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Pluricanonical divisors of elliptic fiber spaces

By

Yoshio FUJIMOTO

Introduction.

By an elliptic fiber space f :  V  W, we mean that f  is a proper surjective mor-
phism of a compact complex manifold V to a compact complex manifold W, where
each fiber is connected and the general fibers are smooth elliptic curves. In parti-
cular, when V is a surface and W is a curve, we say that V is an elliptic surface over
W.

By an n-dimensional elliptic fiber space V— >W with x( V)=n - 1, we mean that
the  im age of a  rational map 0 1,„ ,, I i s  (n —  1)-dimensional fo r  sufficiently large
m .  I n  th is case  if  an  m-th pluricanonical mapping Oinur v i V  0 1.1r,r(V) is
bimeromorphic to the original elliptic fiber space, we say that 0 1„,„0  gives the Iitaka
fibration.

Iitaka [6] showed that for any elliptic surface f: S — >C with x (S )=1, the m-th
pluricanonical mapping t n K s i  gives the unique structure of the elliptic surface
f: S — >C if m > 8 6 . Moreover he showed that 86 is the best possible number. On
the other hand, Katsura and Ueno [7] showed that i f  S is  a n  algebraic elliptic
surface defined over a n  algebraically closed field k  o f  characteristic p>0 with
x(S) 1, then 0 1„,,s i g ives the  unique structure of the elliptic surface for every
m> 14.

One of the main purpose of this paper is to obtain the bound of the  litaka
fibration of an elliptic threefold when the Kodaira dimension of the base space is
greater than or equal to 1.

We prove the following.

Main theorem A .  I f  f : S  i s  a n  elliptic threefold w ith x(X)— 2  and
v(S) 1, then 0 I m K 1 I gives the litaka fibration f or all even integer m>16.

The main difficulty is that if f: X-->Y is  a n  elliptic fiber space, f * (mKx/y)  is
not necessarily invertible for a positive integer ni, as was remarked by Fujita [5]. So
we take a  suitable bimeromorphic model J :  Î— . i t  of f  and express an  holo-
morphic section of mKy i p by means of the modular form of weight m on the upper
half plane. (cf. [5] [14]) Then if the Kodaira dimension of the base space is equal to or
more than one, we can apply the results about pluricanonical mappings of surfaces.

Though we have not completely proved the counterpart of Iitaka's theorem for
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elliptic threefolds, we conjecture that such a  theorem holds and 5420 is  the  best
best possibl number. In [4], the author constructed series o f  examples of elliptic
fiber spaces, which gives an evidence for the existence of such bounds. Our result
is the following.

Main theorem B .  L et {an } n = j a , •••
 be a sequence of natural numbers defined by

a, = 2 ,  a „ , , =  a 1a2 ••-an +1 .

A nd let { b . } 1 2 —
 be a sequence of natural numbers defined byn = , ,

b„ = (n+1) (a„, 3 - 1 ) +2  .

Then for every positive integer n, there exists an elliptic fiber space ra+»— )-13 " over
P" which satisfies the following conditions.
(1) Ic(X ( n+1 ))=n.
(2) b ,, i s  the  best possible num ber o f  th e  litak a f ib e rin g  o f  X 0 '4 1 ) ,  th at is,

dim 1 m K ,I = 0  if  m =b„-1 , and the m-th pluricanonical mapping en-  C  x
i gives

the litaka fibering for all m >b„.
M oreov er, V i±» is not in  the  class C in the sense of  Fujik i [1]. (That is, X o'+')
cannot be bimeromorphic to any compact KIhler manifold.)

Exam ples. Now, we write down the first few terms of {an }  and

n 1 2 3 4 5 6

a„ 2 3 7 43 1807 3263443

b,, 86 5420 13053770 ---, 102 ^-402 6 ---,1052

(1) b1= 8 6 .  This i s  th e  well-known result o f  th e  elliptic su rface . A n  elliptic
surface f : S — >P 1 over 1=4  with three multiple fibers of multiplicity 2, 3, 7 and
with constant moduli has the property that dim185Ks I =0.

(2) b2 =5 4 2 0 . There exists a n  elliptic threefold f : X --+P 2 over P 2 w ith constant
moduli which has multiple fibers of multiplicity 2, 3, 7, 43 along the four lines
on .P2 in a general position . X  has the property that dim15419K,1=0.

To prove Theorem B, we need to study multiple fibers of elliptic fiber spaces and
generalize the  notion  of a  logarithmic transformation defined by K odaira. Our
construction is as follows.

Let H 1 (1 <i<n +2 )  be (n+2) hyperplanes on P" which are in general position.
Let (a1 , a2 , •••, an + 2 )  be (n+2)-tuple of positive integers defined as in  theorem B.
Then X ( n+2  P "  is  an  elliptic fiber space over P"  which has multiple fibers of
multiplicity ai  along each H ; (1 < i < n ± 2 ) .  Note that there exists no finite abelian
covering of P" which branches along H i 's (1 <i <17+2) with the ramification index
ai  respectively.

We prove Theorem B in two different methods. One way is to use generalized
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logarithmic transformations along the divisors which have only normal crossings
and another way is to construct X (n+ 1 ) a s  a  submanifold of a H opf manifold,
which was suggested by M . K ato . The latter proof is much simpler than the
former, while the former is applicable to many other situations. (cf. §5).

On the other hand, if we consider only algebraic elliptic fiber spaces, the best
possible number of the Iitaka fibration seems to be much smaller than that of the
analytic case. One of the main reason is that the multiplicities of the multiple
fibers of an algebraic elliptic fiber space with constant moduli should satisfy certain
numerical conditions, as was shown by Katsura and U eno  [7 ]. Moreover, there
is a deep connection with the theory of branched coverings of complex manifolds
which was developed by Namba.

In [13], Namba obtained the necessary and sufficient conditions for the ex-
istence of finite abelian coverings of P . It is alm ost equivalent to  the one ob-
tained by Katsura and U en o  [7 ]. Combining these two results, we see that an
algebraic elliptic fiber space over P n with constant moduli which has multiple fibers
along hyperplanes can be constructed globally by taking finite abelian coverings of

.

Our result is the following.

Theorem C .  Let be a sequence of natural numbers defined as follows:
.-2 (n 2 +3n+ 3).

Then for every positive integer n, there exists an algebraic elliptic .fiber space Z ( n + " - - *
P n over P n which satisfies the following conditions.
(1) x(Z (n+i) )=n.
(2) d .  i s  th e  best possible num ber of  the litak a f ibration of  Z o'+' ) ,  t h a t  is,
dim I m K ,I= 0  if  m =4-1, and the m -th pluricanonical m apping I I gives the
Iitaka fibration f or all m >d n .

Examples. We write down the first few terms of {c/ } .

n 1 2 3 4 5 6

d. 14 26 42 62 86 114

Finally, let us explain briefly the contents of our paper.
In § 1 , we shall review the canonical bundle formula of elliptic fiber spaces

due to T. Fujita  [5]. In §2, we shall consider pluricanonical mappings of elliptic
threefolds when the Kodaira dimension of the base space is greater than or equal to O.
In §3, we shall consider the structure of algebraic elliptic fiber spaces with constant
moduli. In §4, we shall prove Main theorem B. In § 5, we shall consider generaliz-
ed logarithmic transformations along the divisors which have only normal crossings
and reprove Theorem B in a different w ay. In  § 6 , as an application of Theorem
5.1, we shall construct examples of elliptic fiber spaces with x=0.

The author wishes to express his sincere thanks to Professor K. Ueno for useful
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advices and to Professor M. Kato, who suggested to me another proof of Theorem B.

Notation and convention. If  X  is  a com pact complex manifold, we use the
following notation.
x (X ): the Kodaira dimension of X
K x : the canonical bundle of X
P„,(X )= dimc  H°(X , 0(mK x ))
hP.q(X)=dim e  H q (X , ,(4)
q(X )=dim c  .111(X , 0,)
e„,=exp (27r N/E .-flm)
dOx : the subsheaf of 12;,- whose elements are d-closed.

For an integer n, [n] denotes the greatest integer that does not exceed n.

§ 1. Preliminaries.

B y a n  elliptic fiber space f: V—> W, we mean that f  is  a  proper surjective
morphism of a complex manifold V to a complex manifold W, where each fiber is
connected and the general fibers are non-singular elliptic curves.

Put := { w W J f  is not smooth over f - 1 (w)} and let F  be a n  irreducible
component of E with dim F=dim W -1. For a general point x of F, there exists a
curve Z  in  W passing through x  such that Z  meets F  transversally and f 1(Z ) is
a  non-singular elliptic surface over Z.

Furthermore we assume that f - 1 (Z)—*Z is relatively m inim al. Then f - 1 (Z ) has
a  singular fiber at x and the type of the singular fiber in Kodaira [12] is indepen-
dent of the choice of Z  and x. Hence we can define it to be the type of the singular
fibers off along F .  In particular, i f f - 1 (Z ) has multiple fibers of multiplicity m at x,
we say that V has multiple fibers of multiplicity m along F.

Now, for each type of singular fibers we can define a number a i as follows.

Type m1 b It 11 II* III Ill* IV IV*

a 1— ni - 1 1/2 1/6 5/6 1/4 3/4 1/3 2/3

For an elliptic threefold, the following theorem is fundamental.

Theorem 1.1. (Ueno [14], Corollary (1.10)). Let f: V —>W be an elliptic three-
fold. T hen there ex ists a bimerornorphically equivalent model f: i>—>T4T of f which
satisfies the following conditions.
( * )  L e t  F  be  an  irreducible component of  the discrim inant locus E  of  f  with

dim  F= dim  -  1. F o r a  general point x  of  F, there ex ists an  analytic arc Z
in m eeting F transversally and passing through x  such that the elliptic sur-
f ac e  j - 1 (Z)—>Z is relatively minimal.

Thanks to Theorem 1.1, our definition of the type of the singular fibers are well-
defined.
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Now, we recall the canonical bundle formula due to T. Fujita [5].

