Pluricanonical divisors of elliptic fiber spaces

By
Yoshio Fujimoto

Introduction.

By an elliptic fiber space $f: V \rightarrow W$, we mean that f is a proper surjective morphism of a compact complex manifold V to a compact complex manifold W, where each fiber is connected and the general fibers are smooth elliptic curves. In particular, when V is a surface and W is a curve, we say that V is an elliptic surface over W.

By an n-dimensional elliptic fiber space $V \rightarrow W$ with $\kappa(V)=n-1$, we mean that the image of a rational map $\Phi_{\left|m K_{V}\right|}$ is ($n-1$)-dimensional for sufficiently large m. In this case if an m-th pluricanonical mapping $\Phi_{\left|m K_{\nu}\right|}: V \rightarrow \Phi_{\left|m K_{\nu}\right|}(V)$ is bimeromorphic to the original elliptic fiber space, we say that $\Phi_{\left|m K_{V}\right|}$ gives the Iitaka fibration.

Iitaka [6] showed that for any elliptic surface $f: S \rightarrow C$ with $\kappa(S)=1$, the m-th pluricanonical mapping $\Phi_{\left|m S_{S}\right|}$ gives the unique structure of the elliptic surface $f: S \rightarrow C$ if $m \geq 86$. Moreover he showed that 86 is the best possible number. On the other hand, Katsura and Ueno [7] showed that if S is an algebraic elliptic surface defined over an algebraically closed field k of characteristic $p \geq 0$ with $\kappa(S)=1$, then $\Phi_{|m K S|}$ gives the unique structure of the elliptic surface for every $m \geq 14$.

One of the main purpose of this paper is to obtain the bound of the Iitaka fibration of an elliptic threefold when the Kodaira dimension of the base space is greater than or equal to 1 .

We prove the following.
Main theorem A. If $f: X \rightarrow S$ is an elliptic threefold with $\kappa(X)=2$ and $\kappa(S) \geq 1$, then $\Phi_{\left|m K_{X}\right|}$ gives the Iitaka fibration for all even integer $m \geq 16$.

The main difficulty is that if $f: X \rightarrow Y$ is an elliptic fiber space, $f_{*}\left(m K_{X / Y}\right)$ is not necessarily invertible for a positive integer m, as was remarked by Fujita [5]. So we take a suitable bimeromorphic model $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ of f and express an holomorphic section of $m K_{\tilde{X} / \tilde{Y}}$ by means of the modular form of weight m on the upper half plane. (cf. [5] [14]) Then if the Kodaira dimension of the base space is equal to or more than one, we can apply the results about pluricanonical mappings of surfaces.

Though we have not completely proved the counterpart of Iitaka's theorem for

[^0]elliptic threefolds, we conjecture that such a theorem holds and 5420 is the best best possibl number. In [4], the author constructed series of examples of elliptic fiber spaces, which gives an evidence for the existence of such bounds. Our result is the following.

Main theorem B. Let $\left\{a_{n}\right\}_{n=1,2, \ldots}$ be a sequence of natural numbers defined by

$$
a_{1}=2, \quad a_{n+1}=a_{1} a_{2} \cdots a_{n}+1
$$

And let $\left\{b_{n}\right\}_{n=1,2, \ldots}$ be a sequence of natural numbers defined by

$$
b_{n}=(n+1)\left(a_{n+3}-1\right)+2
$$

Then for every positive integer n, there exists an elliptic fiber space $X^{(n+1)} \rightarrow \boldsymbol{P}^{n}$ over \boldsymbol{P}^{n} which satisfies the following conditions.
(1) $\kappa\left(X^{(n+1)}\right)=n$.
(2) b_{n} is the best possible number of the Iitaka fibering of $X^{(n+1)}$, that is, $\operatorname{dim}\left|m K_{X}\right|=0$ if $m=b_{n}-1$, and the m-th pluricanonical mapping $\Phi_{1_{m K_{X}} \mid}$ gives the Iitaka fibering for all $m \geq b_{n}$.
Moreover, $X^{(n+1)}$ is not in the class \mathcal{C} in the sense of Fujiki [1]. (That is, $X^{(n+1)}$ cannot be bimeromorphic to any compact Kähler manifold.)

Examples. Now, we write down the first few terms of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$.

n	1	2	3	4	5	6
a_{n}	2	3	7	43	1807	3263443
b_{n}	86	5420	13053770	$\sim 10^{13}$	$\sim 10^{26}$	$\sim 10^{52}$

(1) $b_{1}=86$. This is the well-known result of the elliptic surface. An elliptic surface $f: S \rightarrow \boldsymbol{P}^{1}$ over \boldsymbol{P}^{1} with three multiple fibers of multiplicity $2,3,7$ and with constant moduli has the property that $\operatorname{dim}\left|85 K_{s}\right|=0$.
(2) $b_{2}=5420$. There exists an elliptic threefold $f: X \rightarrow \boldsymbol{P}^{2}$ over \boldsymbol{P}^{2} with constant moduli which has multiple fibers of multiplicity $2,3,7,43$ along the four lines on \boldsymbol{P}^{2} in a general position. X has the property that $\operatorname{dim}\left|5419 K_{X}\right|=0$.

To prove Theorem B, we need to study multiple fibers of elliptic fiber spaces and generalize the notion of a logarithmic transformation defined by Kodaira. Our construction is as follows.

Let $H_{i}(1 \leq i \leq n+2)$ be $(n+2)$ hyperplanes on \boldsymbol{P}^{n} which are in general position. Let $\left(a_{1}, a_{2}, \cdots, a_{n+2}\right)$ be $(n+2)$-tuple of positive integers defined as in theorem B . Then $X^{(n+1)} \rightarrow \boldsymbol{P}^{n}$ is an elliptic fiber space over \boldsymbol{P}^{n} which has multiple fibers of multiplicity a_{i} along each $H_{i}(1 \leq i \leq n+2)$. Note that there exists no finite abelian covering of \boldsymbol{P}^{n} which branches along H_{i} 's $(1 \leq i \leq n+2)$ with the ramification index a_{i} respectively.

We prove Theorem B in two different methods. One way is to use generalized
logarithmic transformations along the divisors which have only normal crossings and another way is to construct $X^{(n+1)}$ as a submanifold of a Hopf manifold, which was suggested by M. Kato. The latter proof is much simpler than the former, while the former is applicable to many other situations. (cf. §5).

On the other hand, if we consider only algebraic elliptic fiber spaces, the best possible number of the Iitaka fibration seems to be much smaller than that of the analytic case. One of the main reason is that the multiplicities of the multiple fibers of an algebraic elliptic fiber space with constant moduli should satisfy certain numerical conditions, as was shown by Katsura and Ueno [7]. Moreover, there is a deep connection with the theory of branched coverings of complex manifolds which was developed by Namba.

In [13], Namba obtained the necessary and sufficient conditions for the existence of finite abelian coverings of \boldsymbol{P}^{n}. It is almost equivalent to the one obtained by Katsura and Ueno [7]. Combining these two results, we see that an algebraic elliptic fiber space over \boldsymbol{P}^{n} with constant moduli which has multiple fibers along hyperplanes can be constructed globally by taking finite abelian coverings of \boldsymbol{P}^{n}.

Our result is the following.
Theorem C. Let $\left\{d_{n}\right\}_{n=1,2, \ldots}$ be a sequence of natural numbers defined as follows: $d_{n}=2\left(n^{2}+3 n+3\right)$.
Then for every positive integer n, there exists an algebraic elliptic fiber space $Z^{(n+1)} \rightarrow$ \boldsymbol{P}^{n} over \boldsymbol{P}^{n} which satisfies the following conditions.
(1) $\kappa\left(Z^{(n+1)}\right)=n$.
(2) d_{n} is the best possible number of the Iitaka fibration of $Z^{(n+1)}$, that is, $\operatorname{dim}\left|m K_{Z}\right|=0$ if $m=d_{n}-1$, and the m-th pluricanonical mapping $\left.\Phi\right|_{m K_{Z}} \mid$ gives the Iitaka fibration for all $m \geq d_{n}$.

Examples. We write down the first few terms of $\left\{d_{n}\right\}$.

n	1	2	3	4	5	6
d_{n}	14	26	42	62	86	114

Finally, let us explain briefly the contents of our paper.
In $\S 1$, we shall review the canonical bundle formula of elliptic fiber spaces due to T. Fujita [5]. In §2, we shall consider pluricanonical mappings of elliptic threefolds when the Kodaira dimension of the base space is greater than or equal to 0 . In §3, we shall consider the structure of algebraic elliptic fiber spaces with constant moduli. In $\S 4$, we shall prove Main theorem B. In $\S 5$, we shall consider generalized logarithmic transformations along the divisors which have only normal crossings and reprove Theorem B in a different way. In $\S 6$, as an application of Theorem 5.1, we shall construct examples of elliptic fiber spaces with $\kappa=0$.

The author wishes to express his sincere thanks to Professor K. Ueno for useful
advices and to Professor M. Kato, who suggested to me another proof of Theorem B.
Notation and convention. If X is a compact complex manifold, we use the following notation.
$\kappa(X)$: the Kodaira dimension of X
K_{X} : the canonical bundle of X
$P_{m}(X)=\operatorname{dim}_{C} H^{\circ}\left(X, \mathcal{O}\left(m K_{X}\right)\right)$
$h^{p, q}(X)=\operatorname{dim}_{c} H^{q}\left(X, \Omega_{X}^{p}\right)$
$q(X)=\operatorname{dim}_{c} H^{1}\left(X, \mathcal{O}_{X}\right)$
$e_{m}=\exp (2 \pi \sqrt{-1} / m)$
$d \mathcal{O}_{X}$: the subsheaf of Ω_{X}^{1} whose elements are d-closed.
For an integer $n,[n]$ denotes the greatest integer that does not exceed n.

§1. Preliminaries.

By an elliptic fiber space $f: V \rightarrow W$, we mean that f is a proper surjective morphism of a complex manifold V to a complex manifold W, where each fiber is connected and the general fibers are non-singular elliptic curves.

Put $\Sigma:=\left\{w \in W \mid f\right.$ is not smooth over $\left.f^{-1}(w)\right\}$ and let F be an irreducible component of Σ with $\operatorname{dim} F=\operatorname{dim} W-1$. For a general point x of F, there exists a curve Z in W passing through x such that Z meets F transversally and $f^{-1}(Z)$ is a non-singular elliptic surface over Z.

Furthermore we assume that $f^{-1}(Z) \rightarrow Z$ is relatively minimal. Then $f^{-1}(Z)$ has a singular fiber at x and the type of the singular fiber in Kodaira [12] is independent of the choice of Z and x. Hence we can define it to be the type of the singular fibers of f along F. In particular, if $f^{-1}(Z)$ has multiple fibers of multiplicity m at x, we say that V has multiple fibers of multiplicity m along F.

Now, for each type of singular fibers we can define a number α_{i} as follows.

Type	$m \mathrm{I}_{b}$	I_{b}^{*}	II	II^{*}	III	III	IV	IV^{*}
α	$1-m^{-1}$	$1 / 2$	$1 / 6$	$5 / 6$	$1 / 4$	$3 / 4$	$1 / 3$	$2 / 3$

For an elliptic threefold, the following theorem is fundamental.
Theorem 1.1. (Ueno [14], Corollary (1.10)). Let $f: V \rightarrow W$ be an elliptic threefold. Then there exists a bimeromorphically equivalent model $\hat{f}: \hat{V} \rightarrow \hat{W}$ of f which satisfies the following conditions.
(*) Let F be an irreducible component of the discriminant locus \sum of \hat{f} with $\operatorname{dim} F=\operatorname{dim} \hat{W}-1$. For a general point x of F, there exists an analytic arc Z in \hat{W} meeting F transversally and passing through x such that the elliptic surface $\hat{f}^{-1}(Z) \rightarrow Z$ is relatively minimal.

Thanks to Theorem 1.1, our definition of the type of the singular fibers are welldefined.

Now, we recall the canonical bundle formula due to T. Fujita [5].
Theorem 1.2. (T. Fujita [5]). Let $f: V \rightarrow W$ be an elliptic threefold such that the J-invariant $J: W \rightarrow \boldsymbol{P}^{1}$ is holomorphic. Let m be a positive integer such that $k=12 \mathrm{~m}$ is divisible by the multiplicities of all the components D_{i} of the discriminant locus Σ of f. Then
for some effective divisor E, X on V such that

1) $\operatorname{codim} f(X) \geq 2$.
2) $f_{*} \mathcal{O}_{V} \simeq f_{*} \mathcal{O}_{V}(m E)$ for any positive integer m.

§2. Pluricanonical mappings of elliptic threefolds.

In this section, we consider pluricanonical mappings of elliptic threefolds only when the Kodaira dimension of the base space is greater than or equal to 1.

Proposition 2.1. (cf. Fujita [5], Ueno [14]). Let $f: V \rightarrow W$ be an elliptic threefold. Assume that the discriminant locus \sum of f are divisors with only normal crossings and the condition $\left({ }^{*}\right)$ in Theorem 1.1 is satisfied. Then for an arbitrary even positive integer $m>2$, we have: $m K_{V} \simeq f^{*}\left(m K_{W}+\Gamma\right)+E-G$ for some effective divisor Γ on W and E, G on V such that
(1) $f_{*} \mathcal{O}_{V}(E) \simeq \mathcal{O}_{W}$
(2) $\operatorname{codim} f(G) \geq 2$.
(3) Let D_{i} be an irreducible component of \sum with $\operatorname{dim} D_{i}=\operatorname{dim} W-1$. Then we have $\Gamma=\sum_{i}\left[m \alpha_{i}\right] D_{i}+\left(p \nabla_{1}+q \nabla_{2}\right)$, where ∇_{i} 's are effective divisors on W such that $3 \nabla_{1} \sim J^{*} \mathcal{O}_{P^{1}(1)}$ and $2 \nabla_{2} \sim J^{*} \mathcal{O}_{P^{\prime}(1)}$ and p, q are positive integers such that $m=4 p+6 q$.

Remark 2.2. If $V \rightarrow W$ is an elliptic bundle over a Zariski open set of W and has only multiple singular fibers, the above result holds for all positive integer m.

Proof. We follow the idea of Fujita [5] and Ueno [14]. Let $T: W^{\circ}=W \backslash \Sigma \rightarrow$ $H=\{\tau \in \boldsymbol{C} \mid \operatorname{Im}(\tau)>0\}$ be the period mapping associated to a holomorphic 1-form. T gives a single-valued holomorphic mapping $T: \tilde{W}^{\circ} \rightarrow H$ on the universal covering \tilde{W}° of W°. Let $\Phi: \pi_{1}\left(W^{\circ}\right) \rightarrow S L(2, \boldsymbol{Z})$ be a monodromy representation. $\pi_{1}\left(W^{\circ}\right)$ can be considered as a covering transformation group of \tilde{W}° and we have

$$
T(r x)=\Phi(r) T(x) \text { for every } \quad r \in \pi_{1}\left(W^{\circ}\right) .
$$

The semi-direct product $G=\pi_{1}\left(W^{\circ}\right) \ltimes \boldsymbol{Z}^{2}$ acts on $\tilde{W}^{\circ} \times \boldsymbol{C}$ in a canonical way such that the quotient space $M=\tilde{W}^{\circ} \times\left.\boldsymbol{C}\right|_{G}$ is non-singular and $f^{\circ}=\left.f\right|_{W^{\circ}}: f^{-1}\left(W^{\circ}\right) \rightarrow W^{\circ}$ can be obtained from $M \rightarrow W^{\circ}$ by repatching a fiber coordinate. (cf. [15])

Now, let $G_{k}(z)=\sum_{m, n}^{\prime} \frac{1}{(m z+n)^{2 k}}$ be the Eisenstein series of index k. Then $G_{2}(z)$ (resp. $G_{3}(z)$) is the modular form of weight 4 (resp. 6) on the upper half plane with
respect to $S L(2, \boldsymbol{Z})$ and has a zero of order 1 at $z=\exp (2 \pi \sqrt{-1} / 3)$. (resp. $z=\sqrt{-1}$.) And the elliptic modular function $j(z)$ can be written as

$$
j(z)=1728 g_{2}^{3} / \Delta, \quad \Delta=g_{2}^{3}-27 g_{3}^{2}, \quad g_{2}=60 G_{2} \quad \text { and } \quad g_{3}=140 G_{3} .
$$

Given an arbitrary even positive integer $m>2$, there exist positive integers p, q such that $m=4 p+6 q$ and $F(z)=G_{2}^{p}(z) G_{3}^{q}(z)$ is the modular form of weight m on the upper half plane with respect to $S L(2, Z)$.

