3.5) for
m . Since trt —E„,(m n W(m+1)), it is enough to determine w=xu i v„,+yu_ i v„,,,E
mn w(n+1) for each in, where x, y e  c .  Then, for any

B(72, xu,) v„,+B(72, yu_,) v„, =- 0 .

This is equivalent to

xB(u i , u1) u_1)v„,÷2=- 0 ,
(5.27)

xB(u_ i , 121) v„,+yB(u_,, u_ 1) =  0 .

By (5.10) and (5.25)-(5.26), this, in turn, is written as

-(2c„, x+[— (m+2)+(rc+1)] v + 2  =  0 ,

-([—m—(rc+1)] x+2c„, v„, = 0 .

Hence we get

(5.28)
( 2Cm — m -1 + 2 -c ) (x )

= 0 .
2c„, Y

Note that 2c =d ± 1 ,1 4 + 1 ,-, and dm-Fi,k= N/M+ 1+ k c , then we get the follow-
ing result.

CASE C* 0. We have (x , y)=2(4 + 1 ,_,„ cl„,+ ,,y ) with a constant A EC, whence
w=214,„,+ 1 [—rc+1], and therefore m =  W [— rc+ 1]. In the special case p=F 1 (c=1),
m=W[0]=(0) or = W[2]= W according as r= +1 or —1.

CASE c = 0 . If m + 1 * 0 , we get similarly as  above, w=2w,„± 1 [1], whence
m n W(m +1) c m n W1. For p = g 0 ,0 ,  we conclude from this that m =  W ,. On
the other hand, for P=DI1 2 with a= +, we should take into account m + 1= 0 , and
then get m = V +2, - W 2.

Summarizing these results, we get the following

Lemma 5.7. For every irreducible (go, KO-module (p, VO, the submodule m of
W=g11 ,c 0 V 0 defined by (3.5) and the quotient module 0 7  Wlm are given as follows.

CASE c * O .  F o r A=(rc+1) I  w i t h  r= ± 1 , m = W [— rc+ 1 ] and '1,1-7 --------
W[rc+1], another direct sum  com ponent. (For p=1”1, W[0]=(0), W[2 ]= W.)

CASE c = 0 . In  this case, A = I .  For 
10 - 2 0 , 0 ,  m = W 1 .D1 ,1 and

For p=Dcf1 2 , m=1/17
2 -. . D7+ F, and

Now we put v 1 = 07 as go-module and put V=1/0 + V„.
CASE c * O .  Denote by [w„,+ i ]  the element in 0 7  represented by (2c) - '•

(n,,,,4„[c+11—w„,,,[—c+1]). Then, using the above lemma, we see that the go-action
on VI — r/I-/  comes from (5.20) for k=r : put S2(V1) ={m+1; [w„,,,]*01, the set of
all weights for V1 , then for meD(Vi),
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H[w,„] = im[w m ] ,

X ÷ [w,„] =  2 c .
c - 1 - 1 [ W m + 2 1 ,  

X_[Wm] = 2c,„ _2 .r wy,÷1. •

CASE c = 0 .  In this case, [w„,+ 1] is defined as the element in  fk  represented
by (2.\/m4-1)' (u,v„,—u_,v,„4 ,2). Then we get from (5.15) and (5.23) that for m E
42(V,),

H [w ] = im [w m ] ,

X+[wmi = X -[wmi = 2 cm-2,1[w.-2]

where 2c,,,.1=  ( m + 0 2 - 1  V i —n • .Vin —2.
When the p 0-module V i —W is unitarizable, an invariant positive definite inner

product is introduced if  we make the basis {[w„,]; m eS2(1/1))- an  orthonormal
system, thanks to Lemma 5.4.

Furthermore the g 1-action on V is given by means of u1, u_,Eg,, c  as follows.
CASE c 4 : 0. T h e  map g,, c , x  V,— *V , is given by (5.22) as

(5.31) ul•v„, = dm + 0  {W„,+ 11 , IL.' • V,,, = (m 2 ) .

The map gi ,c  x V„--).V, is given by (5.18), (5.26) as

(5.32) ul•[w„,] =  dm ._  v .+ 1 • [W „] =  d j Vm i (m E S2( Vi )) .

C A S E  c = 0 .  The maps gi ,c , x V,— *V , and g,, c  x V1— W 0 can be calculated as
above and given respectively as follows.

(5.33) ui • v„, = m+ 1 [ 147.-Fil u_ i  • v„, = — m —1 [Wm-ii (m E ,

(5.34) t i r [wm]  =  N/rn , = v.,-1
 (m ell(V ,)) .

Note that d„,..y = V i
-,77 for any r= + 1  if c=0, and so the formulas (5.33) and (5.34)

take the same form as (5.31) and (5.32) respectively.
Thus we get a  complete answer for Problem ibis of irreducible extensions as

follows, since we know Lemma 5 1

Theorem 5.8. (i) Let (p, V O be an irreducible (go , KO-module of g0 - 4 (2 ; R),
Ko c Sp(2; R ).  T hen, p has exactly two inequivalent irreducible extensions except
f or p=g,,, and D 2 (a= +), each of which has only a unique such extension.

(ii) A ssume that p(4)— (c2-1 ) I w ith  cE C . T hen  such  an ex tension (r, V ),
V =V 0 -1- V1, corresponds canonically one to  one w ay  to the choice of  the operator

e-f )—B(e y , e i ) as A — (rc+1)I, r = ± 1 .  The odd part V , of  V  as
module isis given by the formula (5.29). The gr actions V, and V„-->V, are given
respectively by the formulas (5.31) and (5.32). T he case c=0 can be included in this
statements.

To illustrate these results, we summarize them in a table.

(5.29)

(5.30)

TABLE 5.1. The operator A =A 1 1 =(rc +1 )  I  with r= ± 1  for c*O ; A =I for
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c=0, where we put c=2 ,tt-1  and c=N  for Dr,, and F , respectively.

(P , Vo) W = Vo V,

(c$1)+1(2), (c, v )*(0,
1)7,,

(ue(1/2)Z , 1)

0))

DW-F1helY:+1/2 D11-1/1 DL-1/2

F , F N ± le  FN -1 F FN_Fy

(N E Z , 2)
F, F, (0) or F,

(7---1-1 or —1)

F2 or (0)

go.° 2•-01,1 gm.
(not direct)

D , 2 ( a=± ) F, +2 • Df F,H-D7 Dct

(not direct)

Further, we have a unified formula for the g 1 -action on  V, and V1, and that
for the key bilinear map B: g i . c xg ,, c ---->gi(Vo)  as follows.

FORMULA 5.2. Formula for g".-action:

(5.35)
111' vm = Idm+1,ti[wm+ri

ld,„. - 17

(I = +1 , m E  ,

(1 = +1, m  g2(V ,)) .

Formula for B: for !, l' = ± 1 , m D ,

(5.36)
 

130411, 1 0  m  =  d m 4.1, 1? dm +1. _ey V m +1+1/ .

5.7. Classification of irreducible representations. Now we get directly from
the above results the following classification theorem of irreducible representations
of op (2/1). Note that in our convension.

Theorem 5.9. Any irreducible representation (7r, V ), V= V0 +17
1, of the real Lie

superalgebra g=o4 (2/1) is equivalent, modulo exchange of the roles of the even part
V, and the odd part V 1, to one of  V = V0 -j-  in the following list.