Theorem 1 .2 .  (T . Fujita[5]). Let f : V -->W  be an elliptic threefold such that the
J-invariant J: W -->1" is holom orphic. Let m  be a positive integer such that k= 12m
is divisible by  the multiplicities of  all the components D i o f  the discriminant locus E
o f f . T hen

cor—fk(coiVkOpepi(n1)0100w[E kaiDi])OCVE —  X]

for some effective divisor E, X  on V  such that
1) codimf(X)>_2.
2) f * Ov = f 4,0 1,(m E) f or any positive integer m.

§2. Pluricanonical mappings of elliptic threefolds.

In this section, we consider pluricanonical mappings of elliptic threefolds only
when the Kodaira dimension of the base space is greater than or equal to 1.

Proposition 2.1. (cf. Fujita [5], Ueno [14]). Let f: V—>W  be an elliptic three-
f o ld .  A ssume that the discrim inant locus E  o f  f  are  div isors w ith only  normal
crossings and the condition (*) in T heorem  1.1 is satisfied. T h e n  f o r an  arbitrary
even positive integer m > 2 , w e have: f * ( m K w + F ) + E — G  f o r  some effective
div isor f  on W  and E, G on V  such that
(1) frOv(E)=Ow
(2) codim f ( G ) .  2.
( 3 )  L et D i  b e  an irreducible component of  E  with dim D i  =dim W - 1 .  Then we

have 1 =E [m ad D i ±(p17
1 --FqP2 ) , w h e re  i 's  are effective divisors on W  such

that 3171 ---J*Op1(1) and 217
2 ----,J*O p 1(1) and p, q are positive integers such that

m =4p±6q.

Remark 2.2. If V -->W is an elliptic bundle over a Zariski open set of  Wand
has only multiple singular fibers, the above result holds for all positive integer m.

Pro o f . We follow the idea of Fujita [5] and Ueno [14]. Let T: W ° = W \— .
H =  E CI 1m (r) >O} be the period mapping associated to a holomorphic 1-form.
T gives a single-valued holomorphic mapping T: on the universal covering
W ° of W ° . L e t  0 :  n-1( W ° )-->SL(2, Z) be a monodromy representation. 7r1( W °) can
be considered as a covering transformation group of W° and we have

T (rx )  = 0 (r)T (x )  for ev e ry  r E r i ( W °) .

The semi-direct product G=ir 1( W ° ) V Z 2 acts on W ° x C  in  a  canonical way such
that the quotient space M =  X  C j

 G
 is non-singular and f ° =f  Iw o: f - '( W ° )--> W°

can be obtained from M—>W° by repatching a fiber coordinate. (cf. [15])

Now, let Gk (z )= E/ 1 be the Eisenstein series of index k .  Then G2 (z)„,,„ z  0 2 k

(resp. 3(z)) is the modular form of weight 4 (resp. 6) on the upper half plane with
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respect to  SL (2, Z ) and has a zero of order 1 a t z=exp (27r\ -1/3). (resp.
z =  / : J . )  And the elliptic modular function j(z ) can be written as

j(z) 1728e/4 , g-27  g ,, g , = 60G2 a n d  g, = 140G3 .

Given an arbitrary even positive integer m >2, there exist positive integers p, q such
that m = 4p+ 6q  and F(z )=0z )Gg(z ) is the modular form of weight m  on the
upper half plane with respect to SL(2, Z).

Then for any co E H ° ( W , Kr"), put E =F(T(w))f*o.)0(dC) tm , where C is the fiber
coordinate of f °  : V° --> W ° . E  is  n,(W °)-invariant and gives an element of
H°(V °, K (P ) .  Set E°= {xG  E E is non-singular at x and there exists a curve Z
in W passing through x and meeting E transversally such that an elliptic surface
f - 1 (Z)—> Z is  non-singular.}. P u t W ' W ° U E ° . Clearly we have codim
(W\

By Ueno [14], Theorem (2.3), ft" can be extended holomorphically to an element
of r ( f - i( r ) ,  K m ) .  A n d  by writing down the zeros of H  explicitly, we have the
following isomorphism on W':

f * (KV'n) K r n  0 0 ( T )  ,  F = E kna1]Di +(pp 1d-q17
2) , — (* * )

j= 1

where Vi (i=1, 2) are effective divisors on W such that 3171- - J * 0 p 1(1) and 2172 ---
P i ( l )  and p and q are positive integers such that m=4p-F6g.

Since codim (W \W ')>2, the above isomorphism can be extended to a  homo-
morphism on W.
Let E be an effective divisor on V such that

K rn 0 0 v (— E)= {Image (f* f* KTP's --> .

Then f*A JO'n — > f*(K POO,(F)) induces an injective homomorphism K i9m0
O(—E)--> f * ( K ® m  0 O w ( F ) ) .  Therefore we have Kr" 0  Ov (E—G)---f*(10'n
O ( r) )  for an effective divisor G on V and this implies the claim . And (1) and (2)
is clear from our construction. q.e.d.

Proof of remark 2 .2 .  In this case, we can show (**) directly without using the
modular forms, so our proof works for all positive integer m.

Proposition 2 .3 .  Let f: X --*Y  be an elliptic threefold. T hen w e have P (X )>
P(Y ) f or an arbitrary positive even positive integer m > 2 , except the case where
X  is bimeromorphic to an elliptic threefold which is a fiber bundle with the struc-
ture group Z/2, Z/3, Z/4 or ZI6 over a Zariski open set of the base space.

P ro o f  By Hironaka's flattening theorem and resolution of singularities, we
have the following commutative diagram.

V M  X

12 g i f
g

S  — 9. Y
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1) V , T and S are non-singular.
2) It, y, 475 and 7r are bimeromorphic morphism and g is flat.
3) The T-invariant T:T—>P1 is a morphism.
4) The discriminant locus E=E Di of h are divisors with normal crossings.

Furthermore we may assume that the condition (*) in Theorem 1.1 is satisfied for
h: V-->T.

Then it follows from Proposition 2.1 that for an arbitrary even positive integer
m, we have mKv --,11*(mKT -FT)-FE—G for some effective divisor r  on T and E, G
on V .  Since g is flat, G is (vo,u)-exceptional. Therefore we have an isomorphism
H°(V , 0(mKv ))-- -.H°(V , 0(mK v +G))

H°(T, 0(mKT -F r).
This implie sthat P„,(X )>P„,(Y ) for any even positive integer m >2.

Remark 2.4. If f: X—>Y  is an elliptic threefold with constant moduli which
has only multiple singular fibers, we have P,„(X )>P,n(Y ) for every positive integer
m.

Proposition 2.5 (The canonical bundle form ula of elliptic threefolds). Let f :
be an elliptic threefold over an algebraic surface W . A ssume that the discri-

minant locus E of fare divisors with only normal crossings and the condition (*) in
theorem 1.1 is satisfied. T h e n  the canonical bundle of  V can be written as follows:

Icy  f * ( K w +L )+M — G

w here 1) L  is a line bundle on W.
2) M  is an effective divisor on V such that

M  f * ( E ,
Q

w here V  has m ultiple f ibers of  multiplicity m i along  th e  irreducible
component D i o f  E  and  Ei i s  a n  effective divisor o n  V  such that
f(supp (E1)) is a point.

3) G is an effective divisor on V such that f(G) is a point.

Proo f . Since f * K v i w  is coherent, it follows from Serre's theorem that there
exists a  very ample divisor H  on W such that H ° ( W, ficKv i w (H ) )* O . Hence if
we put 17 = f*H, we have H ° (V, Kw ( Ji)  * 0  and the complete linear system
Kv i w (F1)1 contains an effective divisor F =  JF 1 .

Let C be ageneral hyperplane section of W and put V (C ):=f - '( C ) .  Then
V(C) is a non-singular elliptic surface over C and is relatively m inim al. Clearly we
have Kw  Iw vcc) K v (c )/ c . Hence by the canonical bundle formula of elliptic
surfaces (cf. [12]), each f (F1)  is a  curve or a point. The same argument as in
Kodaira [12], Theorem (12.1) can be applied to our situation and we can easily see
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that there exists a line bundle L on W such that f * Kv i w -=-0(L) except a finite number
of points on W.

By Krull's theorem, we can extend this to a homomorphism f * Kv i ,--->a(L) on
W . Let M  be an effective divisor on V such that

Kv i ,  O v (— M )  {Image ( f * f* Kw w  — >  K i)} .

Then the homomorphism f * f * Kw w —> f*O(L) induces an injective homomorphism
K t, I w O 0 v (—M)—>f*O(L). Hence there exists an effective divisor G on V such that

Kv f_—_-f*(Kw +L)+M— G

Again by the canonical bundle formula of Kodaira, M can be expressed as

M  f * (  E 1 D ,) , in codimension one on W.
Q M i

Therefore by applying the same argument as above, we obtain (2). q.e.d.

Proposition 2 .6 .  Let f: X—>Y be an elliptic threefold over an algebraic surface
Y  and assume that x(X)= 2. Then there ex ists a positive integer m, (which may
depend on X ) such that the pluricanonical mapping b I mK X I gives the litaka fibration
f or all m>m o.