Then for any $\omega \in H^{\circ}\left(W, K_{W}^{\otimes m}\right)$, put $\Xi=F(T(w)) f^{*} \omega \otimes(d \zeta)^{m}$, where ζ is the fiber coordinate of $f^{\circ}: V^{\circ} \rightarrow W^{\circ} . \quad \Xi$ is $\pi_{1}\left(W^{0}\right)$-invariant and gives an element of $H^{\circ}\left(V^{\circ}, K_{V}^{\otimes^{m}}\right)$. Set $\Sigma^{\circ}=\{x \in \Sigma \mid \Sigma$ is non-singular at x and there exists a curve Z in W passing through x and meeting Σ transversally such that an elliptic surface $f^{-1}(Z) \rightarrow Z$ is non-singular.\}. Put $W^{\prime}=W^{\circ} \cup \Sigma^{\circ}$. Clearly we have codim $\left(W \backslash W^{\prime}\right) \geq 2$.

By Ueno [14], Theorem (2.3), Ξ can be extended holomorphically to an element of $\Gamma\left(f^{-1}\left(W^{\prime}\right), K_{V}^{\otimes m}\right)$. And by writing down the zeros of Ξ explicitly, we have the following isomorphism on W^{\prime} :

$$
\begin{equation*}
f_{*}\left(K_{V}^{\otimes m}\right) \rightarrow K_{W}^{\otimes m} \otimes \mathcal{O}(\Gamma), \quad \Gamma=\sum_{i=1}\left[m \alpha_{i}\right] D_{i}+\left(p \nabla_{1}+q \nabla_{2}\right), \tag{**}
\end{equation*}
$$

where $\nabla_{i}(i=1,2)$ are effective divisors on W such that $3 \nabla_{1} \sim J * \mathcal{O}_{P^{1}}(1)$ and $2 \nabla_{2} \sim$ $J^{*} \mathcal{O}_{P^{1}}(1)$ and p and q are positive integers such that $m=4 p+6 q$.

Since $\operatorname{codim}\left(W \backslash W^{\prime}\right) \geq 2$, the above isomorphism can be extended to a homomorphism on W.
Let E be an effective divisor on V such that

$$
K_{V}^{\otimes^{m}} \otimes \mathcal{O}_{V}(-E)=\left\{\operatorname{Image}\left(f^{*} f_{*} K_{V}^{\otimes^{m}} \rightarrow K_{V}^{\otimes^{m}}\right)\right\}^{\nu \nu}
$$

Then $f^{*} f_{*} K_{V}^{\otimes m} \rightarrow f^{*}\left(K_{V}^{\otimes m} \otimes \mathcal{O}_{W}(\Gamma)\right)$ induces an injective homomorphism $K_{V}^{\otimes^{m}} \otimes$ $\mathcal{O}_{V}(-E) \rightarrow f^{*}\left(K_{W}^{\otimes m} \otimes \mathcal{O}_{W}(\Gamma)\right)$. Therefore we have $K_{V}^{\otimes m} \otimes \mathcal{O}_{V}(E-G) \simeq f^{*}\left(K_{W}^{\otimes m} \otimes\right.$ $\left.\mathcal{O}_{W}(\Gamma)\right)$ for an effective divisor G on V and this implies the claim. And (1) and (2) is clear from our construction.
q.e.d.

Proof of remark 2.2. In this case, we can show (**) directly without using the modular forms, so our proof works for all positive integer m.

Proposition 2.3. Let $f: X \rightarrow Y$ be an elliptic threefold. Then we have $P_{m}(X) \geq$ $P_{m}(Y)$ for an arbitrary positive even positive integer $m>2$, except the case where X is bimeromorphic to an elliptic threefold which is a fiber bundle with the structure group $\mathbf{Z} / 2, \boldsymbol{Z} / 3, \boldsymbol{Z} / 4$ or $\boldsymbol{Z} / 6$ over a Zariski open set of the base space.

Proof. By Hironaka's flattening theorem and resolution of singularities, we have the following commutative diagram.

1) V, T and S are non-singular.
2) μ, ν, ϕ and π are bimeromorphic morphism and g is flat.
3) The J-invariant $J: T \rightarrow \boldsymbol{P}^{1}$ is a morphism.
4) The discriminant locus $\sum=\sum_{i} D_{i}$ of h are divisors with normal crossings. Furthermore we may assume that the condition (*) in Theorem 1.1 is satisfied for $h: V \rightarrow T$.

Then it follows from Proposition 2.1 that for an arbitrary even positive integer m, we have $m K_{V} \sim h^{*}\left(m K_{T}+\Gamma\right)+E-G$ for some effective divisor Γ on T and E, G on V. Since g is flat, G is $(\nu \circ \mu)$-exceptional. Therefore we have an isomorphism $H^{\circ}\left(V, \mathcal{O}\left(m K_{V}\right)\right) \simeq H^{\circ}\left(V, \mathcal{O}\left(m K_{V}+G\right)\right)$

$$
\simeq H^{\circ}\left(T, \mathcal{O}\left(m K_{T}+\Gamma\right)\right.
$$

This implie sthat $P_{m}(X) \geq P_{m}(Y)$ for any even positive integer $m>2$.
Remark 2.4. If $f: X \rightarrow Y$ is an elliptic threefold with constant moduli which has only multiple singular fibers, we have $P_{m}(X) \geq P_{m}(Y)$ for every positive integer m.

Proposition 2.5 (The canonical bundle formula of elliptic threefolds). Let f : $V \rightarrow W$ be an elliptic threefold over an algebraic surface W. Assume that the discriminant locus \sum of f are divisors with only normal crossings and the condition (${ }^{*}$) in theorem 1.1 is satisfied. Then the canonical bundle of V can be written as follows:

$$
K_{V} \simeq f^{*}\left(K_{W}+L\right)+M-G
$$

where 1) L is a line bundle on W.
2) M is an effective divisor on V such that

$$
M=f_{Q}^{*}\left(\sum_{i} \frac{m_{i}-1}{m_{i}} D_{i}\right)+E_{1}-E_{2},
$$

where V has multiple fibers of multiplicity m_{i} along the irreducible component D_{i} of \sum and E_{i} is an effective divisor on V such that $f\left(\operatorname{supp}\left(E_{i}\right)\right)$ is a point.
3) G is an effective divisor on V such that $f(G)$ is a point.

Proof. Since $f_{*} K_{V / W}$ is coherent, it follows from Serre's theorem that there exists a very ample divisor H on W such that $H^{\circ}\left(W, f_{*} K_{V / W}(H)\right) \neq 0$. Hence if we put $\bar{H}=f^{*} H$, we have $H^{\circ}\left(V, K_{V / W}(\bar{H})\right) \neq 0$ and the complete linear system $\left|K_{V / W}(\bar{H})\right|$ contains an effective divisor $F=\sum_{j} F_{j}$.

Let C be ageneral hyperplane section of W and put $V(C):=f^{-1}(C)$. Then $V(C)$ is a non-singular elliptic surface over C and is relatively minimal. Clearly we have $\left.K_{V / W}\right|_{V(C)}=K_{V(C) / C}$. Hence by the canonical bundle formula of elliptic surfaces (cf. [12]), each $f\left(F_{j}\right)$ is a curve or a point. The same argument as in Kodaira [12], Theorem (12.1) can be applied to our situation and we can easily see
that there exists a line bundle L on W such that $f_{*} K_{V / W} \simeq \mathcal{O}(L)$ except a finite number of points on W.

By Krull's theorem, we can extend this to a homomorphism $f_{*} K_{V / W} \rightarrow \mathcal{O}(L)$ on W. Let M be an effective divisor on V such that

$$
K_{V / W} \otimes \mathcal{O}_{V}(-M)=\left\{\operatorname{Image}\left(f^{*} f_{*} K_{V / W} \rightarrow K_{V / W}\right)\right\}^{\nu \nu} .
$$

Then the homomorphism $f^{*} f_{*} K_{V / W} \rightarrow f^{*} \mathcal{O}(L)$ induces an injective homomorphism $K_{V / W} \otimes \mathcal{O}_{V}(-M) \rightarrow f^{*} \mathcal{O}(L)$. Hence there exists an effective divisor G on V such that

$$
K_{V} \simeq f^{*}\left(K_{W}+L\right)+M-G .
$$

Again by the canonical bundle formula of Kodaira, M can be expressed as

$$
M \underset{Q}{\sim} f^{*}\left(\sum_{i} \frac{m_{i}-1}{m_{i}} D_{i}\right), \quad \text { in codimension one on } W
$$

Therefore by applying the same argument as above, we obtain (2). q.e.d.

Proposition 2.6. Let $f: X \rightarrow Y$ be an elliptic threefold over an algebraic surface Y and assume that $\kappa(X)=2$. Then there exists a positive integer m_{0} (which may depend on X) such that the pluricanonical mapping $\Phi_{1 m K_{X^{1}}}$ gives the Itaka fibration for all $m \geq m_{0}$.

Proof. By Hironaka's flattening theorem and Theorem 1.1, we may assume that $f: X \rightarrow Y$ satisfies the same conditions as in the proof of proposition 2.3. Since $\kappa(X)=2$, there exist positive numbers α, β and positive integers p_{0}, d such that the following inequalities hold for any integer $p \geq p_{0}: \alpha p^{2} \leq h^{\circ}\left(X, p d K_{X}\right) \leq \beta p^{2}$ and $\Phi_{\left|p d K_{\chi}\right|}$ gives the Iitaka fibration for all $p \geq p_{\circ}$. By Proposition 2.5, we have $K_{X} \sim f^{*}\left(K_{Y}+L\right)+M-G$,

$$
M \underset{Q}{\sim} f^{*}\left(\sum_{i} \frac{m_{i}-1}{m_{i}} D_{i}\right)+E_{1}-E_{2}, \text { and } \operatorname{codim} f\left(\operatorname{supp}\left(E_{i}\right)\right) \geq 2, \operatorname{codim} f(\operatorname{supp}(G)) \geq 2 .
$$

Fix a positive integer r such that $1 \leq r<d$ and for any positive integer p, put $a:=p d-r$. Then we have

$$
\begin{gathered}
H^{\circ}\left(X, a K_{X}\right) \simeq H^{\circ}\left(X, f^{*}\left(a\left(K_{Y}+L\right)+\sum_{i}\left[\frac{a\left(m_{i}-1\right)}{m_{i}}\right] D_{i}\right)\right) \\
\simeq H^{\circ}\left(Y, a\left(K_{Y}+L\right)+\sum_{i}\left[\frac{a\left(m_{i}-1\right)}{m_{i}}\right] D_{i}\right) \\
H^{\circ}\left(X,(a+r) K_{X}\right) \simeq H^{\circ}\left(Y,(a+r)\left(K_{Y}+L\right)+\sum_{i}\left[\frac{(a+r)\left(m_{i}-1\right)}{m_{i}}\right] D_{i}\right) . \\
\text { Since }\left[\frac{(a+r)\left(m_{i}-1\right)}{m_{i}}\right]-\left[\frac{a\left(m_{i}-1\right)}{m_{i}}\right] \leq \frac{(a+r)\left(m_{i}-1\right)}{m_{i}}-\left(\frac{a\left(m_{i}-1\right)}{m_{i}}-1\right)<r+1,
\end{gathered}
$$

we have the following inclusions.

$$
\begin{gathered}
H^{\circ}\left(X, a K_{X}\right) \curvearrowright H^{\circ}\left(Y,(a+r)\left(K_{Y}+L\right)+\sum_{i}\left[\frac{(a+r)\left(m_{i}-1\right)}{m_{i}}\right] D_{i}\right. \\
\left.-r\left(K_{Y}+L\right)-r \sum_{i} D_{i}\right) .
\end{gathered}
$$

Let H be a very ample line bundle on Y such that $\bar{H}:=r\left(K_{Y}+L\right)+r \sum_{i} D_{i}+H$ is also very ample. Then we have $H^{\circ}(Y, O(\Gamma-\bar{H})) \hookrightarrow H^{\circ}\left(X, a K_{X}\right)$, where we put $\Gamma=(a+r)\left(K_{Y}+L\right)+\sum_{i}\left[\frac{(a+r)\left(m_{i}-1\right)}{m_{i}}\right] D_{i}$.

There is an exact sequence

$$
0 \rightarrow H^{\circ}(Y, \mathcal{O}(\Gamma-\bar{H})) \rightarrow H^{\circ}(Y, \mathcal{O}(\Gamma)) \rightarrow H^{\circ}\left(\bar{H}, \mathcal{O}(\Gamma) \otimes \mathcal{O}_{\bar{H}}\right) \rightarrow
$$

where \bar{H} also denotes a general member of the complete linear system $|\bar{H}|$. Since $H^{\circ}(X, \mathcal{O}(\Gamma)) \leftrightarrows H^{\circ}\left(X,(a+r) K_{X}\right) \leftrightarrows H^{\circ}\left(X, p d K_{X}\right)$, we have $\alpha p^{2} \leq \operatorname{dim} H^{\circ}(Y, \mathcal{O}(\Gamma)) \leq$ βp^{2} for all $p \geq p_{0}$.

On the other hand, there is a positive integer r such that $\operatorname{dim} H^{\circ}(\bar{H}, \mathcal{O}(\Gamma) \otimes$ $\left.O_{\bar{H}}\right) \leq r p$ by the consideration of the dimension.

Therefore there exists a positive integer $k(r)$ such that for all $p \geq k(r)$, we have $H^{\circ}(Y, \mathcal{O}(\Gamma-\bar{H})) \neq 0$ and hence $H^{\circ}\left(X, a K_{X}\right) \neq 0$, where $a=p d-r$. Since $H^{\circ}\left(X,(k(r) d-r) K_{X}\right) \neq 0$ for $0<r<d$, we have

$$
\left.H^{\circ}\left(X, p d K_{X}\right) \hookrightarrow H^{\circ}(X,((p+k(r)) d-r)) K_{X}\right) .
$$

So if we put $m_{0}:=\operatorname{Max}_{0<r<d}\left\{\left(p_{0}+k(r)\right) d-r\right\}, \Phi_{\left|m K_{X}\right|}$ gives the Iitaka fibration for all $m \geq m_{0}$.
q.e.d

Theorem 2.7. Let $f: X \rightarrow S$ be an elliptic threefold over a surface S. Assume that $\kappa(X)=2$ and S is a surface of general type. Then the pluricanonical mapping $\Phi_{\left|m K_{X}\right|}$ associated to the complete linear system $\left|m K_{X}\right|$ gives the Iitaka fibration for all even positive integer $m \geq 6$.

Remark 2.8. If X is an elliptic threefold with constant moduli which has only multiple singular fibers, the theorem holds for all $m \geq 5$.

Proof of 2.7. Let $M \rightarrow S$ be a flattening of f and let $V \rightarrow T$ be a non-singular model of M. We may assume that $V \rightarrow T$ satisfies the same conditions as in the proof of Proposition 2.3.

Then it follows from Proposition 2.1 that for an even positive integer $m>2$, we have $m K_{V} \sim f^{*}\left(m K_{T}+\Gamma\right)+E-G$ for some effective divisor Γ on T and E, G on V. By the same reason as in the proof of Proposition 2.3, we have an isomorphism $H^{\circ}\left(V, \mathcal{O}\left(m K_{V}\right)\right) \simeq H^{\circ}\left(T, \mathcal{O}\left(m K_{T}+\Gamma\right)\right)$.

If Y is a minimal surface of general type, then the pluricanoical mapping $\Phi_{\left|m K_{Y}\right|}$ gives a birational morphism for all $m \geq 5$.