V, as g 0-module V, as g0-module

g ( c s v + 1  (mod 2))
(ue(1/2)Z , .1/2)

FN ( N e Z , 1 )

5.8. Irreducible unitary representations. As for unitary extension problem,
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Problem 2bis, we see easily from Theorem 5.8 and Table 5.1 that if an irreducible
unitary (g,, KO-module p  has an irreducible unitary extension (= IU E ) to g, then p
should belong to the discrete series or its limit D7,, (,u 1/2) or be the trivial repre-
sentation F, (cf. also the remark at the end of 5.1).

Let p=D,,,'  and check if it actually has I U E s .  For this, it is necessary and
sufficient to verify the invariance (1.9) and the positive definiteness (UNI) for the
gr invariant inner products on V, and V,. However the positive definiteness comes
from the very definition of inner products.

The invariance can be proved by using the formulas (5.35) for g1-actions and
(5.36) for the bilinear map B  as follows. First we see easily that, for the invariance
(1.9), it is enough to prove

(5.37) i2<r (t ) y o, v i>+ <vo, ( u) 0

for any U gj C , vP E Vp ( p =0 , 1), where ui-*u denotes the conjugation of g  with
respect to g,. Since g,, e .  V, and V, are respectively spanned by {u,, -(1)„,,;
m 'e  S21 and {7 (u/) v,„; I= ± 1 ,  m  a}, we put u=-u,', v„,, and vi =z (u ,)  v„,—
ur vm. Then, the 2nd term of (5.37) equals to

rc(fie ) r(u i ) v„,> = B(ri,,, 141) v.> = B(u_e, u l ) v.>

because for 1'= ± 1 .  Put j 2 =e i, then the equation (1.9) turns out final-
ly to

(5.38) e<tii, • v • v B (u_r, u ,) v.> =  0 .

Now apply the formulas (5.35)-(5.36), then we get the equation

(5.39) Eirdne+11/7 4+1,17 qwm/-Fid• [wm+11>—

— 11'4 + 1 .1 7  C-Im 4.1, 1hy <Vmt, V„,+1_1'> - .

Both sides equal to zero unless m 'd - P = m +/ .  So, assume m'--1-1=m+/, then we
come to

(5.40) dm+t,iiy)cfm+i,ry — 0  •

Note that dm + i ,k =sgn(m +/+k c)d„, 4 4 . „ if  c  is real, and that, for p =_ 1 4 , we
have c= 2 ,u -1  and so

=  m + 1 + k c  V m + 1 + k ( 2 , u - 1 ) ± 1 ,  k  = ± 1 ) ,

On the other hand, for p = 1 4 ,  the set of weights 2 is given by

=  {m; trt 2g, 2,u (2)} f o r  a  = ,

=  {In; mm- —2,u (2 )} f o r  a = —

Therefore we see that (5.40) is satisfied with 6= 1  or —1 according as a = ±  or —,
whence the invariance (1.9) holds with the associated constants j 2 = i  and —i for
and Dp,-  respectively.
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Thus we get a complete solution for Problem 2bis as follows.

Theorem 5.10. Let (p, Vo ) be an irreducible unitary representation (= IU R ) of
g0= 4  (2 ; R).

(i) (p , V0)  has an  irreducible unitary extension (= IU E ) if  and only if  p is a
highest or a lowest weight module.

(ii) For p—D: w ith a= + ,  At e  (1/2) Z , 1 ,  there ex ist ex actly  tw o IUEs
(r, V ), V=Vo -PV,, up to equivalence, for which V,=D:+ i i , or Drh_i i , (as g o-modules)
in Table 5.1.

(iii) For p—D112 (a= ± ) or p=F i , the trivial representation, there exists exactly
one IUE, up to equivalence, f or which V,—DT. or (0) respectively, in Table 5.1.

From this result for IU Es, we get directly the classification of IURs of g=
OP(2/1) as follows.

Theorem 5.11. For g= o4(2 /1 ), any IUR (7c, V ), V = Vo + V i , is equivalent, up
to exchange of  the roles o f  V, and V,, to one of irreducible representations in the list
in Theorem 5.9 for which

(Vo , 1/1) =  (D  D 1 1 2 ) w ith  AE(1/2)Z, 1 /2 ,  or

(V0 , V,) = (Fr  (0 ))

5 .9 .  Irreducible representations with invariant inner products. There exist
many irreducible representations (iv, V ), apart from unitary ones, which has a (non-
degenerate, hermitian) inner product < •, •>  on V such that Vol  V, and with the
invariance property (1.8)-(1.9). Let us make some remarks about this kind of
representations.

First we know all the irreducible (go, KO-modules of go= 4 ( 2 ;  R )  admitting
an invariant inner product as follows.

Lemma 5.12. A n irreducible (go,  K0)-module (p, Vo )  h as  a  (non-degenerate)
invariant inner product if and only if it is equivalent to one of the following:

w ith  c e R  o r  EN/ - 1 R, v=+1, cSv+1(2);

D: w ith  oe=+, AG(112)Z, 1./2;

F , w i t h  N E Z ,1  .

Moreover such an inner product on Vo is given by making the standard basis
m e12}  for (5.10) an orthonormal system such that

(5.41) <v„„ v„,,> = ICm  t m , t n h,

where a,„,„,,  is the Kronecker's symbol and x ,„— x.(V O=±1 is determined so as to
hold

(5.42) ic.+2 = sgn ((m +1) 2
 — c2 ) ic,„ i f  m, m+ 2 E 2 .
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Put 1.„(1/0)={m; x„,> 0}  , n _(1/0)=i${m; x m <0}  , and call (114.( V0), n_(V0)) the
index of the inner product on V,.

Remark 5 .1 3 . The set of irreducible (g o,  K0)-modules in  the above lemma
correspond canonically to the totality of irreducible components of the represen-
tations of Go =Sp (2; R ) induced from real or unitary characters of a minimal para-
bolic subgroup.

Now consider irreducible extensions ( r ,  V ), V = V0 + V 1,  of a (p , V0)  in the
above list. Then we get from Table 5.1 the following.

Lemma 5 .1 4 . In Table 5.1, the pairs (V 0 , V 1) f or which both V , and  V , admit
gc invariant inner products, are those w ith v0 = 2 , ( c  R , c*v +1(2)), 14(a= ± ,
a (1/2) Z, 1/2) and F, ( N e Z ,  1).

Let us study the p 1-invariance (1 .9) for the pairs ( V,, 17
1)  in  Lemma 5.14.

Then, similarly as in the unitary case, we see that (1.9) is equivalent to (5 .39). Put

fl,( 1/0 = v.> ( m  Q ) ,  x . ( v )  = D v .»  (n i f2 (v))
Then, x„,=x„,(Vo ) satisfy (5.42) and ien ,( V,) satisfy

(5.43) x„,,,( = sgn ((m + 1) 2 —(rc+ 1)2) x„,( Vi ) .

Taking into account (5.41), we see that, in the present case, (5.39) is equivalent
to the following for m '+I '=m +1 (n i, m ' 2 , 1, l'=± 1 ) :

(5.44) xm+/( icm+/_,,(V0))dm+i = 0 .

Recall that di ,,k =  p + k  c ,  and cfm — sgn(p+kc) dp . , if  c  is real. T h e n  the above
equations for l= +1 , l'= +1 , are in total equivalent to the following:

(5.45) =  sgn (m+1+rc) x,„( Vo) ( m  ( )  ,

(5.45') e x„,+ ,( Vi )  = sgn (m + 1 — rc) x„,+ 2 ( Vo) (ni+ 2 E 12)

where we understand that if m + 1 + r c = 0  or m + l— rc= 0  (each very rare), then the
corresponding equation does not exist. Using (5.42) for Km =x„,(V o ), and (5.43) for

„,(Vi ) , we can prove that, when we choose e = +1  so that (5.45) holds for an
m =m 0 E12 such that m0 + le 1 2 (V 1) ,  then, for this choice of e, (5.45) and (5.45')
hold for any possible in. Thus we have proved that for any pair (Vo , V1) in Lemma
5.14, the corresponding representation ( r ,  V ), V =V o +V i ,  admits an invariant
inner product.