Pro o f . By Hironaka's flattening theorem and Theorem 1.1, we may assume
that f: X—> Y satisfies the same conditions as in the proof of proposition 2.3. Since
x(X)=2, there exist positive numbers a, f i and positive integers p„, d such that the
following inequalities hold for any integer p a p 2  <  h °(X,pdK,)<I3p2 and

gives the Iitaka fibration for all p > p 0 .  B y  Proposition 2.5, we have
f* (K y +L)+ M—G,

M  f * (  E m i 1 D1) +E 1—E2, and codim f(supp (E1)) > 2, codim f(supp ( G ) )  2.
Q M i

Fix a positive integer r  such that 1< r< d  and for any positive integer p, put
a:=pd—r. Then we have

H °(X, °(X, f*(a(Ky + E [

a (m i 1 )
]  1)1))

--=H °(Y , a(Ky + L )+  E ra (m i- 1 ) 1 D i )L m i  J

H °(X, (a+r)K,)--_-H ° (Y ,(a+r)(K y + L )+  E F a + r ) ( n i i -
1) 1A) .L "ni J

1 )< r± 1  ,S
a

ince  r a + r )  (n ii-
1 ) 1  r  a ( n i i  _ (  + r ) ( m i - 1 )  (  a ( n i i —  1 )

s.
miJ  L  m im i mi

we have the following inclusions.

t M i



Elliptic fiber spaces

H ° (X , aKx ) 1--1° (Y , (a+r)(K y +L )+ E r a + r ) ( "1` 1 ) ]D im,

669

Let H be a very ample line bundle on Y such that 17:=r(K y +L )± r E Di d-H is

also very am ple. Then we have H °(Y, 0(F — 17))c- H°(X , aK,), where we put

11 — ( a + r ) ( K y + L ) +
a + r ) ( m i- 1 ) 1D,

mi

There is an exact sequence

0 —> H°(Y , 0(T-17))— > H ° (Y , 0 (r )),  ir (F I, 0(r)001,-) ,

where Fr also denotes a general member of the complete linear system I B I. Since
0 (r )): -...> H°(X, H°(X, pdKx ), we have al,' _< dim H ° (Y , 0(F))

13p2 for all p >
On the other hand, there is a positive integer r  such that dim 11°A  0 (r )0

071)<rp by the consideration of the dimension.
Therefore there exists a positive integer k(r) such that for all p>k (r), we have

H° (Y, 0(F — 17))* 0  an d  hence H° (X , al( ,) *  0 ,  where a  p d —  r. Since
H°(X ,(k(r)d— r)K ,)*0 for 0 <r<d , we have

H ° (X, pdKx )c-, H ° (X ,((p+k(r))d— r))K x ) .

So if we put m0 := Max {(po + k(r))d—r} , 0 1
Xm K  !gives the litaka fibration for

0<,<dall m >m o . q.e.d

Theorem 2 .7 .  Let f: X -->S be an elliptic threefold over a surface S. Assume
that x (X )=2 and S  is a surface of general type. Then the pluricanonical mapping
Oindrz i associated to the complete linear system Im K ,I gives the litaka fibration for
all even positive integer m > 6.

Remark 2 . 8 .  If X is an elliptic threefold with constant moduli which has only
multiple singular fibers, the theorem holds for all m> 5.

Proof of 2 .7 .  Let M-->S be a flattening of f  and let V--*-T be a non-singular
model of M .  We may assume that V—>T satisfies the same conditions as in the
proof of Proposition 2.3.

Then it follows from Proposition 2.1 that for an even positive integer m>2, we
have mKv — f*(mKT +F)+E— G  for some effective divisor r  on T and E, G on V.
By the same reason as in the proof of Proposition 2.3, we have an isomorphism
H°(V , 0(mK v ))--_-H°(T, 0(mK r +F)).

If Yis a minimal surface of general type, then the pluricanoical mapping
gives a birational morphism for all m > 5.

Therefore 0 1.„ 1 l gives the Iitaka fibration for all even integer m> 6.
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Theorem 2.9. L et T  be a simple abelian surface and let f: X—>T be an elliptic
threefold over T with constant moduli which has only multiple singular fibers. Assume
that x (X )=2 . Then we have Pm(X )>1 f or all m > 10.

Pro o f . From Remark 2.4, we have Pg (X)— 1 and P„,,(X)> P„,(Y ) for all m>2.
So we may assume that K , is effective. Take a  sufficiently fine open covering
{U,]-, of X and K , is locally defined by Itr,=0. Then we can take a double cover-
ing I  of X  defined by -.2=U {C1=1g}, where {C,} is a fiber coordinate of the

7E
canonical bundle Kx . Take the normalization -Y * of X . Clearly X*—>X is a two-
sheeted unramified covering of X .  Take the Stein factorization of it*--->T.

From our construction, it is clear that is a double covering of T ramified
only along f(supp (KO) and ei" is irreducible. By taking a suitable bimeromorphic
model of 2*-->t, we may assume that "1" is non-singular. Because T is a simple
abelian surface, is a surface of general typ e . Clearly we have x( -Y*)>7 (X)=2.
Therefore it follows from Proposition 2.3 that the pluricanonical mapping 0 1. , 1 *
gives the Iitaka fibration for all m > 5. In particular we have P„,(Y*)> 4 for all
m> 5.

Now, 7r: 2*-->X is an unramified double covering of X  with the Galois group
G .  Let L  be the line bundle associated to the non-trivial character on G .  Then
we have Lo2L--_--0, and 7r* 0 1 .=0 ,0 0 ,( L ) .

Note that 7r* (0(mKys))-.-- -0(mKx )(90(mK x +L ).
By considering the Leray's spectral sequence, we have

0(m K 2.))=> H ° (X , 0(mK1 ))EB411°(X, 0(mK1 ±L )).

Thus for all m > 5, we have h° (X, 0(rnK i ))> 2  or h°(X, ()(rnKx + L))> 2. Noting
that and Kx  is effective, we have Pm ( X )  2 for all m> 10. q.e.d.

Proposition 2 .1 0 . Let f: X -->S be an  elliptic threefold over an  elliptic surface
175 : S—>C such that x (X )=2 and x (S )=1 . Let E c  S  be a discriminant locus o f f
Then S is algebraic and there exists an irreducible component D, of E with 95(4 )=C .

P ro o f  By taking a suitable bimeromorphic model off: X—>S, we may assume
that
1) E  have only normal crossings.
2) The J-invariant J: S-0.1:4  is holomorphic.

By the canonical bundle formula of Fujita [5], we have

*) K r  f 0 .1 *0  p i(m ))0 kIty 17 ) 0 0 x ( V— W )  where
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1) codim f(W )_2 .
2) f * Ox (pV)----=-0, for all p 1,
and k=12m is a positive integer which is a multiple of all the multiplicities of the
irreducible component of E.

Let it: S—>5." be a contraction of exceptional curves of the first kind in fibers.
Then Ø': S'—>C is relatively minimal and we have

Ks, = 0' * (1Cc — f)±  E  (m1-1)[E1] riV * [Pil

and
K s  -=‘,u*Ks ,±  E e 1 ,

where e;  is an exceptional curve.
Moreover we may assume that k =12 m is divisible by all mi 's. Then we have

0*(k(K c — f ) ±  E -

k  
(m1-1 )P 1) +k E e .

mi

From (*) and (**), if we put g=0c,f, we have

g*(k(Kc — f)± E  k
 i (mi -1 )P i) 0 f*(J*O p i(m)00[1c e 1]

®Os[ E kityY])00x(V— W) .
Y

Hence, if there exists no irreducible component of E which is mapped surjectively
onto C by 0, we have x(X)<1 and this is a contradiction.

Theorem 2.11. L et f: X—D.Y be a n  elliptic threefold ov er Y . A ssum e that
tc(X)=2 and K (Y )= 1 . Then the  pluricanonical m apping °  I m l f  x i giv es the litaka
fibration f o r all even integer m> 16.

Remark 2 .1 2 . If X is  an elliptic threefold with constant moduli which has
only multiple singular fibers, the theorem holds for all m>15.

Pro o f . We use the same notation as in Proposition 2.1. By Hironaka's flat-
tening theorem and resolution of singularities, we may assume that
1) The discriminant locus D— E D i are divisors which have only normal cross-

ings.
2) The J-invariant J: Y -4 "' is a morphism.
3) The condition (*) in Theorem 1.1 is satisfied.
4) There is an isomorphism H ° (X, 0(mKx ))- -= H °(Y, 0(mKy + r ) )  for an even

integer m>2, where 1 = E [mtr1]D1+(p17
1±q17

2).

Y has the structure of an elliptic surface 0 : Y--> C and let p: Y-0. Y' be the
contraction of the exceptional curves of the first kind in fibers. T h en  q5' : Y'—>C
is relatively minimal and we have
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0'*(K c - f ) d - ( q 1-1 )[E 1], 1 5 '* [p ]= [q i E i ]

and
K y =,a*K y ,+ E  e1 ,

where e;  is an exceptional curve. Hence we have

Ky *(Kc  - f)H-- E e1 ,

where
q5*[p1] =[q i a*E i ].

By Proposition 2.10, 0: Y--->C is an algebraic elliptic surface and there exists
some irreducible component of the discriminant locus which is mapped surjectively
onto C b y  0 . Let D 1 , D,, •••, D , (resp. Dp + 1 , •••, Dx )  be horizontal with respect to
0. (resp. be contained in fibers of 0.)

By Katsura and Ueno [7], the pluricanonical mapping 0 1,„K r i  gives the unique

structure of the elliptic surface for every m > 14. If we put r=0 (m K y + E [mai ]D i )

there is an injection Ir(Y, ar))--d-r(x, o(niv x )). Hence it suffices to show that
Or seperates points on the general fiber f  of 0 : Y -*C . S ince r • f  >0, the restric-
tion O(f)®°f  is very ample for every m >14.

So it suffices to show that the restriction map

R : H ° (Y , 0(r))-> e(r)o o f )  is surjective for every m>14.

We have the following exact sequence:

0 H ° ( Y ,  o(r - f ))-> fro', 0 (r)) . H °(f , an® o
-> H i (Y , O(1'- f ))---> H ° (Y , .0(r)) 0 .

We will show that 111(Y , ar— f))= 0 . W e need  the following lemma.

Lemma 2.13 (Kodaira). L et V be a Kahler surface and let C be a curve composed
of m connected components o n  V . T hen the integer k=h 1(K ,± C )-m +1  is  eq u al
to the number of lineary independent holomorphic 1-forms on V  which vanishes on C.

We h a v e  HA Y , 0(r - f ))- -= 11 1(Y , K y +((m -1)K y -  f )d -  J  [mai ]D i )) .

From Katsura and  Ueno [7], we have dim I (m-1)Ky -  f 1 > 0  for all m>15.
A nd there is no holomorphic 1-form on Y which vanishes on some Di (1 < i< p),
since D i  is  a horizontal component of 0 : Hence Lemma 2.13 implies the
claim.