Therefore $\Phi_{\left|m K_{X}\right|}$ gives the Iitaka fibration for all even integer $m \geq 6$.

Theorem 2.9. Let T be a simple abelian surface and let $f: X \rightarrow T$ be an elliptic threefold over T with constant moduli which has only multiple singular fibers. Assume that $\kappa(X)=2$. Then we have $P_{m}(X)>1$ for all $m \geq 10$.

Proof. From Remark 2.4, we have $P_{g}(X)=1$ and $P_{m}(X) \geq P_{m}(Y)$ for all $m \geq 2$. So we may assume that K_{X} is effective. Take a sufficiently fine open covering $\left\{U_{\lambda}\right\}_{\lambda}$ of X and K_{X} is locally defined by $\psi_{\lambda}=0$. Then we can take a double covering \tilde{X} of X defined by $\tilde{X}=\bigcup_{\lambda}\left\{\zeta_{\lambda}^{2}=\psi_{\lambda}^{2}\right\}$, where $\left\{\zeta_{\lambda}\right\}$ is a fiber coordinate of the canonical bundle K_{X}. Take the normalization \tilde{X}^{*} of \tilde{X}. Clearly $\tilde{X}^{*} \xrightarrow{\boldsymbol{\pi}} X$ is a twosheeted unramified covering of X. Take the Stein factorization of $\tilde{X}^{*} \rightarrow T$.

From our construction, it is clear that $\widetilde{T} \rightarrow T$ is a double covering of T ramified only along $f\left(\operatorname{supp}\left(K_{X}\right)\right)$ and \tilde{T} is irreducible. By taking a suitable bimeromorphic model of $\tilde{X}^{*} \rightarrow \tilde{T}$, we may assume that \tilde{T} is non-singular. Because T is a simple abelian surface, \tilde{T} is a surface of general type. Clearly we have $\kappa\left(\tilde{X}^{*}\right) \geq \kappa(X)=2$. Therefore it follows from Proposition 2.3 that the pluricanonical mapping $\Phi_{\left|m K \tilde{x}^{*}\right|}$ gives the Iitaka fibration for all $m \geq 5$. In particular we have $P_{m}\left(\widetilde{X}^{*}\right) \geq 4$ for all $m \geq 5$.

Now, $\pi: \tilde{X}^{*} \rightarrow X$ is an unramified double covering of X with the Galois group G. Let L be the line bundle associated to the non-trivial character on G. Then we have $L^{\otimes 2} \simeq \mathcal{O}_{X}$ and $\pi_{*} \mathcal{O}_{\tilde{x}^{*}} \simeq \mathcal{O}_{x} \oplus \mathcal{O}_{X}(L)$.

Note that $\pi_{*}\left(\mathcal{O}\left(m K_{\tilde{X}^{*}}\right)\right) \simeq \mathcal{O}\left(m K_{X}\right) \oplus \mathcal{O}\left(m K_{X}+L\right)$.
By considering the Leray's spectral sequence, we have

$$
H^{\circ}\left(\tilde{X}^{*}, \mathcal{O}\left(m K_{\tilde{X}^{*}}\right)\right) \underset{\rightarrow}{\leftrightarrows} H^{\circ}\left(X, \mathcal{O}\left(m K_{X}\right)\right) \oplus H^{\circ}\left(X, \mathcal{O}\left(m K_{X}+L\right)\right)
$$

Thus for all $m \geq 5$, we have $h^{\circ}\left(X, O\left(m K_{X}\right)\right) \geq 2$ or $h^{\circ}\left(X, O\left(m K_{X}+L\right)\right) \geq 2$. Noting that $L^{2} \simeq \mathcal{O}_{X}$ and K_{X} is effective, we have $P_{m}(X) \geq 2$ for all $m \geq 10$.
q.e.d.

Proposition 2.10. Let $f: X \rightarrow S$ be an elliptic threefold over an elliptic surface $\phi: S \rightarrow C$ such that $\kappa(X)=2$ and $\kappa(S)=1$. Let $\Sigma \subset S$ be a discriminant locus of f. Then S is algebraic and there exists an irreducible component D_{0} of \sum with $\phi\left(D_{0}\right)=C$.

Proof. By taking a suitable bimeromorphic model of $f: X \rightarrow S$, we may assume that

1) Σ have only normal crossings.
2) The J-invariant $J: S \rightarrow \boldsymbol{P}^{1}$ is holomorphic.

By the canonical bundle formula of Fujita [5], we have
*)

$$
K_{X}^{\otimes k} \simeq f^{*}\left(K _ { S } ^ { \otimes k } \otimes J ^ { * } \mathcal { O } _ { P ^ { 1 } (m)) } \left(\otimes \mathcal{O}_{S}\left(\sum_{Y} k \mu_{Y} Y\right) \otimes \mathcal{O}_{X}(V-W) \quad\right.\right. \text { where }
$$

1) $\operatorname{codim} f(W) \geq 2$.
2) $f_{*} \mathcal{O}_{X}(p V) \simeq \mathcal{O}_{s}$ for all $p \geq 1$,
and $k=12 \mathrm{~m}$ is a positive integer which is a multiple of all the multiplicities of the irreducible component of Σ.

Let $\mu: S \rightarrow S^{\prime}$ be a contraction of exceptional curves of the first kind in fibers. Then $\phi^{\prime}: S^{\prime} \rightarrow C$ is relatively minimal and we have

$$
K_{S^{\prime}} \simeq \phi^{\prime}\left(K_{C}-f\right)+\sum_{i}\left(m_{i}-1\right)\left[E_{i}\right], \phi^{\prime} *\left[p_{i}\right]=\left[m_{i} E_{i}\right]
$$

and

$$
K_{s} \simeq \mu^{*} K_{s^{\prime}}+\sum_{j} e_{j}
$$

where e_{j} is an exceptional curve.
Moreover we may assume that $k=12 \mathrm{~m}$ is divisible by all m_{i} 's. Then we have

$$
\begin{equation*}
K_{S}^{\otimes k} \simeq \phi^{*}\left(k\left(K_{C}-f\right)+\sum_{i} \frac{k}{m_{i}}\left(m_{i}-1\right) P_{i}\right)+k \sum_{j} e_{j} . \tag{**}
\end{equation*}
$$

From (*) and ($* *$), if we put $g=\phi \circ f$, we have

$$
\begin{gathered}
K_{X}^{\otimes k} \simeq g^{*}\left(k\left(K_{C}-f\right)+\sum_{i} \frac{k}{m_{i}}\left(m_{i}-1\right) P_{i}\right) \otimes f^{*}\left(J * \mathcal{O}_{P^{1}(m) \otimes \Theta\left[k \sum_{j} e_{j}\right]}^{\left.\otimes \mathcal{O}_{s}\left[\sum_{Y} k \mu_{Y} Y\right]\right) \otimes \mathcal{O}_{X}(V-W)} .\right.
\end{gathered}
$$

Hence, if there exists no irreducible component of Σ which is mapped surjectively onto C by ϕ, we have $\kappa(X) \leq 1$ and this is a contradiction.
q.e.d.

Theorem 2.11. Let $f: X \rightarrow Y$ be an elliptic threefold over Y. Assume that $\kappa(X)=2$ and $\kappa(Y)=1$. Then the pluricanonical mapping $\Phi_{\left|m K_{x}\right|}$ gives the Iitaka fibration for all even integer $m \geq 16$.

Remark 2.12. If X is an elliptic threefold with constant moduli which has only multiple singular fibers, the theorem holds for all $m \geq 15$.

Proof. We use the same notation as in Proposition 2.1. By Hironaka's flattening theorem and resolution of singularities, we may assume that

1) The discriminant locus $D=\sum_{i} D_{i}$ are divisors which have only normal crossings.
2) The J-invariant $J: Y \rightarrow \boldsymbol{P}^{1}$ is a morphism.
3) The condition (*) in Theorem 1.1 is satisfied.
4) There is an isomorphism $H^{\circ}\left(X, \mathcal{O}\left(m K_{X}\right)\right) \simeq H^{\circ}\left(Y, \mathcal{O}\left(m K_{Y}+\Gamma\right)\right)$ for an even integer $m>2$, where $\Gamma=\sum_{i}\left[m \alpha_{i}\right] D_{i}+\left(p \nabla_{1}+q \nabla_{2}\right)$.
Y has the structure of an elliptic surface $\phi: Y \rightarrow C$ and let $\mu: Y \rightarrow Y^{\prime}$ be the contraction of the exceptional curves of the first kind in fibers. Then $\phi^{\prime}: Y^{\prime} \rightarrow C$ is relatively minimal and we have

$$
K_{Y^{\prime}} \simeq \phi^{\prime *}\left(K_{C}-f\right)+\sum_{i}\left(q_{i}-1\right)\left[E_{i}\right], \quad \phi^{*}\left[p_{i}\right]=\left[q_{i} E_{i}\right]
$$

and

$$
K_{Y} \simeq \mu^{*} K_{Y^{\prime}}+\sum_{j} e_{j}
$$

where $\boldsymbol{e}_{\boldsymbol{j}}$ is an exceptional curve. Hence we have

$$
K_{Y} \simeq \phi^{*}\left(K_{C}-f\right)+\sum_{i}\left(q_{i}-1\right)\left[\mu^{*} E_{i}\right]+\sum_{j} e_{j}
$$

where

$$
\phi^{*}\left[p_{i}\right]=\left[q_{i} \mu^{*} E_{i}\right] .
$$

By Proposition 2.10, $\phi: Y \rightarrow C$ is an algebraic elliptic surface and there exists some irreducible component of the discriminant locus which is mapped surjectively onto C by ϕ. Let $D_{1}, D_{2}, \cdots, D_{p}$ (resp. $D_{p+1}, \cdots, D_{\lambda}$) be horizontal with respect to ϕ. (resp. be contained in fibers of ϕ.)

By Katsura and Ueno [7], the pluricanonical mapping $\Phi_{\mid m K_{Y^{\prime}}}$ gives the unique structure of the elliptic surface for every $m \geq 14$. If we put $\Gamma=\mathcal{O}\left(m K_{Y}+\sum_{i=1}^{p}\left[m \alpha_{i}\right] D_{i}\right)$ there is an injection $H^{\circ}(Y, \mathcal{O}(\Gamma)) \hookrightarrow H^{\circ}\left(X, \mathcal{O}\left(m K_{X}\right)\right)$. Hence it suffices to show that Φ_{Γ} seperates points on the general fiber f of $\Phi: Y \rightarrow C$. Since $\Gamma \cdot f>0$, the restriction $\mathcal{O}(\Gamma) \otimes \mathcal{O}_{f}$ is very ample for every $m \geq 14$.

So it suffices to show that the restriction map
$R: H^{\circ}(Y, \mathcal{O}(\Gamma)) \rightarrow H^{\circ}\left(f, \mathcal{O}(\Gamma) \otimes O_{f}\right) \quad$ is surjective for every $m \geq 14$.
We have the following exact sequence:

$$
\begin{aligned}
0 & \rightarrow H^{\circ}(Y, \mathcal{O}(\Gamma-f)) \rightarrow H^{\circ}(Y, \mathcal{O}(\Gamma)) \rightarrow H^{\circ}\left(f, \mathcal{O}(\Gamma) \otimes O_{f}\right) \\
& \rightarrow H^{1}(Y, \mathcal{O}(\Gamma-f)) \rightarrow H^{\circ}(Y, \mathcal{O}(\Gamma)) \rightarrow 0 .
\end{aligned}
$$

We will show that $H^{1}(Y, \mathcal{O}(\Gamma-f))=0$. We need the following lemma.
Lemma 2.13 (Kodaira). Let V be a Kähler surface and let C be a curve composed of m connected components on V. Then the integer $k=h^{1}\left(K_{V}+C\right)-m+1$ is equal to the number of lineary independent holomorphic 1-forms on V which vanishes on C.

We have $\left.H^{1}(Y, \mathcal{O}(\Gamma-f)) \simeq H^{1}\left(Y, K_{Y}+\left((m-1) K_{Y}-f\right)+\sum_{i=1}^{p}\left[m \alpha_{i}\right] D_{i}\right)\right)$.
From Katsura and Ueno [7], we have $\operatorname{dim}\left|(m-1) K_{Y}-f\right| \geq 0$ for all $m \geq 15$. And there is no holomorphic 1-form on Y which vanishes on some $D_{i}(1 \leq i \leq p)$, since D_{i} is a horizontal component of $\phi: Y \rightarrow C$. Hence Lemma 2.13 implies the claim.

Hence for every even integer $m \geq 16, \Phi_{1 m K_{X^{\prime}}}$ gives the Iitaka fibration. q.e.d.

§1. The structure of algebraic elliptic fiber spaces.

In this section, we shall consider an algebraic elliptic fiber space with constant
moduli which has only multiple singular fibers. There is great difference between algebraic elliptic fiber spaces and analytic elliptic fiber spaces. Katsura and Ueno [7] showed that the multiplicities of the multiple fibers of an algebraic elliptic surface satisfy certain numerical conditions.

On the other hand, there is a deep connection between algebraic elliptic fiber spaces and the theory of branched coverings of complex manifolds developed by Namba [13].

First, we quote the following important theorems.
Theorem 3.1 (Katsura and Ueno [7]). Let $f: S \rightarrow \boldsymbol{P}^{1}$ be an algebraic elliptic surface of type $\left(m_{1}, m_{2}, \cdots, m_{\lambda}\right)$.
(*) Let m be the least common multiple of $m_{1}, m_{2}, \cdots, m_{\lambda}$.
For a prime number q, let α be the maximal integer such that q^{α} divides m. Then there exists at least two indices i and j such that q^{α} divides both m_{i} and m_{j}. (We call (*) condition (U).)

We need the following definition.
Definition 3.2 (c.f. Namba [13]). Let M (resp. X) be an n-dimensional complex manifold. (resp. n-dimensional normal complex space.) A Galois covering $f: X \rightarrow M$ which branches at the divisor D is said to be maximal if for any covering $f^{\prime}: X^{\prime} \rightarrow M$ which branches at at most D, there is a morphism g of X onto X^{\prime} such that $f=f^{\prime} \circ g$.

Theorem 3.3 (Namba [13]). Let $\bar{D}_{j}(1 \leq j \leq \lambda)$ be distinct irreducible hypersurfaces of degree d_{j} of \boldsymbol{P}^{n}. Let $m_{j}(1 \leq j \leq \lambda)$ be positive integers and put $\bar{D}=m_{1} \bar{D}_{1}+$ $m_{2} \bar{D}_{2}+\cdots+m_{\lambda} \bar{D}_{\lambda}$. Then there is a finite abelian covering of \boldsymbol{P}^{n} which branches at \bar{D} if and only if the following condition is satisfied.

Condition (N)

$$
\frac{m_{j}}{\left(d_{j}, m_{j}\right)} \text { divides }\left\langle\frac{m_{1}}{\left(d_{1}, m_{1}\right)}, \cdots \cdot \frac{m_{j}}{\left(d_{j}, m_{j}\right)}, \cdots, \frac{m_{\lambda}}{\left(d_{\lambda}, m_{\lambda}\right)}\right\rangle
$$

for $1 \leq j \leq \lambda_{\mathrm{v}}$, where $\left(d_{j}, m_{j}\right)$ denotes the greatest common divisor of d_{j} and m_{j} and $\left\langle a_{1}, a_{2}, \cdots, \stackrel{\vee}{a_{j}}, \cdots, a_{s}\right\rangle$ denotes the least common multiple of $a_{1}, a_{2}, \cdots, a_{s}$ except a_{j}. (If $n=1$, put $d_{j}=1$ for all $1 \leq j \leq \lambda$.)

Moreover, if $n \geq 2$ and $\bar{D}_{j}^{\prime} s(1 \leq j \leq \lambda)$ are smooth and crossing normally, such a finite abelian covering $\pi: \tilde{\boldsymbol{P}}^{n} \rightarrow \boldsymbol{P}^{n}$ is maximal and the Galois group G_{π} is isomorphic to $\boldsymbol{Z}_{r_{1}}+\boldsymbol{Z}_{r_{2}}+\cdots+\boldsymbol{Z}{\gamma_{\lambda}}_{\lambda}$, where $d_{1} r_{1}+d_{2} r_{2}+\cdots+d_{\lambda} r_{\lambda}=0$ and $m_{j} r_{j}=0$ for $1 \leq j \leq \lambda$.