Summarizing these results, we get the following

Theorem 5 .1 5 . L et (p, V 0)  be an  irreducible (go, K0)-module o f  (10- 4 ( 2 ;
which admits a (non-degenerate) invariant inner product.

(i) A n irreducible extension (r, V ), V = V 0 + V 1, of (p, V o ) to g=o4 (2/1) admits
an invariant inner product if  and only if  p does not belong to the unitary continuous
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principal series with regular infinitesimal characters, i.e.,  for any 77 R , * 0 ,
v=0, 1. Or equivalently, p  is equivalent to one of those in Lemma 5.14.

(ii) A ssume that p  is listed up in L em m a 5.14. Then any of  its irreducible
extensions admits an invariant inner product which is given by (5.41)45.43). The
associated constant f  =e i  is determined by (5.45) f o r an  (or any ) m E 2 such that
m + 1 E 12( V,).

The associated constant j 2 =e i is changed to — ci if we multiply by —1 the inner
product on V,. Therefore, in case the index (n,.(V ,), n_(V ,)) of the inner product on
V, is equal to (00, 00), there is no apriori standard to determine the sign e.

From the above result for extensions, we get the following classification of
irreducible representations with invariant inner products.

Theorem 5 .1 6 . A ny irreducible representation (7r, V ), V =V 0 +V 1,  with (non
degenerate) invariant inner product is equivalent, up to exchange of the roles of V , and
V1 , to one of those corresponding to the following pairs (V ,, V ,) of gr modules.

V, as g0 - moduleV, as g 0-module

(c G R , 1)=0, 1, c$1,-1-1(2))
D : (a E(1/2)(1/2) Z , 1/2)

FN ( N  E Z ,  1 )

-+1..+i

F N-1(F0 = (0
))

Remark 5 .1 7 .  Let (p, V 0) be in the complementary series, that is, pi=-_-• with
0 < c < 1 . Then p  is unitary but has not any irreducible unitary extension to
g=g o + g , .  However it has two irreducible extensions (7r, V ), V = V0 - 1-  V, with V1=

c+1,1 or -0 -c+1.1 (as go-module), and both of them admit invariant inner products.
Note that the index (17_,.(V1), ii_(V 1)) of the inner product on V, is equal to (00, 00)
in both cases. If we define an invariant inner product on V, in such a manner that
qw11, [w1]>>0 for the weight vector [w1] with weight 1, then we have always j 2 = i
for (7r, V) with VI = a_C (r— +1)•

For p = g o ,„ and its unique irreducible extension (7r, V ) with similar
statements are true.

§ 6 .  Irreducible unitary extensions for type A(1, 0), Part I.

In this section we take the complex Lie superalgebra of type A(1, 0), and also its
real form as the Lie superalgebra g in Problem 2, and determine all the irreducible
unitary extensions of irreducible representations of the even part g,. But, as is
shown in Example 4.8, when we take A(1, 0)= 1(2, 1) as g in the unitary extension
problem, there exists no irreducible unitary extensions (=IUEs) except for the
trivial representation which has the trivial extension. Thus we study irreducible
unitary extensions for each real form g (cf. [3]).

6 . 1 .  Definitions for A (m , n ) .  First we define the Lie superalgebra of type



Representations of Lie superalgebras 731

A (m ,n). We denote by M(p, q; K) the set of all matrices of type p x q  with entries
in a field K .  Let b=M (m +n, m d-n; C), and let Ei d , j5 m +n , be an element
of b with components 1 at (i, j) and 0 elsewhere. Let I), be a complex subspace of
b generated by

{E1 .1 ;15 i, j5m }  U { E i a ; m+1 j _Sm+n} .

Further let bi (resp. b i . _) be a complex subspace of b generated by

{Ei ,1 ; 15 i5 m , m +1 5  j5 m +n }  ,

(resp. {Ei a ; m+15i_Sm+n, 1 ,

and put 10,—bi ,+ - k b .
The bracket product

[X , Y ] = X Y — (-1)" Y X  f o r  X eb s , YE b„

where s ,  t  are 0  or 1, makes b  a Lie superalgebra, denoted by i(m, n), where
f(m, n),=b, (Example 4.7). We put 1(m, n), = b , .  On 1(m, n), there defined
the supertrace str, a linear form o n  (m n), in (4.8). We defined I(m, n) as

n) = l(m, n); str X = .

This is a subalgebra in 1(m, n) of codimension 1. In case m =n, 1(n, n) has one-
dimensional center 8 consisting of scalar matrices 2-1"

2
„ (A E C ) .  We set

A(m, n) n+1) f o r  m, n O, m *n ,

A (n, n) = gi(n+1, n+1)15 f o r  n>0

We denote by gc  the complex algebra A(1, 0), keeping the symbol g to its real
form. For later use, we give two kinds of basis of a Cartan subalgebra bc  of gc :

(6.1) 111,1 = E1, 1+- E3, 3 , H . 2 . 2  - 9

and

(6.2) H = E 1 .1 —E2 . 2 , C  =  E 1,1 +E 2 ,2 +2E 3 .3 .

6.2. Real forms of A(1, 0). Here we list up real forms g of gc =A(1, 0) (cf.
[8, §5]). We define two types of real subalgebras of a Lie superalgebra g c . A real
subalgebra of first type is

g(2 , 1 ; R ) (2, 1) n M(3, 3; R) .

Real subalgebras of second type are defined as follows. Let p  -(0, 1, 2)- and
q E {0, 1 }.  Put for s=0, 1,

(2, 1; p , q )  = { X  K (2, 1),; Jp ,qJ p , q . 1 0 '  = O)-

where 'X  is the transposed matrix of X , and
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4 , 4  = diag(a, b, —( - 1)Y  —1) , J 0 =  diag ( - 1, — 1, 1) ,

with (a, b)—( - 1, — 1) for p=0, (a, b)= (1 , —1) for p=1, (a, b)=(1, 1) for p = 2,
where diag (•, •, •) denotes a diagonal matrix. Then n (2, 1; p, q)=Mi (2, 1; p, q),
en  (2 , 1 ; p, q), is a real Lie superalgebra for each (p, q).

Proposition 6.1 (cf. [8, § 5]). Real forms of A(1, 0) are isomorphic, up to transi-
tion to their duals, to one of the following three types:

(a) 1(2, 1; R); (b) 1; 2, 1); (c) 1; 1, 1) .

6.3. Extension problem for the Case (a): g=g(2 , 1 ; R ) .  Let g=g(2, 1 ; R).
Then there exist no IUEs except the case of the trivial representation which has a
trivial extension.

More generally, for this type of real form I(m, n; R ) o f  I(m, n), we have a
similar situation as above, as shown in the next subsection.

6.4. Extension problem for i(m, n; R ) .  P ut g  =  (m , n; (m, n)n
M(m+n, m+n; R), and g1 . ± =g n i(m,

Theorem 6.2. L et g  =  (m, n; R), m, 1. T hen it has only  a unique irre-
ducible unitary representation, the trivial one.

P ro o f  Let r  be an irreducible unitary representation of g on V =V0 +1/1, and
put p=x (go) I V,. Let B(., •) be the bilinear map g, x g,—>gt (V,), associated with r.