Hence for every even integer m>16, gives the Iitaka fibration. q .e .d .

§ 1 .  The structure of algebraic elliptic fiber spaces.

In this section, we shall consider an algebraic elliptic fiber space with constant
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moduli which has only multiple singular fibers. There is great difference between
algebraic elliptic fiber spaces and analytic elliptic fiber spaces. Katsura and Ueno
[7] showed that the multiplicities of the multiple fibers of an algebraic elliptic surface
satisfy certain numerical conditions.

On the other hand, there is a deep connection between algebraic elliptic fiber
spaces and the theory of branched coverings of complex manifolds developed by
Namba [13].

First, we quote the following important theorems.

Theorem 3.1 (Katsura and Ueno [7]). Let f: S -->P 1 be an algebraic elliptic su-
rface of type (m1, m2 , •••, m,).

( * )  Let in be the least common multiple of m1 , rn2 , •••, mx .

For a prime number q, let a be the m ax im al integer such that .7  divides m .  Then
there exists at least two indices i and j  such that q  divides both mi and m i . (W e  c all
(* ) condition (U ) . )

We need the following definition.

Definition 3.2 (c.f. Namba [13]). Let M  (resp. X ) be an n-dimensional complex
manifold. (resp. n-dimensional normal complex space.) A Galois covering f: X•->M
which branches at the divisor D is said to be maximal if for any covering f ' :
which branches at at m ost D , there is a  morphism g  of X  onto X ' such that
f =_f '0g.

Theorem 3.3 (Namba [13]). Let p i  (l <  j <2 ) be distinct irreducible hypersur-
faces of degree d  of P n  . Let m  (1 < j  2 )  be positive integers and put D=m1D1+
m2D2+ —  - 0 11),D x .  Then there is a f inite abelian covering of  P n  which branches at
it  if and only if the following condition is satisfied.

Condition (N )
V

m ;  div ides m
i m  • \

(d3 , /Ili ) (4  m 1) ( d 1 ,  m 3) '( d „ ,  m ) )/

f o r l <  j where (d i , in.') denotes the greatest common divisor of  d i  and mi  and

•• • , ai , •••, a,> denotes the least common multiple of  a1 ,  a2 , • ••, a, ex cept ai .
(If n=1, put d f or all l <  j

Moreover, if n >2  and D i 's ( l <  j < 2 ) are smooth and crossing normally, such
a  f in ite  abelian covering 7r: Pn-->Pn is m ax im al and the G alois group G „  is
isomorphic to Z r 1 d -Zr 2 + • •• +Zr x ,  where d1r 1 ± d 2r 2 +•••+d x r x =  0  an d  mi r =  0
f o r 1< j< 2 .

Combining these two results, we obtain the following proposition.

Proposition 3.4. L et f :  S - 4:1 1 h e  an  elliptic surface w ith constant moduli
w hich has only  m ultiple singular f ibers. Put
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S  = L p i (m „ ag h  (m 2 , a2) • • • Lpx (mx , ax ) (13 1 x E) .

(Here we use the notation of Kodaira [11].) T hen the follow ing conditions are equi-
valent.
(1) S  is projective.
(2) S  is Kiihler.

A
(3) E ai =  O.

(4) T here ex ists a  f inite abelian covering r: o f  P I- w h ich  branches at

D = E m i p i . Let G be the Galois group of r and let X  be the normalization of

the pull-back  S xC-->C. T hen w e hav e  X =(P'x E )", where n E I / 1(C , 0(E)) is of

finite order, and the quotient space X IG is isomorphic to S . (Here E denotes a smooth
elliptic curve.)

Pro o f . (1)4—,(2) follows from Kodaira [11].
(1)<--)(3) follows from Katsura and Ueno [7]; appendix.
(4)—, .(1) is clear, so we prove that (3) implies (4).
As is shown in Katsura and Ueno [7], (3) implies condition (U) in Theorem 3.1.

On the other hand, one can see easily that condition (U) is equivalent to the
following condition.

V
( * )  in ;  divides <m 1, •••, m 1 , •••, m , )  f o r  1 < 2.

Therefore if we put d ; =1  for all j  in Theorem 3.3, there exists a finite abelian cover-
),

ing which branches at D = E ma);  and the claim follows. q.e.d.

Remark 3 .5 .  Theorem 3.1 and Proposition 3.4 are still true if we replace P I

by any compact smooth curve C .  Here we give another proof.

Pro o f . Put S =L p i (m i , a,). • • Lp x (mx , ax ) (C x E) and let m  be the least common
multiple of m i 's . (1 < i < 2 ) .  The multiplication map in: E-->E induces a  finite
surjective morphism : S  Y ,  where i s  an  elliptic bundle over C .  Hence
S  is  Kdhler i f  a n d  only i f  Y  is  M ille r . I f  we exp ress  Y  as  Y  = (C x E)' ,

A
E  111(C , 0(E )), we can easily see that th e  Chern class o f  7/ is c(77)=m ai .

1=1

By Kodaira [11], Y is Kdhler if and only if c(72)=0. Hence the claim follows.

Now, we give a generalization of Proposition 3.4.

Theorem 3 .6 .  L e t  H  ( 1 <j<2 )  be distinct hyperplanes of  P" (n>2) w hich
are crossing normally and let f: X — *P" (n>2) be an elliptic fiber space over P" with
constant moduli which has multiple fibers of multiplicity m ;  along each H . (l< j <2)

A
and is a principal f iber bundle over P"\UH ;  w ith  the structure group E, where E is

a smooth elliptic curve. Then the following conditions are equivalent.
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(1) X is Moishezon.
(2) X is in the class C.
(3) t(X )=  1, where t(X ) denotes the Albanese dimension of X .
(4) There ex ists a f in ite  abelian covering 7r: Y -  P "  o f  P "  which branches at

D = E m .H .. L et G be  the Galois group of  7r: Y ->P ". Then the pull-back

Xx Y--> Y of  7C  is bimeromorphic to  Y x E  and the quotient space Yx EIG is
P"

bimerornorphic to X.

P ro o f  (1)4-q2) is well-known. (c.f. Fujiki [1])
(2)-> (4)

Take (n -1 ) general hyperplane sections of P "  and restrict the  elliptic fiber
space f: X ->P " over the intersection of them. Then we get an  elliptic surface S
over P 1 of type (m,, n72 , • • • , mx ). Because X is in the class C , S  is also in the class
C, so is K dhle r. Therefore by Theorem 3.1, (m„ ii72 , • •• , m„) satisfies condition (U).

The same arguments as in Proposition 3.4 can be applied to our situation, so

there exists a finite abelian covering 7r: Y-->P" of P " which branches at D = E  m i l l ;;=1
a n d  th e  pull-back X x Y-> Y  i s  bimeromorphic to  (Yx Y , where 72 E

P"
.f11( Y , 0 (E )) is  o f  finite order. There exists a n  &tale cover Z---> Y  such that
(Yx x Z is isomorphic to Z x E .  Since 7r: Y ->P" (n>2) is a maximal covering,

Y

we have Z - -=  Y and 72=0 in Y, 0 (E ) ) .  So the claim follows.
(4)->(3) is trivial.
(3)-> (1) Since t(X )=1, Alb (X ) is  a  smooth elliptic curve and  ax : X->Alb (X )
(the  Albanese map o f  X )  i s  surjective and has connected fibers. Then the
morphism 0 = (f  a i ): X-->P 2 x Alb (X ) is surjective, hence X is Moishezon. q.e.d.

§4. Proof of main theorem B.

The following proposition is due to M. Kato.

Proposition 4.1 (M . K a to ) . For an arbitrary  integer 2> 2 , le t (m,, m2 , •••, nix)
be a  A-tuple of positive integers with mi >2 f or all i, and assum e that any  tw o of
them are relatively prim e.— (*) Then there exists an elliptic fiber space f: X-0.13 x - 1

over Px - 1  w ith constant moduli which satisfies the following conditions.
(1) X has multiple fibers of  multiplicity m; along {C i =0)- f o r each i, and is trivial

over Px - 1 \ U {C=O} , where (C,: •-•: CO is the homogeneous coordinate of  Px - 1 .i=1
(2) F: X-4.Px - 1  is f lat.

Remark 4.2. X  is  not in  the  class C in  the  sense of F u jik i [1 ]. That is , X
cannot be bimeromorphic to any compact Kahler manifold. (c.f. §3).
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Remark 4.1. X is a Hopf manifold. Conversely, any elliptic fiber space which
satisfies (1) and (2) is a submanifold of a Hopf manifold.

Pro o f . Let us consider an analytic automorphism of C'\{0} defined by

g: C x \{ 0 }  - >  C x \  { 0 }
111

(z 1,• • • ,z i , •••, z x )i—* (pm/mi. z i , • • • , p" • • • p rn in ik

where we fix a constant p e C (0< I p l <1 )  and put m = •••m .  Put X =
0 \{ 0 } 1 <g >. The automorphism g  acts on Cx\ N I free ly  and properly discon-
tinuously, hence X  is smooth. There is a natural holomorphic map

f : X  - - 4 *  p x - - 1

(Z i , Z2 , • • • , -->  (Z T I: Z r 2 : • • • : Zkn A) ,

w here  by  (z 1 , z2 , •••, z x )  w e denote the point of X  corresponding to a point
(z„ z 2 , • • • , E Ck  {O} .

Because any two of m i 's are relatively prime, the morphism f  gives an algebraic
reduction of X  and each f iber of f  is connected. Thus X  is an elliptic fiber space
over P" which satisfies the desired properties. q . e . d .

Proof of remark 4 .3 .  Assume that an elliptic fiber space f : X —>P ' 1 satisfies
the conditions (1) and (2). Because any two of mi 's are relatively prime, it follows
from Katsura and Ueno [7]; appendix that X  is not in the class C and h°(X , d0 )= 0 .
(cf. theorem 3.5) First, we show that H 1(X, O x ) L - - ) . - C .  Since 1 0 .40x:-;
Ox - i ,  it follows easily from the Leray spectral sequence that q ( X ) = 1 .  By the exact
sequence 0—).C--* Ox --* d0--*- 0, we have 0—> d 0 ) —> H 1(X , C)—>H 1(X ,  x ),
and b1( X ) < 1 .  And by Leray's spectral sequence

EiPg = f*C)=> HP + g(X , C) ,

we have an exact sequence

0 C)--> H ° (X , R i f * C) —> R A P ' ,  .

Since and b2( P " ) = 1 ,  we have bI (X )> I. Therefore we have b1(X )=1,
and 11'(X , H'(X , C.