Combining these two results, we obtain the following proposition.
Proposition 3.4. Let $f: S \rightarrow \boldsymbol{P}^{1}$ be an elliptic surface with constant moduli which has only multiple singular fibers. Put

$$
S=L_{p_{1}}\left(m_{1}, a_{1}\right) L_{p_{2}}\left(m_{2}, a_{2}\right) \cdots L_{p_{\lambda}}\left(m_{\lambda}, a_{\lambda}\right)\left(\boldsymbol{P}^{1} \times E\right) .
$$

(Here we use the notation of Kodaira [11].) Then the following conditions are equivalent.
(1) S is projective.
(2) S is Kähler.
(3) $\sum_{i=1}^{\lambda} a_{i}=0$.
(4) There exists a finite abelian covering $\pi: C \rightarrow \boldsymbol{P}^{1}$ of \boldsymbol{P}^{1} which branches at $D=\sum_{i=1}^{\lambda} m_{i} p_{i} . \quad$ Let G be the Galois group of π and let X be the normalization of the pull-back $\underset{P^{1}}{ } \times C \rightarrow C$. Then we have $X=\left(\boldsymbol{P}^{\mathbf{1}} \times E\right)^{\eta}$, where $\eta \in H^{1}(C, \mathcal{O}(E))$ is of finite order, and the quotient space X / G is isomorphic to S. (Here E denotes a smooth elliptic curve.)

Proof. (1) $\leftrightarrow(2)$ follows from Kodaira [11].
(1) $\leftrightarrow(3)$ follows from Katsura and Ueno [7]; appendix.
(4) \rightarrow (1) is clear, so we prove that (3) implies (4).

As is shown in Katsura and Ueno [7], (3) implies condition (U) in Theorem 3.1.
On the other hand, one can see easily that condition (U) is equivalent to the following condition.
(*) m_{j} divides $\left\langle m_{1}, \cdots, m_{j}, \cdots, m_{\lambda}\right\rangle$ for $1 \leq j \leq \lambda$.
Therefore if we put $d_{j}=1$ for all j in Theorem 3.3, there exists a finite abelian covering which branches at $D=\sum_{i=1}^{\lambda} m_{i} p_{i}$ and the claim follows.

Remark 3.5. Theorem 3.1 and Proposition 3.4 are still true if we replace \boldsymbol{P}^{1} by any compact smooth curve C. Here we give another proof.

Proof. Put $S=L_{p_{1}}\left(m_{1}, a_{1}\right) \cdots L_{p_{\lambda}}\left(m_{\lambda}, a_{\lambda}\right)(C \times E)$ and let m be the least common multiple of m_{i} 's. $(1 \leq i \leq \lambda)$. The multiplication map $m: E \rightarrow E$ induces a finite surjective morphism $\phi: S \rightarrow Y$, where $Y \rightarrow C$ is an elliptic bundle over C. Hence S is Kähler if and only if Y is Kähler. If we express Y as $Y=(C \times E)^{\eta}$, $\eta \in H^{1}(C, O(E))$, we can easily see that the Chern class of η is $c(\eta)=m \sum_{i=1}^{\lambda} a_{i}$. By Kodaira [11], Y is Kähler if and only if $c(\eta)=0$. Hence the claim follows.

Now, we give a generalization of Proposition 3.4.
Theorem 3.6. Let $H_{j}(1 \leq j \leq \lambda)$ be distinct hyperplanes of $\boldsymbol{P}^{n}(n \geq 2)$ which are crossing normally and let $f: X \rightarrow \boldsymbol{P}^{n}(n \geq 2)$ be an elliptic fiber space over \boldsymbol{P}^{n} with constant moduli which has multiple fibers of multiplicity m_{j} along each $H_{j}(1 \leq j \leq \lambda)$ and is a principal fiber bundle over $\boldsymbol{P}^{n} \bigcup_{j=1}^{\lambda} H_{j}$ with the structure group E, where E is a smooth elliptic curve. Then the following conditions are equivalent.
(1) X is Moishezon.
(2) X is in the class C.
(3) $t(X)=1$, where $t(X)$ denotes the Albanese dimension of X.
(4) There exists a finite abelian covering $\pi: Y \rightarrow \boldsymbol{P}^{n}$ of \boldsymbol{P}^{n} which branches at $D=\sum_{j=1}^{\lambda} m_{j} H_{j}$. Let G be the Galois group of $\pi: Y \rightarrow \boldsymbol{P}^{n}$. Then the pull-back $\underset{P^{n}}{X} Y \rightarrow Y$ of π is bimeromorphic to $Y \times E$ and the quotient space $Y \times E / G$ is bimeromorphic to X.

Proof. (1) $\leftrightarrow(2)$ is well-known. (c.f. Fujiki [1])
(2) \rightarrow (4)

Take ($n-1$) general hyperplane sections of \boldsymbol{P}^{n} and restrict the elliptic fiber space $f: X \rightarrow \boldsymbol{P}^{n}$ over the intersection of them. Then we get an elliptic surface S over \boldsymbol{P}^{1} of type ($m_{1}, m_{2}, \cdots, m_{\lambda}$). Because X is in the class $\mathcal{C}, \quad S$ is also in the class \mathcal{C}, so is Kähler. Therefore by Theorem 3.1, $\left(m_{1}, m_{2}, \cdots, m_{\lambda}\right)$ satisfies condition (U).

The same arguments as in Proposition 3.4 can be applied to our situation, so there exists a finite abelian covering $\pi: Y \rightarrow \boldsymbol{P}^{n}$ of \boldsymbol{P}^{n} which branches at $D=\sum_{j=1}^{\lambda} m_{j} H_{j}$ and the pull-back $X \underset{p^{n}}{\times} Y \rightarrow Y$ is bimeromorphic to $(Y \times E)^{\eta} \rightarrow Y$, where $\eta \in$ $H^{1}(Y, O(E))$ is of finite order. There exists an ètale cover $Z \rightarrow Y$ such that $(Y \times E)^{\eta} \times \underset{Y}{\times}$ is isomorphic to $\underset{Y}{Z} \times E$. Since $\pi: Y \rightarrow P^{n}(n \geq 2)$ is a maximal covering, we have $Z \simeq Y$ and $\eta=0$ in $H^{1}(Y, O(E))$. So the claim follows.
(4) $\rightarrow(3)$ is trivial.
(3) \rightarrow (1) Since $t(X)=1, \operatorname{Alb}(X)$ is a smooth elliptic curve and $\alpha_{X}: X \rightarrow \operatorname{Alb}(X)$ (the Albanese map of X) is surjective and has connected fibers. Then the morphism $\Phi=\left(f, \alpha_{X}\right): X \rightarrow \boldsymbol{P}^{2} \times \operatorname{Alb}(X)$ is surjective, hence X is Moishezon. q.e.d.

§4. Proof of main theorem B.

The following proposition is due to M. Kato.
Proposition 4.1 (M. Kato). For an arbitrary integer $\lambda \geq 2$, let ($m_{1}, m_{2}, \cdots, m_{\lambda}$) be a λ-tuple of positive integers with $m_{i} \geq 2$ for all i, and assume that any two of them are relatively prime.-(*) Then there exists an elliptic fiber space $f: X \rightarrow \boldsymbol{P}^{\boldsymbol{\lambda - 1}}$ over $\boldsymbol{P}^{\lambda-1}$ with constant moduli which satisfies the following conditions.
(1) X has multiple fibers of multiplicity m_{i} along $\left\{\zeta_{i}=0\right\}$ for each i, and is trivial over $\boldsymbol{P}^{\lambda-1} \backslash \bigcup_{i=1}^{\lambda}\left\{\zeta_{i}=0\right\}$, where $\left(\zeta_{1}: \zeta_{2}: \cdots: \zeta_{\lambda}\right)$ is the homogeneous coordinate of $\boldsymbol{P}^{\lambda-1}$. (2) $F: X \rightarrow \boldsymbol{P}^{\lambda-1}$ is flat.

Remark 4.2. X is not in the class \mathcal{C} in the sense of Fujiki [1]. That is, X cannot be bimeromorphic to any compact Kähler manifold. (c.f. §3).

Remark 4.1. X is a Hopf manifold. Conversely, any elliptic fiber space which satisfies (1) and (2) is a submanifold of a Hopf manifold.

Proof. Let us consider an analytic automorphism of $\boldsymbol{C}^{\boldsymbol{\lambda}} \backslash\{0\}$ defined by

where we fix a constant $\rho \in \boldsymbol{C}(0<|\rho|<1)$ and put $m=m_{1} m_{2} \cdots m_{\lambda}$. Put $X=$ $\boldsymbol{C}^{\lambda} \backslash\{0\} /\langle g\rangle$. The automorphism g acts on $\boldsymbol{C}^{\lambda} \backslash\{0\}$ freely and properly discontinuously, hence X is smooth. There is a natural holomorphic map

where by $\overline{\left(z_{1}, z_{2}, \cdots, z_{\lambda}\right)}$ we denote the point of X corresponding to a point $\left(z_{1}, z_{2}, \cdots, z_{\lambda}\right) \in C^{\lambda} \backslash\{0\}$.

Because any two of m_{i} 's are relatively prime, the morphism f gives an algebraic reduction of X and each fiber of f is connected. Thus X is an elliptic fiber space over $\boldsymbol{P}^{\lambda-1}$ which satisfies the desired properties.
q.e.d.

Proof of remark 4.3. Assume that an elliptic fiber space $f: X \rightarrow \boldsymbol{P}^{\boldsymbol{\lambda - 1}}$ satisfies the conditions (1) and (2). Because any two of m_{i} 's are relatively prime, it follows from Katsura and Ueno [7]; appendix that X is not in the class \mathcal{C} and $h^{\circ}\left(X, d \Theta_{X}\right)=0$. (cf. theorem 3.5) First, we show that $H^{1}(X, \boldsymbol{C}) \underset{\rightarrow}{\leftrightarrows} H^{1}\left(X, \mathcal{O}_{X}\right) \xrightarrow{\rightarrow} \boldsymbol{C}$. Since $R^{1} f_{*} \mathcal{O}_{X} \leftrightarrows$ $\mathcal{O}_{P^{\lambda-1}}$, it follows easily from the Leray spectral sequence that $q(X)=1$. By the exact sequence $0 \rightarrow \boldsymbol{C} \rightarrow \mathcal{O}_{X} \rightarrow d \mathcal{O}_{X} \rightarrow 0$, we have $0 \rightarrow H^{\circ}\left(X, d \mathcal{O}_{X}\right) \rightarrow H^{1}(X, \boldsymbol{C}) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)$, and $b_{1}(X) \leq 1$. And by Leray's spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(\boldsymbol{P}^{\lambda-1}, R^{q} f_{*} \boldsymbol{C}\right) \Rightarrow H^{p+q}(X, \boldsymbol{C}),
$$

we have an exact sequence

$$
0 \rightarrow H^{1}(X, \boldsymbol{C}) \rightarrow H^{\circ}\left(X, R^{1} f_{*} \boldsymbol{C}\right) \rightarrow H^{2}\left(\boldsymbol{P}^{\lambda-1}, \boldsymbol{C}\right)
$$

Since $R^{1} f_{*} \boldsymbol{C} \xrightarrow{\leftrightarrows} \boldsymbol{C}^{2}$ and $b_{2}\left(\boldsymbol{P}^{\boldsymbol{\lambda}-1}\right)=1$, we have $b_{1}(X) \geq 1$. Therefore we have $b_{1}(X)=1$, and $H^{1}(X, \boldsymbol{C}) \underset{\rightarrow}{\leftrightarrows} H^{1}\left(X, \mathcal{O}_{X}\right) \leftrightarrows \boldsymbol{C}$.

Now, we follow the arguments of Kato [9]. By the same method as in [9], Lemma 19,20 , we can show that $f^{*}: H^{2}\left(\boldsymbol{P}^{\lambda-1}, \boldsymbol{C}\right) \rightarrow H^{2}(X, \boldsymbol{C})$ is a zero mapping and $f^{*} O_{P^{\lambda-1}}(1) \in \operatorname{Pic}(X)$ is a flat line bundle. Then from Kato's theorem [9], X is a submanifold of a Hopf manifold.
q.e.d.

Remark 4.4. If m_{i} 's do not satisfy (*), the fiber of f is not connected. To prove Theorem B, we need the following lemma.

Lemma 4.5. Let $\{a\}_{n=1,2, \ldots}$ be a sequence of natural numbers defined as follows.

$$
a_{1}=2, a_{n+1}=a_{1} a_{2} \cdots a_{n}+1
$$

And let $\left\{b_{n}\right\}_{n=1,2, \ldots}$ be a sequence of natural numbers defined as follows.

$$
b_{n}=(n+1)\left(a_{n+3}-1\right)+2 .
$$

Then for every positive integer n, we have

$$
-k(n+1)+\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right]>0 \quad \text { for all } k \geq b_{n}
$$

and

$$
-k(n+1)+\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right]=0 \quad \text { if } k=b_{n}-1
$$

(Here [] denotes the Gauss symbol.)
Proof. First, we need the following sublemma.

Sublemma 4.6.

$$
\sum_{i=1}^{p} \frac{1}{a_{i}}=1-\frac{1}{a_{1} a_{2} \cdots a_{p}}
$$

(It is easy to prove by induction on p, so we omit the proof.) Now, we follow the method of Iitaka [6]. Because

$$
\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] \geq \frac{k\left(a_{i}-1\right)}{a_{i}}-\frac{a_{i}-1}{a_{i}}=(k-1) \frac{a_{i}-1}{a_{i}},
$$

we have

$$
\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] \geq(k-1) \sum_{i=1}^{n+2} \frac{a_{i}-1}{a_{i}}=(k-1)\left(n+2-\sum_{i=1}^{n+2} \frac{1}{a_{i}}\right) .
$$

By Sublemma 4.6, we have the following inequality.

$$
\begin{equation*}
\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] \geq(k-1)\left(n+1+\frac{1}{a_{1} a_{2} \cdots a_{n+2}}\right) . \tag{*}
\end{equation*}
$$

So it suffices to determine the smallest integer m_{0} such that we have

$$
\begin{equation*}
(k-1)\left(n+1+\frac{1}{a_{1} a_{2} \cdots a_{n+2}}\right)>k(n+1) \quad \text { for all } k \geq m_{0} . \tag{}
\end{equation*}
$$

The inequality $\left({ }^{* *}\right)$ holds if and only if

$$
k>(n+1)\left(a_{1} a_{2} \cdots a_{n+2}\right)+1=(n+1)\left(a_{n+3}-1\right)+1=b_{n}-1 .
$$

Therefore if $k \geq b_{n}$, we have $-k(n+1)+\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right]>0$.
Next, we consider the case when $k=b_{n}-1$. If we put $A=a_{1} a_{2} \cdots a_{n+2}$, we have
$k=(n+1) A+1$. Then for $1 \leq i \leq n+2$, we have

$$
\begin{aligned}
{\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] } & =\left[\frac{((n+1) A+1)\left(a_{i}-1\right)}{a_{i}}\right] \\
& =\left[(n+1) \frac{A}{a_{i}}\left(a_{i}-1\right)+\frac{a_{i}-1}{a_{i}}\right] \\
& =(n+1) \frac{A}{a_{i}}\left(a_{i}-1\right),
\end{aligned}
$$

since $\frac{A}{a_{i}}(1 \leq i \leq n+2)$ is a positive integer. So we have the following equality.

$$
\begin{aligned}
\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] & =(n+1) A \sum_{i=1}^{n+2} \frac{a_{i}-1}{a_{i}} \\
& =(n+1) A\left(n+2-\sum_{i=1}^{n+2} \frac{1}{a_{i}}\right) \\
& =(n+1) A\left(\left(n+1+\frac{1}{A}\right)\right. \\
& =(n+1)(A(n+1)+1) \\
& =(n+1) k .
\end{aligned}
$$

q.e.d.