W e examine four conditions (EXT1)-(EXT3) and (UNI). The condition
(EXT2) implies that

(6.3) B(Eid, E1 ) =  0 fo r  E i d E g „

(6.4) B(Eid, Ek,1)+B(Ek,i, Ei ,1) =  0
for E 1 , Ek a E g , , ,  (o r  E i d ,

(6.5) B(Ei,i, = p(E i ,i + E J ,i ) for E 1 g1

(6.6) B(Ei,i, Ek i ) + B (E k i, E1,i ) = p(a 1,1 E k i+ S k i E t ,,)
fo r  Ei ,i  g i ,+  a n d  Ek i  g i , _ ,

where Si . ;  denotes Kronecker's S. Now apply the condition

(UNI') e) o (14 = —1)

for e=E,1±E3 g1 , and use (6.3) and (6.6), then

?_ 0  a n d  —Pp(E i ,i -FE 1 ,1) . O.

Therefore

(6.7) p(Ei,i+ELi) 0 f o r  15 i5 m ;  m + 1 5
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Similarly as above, apply (UNI') to

C = rn, i*D

and use (6.3) and (6.6), then

(6.8) p(E11) 0 f o r  1Si, jS m ,  i$  j .

Similarly, using

e = (m +1.5i, j5_m +n, i j ) ,

and (6.3) and (6.6), we get

(6.9) = 0 f o r  md-  1 Si, j5_m +n, i * j

Equations (6.7)-(6.9) imply that p =0, or dim V0-multiple of the one-dimensional
trivial representation of go.

We now prove that p = 0  has an IUE, the trivial representation, if and only if
dim V0 = 1 .  We show iv  , 77)=0 for any e ,  e gi , case by case.

Case 1. Put

m+n
C =  n ,

' f= m + 1  - "

then

(6.10) [C, e] = ±(n —  m) e f o r  e e

We apply the condition (EXT1) for x =c, e, e g,, +  (or e, 72 e gi . _), and use (6.10),
then,

(n— m) B(e , 0+(n — m) B( , 72) =  0 .

Hence

(6.11) , 72) = 0 f o r  e ,  e  1,+ (o r  e ,  E th, - )

for m  * n .  Even when m =n, we can see that (6.11) still holds.
Case 2. Apply (EXT1) for X = E 1 1 — E1 1  (i * j), e=Ei .kg 1 , _

(1S i, jS m ; m+1Sk, 1S m - l- n), then

B(Ei ,k , EI,;)+B(Ei,k, E1 ,1)  = 0 .

Hence

B(Ei .k , E1 . 1 ) =- 0 for i * /  •

Case 3. Apply (EXT1) fo r  X=Ekk — Eid(k*1), f  =E i ,k E gi ,+ , 72=E j . i e
(15 i, j5 m ; m ± lS k , 1 5 m +n ), then

EI ,J )+B (E 0 , E, 1) = 0 ,
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whence

B(Ei,k, Ei d )  = 0 f o r  Ei , ke g , , , , k *1

Case 4. We apply (EXT3) for v =E i ,k , e=E1,1, e =Ek i  (1 S i, j S m ;
m +1 5 k ,1 S m +n , i=j or k=1, (i, k)*(j, 1)), then

(6.12) B(Ei ,k , E1 ,1) E,1)E h , )  =  B(Ei ,k , E h ,).

When for any (i, k) there is at least one pair (j, 1) satisfying the above
conditions, and so we get from (6.12) and (6.11)

B(Ei ,k , Ek . i )  = 0 for all E i,k g1,-F, E k i E  g i,-  •

When m =n=1, this also holds.
We see from Cases

B(Ei d , Eh ,) = 0 for all E.1, E k,I gl •

Therefore the subalgebra m in W = 1 Ø0 V0 is  e q u a l to  W itself. H e n c e  V1---
W/m=(0) and the extension r is trivial. Q.E.D.

6.5. The conditions (EXT1)-(EXT3) for a real form of g (2 , 1 ). Before ex-
amining Cases (b) and (c), we write down the conditions (EXT1)-(EXT3) using
{E i d }, the basis of ge . Then we see that for any real form, they have the same
form.

For i, j e l l ,  21, put

= B (E i . ,, E1 3 ,B _ i 1 = B(E,, i , En ) ;

B,, 1 E 3 1 ) , B = E1,3)

and for k, 1E { ±1, ±2 }, put

(6.13) A h, = .

Lemma 6.3. For i, je {1, 2 },

Proof. Let (2r, V), V= Vo + V 1, be an extension of (p, V0). Decompose V into
eigenspaces for C =E  -FE 2 .2 +2E 3 ,3 , an element of the center of qo x .1,1 Then the ir-
reducibility of V, implies that V, is in a unique eigenspace for C.

On the other hand, we get from (EXT1),

(6.14) [p(C), Bi d ] = — 2B i d  , [p (C ), 2B_i,_1,

for i, j E  {1, 2} . It follows from this that B i d =B_ ; ,_1 = 0 .  In fact, assume B, 1 4 0.
Then there is a  y e V, such that B i d  y *O . We see from (6.14) that C-eigenvalues
of y and Bi d  y e  V, are different. This contradiction gives Bi 1= 0 .  Similarly we
get B_ i . _ j=0.
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The assertion A i ,1 =A _ 1. _1 =0  is implied from the above result through the
defintion (6.13). Q.E.D.

Consider fj c , as a g,,c -module. Then the condition (EXT1) is equivalent to
the condition that the map B: g1,c 0 g i ,c —>gl(V0) is a  g"-homomorphism. This
go,c -equivariance is very important to simplify the condition (EXT3), as seen in the
proof of the following proposition.

Proposition 6 .4 .  Suppose that a map B: g1 .6.0g 1 --).gi(V0), is  k c -equivariant
and that the condition (EXT2) holds. Then the condition (EXT3) is equivalent to the
following conditions (EXT3.1) - (EXT3.8) modulo g"-equivariance in  the  sense in
§3.6:

(EXT3.1) p(Hio.) ,
(EXT3.2) B1,_1 B2 ,_2 = p(E2,1) ,
(EXT3.3)B 1 , _ 1  B 1 ,_2 = p(1-10  ,
(EXT3.4) B2,_1 = p(E2,1)
(EXT3.5)B _ 1 1  B _ 1,1 = B_ 1,1

(EXT3.6) B_ 1 1 _2 ,2 = B _,, i +B _1,2 p(E1 ,2) ,

(EXT3.7) B _1 ,1 B _2 ,1 = B_ 1,1 p(E1 ,2) 5

(EXT3.8)B . 1 , 1  B _ 1,2 = —B _,,2 + B _1 ,2 p(I ).

P ro o f  Since the condition (EXT3) is multilinear in r, e, CE g1 , 0 , it can be
considered as a condition for r0e0770C in

g y) = gl,COLCOgl,COgl.0 •

Taking into account the g0,0 -equivariance of (EXT3), we study the structure of (V )

as a g,,c -module. The space 6 1 ) is decomposed into 16 invariant subspaces

gY) (*, *, *, *) = fil,* fh ,* (g4h,*

where each * denotes +  or — and g 1 ±=g10 n I(2, 1) i . ± . It is sufficient to consider
the condition (EXT3) on each subspace.