Now, we follow the arguments of K ato  [9 ]. B y  the same method as in [9],
Lemma 19, 20, we can show that f *: 11 2(P', C )--> 1 1 2(X , C ) is a zero mapping
and f*Opk-i(1) e Pic (X ) is a f lat  line bundle. Then from  K ato's theorem  [9],
X  is a submanifold of a Hopf manifold. q.e.d.

Remark 4.4. If mi ' s  do not satisfy  (*), the fiber of f  is not connected.
To prove Theorem B, we need the following lemma.
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Lemma 4 .5 .  L et {a} „=1.2 ,... be a sequence of natural numbers defined as follows.

a, — 2, a„ ,, =  a i a,••• a n +1 .

A nd let fb}„= 1.2 . ... be a sequence of  natural numbers defined as follows.

b„  =  (n+ 1 )(a n+ 3 - 1 ) + 2  .

Then for every positive integer n , we have

and
 [k(ai - _ o  >0

ai  J
f orai!  k b„ ,

k—brk(ai -1)1 =  -— k (n + 1 »    U i f  k = b - 1 .
L ai

(Here [ ] denotes the Gauss symbol.)

P ro o f  First, we need the following sublemma.

Sublemma 4.6.
p i

—1
1 = 1  a ia 1a2

- • afr

(It is easy to prove by induction on p , so we omit the proof.) Now, we follow the
method of Iitaka [6]. Because

rk(ai— 1)1 k (a 1-1 ) a i -1 ( l c  o ai — 1
L a ia i ai ai

we have
rk( ai —11— ] > ( k - 1 ) ' i2  —  (k  1 )n + 2

1=1
( I  

1- a ii = 1 a ii = 1  a i )

By Sublemma 4.6, we have the following inequality.

[ k ( a i -1 1)] . .( k _ 0 ( n + 1 +

ay;  a n + 2

So it suffices to determine the smallest integer m,, such that we have

(k -1 ) (n + 1 +  1  ) > k(n+1) for all k> rn o .
a1a2•••atz+2

The inequality (**) holds if and only if

k> (n+ 1) (a1ch— an+2)± 1 = (n+1) (a .+ 3-1)+ 1  b „ - 1  .

Therefore if  k> b„, we have — k(n+1)+ n 4 [ k ( a i 1 1 >0.
a i

(*)

Next, we consider the case when k =b - 1. I f  we put A = aia2•••an+2, we have
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k = (n+ 1 )A + 1 . Then for 1 < i< n+ 2 , we have

rk(ai -1)1 [((n+1)A +1) (a i -1 ) ]
L a ia i

[ ( n + i )  A  ( a .  o + ai - 11
a ia i

(n+ 1 )—
A

(a 1- 1 ) ,
a;

since __
A  

(1 < i< n+ 2 ) is a positive integer. So we have the following equality.
a i

"" [k(a i -1 ) ] _ ( +1)A n i - 1

a i• = 1 a i

=  (n+ 1)4n+ 2—

= (n+1)A ((n+1+—A
1 )

= (n+ 1)(A(n +1)+ 1)
=  (n+ l)k q.e.d.

Now, we are ready to prove Theorem B.

Proof of Theorem B .  Let and {b„}„=,,,,... be sequences of natural
numbers defined as in Lemma 4.5. Take (a 1, a2 , •••, a n + ,), a (n+2)—tuple of posi-
tive integers. From the construction of any two of an 's are relatively
prim e. Therefore it follows from proposition (4.1) that there exists an elliptic fiber
space Z —+ P '  over Pn+1 which satisfies the following conditions.
( 1 )  Z has multiple fibers of multiplicity a i along {C1=0)- for each i (1 < i< n+ 2 ).

(Here
n+2

(2) Z  is trivial over P n + 1 \ U {Ci=0}.

(3) Z -- P " '  is flat.
Now, take a generic hyperplane section H of P a + 1  and restrict the elliptic fiber

space Z — ) P ' '  over H .  Put X ( n+1 ) := Z  I H. B y  Bertini's theorem X ( n+i)  is smooth
and X ( n+ 1 11(=P") is an elliptic fiber space over P " which satisfies the following
conditions.
(1) X ( n+l) has multiple fibers of multiplicity a i along each Hi  (1  < i< n± 2), where

Hi 's are (n+2) hyperplanes on P " which are in a general position.

(2) f :  X  (n+') --*P "  is trivial over P"\
n + 2

U H i .
( 3 )  f :  X ( n+' ) — ).P" is flat.

The canonical bundle of X ( "+i ) is as follows.

a i - 1K x (.+1) f * ( Ø (_n_1)+ 23 Hi)
1=1 a i

(C1: C2: C.+2) denotes the homogeneous coordinate of Pn+'.)
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Because
n+ 2 a ._ i 1 >0
i=i a;a , a , • • • a „ , ,

from Sublemma 4.6, we have Ic(X (3 +1))=n.
And for any positive integer m, we have

ImK x cn-Fol =  f* (e)p 2 [
m ( a i - 1 )

.(— m (k + 1 ))+ E  P i )  +  (fixed components) ,
i=1 ai

where [ ] denotes the Gauss symbol.
So w e have dim I m K x ( , i )  I >0  (resp . =0) if and only if m  satisfies the the

following inequality. (resp. equality.)

(*) — m (nd-1 )+ "' [ m ( a i  1 1 > 0
a;

Therefore from Lemma 4.5, we have

(resp. = 0.)

dim I m K x (ni-ol =  0 if m  =  b„— 1
and

dim I m K x o,-Fi) I > 0 f o r  all m>b„ .

Thus f: X 0 '÷»—>P" has the desired properties. q . e . d .

Remark 4.7. There exists no finite abelian covering of P" which branches along
each H i  (1 <i <n+2) w ith  the ramification index a .  This follows from a theorem
of Namba [13]. (See §3. Theorem 3.3.)

Remark 4.8. For any positive integer n, X 01 +1) is no t in the class C in the
sense of Fujiki [1].

Proof . Take ( n - 1 )  general hyperplane sections of P "  and let C be the inter-
section of them . Then f  Pi) is an elliptic surface by Bertini's theorem
and is  of type (a1, a2, •••, an+2 ). Because any two of a n 's  are relatively prime, it
follows from Katsura and Ueno [7]; appendix that f ' ( C )  is non-K ahler. There
fore, X ( n+1 ) is not in the class C .  (See §3, Theorem (3.1).)

Remark 4.9. In the above examples, X (n+" is a submanifold of a Hopf mani-
f o ld .  However, using the result of §5 , we can construct another example of
which cannot be b im erom orph ic to any subvariety of  a H opf m anifold. (c.f. [10])

Remark 4.10. Let f: X—*P" be  an elliptic fiber space over P "  and assume
that f  is  f lat. Then b n i s  the best possible number of the litaka fibration for all
such X.

Now we prove theorem C.

Proof of  theorem C . In  n= 1, theorem 2 follows from Katsura and Ueno [7].
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So we may assume that n> 1.
Let Hi 's (1 < i< n + 2) be (n+2) hyperplanes on P a  which are in a general

position. Next, put (a1, a2 , • • • , a„,,, an + 2 )= (2, 2(n+1), •••, 2(n+1)).
n+1

Clearly it satisfies condition (N ) in Theorem 3 .3 . Therefore, there exists a finite
abelian covering tr: i'n-3•P n o f P "  which branches at D =2H 1 ±2(n±1)112 + ••• ±
2(n-1- 1)11 .+2. And the Galois group G is isomorphic to Z r 1 + Z r 2 +•••+Zr + 2 ,
where

r1-l-r2+—d-rn+1+rn+2 = 0

2r i  = 0
2(n+2) r 2 =

2(n+2)r.+2 =

Clearly G is isomorphic to Z/2EDZ I2(n+ 2)ED • • 3Z/2(n+2).
■■■ • ■ • ■ ■ ■ • •

Fix an elliptic curve E with the period (1, r), Im(r)>O, a torsion point a e  E
of order 2 and a torsion point b e E  of order 2(n+2) such that a* (n +2 )b . The
group G acts on x E as follows.

r i :  (z, [C])( r i z ,  [C4- a])
r i :  (z, [C]) (r iz, [C+13]) (2 i_<_n+ 1) .

Note that f r  is smooth.

The action is properly discontinuous but not free, so  the quotient space
x EIG has singularities. Take a G-equivariant resolution Z ( n + 1 ) of it. Then by

a natural holomorphic mapping f : Z (n+ i ) —>Pn ,  Z ( n+ 1 ) i s  an algebraic elliptic fiber
space over P n which has multiple fibers o f multiplicity ai a lo n g  each  H i .
(1 <i<n+2).

The canonical bundle of Zo'+' )  is as follows.

z w i - o  f * ( o p „(_ n _  0 +  E
a ._Hn+ 2 

•=1 ai

Because —(n+1)+ E"+2 [k(ai —  1)1 1  
i=i ai 2(n+ 2)>0 

we have

positive integer k , we have

And forx(z (n+1)) = n .

lu z („±01— f*(Opn(—k(n+l))+"±2 [ k ( a i—
 ) ]H 1)  (fixed components) ,

i=i ai

where [  ]  denotes the Gauss symbol. Therefore we have dim IcK + i)  I >0
(resp. = 0) if and only if k  satisfies the following inequality. (resp. equality.)

k(a i - 1) > - u(*) —k (n+1)+ (resp. =0)
, =i ai
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By the same method as in Lemma 4.5, we have

rk ( k - 1 ) ( n +2 — 1 =  (k —1)(n+ 1+  1   )(ai — __ ai 2(n+ 2)

So it suffices to estimate mo  such that

(k- 1)(n+1+ 2 ( +
1
 2 ) )>k(n+ 1) for a ll ktrk , .