Now, we are ready to prove Theorem B.
Proof of Theorem B. Let $\left\{a_{n}\right\}_{n=1,2, \ldots}$ and $\left\{b_{n}\right\}_{n=1,2, \ldots}$ be sequences of natural numbers defined as in Lemma 4.5. Take ($a_{1}, a_{2}, \cdots, a_{n+2}$), a $n+2$)-tuple of positive integers. From the construction of $\left\{a_{n}\right\}_{n=1,2, \ldots}$, any two of a_{n} 's are relatively prime. Therefore it follows from proposition (4.1) that there exists an elliptic fiber space $Z \rightarrow \boldsymbol{P}^{n+1}$ over \boldsymbol{P}^{n+1} which satisfies the following conditions.
(1) Z has multiple fibers of multiplicity a_{i} along $\left\{\zeta_{i}=0\right\}$ for each $i(1 \leq i \leq n+2)$.
(Here $\left(\zeta_{1}: \zeta_{2}: \cdots: \zeta_{n+2}\right)$ denotes the homogeneous coordinate of \boldsymbol{P}^{n+1}.)
(2) Z is trivial over $\boldsymbol{P}^{n+1} \backslash \bigcup_{i=1}^{n+2}\left\{\zeta_{i}=0\right\}$.
(3) $Z \rightarrow P^{n+1}$ is flat.

Now, take a generic hyperplane section H of \boldsymbol{P}^{n+1} and restrict the elliptic fiber space $Z \rightarrow \boldsymbol{P}^{n+1}$ over H. Put $X^{(n+1)}:=\left.Z\right|_{H}$. By Bertini's theorem $X^{(n+1)}$ is smooth and $X^{(n+1)} \rightarrow H\left(\simeq \boldsymbol{P}^{n}\right)$ is an elliptic fiber space over \boldsymbol{P}^{n} which satisfies the following conditions.
(1) $X^{(n+1)}$ has multiple fibers of multiplicity a_{i} along each $H_{i}(1 \leq i \leq n+2)$, where H_{i} 's are $(n+2)$ hyperplanes on \boldsymbol{P}^{n} which are in a general position.
(2) $f: X^{(n+1)} \rightarrow \boldsymbol{P}^{n}$ is trivial over $\boldsymbol{P}^{n} \backslash \bigcup_{i=1}^{n+2} H_{i}$.
(3) $f: X^{(n+1)} \rightarrow \boldsymbol{P}^{n}$ is flat.

The canonical bundle of $X^{(n+1)}$ is as follows.

$$
K_{X^{(n+1)}} \simeq f^{*}\left(\mathcal{O}_{P^{n}}(-n-1)+\sum_{i=1}^{n+2} \frac{a_{i}-1}{a_{i}} H_{i}\right)
$$

Because

$$
-(n+1)+\sum_{i=1}^{n+2} \frac{a_{i}-1}{a_{i}}=\frac{1}{a_{1} a_{2} \cdots a_{n+2}}>0
$$

from Sublemma 4.6, we have $\kappa\left(X^{(n+1)}\right)=n$.
And for any positive integer m, we have

$$
\left|m K_{X^{(n+1)}}\right|=f^{*}\left(\mathcal{O}_{P^{n}}(-m(k+1))+\sum_{i=1}^{n+2}\left[\frac{m\left(a_{i}-1\right)}{a_{i}}\right] H_{i}\right)+(\text { fixed components }),
$$

where [] denotes the Gauss symbol.
So we have $\operatorname{dim}\left|m K_{X^{(n+1)}}\right|>0($ resp. $=0)$ if and only if m satisfies the the following inequality. (resp. equality.)

$$
\begin{equation*}
-m(n+1)+\sum_{i=1}^{n+2}\left[\frac{m\left(a_{i}-1\right)}{a_{i}}\right]>0 \quad(\text { resp. }=0 .) \tag{*}
\end{equation*}
$$

Therefore from Lemma 4.5, we have

$$
\operatorname{dim}\left|m K_{X^{(n+1)}}\right|=0 \quad \text { if } m=b_{n}-1
$$

and

$$
\operatorname{dim}\left|m K_{X^{(n+1)}}\right|>0 \quad \text { for all } m \geq b_{n} .
$$

Thus $f: X^{(n+1)} \rightarrow \boldsymbol{P}^{n}$ has the desired properties.
q.e.d.

Remark 4.7. There exists no finite abelian covering of $\boldsymbol{P}^{\boldsymbol{n}}$ which branches along each $H_{i}(1 \leq i \leq n+2)$ with the ramification index a_{i}. This follows from a theorem of Namba [13]. (See §3. Theorem 3.3.)

Remark 4.8. For any positive integer $n, X^{(n+1)}$ is not in the class \mathcal{C} in the sense of Fujiki [1].

Proof. Take ($n-1$) general hyperplane sections of $\boldsymbol{P}^{\boldsymbol{n}}$ and let C be the intersection of them. Then $f^{-1}(C) \rightarrow C\left(\underset{\rightarrow}{\leftrightarrows} \boldsymbol{P}^{1}\right)$ is an elliptic surface by Bertini's theorem and is of type $\left(a_{1}, a_{2}, \cdots, a_{n+2}\right)$. Because any two of a_{n} 's are relatively prime, it follows from Katsura and Ueno [7]; appendix that $f^{-1}(C)$ is non-Kähler. There fore, $X^{(n+1)}$ is not in the class \mathcal{C}. (See $\S 3$, Theorem (3.1).)

Remark 4.9. In the above examples, $X^{(n+1)}$ is a submanifold of a Hopf manifold. However, using the result of $\S 5$, we can construct another example of $X^{(n+1)}$, which cannot be bimeromorphic to any subvariety of a Hopf manifold. (c.f. [10])

Remark 4.10. Let $f: X \rightarrow \boldsymbol{P}^{n}$ be an elliptic fiber space over \boldsymbol{P}^{n} and assume that f is flat. Then b_{n} is the best possible number of the Iitaka fibration for all such X.

Now we prove theorem C.
Proof of theorem C. In $n=1$, theorem 2 follows from Katsura and Ueno [7].

So we may assume that $n>1$.
Let H_{i} 's $(1 \leq i \leq n+2)$ be $(n+2)$ hyperplanes on \boldsymbol{P}^{n} which are in a general position. Next, put $\left(a_{1}, a_{2}, \cdots, a_{n+1}, a_{n+2}\right)=(2,2(\underbrace{n+1), \cdots, 2(n+1)}_{n+1})$.
Clearly it satisfies condition (N) in Theorem 3.3. Therefore, there exists a finite abelian covering $\pi: \tilde{\boldsymbol{P}}^{n} \rightarrow \boldsymbol{P}^{n}$ of \boldsymbol{P}^{n} which branches at $D=2 H_{1}+2(n+1) H_{2}+\cdots+$ $2(n+1) H_{n+2}$. And the Galois group G is isomorphic to $\boldsymbol{Z}_{\gamma_{1}}+\boldsymbol{Z} \gamma_{2}+\cdots+\boldsymbol{Z}{r_{n+2}}$, where

$$
\left\{\begin{array}{l}
r_{1}+r_{2}+\cdots+r_{n+1}+r_{n+2}=0 \\
2 r_{1}=0 \\
2(n+2) r_{2}=0 \\
\cdots \cdots \cdots \cdots \\
2(n+2) r_{n+2}=0
\end{array}\right.
$$

Clearly G is isomorphic to $\boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / \underbrace{2(n+2) \oplus \cdots \oplus \boldsymbol{Z} / 2}_{n}(n+2)$.
Fix an elliptic curve E with the period $(1, \tau), \operatorname{Im}(\tau)>0$, a torsion point $a \in E$ of order 2 and a torsion point $b \in E$ of order $2(n+2)$ such that $a \neq(n+2) b$. The group G acts on $\tilde{\boldsymbol{P}}^{n} \times E$ as follows.

$$
\begin{aligned}
& r_{1}:(z,[\zeta]) \mapsto\left(r_{1} z,[\zeta+a]\right) \\
& r_{i}:(z,[\zeta]) \mapsto\left(r_{i} z,[\zeta+b]\right) \quad(2 \leq i \leq n+1) .
\end{aligned}
$$

Note that $\tilde{\boldsymbol{P}}^{n}$ is smooth.
The action is properly discontinuous but not free, so the quotient space $\tilde{\boldsymbol{P}}^{n} \times E / G$ has singularities. Take a G-equivariant resolution $Z^{(n+1)}$ of it. Then by a natural holomorphic mapping $f: Z^{(n+1)} \rightarrow \boldsymbol{P}^{n}, Z^{(n+1)}$ is an algebraic elliptic fiber space over \boldsymbol{P}^{n} which has multiple fibers of multiplicity a_{i} along each H_{i}. ($1 \leq i \leq n+2$).

The canonical bundle of $Z^{(n+1)}$ is as follows.

$$
Z^{(n+1)} \simeq f *\left(\mathcal{O}_{P^{n}}(-n-1)+\sum_{i=1}^{n+2} \frac{a_{i}-1}{a_{i}} H_{i}\right)
$$

Because $-(n+1)+\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right]=\frac{1}{2(n+2)}>0$, we have $\pi\left(Z^{(n+1)}\right)=n$. And for positive integer k, we have

$$
\left|k K_{z^{(n+1)}}\right|=f^{*}\left(\mathcal{O}_{P^{n}}(-k(n+1))+\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] H_{i}\right)+(\text { fixed components }),
$$

where [] denotes the Gauss symbol. Therefore we have $\operatorname{dim}\left|k K_{z^{(n+1)}}\right|>0$ (resp. $=0$) if and only if k satisfies the following inequality. (resp. equality.)

$$
\begin{equation*}
-k(n+1)+\sum_{i=1}^{n+2} \frac{k\left(a_{i}-1\right)}{a_{i}}>0 \quad(\text { resp. }=0) \tag{*}
\end{equation*}
$$

By the same method as in Lemma 4.5, we have

$$
\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] \geq(k-1)\left(n+2-\sum_{i=1}^{n+2} \frac{1}{a_{i}}\right)=(k-1)\left(n+1+\frac{1}{2(n+2)}\right) .
$$

So it suffices to estimate m_{0} such that

$$
\begin{equation*}
(k-1)\left(n+1+\frac{1}{2(n+2)}\right)>k(n+1) \quad \text { for all } k \geq m_{0} . \tag{**}
\end{equation*}
$$

The inequality (**) holds if and only if $k \geq 2\left(n^{2}+3 n+3\right)$. By a direct calculation, we see that if $k=2 n^{2}+6 n+5$, we have

$$
\begin{aligned}
- & k(n+1)+\sum_{i=1}^{n+2}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] \\
& =-k(n+1)+(n+1)\left[\frac{k(2 n+3)}{2(n+2)}\right]+\left[\frac{k}{2}\right] \\
& =-\left(2 n^{2}+6 n+5\right)(n+1)+(n+1)\left[2 n^{2}+5 n+4-\frac{1}{2(n+2)}\right]+\left[\frac{2 n^{2}+6 n+5}{2}\right] \\
& =0
\end{aligned}
$$

Therefore $d_{n}=2\left(n^{2}+3 n+3\right)$ is the best possible number of the Iitaka fibration of $Z^{(n+1)}$.
q.e.d.

Remark 4.11. Note that in this case, the exceptional divisors disappear in $K_{Z^{(n+1)}}$. (c.f. [3]).

§5. Generalized logarithmic transformations.

In this section, we shall study generalized logarithmic transformations along the divisors which have only normal crossings. First, we state our main theorem in this section.

Theorem 5.1. For an arbitrary integer $\lambda \geq 2$, let ($m_{1}, m_{2}, \cdots, m_{\lambda}$) be λ-tuple of positive integers with $m_{i} \geq 2$ for all i, and assume that any two of them are relatively prime. Let Y be an n-dimensional compact complex manifold and let D_{i} 's ($1 \leq i \leq \lambda$) be smooth divisors on Y which have only normal crossings. Assume that $\left|D_{i}\right|$ is fixed component free and base point free and $\operatorname{dim}\left|D_{i}\right|>0$ for all i. Then there exists an elliptic fiber space $f: X \rightarrow Y$ over Y with constant moduli which satisfies the following conditions.
(1) X has multiple fibers of multiplicity m_{i} along D_{i} for each i.
(2) $\left.X\right|_{Y \backslash} \bigcup_{i=1}^{\lambda} D_{i} \leftrightarrows\left(Y \backslash \bigcup_{i=1}^{\lambda} D_{i}\right) \times E$, where E is a smooth elliptic curve with the period $(1, \tau), \operatorname{Im}(\tau)>0$.
(3) For an arbitrary integer $m, f_{*}\left(x / Y^{m}\right)$ is invertible.

Remark 5.2. If Y is isomorphic to \boldsymbol{P}^{n}, the above theorem holds automatically. Hence, thanks to (3), we can construct another example of $X^{(n+1)}$ in theorem B.

To prove Theorem 5.1, we need the following propositions.
Proposition 5.3. For an arbitrary integer $\lambda \geq 2$, let $\left(m_{1}, m_{2}, \cdots, m_{\lambda}\right)$ be a λ-tuple of positive integers with $m_{i} \geq 2$ for all i, and assume that any two of them are relatively prime. Let $D_{i}=\left\{z_{i} \in \boldsymbol{C} ;\left|z_{i}\right|<\varepsilon\right\}(1 \leq i \leq \lambda)$ be λ discs. Then there exists an elliptic fiber space X_{0} over $D_{1} \times D_{2} \times \cdots \times D_{\lambda}$ which satisfies the following conditions.
 with the period $(1, \tau), \operatorname{Im}(\tau)>0$.
(2) X_{0} has multiple fibers of multiplicity m_{i} along $\left\{z_{i}=0\right\}$ for each i.

Moreover, f: $X_{0} \rightarrow D_{1} \times D_{2} \times \cdots \times D_{\lambda}$ is flat.
Proof. Let $D_{i}=\left\{t_{i} \in \boldsymbol{C} ;\left|t_{i}\right|<\varepsilon^{1 / m_{i}}\right\} \rightarrow D_{i}=\left\{z_{i} \in \boldsymbol{C} ;\left|z_{i}\right|<\varepsilon\right\}$

be an m_{i}-sheedted cyclic covering of $D_{i} .(1 \leq i \leq \lambda) \quad$ Then by the assumption,

$$
\begin{gathered}
\tilde{D}:=\tilde{D}_{1} \times \tilde{D}_{2} \times \cdots \times \tilde{D}_{\lambda} \rightarrow D_{1} \times D_{2} \times \cdots \times D_{\lambda}=: D \\
\Psi \\
\left(t_{1}, t_{2}, \cdots, t_{\lambda}\right) \mapsto\left(t_{1}^{m_{1}}, t_{2}^{m_{2}}, \cdots, t_{\lambda}^{m_{\lambda}}\right)
\end{gathered}
$$

is an $m_{1} m_{2} \cdots m_{\lambda}$-sheeted cyclic covering of D, and we have

$$
\operatorname{Gal}(\tilde{\boldsymbol{D}} / D) \underset{\sim}{\sim} \boldsymbol{Z} / m_{1} \oplus \boldsymbol{Z} / m_{2} \oplus \cdots \oplus \boldsymbol{Z} / m_{\lambda}
$$

Now, let us consider an analytic automorphism of $\tilde{D} \times E$ defined by

$$
\begin{gathered}
g: \tilde{D}_{1} \times \tilde{D}_{2} \times \cdots \times \tilde{D}_{\lambda} \times E \rightarrow \tilde{D}_{1} \times \tilde{D}_{2} \times \cdots \times \tilde{D}_{\lambda} \times E \\
U \\
\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right) \mapsto\left(e_{m_{1}} t_{1}, e_{m_{2}} t_{2}, \cdots, e_{m_{\lambda}} t_{\lambda},\right. \\
\left.\left[\zeta+\frac{1}{m_{1} m_{2} \cdots m_{\lambda}}\right]\right),
\end{gathered}
$$

where $e_{m_{i}}$ is a primitive m_{i}-th root of unity. Put $X_{0}:=\tilde{D} \times E /\langle g\rangle$. The automorphism g acts on $\tilde{D} \times E$ freely and properly discontinuously, hence X_{0} is smooth. There is a natural holomorphic map $f: X_{0} \longrightarrow D_{1} \times D_{2} \times \cdots \times D_{\lambda}$

$$
\frac{U}{\left(t_{2}, t_{1}, \cdots, t_{\lambda},[\zeta]\right)} \mapsto\left(t_{1}^{m_{1}}, t_{2}^{m_{2}}, \cdots, t_{\lambda}^{m_{\lambda}}\right),
$$

where by $\overline{\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right)}$ we denote the point of X_{0} corresponding to a point $\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right) \in \tilde{D} \times E$. By this morphism, X_{0} is an elliptic fiber space over D. Clearly X_{0} has multiple fibers of multiplicity m_{i} along each $\left\{z_{i}=0\right\}$. There is an isomorphism

$$
\begin{aligned}
& \Lambda:\left.X_{0}\right|_{D_{1}^{*} \times D_{2}^{*} \times \cdots \times D_{\lambda}^{*}} \xrightarrow{\hookrightarrow} D_{1}^{*} \times D_{2}^{*} \times \cdots \times D_{\lambda}^{*} \times E \\
& \frac{U}{\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta)\right]} \mapsto\left(t_{1}^{m}, t_{2}^{m_{2}}, \cdots, t_{\lambda}^{m_{\lambda}}\right), \\
& {\left.\left[\zeta-\sum_{i=1}^{\lambda} \frac{\alpha_{i}}{2 \pi \sqrt{-1}} \log \left(t_{i}\right)\right]\right), }
\end{aligned}
$$

where $\alpha_{i}(1 \leq i \leq \lambda) \in \boldsymbol{Z}$ are defined as follows. By the assumption, there exists $\alpha_{i} \in \boldsymbol{Z}$ such that
(*) $\alpha_{i} m_{1} m_{2} \cdots m_{i} \cdots m_{1} \equiv 1 \bmod m_{i} \quad$ for each i.
Take such α_{i} 's and fix them.
q.e.d.