On the other hand, B( e,, . )=0  and [OE, 77]=O for e, 77G gi . ±  o r  e, 77E
Therefore the condition (EXT3) is trivial on the subspace e ) (*,*, *, *) with

(*, *, *> *) = (+, +, +, +), (—, —), (+, +, +, —), (—, +),
+), (-, +, (±, +, ±), +,

(-) +9 +, +), (+7
Moreover, since (EXT3) is symmetric with respect to the second variable e and

the third one 77, the condition (EXT3) on each of the following subspaces are
mutually equivalent:
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(+, +, — ) a n d  6 4 ) (+, +, —)
(resp. gÇ,4 ) (—, +, ± )  a n d  e ) (—, +, +))

Now the condition (EXT3) on the subspaces 6 1 ) (+, 4-) and gV)

(—, +, +, —) is induced in total from that on the subspaces g ( » ( + ,  —, ±, —) and
(—, +, +), using (EXT2). So it is sufficient to consider (EXT3) on the

following two subspaces:

(+, +, —)

64 ) (—, +, +) = gi,-Ogi,+Ogi,-Osi,-, •

The invariant subspace di° +, —) is generated, as g0,0 -module, by the
following four elements:

,
E1,30E3,i 0E1,30E3,2 , .

Therefore (EXT3) on the subspace g(
1
4 ) (4-, —, —) is equivalent to the conditions

(EXT3.1)-(EXT3.4).
Similarly we get (EXT3.5)-(EXT3.8) from the condition (EXT3) on the subspaceciy.) +„ +). Q.E.D.

§ 7 .  Irreducible unitary extensions for type A(1, 0), Part IL

7 . 1 .  Extension problem for the Case (b): g =Mt (2 , 1 ;  2, 1). The even part
g0cgu(2) and the odd part g, of g= (2, 1; 2, 1) are spanned respectively by

{V —1 H1,1, V  —1 H2 ,2 , V  — 1 E1.2+ V - 1 E2,19 E2,1 - E1,2}  9

and

{E 1,3+  V  -1 E 3,1, V  - 1 E1,3+E3,1, E2,3+ V - 1 E3,2, V - 1 E2,3+E3,2} •

The conditions (EXT1)-(EXT3) can be considered for gc, instead of g through
complex linearity. Since g o=u (2), an irreducible unitarizable g0-module ( p ,  V0 ) is
finite-dimensional, and it  h a s  a  highest weight A Efft,, and is  of dimension
n=A (H )+1 , where H =E 1 r1 —E2 2 . Choosing appropriately an orthonormal basis
{v1, •-•, v,x}  of V, such that each v, is a weight vector with weight A — (k — 1) a, where
a is the positive root of [g0  e '

 g0,c ]=g (2; C), we have

p(H)v k  = (n +1 -2 k )v k  ,

(7.1) P(E1,2)vk = ( k — l)(n+l— k ) v

/4E2,0 vk = k ( n — k )

for 11<k5n, where v0—v.,1=0 . Put m =A (C), then p(C)----m•Iv o , where 4 0 de-
notes the identity operator on V,.
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The results in Case (b) are summarized in the following theorem.

Theorem 7 .1 .  L e t  g=&t(2, 1 ; 2 , 1 ) , an d  (p, V 0)  b e  the finite-dimensional
irreducible unitary go-module with highest weight A . Put n= A (H)+1=dim  V o , and
m =A (C ). Then there exist its irreducible unitary extensions (=IUEs) if  and only if
one of the following three conditions holds:

(i) n=1 and m= —2, 0, 2;
(ii) n=2 and m e R ,
(iii) 3 and m =± (n-1), ± (n+1).
Moreover IUEs are unique up to isomorphism, except the cases n=2 and m =± 3.

In these exceptional cases there exist exactly two IUEs up to isomorphism.

We prepare three lemmas for the proof of this theorem.

Lemma 7.2. The operator A=A„,_ i determines je {± 1, ±2}, as follows:

(7.2)
1

B1,-1= —

2  
(P(1/1,1)+A ),

(7.3) B 1 ,-2  =  
— [P(E12), B1,- 1]

(7.4) B2,-1 = [P(E2,1) , B1,-11

(7.5)B 2 , 2  =  [P ( E 2,1) , B 1, - 2] + B 1, - 1 9

(7.6)B _ 1 , 5  = p(E i ,i +-13 E 8 ,3) -13 5 ,_1

(7.7) B1,5 = B_ 1,_5 = 0 f o r  i, jG  {1, 2}.

P ro o f  The equation (7.2) follows from the definition of A 1 1. (EXT1) implies
(7.3)-(7.5). (7.6) is from (EXT2), and (7.7) was shown in Lemma 6.3. Q.E.D.

These B1,5 are well-defined when (EXT1*) is satisfied for A.

Lemma 7.3. The operator A =A ,,_„ is diagonal. M oreover

(7.8) Avk =

P ro o f  Now (EXT1) gives [p(H ), A ]=0. So each H-eigenspace is A-invariant.
As we see from (7.1), each H-eigenspace is one-dimensional. Hence A  is diagonal
with respect to the basis {vd.

From the equation (EXT3.1) and (7.2),

A ' = (p(110)2 .

On the other hand, p(H i . i )= -12  (p(C)+ p(H)) is also diagonal. So we get (7.8).
Q.E.D.

Lemma 7 .4 .  A
1 , - 1

+A
2 , - 2  

is a scalar operator on Vo .

P ro o f  From the equation (EXT1), we get

ehP(111,0vfr ( 6 k  =  ± 1) •
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[p(X), = 0 for a n y  XE .

Therefore A i ,_ i + A 2 ,_2  is a scalar operator. Q.E.D.

Proof of Theorem 7.1. (1 0 ) Similarly as in Lemma 7.3, we see that A 2 ,._2 is
also a diagonal operator and

A 2 ,- 2  V k  =  4P(1 12,2)vk

where 4 =  ± 1 .  Therefore from (7.1) and p(C)=m • Iv o ,

(
A

1 ,-1
4

 A 2 ,- 2 )  V  k  = ekP(Hia) vk+4P(1 12,2)vk

=  —

1  
fe k (m  +n +1-2k)± 4,(m  — n-1 +2k))- v k  .

2

On the other hand, A1,_1H-A2,_2 is a scalar operator by Lemma 7 .4 . Hence

dk  =  e k (m + n +1 —2k)+ 4(m — n —1+ 2k)

= (e k +  m + ( e  k —  ( n +1 - 2 k )

should be a constant independent of k.
( 2 ° )  From this criterion, we deduce a  necessary condition for (n, m ), n=

A (H)+1, m = A (C), to have an TUE. Let us discuss case by case.
C ase I: m *0 and n * l ,  2. In this case we can take ek =e ; for all k , and then

they are all equal to 1 or —1 at the same tim e . Therefore

A  = o(H 1 1 ) o r  A  =  — P(1 11,) •

Case Il: rn =  0  and n *  1 ,  2 .  In this case dk —(e k — ) (n+1 — 2k). We see
first ek = e l', for all k , whence dk O. S o

(7.9) --k A 0A L -1 2,-2 =  •

Equation (EXT1) together with (7.9) gives

[p(E2 ,1),[p(E 1 ,2), A]] - 2A  = O.

Apply the left hand side to the vector vk , then

{[P(E21), [P(E1 ,2), A]] - 2A)-vk = ck vk  =  O,

where

ck  =  (n —2k + 3) (k - 1) (n (e k— ( n — 2k —1) k(n—k) (e k —  e k+i) •

Suppose e1 =e 2 =•••=e 1 , then we obtain from c,=0

1(n- 1)(n - 21- 1)(6 1 - 61 + d  = 0 .

When n41, 21+1, we have clearly e1 =e 1 ± 1 . When n=1, the number e ,, ,  and the
equation itself do not exist. Let n=21+1 , then ei _k i appears only in  A vi+i=
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v1 , 1 = 0 , so we can set et + ,=e i .
Altogether we get

A  = p(111 4 ) o r  A  =  —
P(111,1) •

C a s e  I I I :  n = 1 .  Here p is one-dimensional. Hence

A  = o (H 1 1 ) o r  A  = — p(110 .