The inequality (**) holds if and only if k>2(n2+ 3n+ 3). By a direct calcula-
tion, we see that if k=2n2+6n+5, we have

—k(n+1)+ ": r i c ( a 1 - 1 ) 1
•=1 L Cli

—k(n+1)+(n+1)

= —(2n2 +6n4-5) (n+1)+(n+1)[2n2+5n+4 1   1 + 1-2n2 +6n+51
2(n+2)-1 2 J

= o .
Therefore dn =2(n2 +3n+3) is the best possible number o f the  Iitaka fibration of

q.e.d.

Remark 4 .1 1 .  N ote th a t  in  th is case, the exceptional divisors disappear in
Kz c.+1). (c.f. [3]).

§5. Generalized logarithmic transformations.

In  this section, we shall study generalized logarithmic transformations along
the divisors which have only normal crossings. First, we state our main theorem in
this section.

Theorem 5 . 1 .  For an arbitrary integer  2 > 2 ,  le t (m,, m2, •••, m,,) be  1-tuple of
positive integers with m i >2 for all i, and assume that any two of them are relatively
prime. L e t  Y  b e  a n  n-dimensional com pact complex m anifold and let D i 's
(1 i < 2 )  be smooth divisors o n  Y  which have only normal crossings. Assume
that I A I  is fixed component free and base point free and d im  D. I > 0  for a ll i.
Then there exists an elliptic fiber space f: X - 3, Y over Y with constant moduli which
satisfies the following conditions.
(1) X has multiple fibers of multiplicity m i along Di  for each i.
(2) X I Y \

 tj D i 1 ; (Y\ U D1)x E, where E is a smooth elliptic curve with the period

(1, r), Im (r)>0.
( 3 )  For an arbitrary integer m, f*(x/P) is invertible.

Remark 5 . 2 .  If Y is isomorphic to P t', the above theorem holds automatically.
Hence, thanks to (3), we can construct another example of X0 +1) in theorem B.

rk(2n +3)14  k 1
L 2(n+2) J 1 2 J
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To prove Theorem 5.1, we need the following propositions.

Proposition 5 .3 . For an arbitrary integer 2 > 2, let (m„ m 2 , •••, m,) be a 2-tuple
of positive integers with m 1 >2 for all i, and assume that any two of them are relatively
p rim e . L e t D i = {z 1 C ;  I z i l < 4  (1 < i < A) be  2  d iscs . T hen  there  ex is ts  an
elliptic f iber space X , over D 1 X D2 X • • • X D, which satisfies the following conditions.
(1) X o l,DrxDtx— xD,t .0 -: ,D P X .M X • • • X D Z X E , where E is a smooth elliptic curve

with the period (1, r), Im (r)>0.
(2) X , has multiple fibers o f  multiplicity m i along { z 1 =0)- for each i.
Moreover, f: Di X  D2 X • • • x D, is flat.

Pro o f . L e t D i  =  f t i E C ; it1l < e v n 2 , 1—  D if z i E C ; Izil <4

t, >t r i

be an mr sheedted cyclic covering of D i .  ( 1 <i<  2 )  Then by the assumption,

b :=  13,x .132 x  x D , x D 2 x  x Dx D

(t it, t 2 , tr2, trx)

is an m1m2 •••m„-sheeted cyclic covering of D, and we have

Gal (r/i/D) Z/m,EDZ/m2ED • • • S Z /m x  .

Now, let us consider an analytic automorphism of b x E  defined by

g: Loi x .k x • • • x -to„xE---> D i x:152 x • • • x i) ,x E

(t„ t 2 , •••, t, [ C ] ) e n : 2 1 2 ,  • • • ,

[

1 
C. +

miniz — rnxi

where e„, i i s  a primitive m i -th root of u n ity . Put X ,:= b x E l<g >. The auto-
morphism g acts on f ix  E  freely and properly discontinuously, hence X , is smooth.
There is a natural holomorphic map f : X , D, X  D2  X • • • X DÀ

(t 2 , t1 , •, t,„ [C]) t72, tz, x)

where by (t1, t2 , •-•, t ,  [ C ] )  we denote the point of X , corresponding to a point
(t 1, t 2 , • • • , t ,  [C])e f) x E .  By this morphism, X , is an elliptic fiber space over D.
Clearly X , has multiple fibers of multiplicity mi along each {z1= 0 } .  There is an
isomorphism

A : X ,'■DiicxElx•••)<Dt—> D Px D r x •••x D tx E

(t t 2 , •••, t„,[C)]1— (1 ,  1 2 , • • *, 1X)

K —  a l o g  (I'M ),
i=1 2ir\/— 1
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where a i  (l < i < 2)e Z are defined as follows. By the assumption, there exists
a i e Z  such that

V
( * )  a 1m 1m2 •••mi •••m1 =1  mod m if o r  each i.

Take such a i 's and fix them. q.e.d.

Proposition 5 .4 .  L et Ci (1 < i 2 )  be a smooth curve and take one point P i on
Ci  f or e ac h  i. For an arbitrary  integer 2 > 2 , let (m 1, m,, •••, m ,) be a  2-tuple of
integers with in i 2 for all i, and assume that any two of them are relatively prime.
Then there exists an elliptic f iber space X  over C„xqx ••• x  C, which satisf ies the

following conditions.
(1) X  has multiple fibers of multiplicity m i  along C 1 x C 2 x••• X  Ci _,x x CH _, x

••• x C, for each i.

(2) X H cp x E, ehere C P= Ci \ {P i l  and E is a smooth elliptic curve with
n s=1

the period (1, r), Im(r)>0.

(3 )  f :X — f JC is f ia t .

Moreover, X  is not in the class C.

Pro o f . Let D i be a  small neighborhood of P i in Ci with a coordinate ;  and

put CP=C i M p i l .  Then H Ci can be covered by the following 2x open sets.
i= 1

D,x D,x • • • xL'À
=  Di x D, X •••

= x C x • • • x C :

(There is a one to one correspondence between D i (resp. CP) and 0 (resp. 1) and
by U., we denote the open set corresponding to a=(a l , a2 , •••, ax ) EZ Px .

S tep 1. By Proposition 5.3, there exists an elliptic fiber space X , over (10 =-

D1 x D,x • • • x D satisfies the following conditions.
(1) X , has multiple fibers of multiplicity m i along { i = 0 } . (1 .< i < 2 )

(2) X, D: x Dt x • • • x x  E, where E is a smooth elliptic curve
D'pxDlex...xD,te

with the period (1, r).
S tep 2. Now, we shall express the elliptic fiber space X,--> Um ...0 in  another

form . (Here we use the same notation as in proposition (3.1).)
For any a D Z P , we denote it by 0, •••, 0, 1, 0, •••, 1, 0, •••, 1, 0, •••, 0),

< <ip
that is the ik-th  component is 1 for k=1, 2, •••, p  and all the rest are 0. Put

i 2 ,  •  A - p }  { l, 2, .•., 2 } \ i29 •  •  4 1 ,

 where 1 j 1< ./2 <•••<ix _p .  2. Then
A -  P

we have U3=  II D i u .  x f j  C P ,,. Noting that Gal (b1D)a;ZIm1eDZIni2(1)•••EDZIm„,
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H b i x
w e  h ave X 0 —' • P ut î l f ) : H A x

< g m iim i2" n iP>

Then 1 (0a)  is an elliptic fiber space over At ( D .,, which satisfies the following
' v=iconditions.

(1) 1 1 a )  has multiple fibers of multiplicity in i v  ( I<  v<p ) along {z i v =0}
respectively.

(2) X0)
X - pr) •  x x  E

II Pp. ivD x  I l  DP.,a W=1 v=i
P=1 1+=1

 

(t 1 , t 2 , •••, tx, [C ]) ( t t12, • , t t i , •  • •  t ni ';11,

P
[C—E log(t.)1)

v=i2r•V-1

where by (t1, t2 , •••, t)„  [C ]) we denote the point of 8°) corresponding to a point
(t 1,  t2, •••, tx , [C])b  x  E.

A -  p _A -
Let ha : 11 x  1-1 1:1

; ,, --> 11 Dip H  D 11,
- 11 =1 11 v=1. W=1 v=i

tn
( t t j2 , •••, • • • , z ip ) H+ t tini i2 ,  • • • , ejn) ! X; P, Z11 , Z12 , • • • , Zi p )

be an m11mi2 •••m1,_p -sheeted cyclic covering of U0 . Then we have

X. ,V)  i s zT 1(U  7  0 ) 11:1(U0n u o x E

(t1 , t2 , t„, [ C ] )  1—* Oh , t t,_ ,,, , trpip,

[C— avi"___ log ( t i )])
2zr

since z 0 (1 i). p ) on Ua n
By the above isomorphism, we have

g '2 'P: ( t 1 , 1.12 ,  • • • ,t j x _ p , Z11 , Z12 ,  • • • , Zi p , [71a])

f—  e : i im i2 - m ip  •  • • •  e m ii m ' 2 " . in i  1; : : v  +( h t,i, ,  
I n iX . - p ,

P Z•) .  1 )  .  •  •  5  
Z .p ,

•  0
A -  P

1
)

in jim i2"' mix _ p
l)

where we put [77„]= [C — E
—

, log (t 1)]. Therefore, there is an isomorphism
v  1

P

h; l (Ua n U0) X A-P
X O  u„nu or4* E. h a can be naturally extende d to a. 11 m1 -sheeted cyclic

W=1

X—p
covering ha o f D  • x ll C '.

, 
and the group <g m iim i2"nip> acts on 11;1([16 ) x  E as

1.,=1
in the same way as above.

Its action is free and properly discontinuous, so the quotient space
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X , :=  k; 1W 43x  El<g m iim i i 'lp >  is smooth.