Proposition 5.4. Let $C_{i}(1 \leq i \leq \lambda)$ be a smooth curve and take one point P_{i} on C_{i} for each i. For an arbitrary integer $\lambda \geq 2$, let $\left(m_{1}, m_{2}, \cdots, m_{\lambda}\right)$ be a λ-tuple of integers with $m_{i} \geq 2$ for all i, and assume that any two of them are relatively prime. Then there exists an elliptic fiber space X over $C_{1} \times C_{2} \times \cdots \times C_{\lambda}$ which satisfies the following conditions.
(1) X has multiple fibers of multiplicity m_{i} along $C_{1} \times C_{2} \times \cdots \times C_{i-1} \times\left\{P_{i}\right\} \times C_{i+1} \times$ $\cdots \times C_{\lambda}$ for each i.
(2) $\left.X\right|_{i=1} ^{\lambda} C_{i}^{*} \underset{i}{\leftrightarrows} \prod_{i=1}^{\lambda} C_{i}^{*} \times E$, ehere $C_{i}^{*}=C_{i} \backslash\left\{P_{i}\right\}$ and E is a smooth elliptic curve with
the period $(1, \tau), \operatorname{Im}(\tau)>0$.
(3) $f: X \rightarrow \prod_{i=1}^{\lambda} C_{i}$ is flat.

Moreover, X is not in the class \mathcal{C}.
Proof. Let D_{i} be a small neighborhood of P_{i} in C_{i} with a coordinate z_{i} and put $C_{i}^{*}=C_{i} \backslash\left\{p_{i}\right\}$. Then $\prod_{i=1}^{\lambda} C_{i}$ can be covered by the following 2^{λ} open sets.

$$
\begin{aligned}
& U_{00 \cdots:}:=D_{1} \times D_{2} \times \cdots \times D_{\lambda} \\
& U_{00 \cdots \cdots}:=D_{1} \times D_{2} \times \cdots \times D_{\lambda-1} \times C_{\lambda}^{*} \\
& \cdots \\
& U_{11 \cdots 1}:=C_{1}^{*} \times C_{2}^{*} \times \cdots \times C_{\lambda}^{*}
\end{aligned}
$$

(There is a one to one correspondence between D_{i} (resp. C_{i}^{*}) and 0 (resp. 1) and by U_{a}, we denote the open set corresponding to $a=\left(a_{1}, a_{2}, \cdots, a_{\lambda}\right) \in \boldsymbol{Z}_{2}^{\oplus \lambda}$.

Step 1. By Proposition 5.3, there exists an elliptic fiber space X_{0} over $U_{0}=$ $D_{1} \times D_{2} \times \cdots \times D_{\lambda}$ which satisfies the following conditions.
(1) X_{0} has multiple fibers of multiplicity m_{i} along $\left\{z_{i}=0\right\} . \quad(1 \leq i \leq \lambda)$
(2) $\left.X_{0}\right|_{D_{1}^{*} \times D_{2}^{*} \times \cdots \times D_{\lambda}^{*}} \rightarrow D_{1}^{*} \times D_{2}^{*} \times \cdots \times D_{\lambda}^{*} \times E$, where E is a smooth elliptic curve with the period $(1, \tau)$.
Step 2. Now, we shall express the elliptic fiber space $X_{0} \rightarrow U_{00 \ldots 0}$ in another form. (Here we use the same notation as in proposition (3.1).)

For any $a \ni \boldsymbol{Z}_{2}^{\oplus \lambda}$, we denote it by $a=(0,0, \cdots, 0, \underbrace{1,0}_{i_{1}}<\cdots, \underbrace{1,}_{i_{2}}, \cdots<\underbrace{1}_{i_{p}}, 0, \cdots, 0)$, that is the i_{k}-th component is 1 for $k=1,2, \cdots, p$ and all the rest are 0 . Put $\left\{j_{1}, j_{2}, \cdots, j_{\lambda-p}\right\}=\{1,2, \cdots, \lambda\} \backslash\left\{i_{1}, i_{2}, \cdots, i_{p}\right\}$, where $1 \leq j_{1}<j_{2}<\cdots<j_{\lambda-p} \leq \lambda$. Then we have $U_{a}=\prod_{\mu=1}^{\lambda-p} D_{j_{\mu}} \times \prod_{\nu=1}^{p} C_{i_{\nu}}^{*}$. Noting that $\operatorname{Gal}(\widetilde{D} / D) \leftrightarrows \boldsymbol{Z} / m_{1} \oplus \boldsymbol{Z} / m_{2} \oplus \cdots \oplus \boldsymbol{Z} / m_{\lambda}$,
we have $X_{0}=\frac{\prod_{i=1}^{\lambda} \tilde{D}_{i} \times E /\left\langle g^{m_{j_{1}} m_{j_{2}} \cdots m_{j-p}}\right\rangle}{\left\langle g^{m_{i_{1}} m_{i} \cdots \cdots m_{i}}{ }^{2}\right\rangle}$. Put $\tilde{X}_{0}^{(a)}:=\prod_{i=1}^{\lambda} \tilde{D}_{i} \times E /\left\langle g^{m_{j_{1} m_{j}} \cdots \cdots m_{j_{\lambda}}}\right\rangle$. Then $\tilde{X}_{0}^{(a)}$ is an elliptic fiber space $\operatorname{over} \prod_{\mu=1}^{\lambda-p} \tilde{D}_{j_{\mu}} \times \prod_{\nu=1}^{p} D_{i \nu}$, which satisfies the following conditions.
(1) $\quad \tilde{X}_{0}^{(a)}$ has multiple fibers of multiplicity $m_{i \nu}(1 \leq \nu \leq p)$ along $\left\{z_{i_{\nu}}=0\right\}(1 \leq \nu \leq p)$ respectively.
(2) $\left.X_{0}^{(a)}\right|_{\lambda_{\mu=1}^{\lambda p} \tilde{D}_{\mu} \times{ }_{\nu=1}^{p} D_{i \nu}^{*}} \xrightarrow{\leftrightarrows} \prod_{\mu=1}^{\lambda-p} \tilde{D}_{j_{\mu}} \times \prod_{\nu=1}^{p} D_{i_{\nu}}^{*} \times E$

$$
\begin{array}{cc}
\frac{U}{\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right)} & U \\
& \left(t_{j_{1}}, t_{j_{2}}, \cdots, t_{j_{\lambda-p}}, t_{i_{1}}^{m_{i_{1}}, t_{i_{2}}^{m_{i_{2}}}, \cdots, t_{i_{p}}^{m_{i_{p}}},}\right. \\
& \left.\left[\zeta-\sum_{v=1}^{p} \frac{\alpha_{i_{v}}}{2 \pi \sqrt{-1}} \log \left(t_{i_{\nu}}\right)\right]\right),
\end{array}
$$

where by $\overline{\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right)}$ we denote the point of $\tilde{X}_{0}^{(a)}$ corresponding to a point $\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right) \in \tilde{D} \times E$.

Let $h_{a}: \prod_{\mu=1}^{\lambda-p} \tilde{D}_{j_{\mu}} \times \prod_{\nu=1}^{p} D_{i_{\nu}} \rightarrow \prod_{\mu=1}^{\lambda-p} D_{j_{\mu}} \times \prod_{\nu=1}^{p} D_{i_{\nu}}$
U
Ψ

$$
\left(t_{j_{1}}, t_{j_{2}}, \cdots, t_{j_{\lambda-p}}, z_{i_{1}}, \cdots, z_{i_{p}}\right) \mapsto\left(t_{j_{1}}^{m}, t_{j_{2}}^{m}, \cdots, t_{j_{\lambda-p}}^{m} j_{j_{-p}}, z_{i_{1}}, z_{i_{2}}, \cdots, z_{i_{p}}\right)
$$

be an $m_{j_{1}} m_{j_{2}} \cdots m_{j_{\lambda-p}}$-sheeted cyclic covering of U_{0}. Then we have

$$
\begin{aligned}
\left.X_{0}^{(a)}\right|_{h_{a}^{-1}\left(U_{a} \cap U_{0}\right)} \xrightarrow{\sim} & h_{a}^{-1}\left(U_{a} \cap U_{0}\right) \times E \\
\frac{U}{\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right)} \mapsto & \left(t_{j_{1}}, t_{j_{2}}, \cdots, t_{j_{\lambda-p}}, t_{i_{1}}^{m_{i_{1}}}, \cdots, t_{i_{p}}^{m_{i}},\right. \\
& {\left.\left[\zeta-\sum_{\nu=1}^{p} \frac{\alpha_{i_{v}}}{2 \pi \sqrt{-1}} \log \left(t_{i_{v}}\right)\right]\right), }
\end{aligned}
$$

since $z_{i_{\nu}} \neq 0(1 \leq \nu \leq p)$ on $U_{a} \cap U_{0}$.
By the above isomorphism, we have

$$
\begin{aligned}
& g^{m_{i_{1}} m_{i_{2}} \cdots m_{i_{p}}}:\left(t_{j_{1}}, t_{j_{2}}, \cdots, t_{j_{\lambda-p}}, z_{i_{1}}, z_{i_{2}}, \cdots, z_{i_{p}},\left[\eta_{a}\right]\right) \\
& \mapsto\left(e_{m_{j_{1}}}^{m_{i_{1}} m_{i} m_{2} \cdots m_{i_{p}}} t_{j_{j_{1}}}, \cdots, e_{\left.m_{j_{\lambda-p}} m_{i-p} \cdots m_{i_{p}} t_{j_{\lambda-p}}, z_{i_{1}}, \cdots, z_{i_{p}},\left[\eta_{a}+\frac{1}{m_{j_{1}} m_{j_{2}} \cdots m_{j_{\lambda-p}}}\right]\right),},\right.
\end{aligned}
$$

where we put $\left[\eta_{a}\right]=\left[\zeta-\sum_{\nu=1}^{p} \frac{\alpha_{i v}}{2 \pi \sqrt{-1}} \log \left(t_{i_{\nu}}\right)\right]$. Therefore, there is an isomorphism $\left.X_{0}\right|_{U_{a} \cap U_{0}} \xlongequal{ } \frac{h_{a}^{-1}\left(U_{a} \cap U_{0}\right) \times E}{\left\langle g^{m_{i_{1}} m_{i} \cdots \cdots m_{i}}{ }_{p}\right\rangle} . h_{a}$ can be naturally extended to a $\prod_{\mu=1}^{\lambda-p} m_{j_{\mu}}$-sheeted cyclic covering \tilde{h}_{a} of $\prod_{\mu=1}^{\lambda-p} D_{j_{\mu}} \times \prod_{\nu=1}^{p} C_{i \nu}$, and the group $\left\langle g^{m_{i_{1}} m_{i_{2}} \cdots m_{i_{p}}}\right\rangle$ acts on $\tilde{h}_{a}^{-1}\left(U_{a}\right) \times E$ as in the same way as above.

Its action is free and properly discontinuous, so the quotient space

$$
X_{a}:=\tilde{h}_{a}^{-1}\left(U_{a}\right) \times E /\left\langle g^{m_{i_{1}} m_{i_{2}} \cdots m_{i_{p}}}\right\rangle \text { is smooth . }
$$

By a natural holomorphic mapping

X_{a} is an elliptic fiber space over U_{a}. By our construction, we have the following commutative diagram.

$$
\begin{gathered}
\left.X_{0}\right|_{U_{a} \cap U_{0}} \hookrightarrow X_{a} \\
\downarrow \\
\downarrow \\
U_{a} \cap U_{0} \hookrightarrow U_{a} .
\end{gathered}
$$

That is, $X_{a} \rightarrow U_{a}$ is a natural compactification of $\left.X_{0}\right|_{U_{a} \cap U_{0}} \rightarrow U_{a} \cap U_{0}$.
Step 3. We can show that the elliptic fiber spaces $X_{a} \rightarrow U_{a}$ constructed in step 2 ($a \in Z_{2}^{\oplus \lambda}$) can be glued together. For that purpose, it is sufficient to show the following claims.

Claim A. For any $a, b \in \boldsymbol{Z}_{2}^{\oplus \lambda}(a \neq b)$, there is a following commutative diagram:

where $c=\max (a, b)$ and \hookrightarrow (resp. $\underset{\rightarrow}{\sim}$) denotes an open immersion. (resp. an isomorphism.) (Here, for $a=\left(a_{1}, a_{2}, \cdots, a_{\lambda}\right), b=\left(b_{1}, b_{2}, \cdots, b_{\lambda}\right) \in \boldsymbol{Z}_{2}^{\oplus \lambda}, a>b$ means that $a_{i} \leq b_{i}$ for all i. and $C=\max (a, b)$ means that $c_{i}=\max \left(a_{i}, b_{i}\right)$ for all i, where $\left.C=\left(c_{1}, c_{2}, \cdots, c_{\lambda}\right).\right)$

Claim B. For any $a, b \in \boldsymbol{Z}_{2}^{\oplus \lambda}$ such that $a<b$, there is a following commutative diagram. That is, $X_{b} \rightarrow U_{b}$ is the natural compactification of $\left.X_{a}\right|_{U_{a} \cap U_{b}} \rightarrow U_{a} \cap U_{b}$.

It is easy to show that claim B implies claim A, so we shall prove claim B .
For any $a, b \in \boldsymbol{Z}_{2}^{\oplus \lambda}$ such that $a<b$, put

$$
\begin{aligned}
& a=(0, \cdots, 0, \underbrace{1,0}_{i_{1}}, \cdots, \underbrace{1}_{i_{2}}, 0, \cdots, \underbrace{1,0}_{i_{p}}, \cdots, 0), 1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq \lambda \\
& b-a=(0, \cdots, 0, \underbrace{1,0}_{j_{1}}, \cdots, \underbrace{0,1,0}_{j_{2}}, \cdots, \underbrace{0,1}_{j_{s}}, 0, \cdots, 0), 1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq \lambda .
\end{aligned}
$$

Put $\left\{k_{1}<k_{2}<\cdots<k_{\lambda-p-s}\right\}=\{1,2, \cdots, \lambda\} \backslash\left\{i_{1}, i_{2}, \cdots, i_{p}\right\} \backslash\left\{j_{1}, j, \cdots, j_{s}\right\}$. Then we have $U_{a} \cap U_{b}=\prod_{\mu=1}^{\lambda-p-s} D_{k_{\mu}} \times \prod_{\nu=1}^{s} D_{j_{\nu}}^{*} \times \prod_{k=1}^{p} C_{i_{k}}^{*}$.