C ase  IV : n= 2 . T h is case  is exceptional at the point that there may happen

A * +P( 111,1) •

Except the c a s e s A + W I L T ) ,  we have E1 = 5 2 =  i 2, since is a
scalar operator.

Until now, we studied case by case the operator A =A i . _, and found that there
exist three cases A A - -  p(11,.,), and one exceptional case.

( 3 ° )  As the second step, we apply Lemma 7.2 to these A's.
CASE A = p(H i o . ). In this case

(7.10) p(E, 1 4 ,3  E 3 ,3) , B_ i . j = 0

for i, J G {1, 2}. They altogether satisfy the conditions (EXT3.1)-(EXT3.8) except
(EX T3.2). We insert (7.10) into (EXT3,2), then obtain

P(111,1) P(1-12 ,2)± P(111 ,1) —  P(E1,2) p(E2 1 )  = 0 .

We apply this to the vector vk , and get

0 to(H i ,i ) P(112 ,0 - 1-  P(1-1-0—  p(E1 ,2) P(E2,01 vk

=  - -
1

(m±n±1)(m— n-1-1)v k4

Therefore m =± n—  .

C A S E  A= — In this case

(7.11) .131 . _1 = 0 , p (E 5 ,-0  E 3 ,0

f o r  a l l  i, j {1, 2 1 .  They satisfy the conditions (EXT3.1)-(EXT3.8) except
(EX T3.6). Insert (7.11) into (EXT3.6), then we get

(7.12) P(1-11,1) P(1/2 ,2)— P(H1,1)— P(E2 ,1) p(E1 2 )  = 0 .

Apply this to vk , then

o =  {P(111,1) P(112 ,2) — P(111 .1) — P(E2, 1) P(E1,2)} vk

4
1— (m + n-1)(m — n-1)vk  •

Hence we get m = ±n+1.
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EXCEPTIONAL CASE n = 2  and A * +p ( H ,, , ) .  When 61 - 1 ,  all the conditions
(EXT3.1)-(EXT3.8) hold for B i ,j . Their exact form is simple but not written
down here. When 61 = - 1 ,  there is no m, for which Bi ,i 's  satisfy the conditions
(EXT3.2) and (EXT3.6).

(4 0 ) Finally we check the condition (UNI) in each case. This holds in the
case A = +p (H i a ). In the exceptional case n =2  and A * +p(11,,,), the condition
(UNI) implies that m e R ,  m j > 1 .  (If m l = 1 ,  we have A = ± p (H i ,i ) ,  neces-
sarily.)

This completes the proof of Theorem 7.1. Q.E.D.

7 .2 .  Extension problem for the Case (c): g =  u (2 , 1 ;  1 , 1 ) . The even part g,
and the odd part g, of g---M.t (2, 1; 1, 1) are spanned respectively by

{ 1 H1, 1 , "V -1 H 2 ,2 , V - 1 E2,1 E1,2, E1,2+ E 2,1}

and

{E 1 ,3+  V - 1  E 3 ,1 , V - 1  E 1 ,3 + E 3 ,1 , E 2 ,3  V - 1 E3,2, V-1 E2,34 - E3,2} •

Note that g0 =u(1, 1), and that u(1, 1) is isomorphic to I(2; R ) plus one-dimen-
sional center. From the classification of irreducible Harish-Chandra modules for

f(2; R), we may take as (p, V 0) the unitarizable (g 0 , KO-modules listed up below.
Notations here follow those in [15, Chap. V].
(T) trivial representation;
(P C S) principal continuous series (V i , s, H ), where

= 0, 1/2, s  e C  ,  R e(s) = 1/2, ( 1 ,  s)*(1/2, 1/2);

(LDS) limit of discrete series (V 1 0 . 1/2 1 H ± ,  H i );
(DS) discrete series (U s ,  H a ), where n e (1 /2 )Z , I ni ;
(CS) complementary series (V 0 , Hs ), 1/2<s<1.

For convenience to treat the limit of discrete series together with discrete series, we
introduce new notation for the former:

(U - 1 1 2 , H-112) = (V 112 ' 112 11 1 + , 1 1 ± ),
((pp , H 112) (vit2,1/21 H -  H -)

For details of the actions of g, on these modules, we refer the book [loc. cit.],
however, for our later calculations, we list up some of them.

Case (PC S). Let U p ; p E Z ) -  be the standard orthonormal basis of H  given
in [15, p. 216], then

17 1 .3(N/ =  - 2 V  - 1(P±Ofp •

Case (LDS) and (D S). Let {f ;  p e Z , p >: 0} and {:7; p Z ,p_13 } be the
standard orthonormal bases of H„ and H.  respectively (cf. [15, p. 237]), then
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UnW — 1 H )f; =  — 2V - 1 (n+P)f ;
Un (V  — 1E2 — V —1E1,2Y;

=  — 1V  (2n+P)(P+ 1)f ;+1+ V  — 1V  (2n-pp-1)pf;-1 •

Un (.4 2 + 4 1 ) f ; =  ( 2 n d - p ) ( p  ±  ;+ i —  (2 n +p -1 )p f ;- .1  •

U ( / - 1 1 0 j ;  =  2 V  — 1(n+P) f ;
U ( / — i E2 1—  V — 142) f ;

= —J—i \/(2n+p)(p+1)f;41 — . V — 1 V (2n-kp f ;-1 •

E2,1) f  ; = (2nd-p)(p+1)f ;+i —  (2n+p — 1)p f ;-1 •

Case (CS). Let -Up ; p  Z 1  be the standard orthonorm al basis of H s [15, p.
243], then

Vs(N/ —1 H)ft , =  2.V — ip fp

Case ( T ) .  One- dimensional representation, i.e.

p(H ) = p(E 1 2 ) = p(E2,1)  = O.

For each (p, V 0), let p(C)=m • /v o . Because of the (infinitesimal) unitarity of
p, m  must be a real number.

Lemma 7.5. If  the condition (UN I) holds, then one of  the following cases
occurs:

(i) p(H).alm l • Iv . and j 2 = \ /
(ii) p(H): —  Im l • Iv o  and j 2 = —  — 1,

w here C  D  for C , D E gr( V0) means that C-D is positive definite.

Pro o f . From the condition (UNI), we have

(7.13) j2<B( e , e)v, ,

for all v V ,, where e =E1,3 +-v _1E3 4  and j = -1 . U s in g  (EXT2), we rewrite
the above operator B(e , e) as

B( e, e )  =  B (E 1,3+  — 1 E 3 ,1 , E 1 ,3 +  —  E 3 .1 )

1 / T v-  -

2
Pkv-i

'
3- r v v —1.J-3ov

=  —  1  P ( H i , i )  =  * V - 1  p(H +C) .

Therefore (7.13) is rewritten as

i Y - 1 ( 4 0 ( 1 1 ) +rn * / / r) 0  .

Similarly as above, we get from the inequality for B( e, e), e=E2,3 —. / E3 2,

j 2 -\/ —1(p(H)—m • Iv o ) .0 .
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From these two inequalities, we arrive at the case (i) or (ii) in the lemma. Q.E.D.

Comparing the range of the weights of p  with the conditions in the above
lemma, we get

Proposition 7 . 6 .  (i) If  (o, V0) is in (PCS ) or in (CS), then there does not exist
any IUEs.

(ii) If  (p, V 0) is (T ), then there exists an IU E if and only if m = 0 .  Actually an
IU E is given by the trivial representation of g.

In case (p, V 0) is in (LDS) or in (DS), we get the following result.