By a natural holomorphic mapping

0 4 :  X .
 U ,

(t11 , t12 , •• • , z11, • • • , z i p , INJ) (t7i ii, • • • , zil, • • • , z i p )

X , is an elliptic fiber space over U . .  By our construction, we have the following
commutative diagram.

X o  Eta nu, Xa

U o n uc, c_ ua

That is, X„—> U, is a natural compactification of X ,luan U0 n U0 .
Step 3. We can show that the elliptic fiber spaces X.—>U. constructed in step 2

(a e Z2 X)  can be glued together. For that purpose, it is suff icient to show the
following claims.

Claim A .  For any a, b e  ZP  (a *  b ) ,  there is a  following commutative
diagram:

xa

Xa I LT, nub --> X bi Ila nub

where c=max (a, b) and c-4 (resp. denotes an open immersion. (resp. an isomor-
phism.) (Here, for a= (a l , a,, • • • , ax), b  = (bp b,, • • • , bx) e Zr', a >  b  means that
a i bi fo r all i .  and C= m ax (a, b )  means that ci = max (ai , b i )  for all i ,  where
C= (c,, c,, • •• , cx).)

Claim B .  For any a, b  e Z r  such that a<b , there is a following commutative
diagram. That is, X b - - > Ub is the natural compactification of X ,I u a  n u b  U ,  n Ub.

Xa I Up n Ub

ua n ubu b

It is easy to show that claim B implies claim A , so we shall prove claim B.
For any a, b e Z T x  such that a<b , put

a =  ( 0, •••, 0, 1, 0, 1, 0, ..•, 1, 0, ..•, 0), 1 4 < i2 < •••< ip <2
i

2

b —a =  (0, •-•, 0, 1, 0, • • •, 0, 1, 0, •••, 0, 1, 0, •••, 0), 1 < j,<j,<• • •<j,<À

f i i 2 is
Put fk i <lc,< • • • <Icx _p _s } = { 1, 2, • ••, 2}\{i1, i2 , •••, j , • • • , . / J .  Then we have

ua n ub = D  k  X  DI' X  C  're
F4 =1 v=i k  =1
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Now, let us recall the construction of Xa . There is a  following commutative
diagram:

Xo I // a n uo =  11:1(U4 n  uo) xEl<g M ilM i2 ".m iP >

x.: A-A v.) x ,

where

h4 : D., D •
 p •= 1 ' v=i k=1 i=-1

(t k i , • • • , tk,  t i •••,
,  

z
$1, S. ••• ( t 9r k i  • • •OS p k

•• • ,  t7sh, ••-, zi p )

is a  11  mk  • 1-1 m 1 , , -sheeted cyclic covering of x D, X • • • X
ik=1 v=i
Now, we shall express the elliptic fiber space in another fo rm . Because

any two of m•'s are relatively prime, there is an isomorphism

h;l(Ua )xE/<enri - mipmki -
m kx -p -s>

< gm irm ip m irm is>

On the other hand, the quotient space hV(Ua )x E/<gm ic m ipm ki- mkx-P-.> is an elliptic

fiber space over II b k „. x x ll CP,, which satisfies the following conditions.
V=1 k= 1

(1) It has multiple fibers of multiplicity along {z1 =0)- (1

1  1(2) It is trivial over 11 D i
g.
 X 1  DP X 11 C ?  and the trivialization is given as

P=1 v=1 V k = 1follows.

( t ,  • •• t i x_  p_ s , t i e  •• • , t • • • , Zip, [77J)

s

( t h , ••• tkx _  p s ,  t7/, • • • , t 7?s, Z11 , • • • , zi p ,

Therefore, there is an ispmorphism

2 r  log ( t i ) ] )

'Y aIU a n
DiuX I Ix fl x  E

p= i • k =1 -

 

since t *0  (1 on h:,-1(U0 n Lib ) .

Here the group <gm'imi2- 'mipm-iimii- mis> acts as follows.

g m i l " n i Pm tl" . ' " Is: (1 k i , • • • , tkx z 1 ,  • • • , • • • , Zi p ,  [ e j )

( C o r o

i l '
• i

- t h ,  •  •  ' -
tnkx_ p-,

prn
M i  tk - P - s

1
Z11 , • • Z  Z

i1 , • • •  Z i P' [ e  a +
 M h M k 2 ••• p _ ) 1
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where we put [ea ]= [ 7 7 , - p i  2 7 r v
a i v log (t1,)].

If we restrict the elliptic fiber space X. I u„nt12 - >Ua n U b over Ua  fl Ub fl Uo , we
have

fl x  D t x E
X a lU a tI U bnUn 11  1" v = 1 k  = 1

P a ic r i i •
Here we have [Œ0]=[C - E  

2 /  - 1  
log (t • )-  E 2

V  - 1  log ( t i ,d ,  since we
k=1 7EN 7r 

P a i

have [na]=[ /2 -  1C - 1 log (t i k )].
7T \

Therefore, we have the following commutative diagram.

XO Uo n Ub X alU anU b

Uo n ub c , U, n uo .

Thus from the construction of Xb -->U b in step 2, there is an open immersion

X a I U a  n Ub c— ) X b

Ub n U b  c Ub f o r  a<b ,

and the claim B has been proved.
Step 4. By step 3, we can glue the elliptic fiber spaces X 0 ->U a ( a E Z r)  to

obtain the elliptic fiber space X  over C, x ••• x C . C learly  X  satisfies the desired
conditions (1) and (2). And X  is not in the class C  by the same reason as in
Remark 4.8. q . e . d .

Remark 5.5. The elliptic fiber space X , which we have just constructed,
depends on the choice o f a ; E Z  ( l < i < . )  in  step 1. Hence we write X  as
X(cri , a 2 , •••, ax ). (cf. Prop 5.6.)

Now, we are ready to prove our Main theorem 5.1.

Proof of Theorem 5.1.
S tep  1 . Take a linear pencil L i  from  D. I for each i and consider a  meromor-
phic map 0 ,„: Y-->P I ) associated with L i ,  where P  ( 1 < i  < 2 )  are 2 copies of
13 '. Let d i be a smooth divisor on D i  in  a  sufficiently general position such that
the following conditions are satisfied.
(1) zti ct D i  for all j ( i )  and n n • n %l i p  are (n-2p)-dimensional

compact complex manifold.
(2) Let ai : Y -o. Y be the blowing-up of Y with d i center for each i. Then the

a icomposite map Yi  ->  Y ->/' to  is a morphism.
Next, consider the fiber product
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r: W =  it, X 17 2 X • • • X 1'x —b. Y .
Y  Y  Y

Because the arrangements of d i 's are sufficiently general, W is smooth and r is
a  bimeromorphic morphism. Let D i (resp. Ei )  be the strict transform of D i (resp.
the total inverse image of d i ) for each i. Then W can be considered as a fiber space
f i : W —> li i )  over 1:1 1 , where E. i s  a section and D i i s  a  fiber of the fiber space
(1 < i < 2 ) .  By a  suitable change of coordinates, we may assume that J (D )=  0 ,

where 0  is the origin of each P I ) . L e t  0 : W-0. H /3 .
i )  b e  a  holomorphic mapi.1

defined by 0 f2, • •• J , ) .  By the construction of W, we have 0-1(0(w)n
fz1=o1)=D i for each i, where z i is the inhomogeneous coordinate of

S tep  2. Because any two of mi 's  a re  relatively prime, it follows from Pro-

position 5.4 that there exists an elliptic fiber space h: Z--o• over liPt i )  whichi i=1satisfies the following conditions. -1

(1) Z  has multiple fibers of multiplicity m i along each {z 1 =O}.

(2) Z  is trivial over 11 (/:' ; ) \{0 }), where 0  denotes the origin of P
( 3 )  h is flat.

S tep  3. Next, consider the pull-back

g : X = Z  x W.

Because D i 's have only normal crossings, X is sm ooth. By the composition of the
g r

morphisms Y, f :  = r o  g is an elliptic fiber space over Y which satisfies the
following conditions.
(1)

(2)

X has multiple fibers of multiplicity m i along each D i  (1< i < 2).

X is trivial over Y \U D i .i=1
S tep  4. The canonical bundle of X is as follows.

K ,  f *  ( K y + )± m i — 1 D ,)+ )È   1   E i .
i=1 m i 1 = 1  mi

So, for any positive integer m , we have

mKxi= f * ( m K y + [ m ( m i- 1 ) ]D1)+(f ix ed components)
1=1 mi

+(effective exceptional divisors),

where [n] denotes the greatest integer which does not exceed n.
Therefore f * (K x r )  is invertible for any positive integer m. q.e.d.

Remark 5.6.
( 1 )  If we blow up Y along the intersections of D i 's and perform logarithmic trans-
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formations along the strict transform of D i 's as in [3], f * (K 4 m ) is not neces-
sarily invertible for a positive integer m.

(2) If D i 's do not have normal crossings, f * (Kx / rn) is not necessarily invertible.
(3) If the arrangements of di 's in step 1 are not general, Win step 1 is not smooth.

So we have to resolve singularities and f *(K x /P )  is not invertible.
In  these cases, for calculation of dim I mKx  I , we have to consider the base point
conditions.

Proposition 5 .7 .  I f  there ex ist at least tw o indices i and j such that a i >0 and
a .<0 ,  then X (a„ a 2, •••, a) cannot be bim erom orphic to a subvariety  of  a Hopf
manifold.

To prove this proposition, we need the following lemma. Here, we use the

same notation as in Proposition 5 .2 . We define a  line bundle tr: L—> I I  C i asz=i
follows.

L  := pP0 c .(a.m  ••• m- ••• mxPi),s s i

where p i : 11 Ci is a projection.

P u t p=exp  (271A/ —1r), where E  is a  smooth elliptic curve with the  period

(1, r), Im  (r)>0. Consider a  C*-bundle L*=LMO-section} o n  11 C i . < p >  acts
on each fiber of L *, so pu t Y(a i , ••-, ax )=L*1<p>.

Then the canonical projection r :  L*--> IT Ci induces a projection
1=1

h: Y (a„, a2, •••, ax )--> Ci

k

a n d  Y (a„ a2, •••, ax )  has a structure of an elliptic bundle over 11 Ci .