Now, let us recall the construction of X_{a}. There is a following commutative diagram:

$$
\begin{aligned}
& \left.X_{0}\right|_{U_{a} \cap U_{0}}=h_{a}^{-1}\left(U_{a} \cap U_{0}\right) \times E /\left\langle g^{m_{i} m_{1} m_{2} \cdots m_{i_{p}}}\right\rangle \\
& \varliminf_{a}: \tilde{h}_{a}^{-1}\left(U_{a}\right) \times E /\left\langle g^{m_{i_{1}} m_{i_{2}} \cdots m_{i_{p}}}\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
& h_{a}: \prod_{\mu=1}^{\lambda-p-s} \tilde{D}_{k_{\mu}} \times \prod_{\nu=1}^{s} \tilde{D}_{j_{\nu}} \times \prod_{k=1}^{b} D_{i_{k}} \rightarrow \prod_{i=1}^{\lambda} D_{i} \\
& \Psi \\
& \text { U } \\
& \left(t_{k_{1}}, \cdots, t_{k_{\lambda-p-s}}, t_{j_{1}}, \cdots, t_{j_{s}}, z_{i_{1}}, \cdots, z_{i_{p}}\right) \mapsto\left(t_{k_{1}}^{m_{k_{1}}}, \cdots, t_{k_{\lambda}-p-s}^{m_{k_{\lambda}-p-s}},\right. \\
& \left.t_{j_{1}}^{m_{j_{1}}}, \cdots, t_{j_{s}}^{m_{j s}}, z_{i_{1}}, \cdots, z_{i_{p}}\right)
\end{aligned}
$$

is a $\prod_{\mu=1}^{\lambda-p-s} m_{k_{\mu}} \cdot \prod_{\nu=1}^{s} m_{j_{\nu}}$-sheeted cyclic covering of $U_{0}=D_{1} \times D_{2} \times \cdots \times D_{\lambda}$.
Now, we shall express the elliptic fiber space $X_{a} \rightarrow U_{a}$ in another form. Because any two of m_{i} 's are relatively prime, there is an isomorphism

$$
X_{a} \leftrightarrows \frac{\tilde{h}_{a}^{-1}\left(U_{a}\right) \times E /\left\langle g^{m_{i_{1}} \cdots m_{i} m_{i} m_{k_{1}} \cdots m_{k \lambda-p}-s}\right\rangle}{\left\langle g^{m_{i} \cdots \cdots m_{i_{p}} m_{i_{1}} \cdots m_{j_{s}}}\right\rangle} .
$$

On the other hand, the quotient space $\tilde{h}_{a}^{-1}\left(U_{a}\right) \times E /\left\langle g^{\left.m_{i_{1}} \cdots m_{i_{p}} m_{k_{1}} \cdots m_{k \lambda-p-s}\right\rangle}\right\rangle$ is an elliptic fiber space over $\prod_{\mu=1}^{\lambda-p-s} \widetilde{D}_{k_{\mu}} \times \prod_{\nu=1}^{s} D_{j_{\nu}} \times \prod_{k=1}^{p} C_{i_{k}}^{*}$, which satisfies the following conditions.
(1) It has multiple fibers of multiplicity $m_{i \nu}$ along $\left\{z_{j_{\nu}}=0\right\}(1 \leq \nu \leq s)$.
(2) It is trivial over ${ }_{\mu=1}^{\lambda-p-s} \tilde{D}_{k \mu} \times \prod_{\nu=1}^{s} D_{j_{\nu}}^{*} \times \prod_{k=1}^{p} C_{i_{k}}^{*}$ and the trivialization is given as follows.

$$
\begin{aligned}
& \overline{\left(t_{k_{1}}, \cdots, t_{k_{\lambda-p-s}}, t_{j_{1}}, \cdots, t_{j_{s}}, z_{i_{1}}, \cdots, z_{i_{p}},\left[\eta_{a}\right]\right)} \\
\widetilde{\leftrightarrows} & \left(t_{k_{1}}, \cdots, t_{k_{\lambda-p-s}}, t_{j_{1}}^{m}, \cdots, t_{j_{s}}^{m_{j}}, z_{i_{1}}, \cdots, z_{i_{p}},\left[\eta_{a}-\sum_{v=1}^{s} \frac{\alpha_{j_{v}}}{2 \pi \sqrt{-1}} \log \left(t_{j_{v}}\right)\right]\right)
\end{aligned}
$$

Therefore, there is an ispmorphism

$$
\left.X_{a}\right|_{U_{a} \cap U_{b}} \simeq \frac{\prod_{\mu=1}^{\lambda-p-s} \tilde{D}_{k_{\mu}} \times \prod_{\nu=1}^{s} D_{j_{\nu}}^{*} \times \prod_{k=1}^{p} C_{i_{k}}^{*} \times E}{\left\langle g^{m_{i_{1}} m_{i_{2}} \cdots m_{i_{p}} m_{j_{1}} j_{j_{2} \cdots m_{j_{s}}}^{*}}\right\rangle}
$$

since $t_{j_{\nu}} \neq 0(1 \leq \nu \leq s)$ on $\widehat{h}_{a}^{-1}\left(U_{a} \cap U_{b}\right)$.
Here the group $\left\langle g^{m_{i_{1}} m_{i_{2}} \cdots m_{i_{p}} m_{j_{1}} m_{j_{2}} \cdots m_{j}}\right\rangle$ acts as follows.

$$
\begin{aligned}
& g^{m_{i_{1}} \cdots m_{i_{p}} m_{j_{1}} \cdots m_{j_{s}}}:\left(t_{k_{1}}, \cdots, t_{k_{\lambda-p-s}}, z_{j_{1}}, \cdots, z_{j_{s}}, z_{i_{1}}, \cdots, z_{i_{p}},\left[\xi_{a}\right]\right) \\
& \rightarrow\left(e_{m_{k_{1}} \cdots m_{p} m_{p_{1}} m_{j_{1}} \cdots m_{j_{s}}}^{t_{k_{1}}}, \cdots, e_{m_{k_{\lambda}-p-s} \cdots m_{1}}^{m_{j_{1}} \cdots m_{j_{s}}} t_{k_{\lambda-p-s}}\right. \\
& \left.\quad z_{j_{1}}, \cdots, z_{j_{s}}, z_{i_{1}}, \cdots, z_{i_{p}},\left[\xi_{a}+\frac{1}{m_{k_{1}} m_{k_{2}} \cdots m_{k_{\lambda-p}-s}}\right)\right]
\end{aligned}
$$

where we put $\left[\xi_{a}\right]=\left[\eta_{a}-\sum_{\nu=1}^{s} \frac{\alpha_{j_{\nu}}}{2 \pi \sqrt{-1}} \log \left(t_{j_{\nu}}\right)\right]$.
If we restrict the elliptic fiber space $\left.X_{a}\right|_{U_{a} \cap U_{b}} \rightarrow U_{a} \cap U_{b}$ over $U_{a} \cap U_{b} \cap U_{0}$, we have

$$
\left.X_{a}\right|_{U_{a} \cap U_{b} \cap U_{0}} \simeq \frac{\prod_{\mu=1}^{\lambda-p-s} \tilde{D}_{k_{u}} \times \prod_{v=1}^{s} D_{j_{v}}^{*} \times \prod_{k=1}^{p} D_{i_{k}}^{*} \times E}{\left\langle g^{m_{i_{1}} \cdots m_{i_{p}} m_{j_{1}} \cdots m_{j_{s}}}\right\rangle} .
$$

Here we have $\left[\xi_{a}\right]=\left[\zeta-\sum_{k=1}^{p} \frac{\alpha_{i_{k}}}{2 \pi \sqrt{-1}} \log \left(t_{i_{k}}\right)-\sum_{v=1}^{s} \frac{\alpha_{j v}}{2 \pi \sqrt{-1}} \log \left(t_{j_{v}}\right)\right]$, since we have $\left[\eta_{a}\right]=\left[\zeta-\sum_{k=1}^{p} \frac{\alpha_{i_{k}}}{2 \pi \sqrt{-1}} \log \left(t_{i_{k}}\right)\right]$.

Therefore, we have the following commutative diagram.

$$
\begin{aligned}
& \left.\left.X_{0}\right|_{U_{0} \cap U_{b}} \hookrightarrow X_{a}\right|_{U_{a} \cap U_{b}} \\
& \downarrow \\
& U_{0} \cap U_{b} \hookrightarrow U_{a} \cap U_{0} .
\end{aligned}
$$

Thus from the construction of $X_{b} \rightarrow U_{b}$ in step 2, there is an open immersion

$$
\begin{aligned}
& \left.X_{a}\right|_{U_{a} \cap U_{b}} ^{\downarrow} \hookrightarrow X_{b} \\
& U_{b} \cap U_{b} \hookrightarrow U_{b} \quad \text { for } \quad a<b,
\end{aligned}
$$

and the claim B has been proved.
Step 4. By step 3, we can glue the elliptic fiber spaces $X_{a} \rightarrow U_{a}\left(a \in \boldsymbol{Z}_{2}^{\oplus \lambda}\right)$ to obtain the elliptic fiber space X over $C_{1} \times \cdots \times C_{\lambda}$. Clearly X satisfies the desired conditions (1) and (2). And X is not in the class \mathcal{C} by the same reason as in Remark 4.8.

Remark 5.5. The elliptic fiber space X, which we have just constructed, depends on the choice of $\alpha_{i} \in \boldsymbol{Z}(1 \leq i \leq \lambda)$ in step 1 . Hence we write X as $X\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ (cf. Prop 5.6.)

Now, we are ready to prove our Main theorem 5.1.
Proof of Theorem 5.1.
Step 1. Take a linear pencil L_{i} from $\left|D_{i}\right|$ for each i and consider a meromorphic map $\Phi_{L_{i}}: Y \rightarrow \boldsymbol{P}_{(i)}^{1}$ associated with L_{i}, where $\boldsymbol{P}_{(i)}^{1}$'s $(1 \leq i \leq \lambda)$ are λ copies of $\boldsymbol{P}^{\mathbf{1}}$. Let Δ_{i} be a smooth divisor on D_{i} in a sufficiently general position such that the following conditions are satisfied.
(1) $\Delta_{i} \nsubseteq D_{j}$ for all $j(\neq i)$ and $\Delta_{i_{1} i_{2} \cdots i_{b}}=\Delta_{i_{1}} \cap \Delta_{i_{2}} \cap \cdots \cap \Delta_{i_{p}}$ are ($n-2 p$)-dimensional compact complex manifold.
(2) Let $\alpha_{i}: Y_{i} \rightarrow Y$ be the blowing-up of Y with Δ_{i} center for each i. Then the composite map $Y_{i} \xrightarrow{\alpha_{i}} Y \rightarrow \boldsymbol{P}_{(i)}^{1}$ is a morphism.
Next, consider the fiber product

$$
\tau: W=Y_{1} \times{ }_{\boldsymbol{F}} Y_{\boldsymbol{r}} \times \cdots \underset{\boldsymbol{r}}{\times} Y_{\lambda} \rightarrow Y .
$$

Because the arrangements of Δ_{i} 's are sufficiently general, W is smooth and τ is a bimeromorphic morphism. Let \bar{D}_{i} (resp. E_{i}) be the strict transform of D_{i} (resp. the total inverse image of Δ_{i}) for each i. Then W can be considered as a fiber space $f_{i}: W \rightarrow \boldsymbol{P}_{(i)}^{1}$ over \boldsymbol{P}^{1}, where E_{i} is a section and \bar{D}_{i} is a fiber of the fiber space $(1 \leq i \leq \lambda)$. By a suitable change of coordinates, we may assume that $f_{i}\left(\overline{D_{i}}\right)=O$, where O is the origin of each $\boldsymbol{P}_{(i)}^{1}$. Let $\Phi: W \rightarrow \prod_{i=1}^{\lambda} \boldsymbol{P}_{(i)}^{1}$ be a holomorphic map defined by $\Phi=\left(f_{1}, f_{2}, \cdots, f_{\lambda}\right)$. By the construction of W, we have $\Phi^{-1}(\Phi(W) \cap$ $\left.\left\{z_{i}=0\right\}\right)=\overline{D_{i}}$ for each i, where z_{i} is the inhomogeneous coordinate of $\boldsymbol{P}_{(i)}^{1}$.

Step 2. Because any two of m_{i} 's are relatively prime, it follows from Proposition 5.4 that there exists an elliptic fiber space $h: Z \rightarrow \prod_{i=1}^{\lambda} \boldsymbol{P}_{(i)}^{1}$ over $\prod_{i=1}^{\lambda} \boldsymbol{P}_{(i)}^{1}$ which satisfies the following conditions.
(1) Z has multiple fibers of multiplicity m_{i} along each $\left\{z_{i}=0\right\}$.
(2) Z is trivial over $\prod_{i=1}^{\lambda}\left(\boldsymbol{P}_{(i)}^{1} \backslash\{O\}\right)$, where O denotes the origin of $\boldsymbol{P}_{(i)}^{1}$.
(3) h is flat.

Step 3. Next, consider the pull-back

$$
g: \mathrm{X}=Z \underset{\prod_{i=1}^{\lambda} \boldsymbol{P}_{(i)}^{1}}{\times} W \rightarrow W .
$$

Because D_{i} 's have only normal crossings, X is smooth. By the composition of the morphisms $X \xrightarrow{g} W \xrightarrow{\tau} Y, f:=\tau \circ g$ is an elliptic fiber space over Y which satisfies the following conditions.
(1) X has multiple fibers of multiplicity m_{i} along each $D_{i}(1 \leq i \leq \lambda)$.
(2) X is trivial over $Y \backslash \bigcup_{i=1}^{\lambda} D_{i}$.

Step 4. The canonical bundle of X is as follows.

$$
K_{X} \underset{\rightarrow}{\widetilde{Q}} f^{*}\left(K_{Y}+\sum_{i=1}^{\lambda} \frac{m_{i}-1}{m_{i}} D_{i}\right)+\sum_{i=1}^{\lambda} \frac{1}{m_{i}} E_{i} .
$$

So, for any positive integer m, we have

$$
\begin{aligned}
\left|m K_{X}\right|= & f *\left(m K_{Y}+\sum_{i=1}^{\lambda}\left[\frac{m\left(m_{i}-1\right)}{m_{i}}\right] D_{i}\right)+(\text { fixed components }) \\
& +(\text { effective exceptional divisors })
\end{aligned}
$$

where $[n]$ denotes the greatest integer which does not exceed n.
Therefore $f_{*}\left(K_{X / Y}{ }^{\otimes^{m}}\right)$ is invertible for any positive integer m.
q.e.d.

Remark 5.6.

(1) If we blow up Y along the intersections of D_{i} 's and perform logarithmic trans-
formations along the strict transform of D_{i}^{\prime} 's as in [3], $f^{*}\left(K_{X / Y} \otimes^{m}\right)$ is not necessarily invertible for a positive integer m.
(2) If D_{i} 's do not have normal crossings, $f_{*}\left(K_{X / Y}{ }^{\otimes m}\right)$ is not necessarily invertible.
(3) If the arrangements of Δ_{i} 's in step 1 are not general, W in step 1 is not smooth. So we have to resolve singularities and $f^{*}\left(K_{X / Y}{ }^{\otimes^{m}}\right)$ is not invertible.
In these cases, for calculation of $\operatorname{dim}\left|m K_{X}\right|$, we have to consider the base point conditions.

Proposition 5.7. If there exist at least two indices i and j such that $\alpha_{i}>0$ and $\alpha_{j}<0$, then $X\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ cannot be bimeromorphic to a subvariety of a Hopf manifold.