Theorem 7 . 7 .  L et (p, V 0)  be (U±n, H ± „), where n (1 1 2 )Z , n >0 . Then there
exist IUEs if and only if one of the following conditions holds:

(i) n =1 /2  and m = 1 1 ;
(ii) n = 1  and m =0, ±2;
(iii) 312 and m = +2 n , ± 2 (n -1 ) .
Moreover IUEs are unique up to isomorphism except the case n =1  and m =0.

In the exceptional case there exist exactly two lU Es up to isomorphism.

Remark 7 . 8 .  When p  is U n  (n>0 ), p  is a  highest weight representation of go

with highest weight A , where A ( H ) = - 2 n  Z, <0, and A (C)— m.

Proof  o f  Theorem 7.7. Lemmas 7.2, 7.3 and 7.4 are also true in  this case.
, . . , , , ,  or A =Similarly as in the proof of Theorem 7.1, we can conclude that A =p ( 1-1

this time without exception because V, is infinite-dimensional.
CASE A =p(1-11 .1 ). In this case, we get

(7.14)

fo r a ll i, j { 1 ,  2 1 .  These operators satisfy the conditions (EXT3.1)—(EXT3.8)
except (EXT3.2). We insert (7.14) into (EXT3.2) to get

(7.15) P(Hi,i)P(1/2,2)+P(111,1)— p(E0p(E2,,) = O .

In case of u, apply the above operator to the vector f ; ,  then

{P(1/1.1)P(H2,2)+P(H1,1) — P(E12)P(E2.1)} f ;

1 (m+2n)(m — 2n +2)f; .
4

Therefore, there should be m =2 n - 2 ,  —2n.
In case of U- ", n>0, we apply the operator in (7.15) to 77„ and get

1 (m+2n)(m-2n±2) =  O,
4

whence m=2n-2, —2n.
CASE A = — p(111,1). In this case, we have
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(7.16) Bi,_; =  O , B_ 1,1 =

fo r  a ll i, j E  11 , 21 . These operators satisfy the conditions (EXT3.1)-(EXT3.8)
except (EX T3.6). We insert (7.16) into (EXT3.6) to get

P(H1,1)P(11
2,2)

-  P(111 ,1)
— p(E21)p(E 1 2) = 0

Apply this to f = f ;  or to f =p ;„ according to p = U n o r  L I- , n> 0 , then

0  =  { p(H11)p( 1 12,2)—  P(1 1 1,1)—
 P ( E 2 ,1 ) P ( E 1 ,2 ) }  f

1 (m -217)(m +2n-2)f .
4

Thus, we get m = - 2n+2, 2n.
The condition (UNI) is satisfied in any c a s e . So we get the theorem. Q.E.D.

§  8 .  Explicit construction of irreducible unitary extensions.

In  this section we give explicit realizations of lU Es classified in  § 7  fo r  real
forms g of g(2, 1).

Denote by L (A ) a n  irreducible highest weight representation of g 0 w i t h
highest weight A E b t .  Two positive roots g, r  14. of g , other than the positive
root a of [g0 ,c , go,c ], are given by

f i(H ) = f l(C ) ----  — 1  , a n d  r(H) =  1  ,  r(C) = —1 ,

where H, C e b c  are as in (6.2).
L et y , be a non-zero highest weight vector o f L ( A ) .  When L (A ) is finite-

dimensional, we define {yk „, a standard orthonormal basis of Vo , starting from
y, as

k(n — k) vk+i = P(E2,0vk for 1 ,

where n=dim  L ( A ) = A ( H ) + 1 .  When L (A ) is infinite-dimensional, we set yk=f ;: +1

in 7.2.
In the following, we construct the odd p a rt V, from the even p a rt 17 0 -.- L(A )

and thus realize (7r, V), V =V 0 H- V „ explicitly case by case. An orthonormal basis
{wk ; k E I} , I  an index set, of V , will be given canonically in  the  following. We
can check (EXT1*) each time when A =A ,,_,, a generator of B i ,»  is given.

Since IU E s of 1.t.(2, 1; 1, 1) can be realized in  th e  same way as those of
ft(2, 1; 2, 1), we give these realizations at the same time for convenience. In case
of g= u(2, 1; 2, 1), we have dim V,< 00, and this is devided into Cases A, B, E, F,

and J. In case of g=it(2, 1; 1, 1), we have dim Vo = 00, and this is devided into
Cases C, D, G and H .  In 8.4, the results for these cases are summarized in  two
tables.

8 .1 .  Case of it for which 211 ,1 = p(H i o . ). In this case we have already shown
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in the proof of Theorem 7.1 that

=  p(E1 1 +8 1 . j E3 . 3 ) , — O,

for all i, j {1, 2}, and that, if  Vo = L (A ) has extensions, then

A (C ) =  A (H ) o r  A(C ) = —  A (H )-2 .

This and B_ 1 j =0 show

(8.1) r(Ei,3)V0 =  ( 0 )  a n d  z(E3 ,i )V 1 = (0) f o r  i = 1 5 2 .

We construct V, in each of the following four cases, Cases A , D , classified
by whether A (C )=A (H ) o r  —  A(H )-2 and  whether dim V, is finite or infinite.
Elements o f  VI = W/m is expressed by linear combinations of [x0v], xO vE W -
fli,c c Vo.

Case A: A (C )=A (H ) and Vo is finite-dimensional.
In this case, we give a basis {wk ; k E /}  of V, by

'Vn—kwk= [E3,,Ovk] f o r  kE/ = {k; 1 S k n - 1}  ,

and so, as k a -modules, Vi =L (A — r), using the results in [3] on the subalgebra m
in 3.2.

The action of g1.0 is given by (8.1) and (8.2) below:

703, i )vk — Wk g(E 3,2)V k

7-c(E,,a )wk =  '/ n —kvk 5 7r(E2 3 )wk = k V k+1 •

Case B: A (C )=—  A (H )-2  and V, is finite-dimensional.
In this case, {wk} k Œ f is given by

w, = —[E3 ,2 (S)v
1
] , k [E3,,Ovk]

f o r  1 SkSn , 1 = { k; 15 k 5 n + 1 } ,

and thus, as k a -modules, — 13), and the action of gi x  is given by (8.1)
and (8.3) below:

(8.3)
ir(Em)vk =- .\/ k w 57 r ( E 3 , 2 )v k =  —  Vn+l—k Wk

r(E i . Ow -= — k —1 v k ,  7 r (E 2 ,)iv kn +  1 — k  v k

Case C :  A(C)= A(H ) and V, is infinite-dimensional.
In this case, -fw I-s k E I  is given by

V2n+k—lwk = [E3,10vd f o r  kE/ = {1, 2, 3,

and so, as k a -modules, V1 =-4 L(A — r).
The action of g1.0 is given by (8.1) and (8.4) below:

703,i)vk — 2n± k —1  w k ,7 0 3 , 2 ) V k  = 9

7r(E1 3 )w k =  —  2 n  k  - 1  V k 7 r ( E 2 , 3 ) w  k  =  N r1-C V k+1 •

(8.2)

(8.4)
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C a se  D :  A(C)= — A(H) —2 and V1 is infinite-dimensional ( A (H )  —2).
In this case, {m} he r is given by

x/2n± k —2 wk  =  [E 3,20 v d f o r  I =  {1, 2, 3,...) ,

and thus, as g, c modules, V L(A  —  ia), and the action of g,, c  is given by (8.1)
and (8.5) below:

(8.5)
r(E 3 . 1 )vk  =  .\/  k w ki-1 Z ( E 3 ,2 ) V k  =  V 2n+ k —2 Wk ,

7c(E1 3 )wk  —  k — 1 'k - i '  7V(E2 3 )wk  -= 2 n +  k  —2 V k •

Remark 8 . 1 .  When V o = L (A ) is infinite-dimensional, we have A(H) Z  and
A(H) . — 1 .  And when A(H)= — 1 in Case D, this is already contained in Case C.