Lemma 5.8. There exists a finite abelian covering 0 from X (a„ a 2, •••, a) onto
Y (a,, a2, •••, ax ) such that the following diagram commutes.

X (a i , a ,  • • • , ax ) Y (a „  a 2 , • • • , ax)

f c,
1=1

0  is a finite unramified covering on each fiber off.

Pro o f . First, we show that for any a Z 433x, there exists a finite abelian cover-
ing 0 .: X„—>. U,x E such that the following diagram commutes.

0 ,: X , U ,x  E

U, V

In fact, define q5. (aEZP) as follows.
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sbo : X0

  

*  Us x E

      

(t„ t2 , tÀ , [Cl) 1 -4  0 1 ' 1 ,  t 2 2 , • • • , tZA, [M I M 2  • *• Mx CD
0.: > Uo x E f o r  a *0

(t1 1, •••, ti x _p , z ,  •••, z ip , [77,])i—, •••, i7 Z X ;P , Z 1 1 ,  • • • ,  Zip , [m 1 m 2 • • •  m o.]) ,

where a=(•••,1, ••-,1, •••, 1, •••),

il 4 it.

j,, =  {1, 2, •••, •••' i}
P

a n d  [97a ] 27r.y log (t i ) ] .

W e can easily  check th a t  00 's  are compatible w ith  the patching of Xa 's
and U. ><E 's and define a finite abelian covering 0  from  X(a„ a 2 , •••, a„) onto
Y(ai• a2,  a ? ) .  1.e.d.

Lemma 5 .9 .  I f  there ex ists at least two indices i  and j  such that a i > 0  and
a1 < 0 ,  then Y(a„ a 2 , •••, a„) cannot be bimeromorphic to a  subvariety o f  a Hopf
manifold.

P ro o f  We may assume that a1 >0 and a2 < 0 .  Take one point CI; on each C i

arbitrarily (3< i < 2 ) and put V := C1 X C2 X Qs x • • • x Q , .  Then Z := Y (a „  a2 ,•••,

aA) v— * V is an elliptic bundle over V and from the construction of Y(a„ a 2 , •••, a,),
Z  can be expressed as follows.

L  v \{0-section/<p>, where L I v
i = 1

(k) pPOc i (a i m, ••• mi ••• mi p,)

Let D be a smooth curve on V .  By a theorem (11.9) in Kodaira [11], the following
conditions are equivalent.
(1) The elliptic bundle Z I D D has a multi-section.
(2) Z I  is algebraic.
( 3 )  deg (L1 D )= O.

Let r„ r, be a positive integer such that [r,P ,xqd -r,C , x P2 e Pic (V ) is very
ample. In particulae, let D  be a general member of I r,P l x C2 -Fr,C2 x P2 I . Since
we have a1 >0, a,< 0 and deg (LI D) —ri a,mi ms •—mx +r,a,m 2m,•-• m„, we can choose
r, and r, sufficiently positive such that deg (LI D ) = 0  and r(D )>1 . Then from the
above remark, there exists a smooth curve of genus greater than 1 on Z  I D

. T h e re -
fore, for any point y on Y (a„ a,, •••, ax), there exists a  smooth curve C of genus
greater than 1, which passes through y and dim h (C )= 1 .  However, by Kato [8],
any irreducible curve in  a Hopf manifold is a  smooth elliptic curve. Therefore,
Y(a,, a2 , •••, a,) can never be bimeromorphic to  a  subvariety of a Hopf manifold.

q.e.d.

Proof of Proposition 5.7. From Lemma 5.8 and 5.9, it follows that for any
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point x  on  X (a„ a 2 , •••, a )) ,  there exists a  smooth curve C  o f genus greater
than 1, which passes through x  and dim f ( C ) = 1 .  Then from Kato's theorem [8],
X (a„ a 2 , •••, a , )  cannot be bimeromorphic to  a  subvariety of a  H opf manifold.

q.e.d.

Proposition 5 .1 0 . L et C i  ( 1 <i 2) be a smooth curve and take one point P i  on
each Ci . F o r  a n  arbitrary integer 2> 2 , let (m„ m 2 , •••, m ,) be a  2-tuple of integers
with mi > 2  f o r all i , and assum  that except m ,, any  tw o of  m i 's  ( 1 <i  <2 - 1 )  are

relatively p rim e . Then there exists an elliptic fiber space X  over H c, which satisfies
the same conditions as in Proposition 5.4.

Pro o f . The idea is almost all the saine as in Proposition 5 .4 .  We use the
same notation as in 5.4, and we shall slightly modify the arguments in step 1.

Let us consider analytic automorphisms of II b i xE defined by
i= 1

g : (t1, t 2, • • • , tX, [C] )  1- >  (em i ti, • • • 5 e M x _ , IA- 15 t A5 [C .+
1  

• M A- 1 ] )

h: (t„ •••, t_„ 4 , [ C ] ) ( t 2 , •••, t,_„ e t,„ [C + 
r ) ]

 .

The automorphism groups generated by g and h acts on b x E  freely and properly
discontinuously, so the quotient space X , := f ix  El<g, h> is smooth. By a natural
holomorphic mapping

f : > D 1xD 2x•••xD ,:— D ,

t2 , tx ,  [C ]) 1 > ( tri, t '2"2, • , tknx)

X0 is an elliptic fiber space over D .  Clearly X , has multiple fibers of multiplicity
mi  along each Iz 1 = 0 1 .  There is an isomorphism

X, — D t x M x • • • x g r x E
D tx /4x — x D 1

11)
(t 1 , t 2 , •••, t , [C ])t ' 2 n P ,

7 l O g  ( t x d )Ex - i ai l o g  (t1) —LC 127.c\/-1

where a i  (1 <i <2 - 1)E Z  are defined as follows. By the assumption, there exists
a i Z  such that

(**) a1m1m2 mi m1,-1=-.1 mod m i  f o r  each i .

Take such a i 's and fix them.
From now on, we can apply the same arguments as in Step 2, 3, 4 in Proposition

5.4, so we omit the proof. q.e.d.
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Remark 5 . 1 1 .  If we assume in the above proposition that except In, and m,_ i ,
any two of m i 's (1 < i < 2- 2 )  are relatively prime, the same result holds. However,

in this case, the elliptic fiber space X-->ll C, is not flat.
1= i

In fact, we can slightly modify the arguments in Step 1 in the proof of 3.2.

§  6 .  Some examples.

If S is an analytic surface with x(S)= 0, by the classification theory of surfaces
we have P 12(S )=1  a n d  12 is th e  best possible number. Now we shall construct
similar examples for elliptic fiber spaces with x= 0 , as an application of Theorem
5.1. Our result is the following.

Example 6 . 1 .  L e t f a j , „ 1 ,2 ,... b e  a  sequence of positive integers defined as
follow s. a1 =2, a„.„1 =a 1 a2 .••an + 1 .  A nd let te be a  sequence of positive
integers defined as follows.

c„=a„,2 -1  .

Then for every positive integer n, there exists an elliptic fiber space
over P "  which satisfies the following conditions.
( I )  x ( v.+1))_0 .

( 2 )  ra=c n  is the smallest integer such that P„,(Y ( n+»)=1.
Moreover Y

( n + 1 ) is not in the class C.

Examples. We write down the first few terms of {an }  and {en ) .

y (n+1),pn

n 1 2 3 4 5 6

an 2 3 7 43 1807 3263443

c„ 6 42 1806 3263442 --1013 --1026

To prove Example 6.1, we need the following lemma.

Lemma 6 .2 .  L et {an}  and {c„}  be sequences of positive integers defined as  in
(6.1). Then for every positive integer k , we have

i = 1 [

i) H k(c„-1) 1 < 0
a ic n J

and the equality holds if and only if c„ divides k.

(The proof is the same as in 4.5, so we omit it.)

Proof  of  Example 6.1. Let H 's  (1 < i <n-1-2) be ( n +2 )  hyperplanes on P "
S n .  n=1,2, •••which are  in  a  general position . A nd le t {a„)- and i
rb e  s e q u e n c e s

of positive integers defined a s  in  Example 6.1. Take (a 1, a2 , •••, an + ,, c„), a (n+2)-
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tuple of positive integers. From the construction of {an} ,  any two of an 's  are
relatively p rim e. Hence it follows from Proposition 5.8 that there exists an elliptic
fiber space f :  Y (4 ±1 ) —>P e  over lc)" with constant moduli which has multiple fibers
of multiplicity ai (resp. cn ) along each H i (1<i <17+1). (resp. along H„,,)

The canonical bundle of Y (n÷" is as follows.

f* (O n ai-1 H + c e E n + 2  •
1=1a c„

And for every positive integer k, we have

ikKyc.+01 = 
f *  ( 0  p . ( _ f o + k ( a i —  1 ) ,  [k (c „ -1 )

i=1 L aic „

+(fixed components)+(effective exceptional divisors).

So it follows from  Lem m a 6 .2  that fo r every positive integer k ,  w e have
Pk( Y 1 ) <  and the equality holds if and only if c„ divides k .  Thus Y ( n + 1 )  has
the desired properties q.e.d.

Remark 6 .3 .  There is no algebraic elliptic fiber space over P " with x=0 and
with constant moduli which has multiple fibers of multiplicity a i  (resp. c„) along
each H i  (1 < i  (resp. 1 1.4-2)

Proo f . If such an algebraic elliptic fiber space X —>P" exists, it follows from
Theorem 3 .5  that there exists a  finite abelian covering P " - - > P ' of P "  which

'1 + 1

branches a t  E ai H i +c„H„ + ,  with the Galois group G ZIa i EBZ la2 G) • •• EDZIa,„
,=1

and X is bimeromorphic to the quotient space i ' n x E IG .  By a direct calculation,
we see that f * (K i i , m )  is not invertible and x(X )= — 00. q.e.d.

Remark 6 .4 .  We cannot apply Proposition 4.1 to our situation, since (a1, a2 ,
• •• , a 1 , cn ) does not satisfy the assumption in Proposition 4.1).
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