8 .2 .  Case of ir for which A1 ,_1 = —  p(Hi ,i ). In  this case we have shown in the
proof of Theorem 7.1 that

B  =  O, B  =  p ( E  , i + 8 ,

for i , j e  {I, 21, and that if there exist extensions, then

A (C ) =  A (H )+ 2  o r  A(C) = — A(H) .

Therefore we get

(8.6) 7c(E3,i)V0 =  ( 0 )  a n d  x(E1,017
1 = (0) f o r  i = 1, 2 .

We construct V, in each of the following four cases, Cases classified by
whether A(C)= — A(H) or A(H )+2 and whether dim V, is finite or infinite.

C a se  E :  A(C)= — A(H) and V, is finite-dimensional.
In this case, {wa k E r  is given by

\/n —k W k  =  [E 2 ,3 0 V IA fo r  k E /—  { k ; 1  Sk _.<n —1 } ,

and so, as g 0 c -modules, V  L (A +  /9).
The action of g i ,c . is given by (8.6) and (8.7) below:

(8.7)
7C(E1 ) V k  = 1wk-1, 7r(E2,3)Vk \/n —k Wk

70 3 ,0 W  k k v z(E3,2)w k — V n — k  Vk •

C a s e  F :  A(C )= A (H )+2 and V, is finite-dimensional.
In this case -fw5 •  k. ker is given by

V n [E1,31, 1] , k w = [E2,30v
for 1= { lc; 15 k S n + 1 }

and thus, as g"-m odules, V 1 =1 L(A-pr).
The action of g i ,c  is given by (8.6) and (8.8) below:
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(8.8)
k wn k r( E 2 ,3 ) V  k

=
V k w  k+i

r(E3,1)w k = \/n+ 1—k Vk 7 0 3 , 0 W  k  =  V k — lv k -i•

Case G : A (C )= A (H ) and V,„ is infinite-dimensional.
In this case, {wk} ker is given by

V2n+k— lwk —  [E2,30vk] f o r  {I = 1, 2, 3, —} ,

and so, as k e -modules, L(A+,61).
The action of g ", is given by (8.6) and (8.9) below:

r(EI ,Ovk = — Vk— 1W k - i 7 C (E 2 ,3 )V k  1 / 2 n  k - 1  Wk

4 E 3, ) W k =  V k r  Vi2+1 7 4E 3,2)W k =  V2n+k —1 v k •

Case H : A (C )=A (H )+2 and V, is infinite-dimensional (A (H )5 —2).
In this case tw  k e l  is given by

V 2n+k-2 [E1,30vk] f o r  k =  {1, 2, 3, ••.}

and so, as k c -modules, V1 =-L(A +7-).
The action of gl . c  is given by (8.6) and (8.10) below:

(8.10)
70 1 ,3 ) v  =  2 n +  k —2 W k , 70 2 ,0 V k  = — V k w k + , ,

7.c(E3,
1)wk = —  V 2n+ k —2 vk , r(E3,2)wk =

8.3. The Exceptional Case: dim V0 = 2  and A* ± p ( H ,,,) .  In this case we

have already shown that m =A (C)E R , Im l> 1 . We construct V, in each case of
m =A (C )>1 and m= A (C)< — 1.

Case I: A (C)>1.
In this case, {wk}kei= {w+, w-}, {+ , is given by

Vm— 1 w+ = V 2 [E 1,30v2] _  = V  2 [E3 .1 0 v i ] ,

and thus, as g0 , -modules, V 1 =L(A-1-,9)EBL(A—r).
We represent the action of g,, c  by matrices with respect to the basis {v1, y2 ;

w_, w+ }  of V:

(8.9)

' 0  0  p  0'

0 0 0 0
7r(E i . 3 )  =

0 0 0 0

, 0  q  0  0

r(E 3 1 )  = z ( E i o ) ,

0 0 0 0

0  0  p  0
0 0 0 0

,— q  0  0  0

4E 3 ,2) -= 4 E 2 ,3)

, r ( E 2 ,3)  =

N/ 2m+ 2 V 2 m -2
where p— 2  ,  q — 2 a n d  'X denotes the transposed of a matrix X.

Case J: A (C)< —J.
In this case, {wk}ker= {w+, w-}, I={+, — }  , is given by
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\/-m+1 w+ N/ 2 A,30 v2] , •V— m -1 w - V  2  [E3, 10 v i l

and so, as go x -modules, V1 ---:=1L(A+,8)(13L(A—r).
We represent the action of g,. c . by matrices with respect to the basis Iv1, 172 ;

w_, w+ 1 of V:

'0 0  —r 0

0 0 0 0 
0 0 0 0
00 —r0

1 ,0 = 0 0 0 0 
7r(E2,3) —

0 0 0 0 
s 0 0 —s 0 0 0

74E3,0 =  — *E1,2) (E3,2) — tx(E3,2)

where r  
— 2 m - 2 . V - 2 m  + 2

2 '  s2 •

8.4. Sum m ary. At the end, in each Case of re a l fo rm s .11(2, 1; 2, 1) and
(2, 1; 1, 1), we list up, for V o g.---• L(A), (1) the condition on A  for existence of an

IUE, (2) V, as 00 -module, and (3) the operator A = A1,_1 which determines the
gf action on V=V0 H-V1 .

(1°) g=tt(2, 1; 2 ,1)

Cases the value of
A(C)

V,
(as go-module)

the operator
A— A1,-1

A A(H) L(A—r) P ( 1 11,1)

B — A(H)-2 L (A - 19) P ( 1 11,1)

E —A(H) L(A+ fl) — p ( H 1 1 )

A(H)+2 L(A-f-r)
I, J (44) L(A -I-fl)eL(A+r) (*2)

(*1) In this case, A(C)ER, I  A(C)I>1.

(*2) In this case, A= 1 ( 1 +171) ,  where m—A(C).
2 0  1 — m

dim V0=2 for Cases I and J.

(2°) g=ft(2, 1;  1 ,1)

Cases the value of Vi the operator
A(C) (as gc module) A - 2 4 1.-1

A(H) L(A—r)
D — A (H )-2 L(A— 19)
G —A(H) L(A+ g) P ( 1 11,1)

H A(H)+2 L (A +r) —  P(111,1)



748 Hirotoshi Furutsu and Takeshi Hirai

Remark 8 .2 .  As a g-module, we can exchange the roles of V, and 17 1 , so each
g-module is counted twice except the Cases I and J, in the above lists of extensions.

8 .5 .  Concluding Remarks. We solved Problem 2  completely for the case g
i s  I(2, 1) itself or a real form of it. In the case of a real form, for each irreducible
highest weight representation, there exists at least one irreducible extension when
the value for the center is suitably chosen. But this phenomenon is rather special
from a general point of v iew . In fact, when we consider a real form o f  I(n, 1) for

3, there are few irreducible unitary representations p  of g, which can be extended
to those of g. For finite-dimensional p's, a part of them have unique extensions,
and for infinite-dimensional highest weight representations p , they have no ex-
tensions in general.

In this way, we are naturally forced to extend the problem of irreducible unitary
extensions to the case where p is not necessarily irreducible (Problem 2 b is ) . Note
that the adjoint representation of g itself is already in such a case . Solving this
generalized problem, Problem 2bis, we can classify all the irreducible unitary re-
presentation of g completely. In a forthcoming paper, we give a complete results
in the case of real forms of gi(2, 1) (cf. [4]) an d  )[(3, 1).
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