To prove this proposition, we need the following lemma. Here, we use the same notation as in Proposition 5.2. We define a line bundle $\pi: L \rightarrow \prod_{i=1}^{\lambda} C_{i}$ as follows.

$$
L:={\underset{i=1}{\lambda} p_{i}^{*} \Theta_{c_{i}}\left(\alpha_{i} m_{1} \cdots \stackrel{\vee}{m_{i}} \cdots m_{\lambda} P_{i}\right), ~, ~}_{\text {, }}
$$

where $p_{i}: \prod_{i=1}^{\lambda} C_{i} \rightarrow C_{i}$ is a projection.
Put $\rho=\exp (2 \pi \sqrt{-1} \tau)$, where E is a smooth elliptic curve with the period $(1, \tau), \operatorname{Im}(\tau)>0$. Consider a C^{*}-bundle $L^{*}=L \backslash\{0$-section $\}$ on $\prod_{i=1}^{\lambda} C_{i}$. $\langle\rho\rangle$ acts on each fiber of L^{*}, so put $Y\left(\alpha_{1}, \cdots, \alpha_{\lambda}\right)=L^{*} \mid\langle\rho\rangle$.

Then the canonical projection $\pi: L^{*} \rightarrow \prod_{i=1}^{\lambda} C_{i}$ induces a projection

$$
h: Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right) \rightarrow \prod_{i=1}^{\lambda} C_{i}
$$

and $Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ has a structure of an elliptic bundle over $\prod_{i=1}^{\lambda} C_{i}$.
Lemma 5.8. There exists a finite abelian covering ϕ from $X\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ onto $Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ such that the following diagram commutes.

ϕ is a finite unramified covering on each fiber of f.
Proof. First, we show that for any $a \in \boldsymbol{Z}_{2}^{\oplus \lambda}$, there exists a finite abelian covering $\phi_{a}: X_{a} \rightarrow U_{a} \times E$ such that the following diagram commutes.

In fact, define $\phi_{a}\left(a \in Z_{2}^{\oplus \lambda}\right)$ as follows.

where $a=(\cdots,{\underset{i}{i_{1}}}_{1}^{1}, \cdots, \underbrace{1}_{i_{2}}, \cdots, \underbrace{1}_{i_{p}}, \cdots)$,

$$
\left\{j_{1}, j_{2}, \cdots, j_{\lambda-p}\right\}=\{1,2, \cdots, \lambda\} \backslash\left\{i_{1}, i_{2}, \cdots, i_{p}\right\}
$$

$$
\text { and } \quad\left[\eta_{a}\right]=\left[\zeta-\sum_{v=1}^{p} \frac{\alpha_{i v}}{2 \pi \sqrt{-1}} \log \left(t_{i v}\right)\right] .
$$

We can easily check that ϕ_{a} 's are compatible with the patching of X_{a} 's and $U_{a} \times E$'s and define a finite abelian covering ϕ from $X\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ onto $Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$.
1.e.d.

Lemma 5.9. If there exists at least two indices i and j such that $\alpha_{i}>0$ and $\alpha_{j}<0$, then $Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ cannot be bimeromorphic to a subvariety of a Hopf manifold.

Proof. We may assume that $\alpha_{1}>0$ and $\alpha_{2}<0$. Take one point Q_{i} on each C_{i} arbitrarily ($3 \leq i \leq \lambda$) and put $V:=C_{1} \times C_{2} \times Q_{3} \times \cdots \times Q_{\lambda}$. Then $Z:=Y\left(\alpha_{1}, \alpha_{2}, \cdots\right.$, $\left.\alpha_{\lambda}\right)\left.\right|_{V} \rightarrow V$ is an elliptic bundle over V and from the construction of $Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$, Z can be expressed as follows.

Let D be a smooth curve on V. By a theorem (11.9) in Kodaira [11], the following conditions are equivalent.
(1) The elliptic bundle $\left.Z\right|_{D} \rightarrow D$ has a multi-section.
(2) $\left.Z\right|_{D}$ is algebraic.
(3) $\operatorname{deg}\left(\left.L\right|_{D}\right)=0$.

Let r_{1}, r_{2} be a positive integer such that $\left[r_{1} P_{1} \times C_{2}+r_{2} C_{2} \times P_{2}\right] \in \operatorname{Pic}(V)$ is very ample. In particulae, let D be a general member of $\left|r_{1} P_{1} \times C_{2}+r_{2} C_{2} \times P_{2}\right|$. Since we have $\alpha_{1}>0, \alpha_{2}<0$ and $\operatorname{deg}\left(\left.L\right|_{D}\right)=r_{1} \alpha_{2} m_{1} m_{3} \cdots m_{\lambda}+r_{2} \alpha_{1} m_{2} m_{3} \cdots m_{\lambda}$, we can choose r_{1} and r_{2} sufficiently positive such that $\operatorname{deg}\left(\left.L\right|_{D}\right)=0$ and $\pi(D)>1$. Then from the above remark, there exists a smooth curve of genus greater than 1 on $\left.Z\right|_{D}$. Therefore, for any point y on $Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$, there exists a smooth curve C of genus greater than 1 , which passes through y and $\operatorname{dim} h(C)=1$. However, by Kato [8], any irreducible curve in a Hopf manifold is a smooth elliptic curve. Therefore, $Y\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ can never be bimeromorphic to a subvariety of a Hopf manifold. q.e.d.

Proof of Proposition 5.7. From Lemma 5.8 and 5.9, it follows that for any
point x on $X\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$, there exists a smooth curve C of genus greater than 1 , which passes through x and $\operatorname{dim} f(C)=1$. Then from Kato's theorem [8], $X\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\lambda}\right)$ cannot be bimeromorphic to a subvariety of a Hopf manifold.
q.e.d.

Proposition 5.10. Let $C_{i}(1 \leq i \leq \lambda)$ be a smooth curve and take one point P_{i} on each C_{i}. For an arbitrary integer $\lambda \geq 2$, let $\left(m_{1}, m_{2}, \cdots, m_{\lambda}\right)$ be a λ-tuple of integers with $m_{i} \geq 2$ for all i, and assum that except m_{λ}, any two of m_{i}^{\prime} 's $1 \leq i \leq \lambda-1$) are relatively prime. Then there exists an elliptic fiber space X over $\prod_{i=1}^{\lambda} C_{i}$ which satisfies the same conditions as in Proposition 5.4.

Proof. The idea is almost all the same as in Proposition 5.4. We use the same notation as in 5.4 , and we shall slightly modify the arguments in step 1 .

Let us consider analytic automorphisms of $\prod_{i=1}^{\lambda} \tilde{D}_{i} \times E$ defined by

$$
\begin{aligned}
& g:\left(t_{1}, t_{2}, \cdots, t_{\lambda-1}, t_{\lambda},[\zeta]\right) \mapsto\left(e_{m_{1}} t_{1}, \cdots, e_{m_{\lambda-1}} t_{\lambda-1}, t_{\lambda},\left[\zeta+\frac{1}{m_{1} \cdots m_{\lambda-1}}\right]\right) \\
& h:\left(t_{1}, \cdots, t_{\lambda-1}, t_{\lambda},[\zeta]\right) \mapsto\left(t_{2}, \cdots, t_{\lambda-1}, e_{m_{\lambda}} t_{\lambda},\left[\zeta+\frac{\tau}{m_{\lambda}}\right)\right] .
\end{aligned}
$$

The automorphism groups generated by g and h acts on $\tilde{D} \times E$ freely and properly discontinuously, so the quotient space $X_{0}:=\tilde{D} \times E /\langle g, h\rangle$ is smooth. By a natural holomorphic mapping

$$
\begin{array}{cc}
f: X_{0} \longrightarrow & D_{1} \times D_{2} \times \cdots \times D_{\lambda}:=D, \\
\frac{U}{\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right)} \mapsto\left(t_{1}^{m_{1}}, t_{2}^{m_{2}}, \cdots, t_{\lambda}^{m_{\lambda}}\right)
\end{array}
$$

X_{0} is an elliptic fiber space over D. Clearly X_{0} has multiple fibers of multiplicity m_{i} along each $\left\{z_{i}=0\right\}$. There is an isomorphism

$$
\begin{aligned}
\left.X_{0}\right|_{D_{1}^{*} \times D_{2}^{*} \times \cdots \times D_{\lambda}^{*}} \stackrel{\sim}{\leftrightarrows} & D_{1}^{*} \times D_{2}^{*} \times \cdots \times D_{\lambda}^{*} \times E \\
\frac{U}{\left(t_{1}, t_{2}, \cdots, t_{\lambda},[\zeta]\right)} \mapsto & \left(t_{1}^{m_{1}}, t_{2}^{m_{2}}, \cdots, t_{\lambda}^{m_{\lambda}},\right. \\
& {\left.\left[\zeta-\sum_{i=1}^{\lambda-1} \frac{\alpha_{i}}{2 \pi \sqrt{-1}} \log \left(t_{i}\right)-\frac{\tau}{2 \pi \sqrt{-1}} \log \left(t_{\lambda}\right)\right]\right), }
\end{aligned}
$$

where $\alpha_{i}(1 \leq i \leq \lambda-1) \in \boldsymbol{Z}$ are defined as follows. By the assumption, there exists $\alpha_{i} \in \boldsymbol{Z}$ such that

$$
\begin{equation*}
\alpha_{i} m_{1} m_{2} \cdots \stackrel{m_{i}}{\cdots} m_{\lambda-1} \equiv 1 \quad \bmod m_{i} \quad \text { for each } i \tag{**}
\end{equation*}
$$

Take such α_{i} 's and fix them.
From now on, we can apply the same arguments as in Step 2, 3, 4 in Proposition 5.4, so we omit the proof.
q.e.d.

Remark 5.11. If we assume in the above proposition that except m_{λ} and $m_{\lambda-1}$, any two of m_{i} 's $(1 \leq i \leq \lambda-2)$ are relatively prime, the same result holds. However, in this case, the elliptic fiber space $X \rightarrow \prod_{1=i}^{\lambda} C_{i}$ is not flat.
In fact, we can slightly modify the arguments in Step 1 in the proof of 3.2.

§ 6. Some examples.

If S is an analytic surface with $\kappa(S)=0$, by the classification theory of surfaces we have $P_{12}(S)=1$ and 12 is the best possible number. Now we shall construct similar examples for elliptic fiber spaces with $\kappa=0$, as an application of Theorem 5.1. Our result is the following.

Example 6.1. Let $\left\{a_{n}\right\}_{n=1,2, \ldots}$ be a sequence of positive integers defined as follows. $a_{1}=2, a_{n+1}=a_{1} a_{2} \cdots a_{n}+1$. And let $\left\{c_{n}\right\}_{n=1,2, \ldots}$ be a sequence of positive integers defined as follows.

$$
c_{n}=a_{n+2}-1 .
$$

Then for every positive integer n, there exists an elliptic fiber space $Y^{(n+1)} \rightarrow \boldsymbol{P}^{n}$ over \boldsymbol{P}^{n} which satisfies the following conditions.
(1) $\kappa\left(Y^{(n+1)}\right)=0$.
(2) $m=c_{n}$ is the smallest integer such that $P_{m}\left(Y^{(n+1)}\right)=1$.

Moreover $Y^{(n+1)}$ is not in the class \mathcal{C}.
Examples. We write down the first few terms of $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$.

n	1	2	3	4	5	6
a_{n}	2	3	7	43	1807	3263443
c_{n}	6	42	1806	3263442	$\sim 10^{13}$	$\sim 10^{26}$

To prove Example 6.1, we need the following lemma.
Lemma 6.2. Let $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ be sequences of positive integers defined as in (6.1). Then for every positive integer k, we have

$$
-k(n+1)+\sum_{i=1}^{n+1}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right]+\left[\frac{k\left(c_{n}-1\right)}{c_{n}}\right] \leq 0
$$

and the equality holds if and only if c_{n} divides k.
(The proof is the same as in 4.5 , so we omit it.)
Proof of Example 6.1. Let H_{i} 's $(1 \leq i \leq n+2)$ be $(n+2)$ hyperplanes on \boldsymbol{P}^{n} which are in a general position. And let $\left\{a_{n}\right\}_{n=1,2, \ldots}$ and $\left\{c_{n}\right\}_{n=1,2, \ldots}$ be sequences of positive integers defined as in Example 6.1. Take ($a_{1}, a_{2}, \cdots, a_{n+1}, c_{n}$), $a(n+2)$ -
tuple of positive integers. From the construction of $\left\{a_{n}\right\}$, any two of a_{n} 's are relatively prime. Hence it follows from Proposition 5.8 that there exists an elliptic fiber space $f: Y^{(n+1)} \rightarrow \boldsymbol{P}^{n}$ over \boldsymbol{P}^{n} with constant moduli which has multiple fibers of multiplicity a_{i} (resp. c_{n}) along each $H_{i}(1 \leq i \leq n+1)$. (resp. along H_{n+2})

The canonical bundle of $Y^{(n+1)}$ is as follows.

$$
K_{Y^{(n+1)}}=f^{*}\left(\mathcal{O}_{P^{n}}(-n-1)+\sum_{i=1}^{n+1} \frac{a_{i}-1}{a} H_{i}+\frac{c_{n}-1}{c_{n}} H_{n+2}\right)+\sum_{i=1}^{n+1} \frac{1}{a_{i}} E_{i}+\frac{1}{c_{n}} E_{n+2} .
$$

And for every positive integer k, we have

$$
\left|k K_{Y(n+1)}\right|=f^{*}\left(\mathcal{O}_{P^{n}}(-f(n+1))+\sum_{i=1}^{n+1}\left[\frac{k\left(a_{i}-1\right)}{a_{i}}\right] H_{i}+\left[\frac{k\left(c_{n}-1\right)}{c_{n}}\right] H_{n+2}\right)
$$

$$
+(\text { fixed components })+(\text { effective exceptional divisors })
$$

So it follows from Lemma 6.2 that for every positive integer k, we have $P_{k}\left(Y^{(n+1)}\right) \leq 1$ and the equality holds if and only if c_{n} divides k. Thus $Y^{(n+1)}$ has the desired properties
q.e.d.

Remark 6.3. There is no algebraic elliptic fiber space over $\boldsymbol{P}^{\boldsymbol{n}}$ with $\kappa=0$ and with constant moduli which has multiple fibers of multiplicity a_{i} (resp. c_{n}) along each $H_{i}(1 \leq i \leq n+1)$. (resp. $\left.H_{n+2}\right)$

Proof. If such an algebraic elliptic fiber space $X \rightarrow \boldsymbol{P}^{n}$ exists, it follows from Theorem 3.5 that there exists a finite abelian covering $\tilde{\boldsymbol{P}}^{n} \rightarrow \boldsymbol{P}^{n}$ of \boldsymbol{P}^{n} which branches at $\sum_{i=1}^{n+1} a_{i} H_{i}+c_{n} H_{n+2}$ with the Galois group $G \underset{\rightarrow}{\leftrightarrows} / a_{1} \oplus \boldsymbol{Z} / a_{2} \oplus \cdots \oplus \boldsymbol{Z} / a_{\lambda}$, and X is bimeromorphic to the quotient space $\tilde{\boldsymbol{P}}^{n} \times E / G$. By a direct calculation, we see that $f^{*}\left(K_{X / P^{p^{2}}}{ }^{\otimes m}\right)$ is not invertible and $\kappa(X)=-\infty$.
q.e.d.

Remark 6.4. We cannot apply Proposition 4.1 to our situation, since (a_{1}, a_{2}, \cdots, a_{n+1}, c_{n}) does not satisfy the assumption in Proposition 4.1).

Department of Mathematics Kyoto University
Research Supported by the JSPS Fellowships for Japanese junior scientists.

References

[1] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math., 44 (1978), 225-258.
[2] A. Fujiki, On resolution of cyclic quotient singularities, Publ. of. RIMS, 10 (1974), 293328.
[3] Y Fujimoto, Logarithmic transformations on elliptic fiber spaces (to appear in J. of Kyoto Univ.)
[4] Y. Fujimoto, Pluricanonical mappings of elliptic fiber spaces, Proc. Japan Acad, 42 (1986), 308-310.
[5] T. Fujita, Zariski decomposition and the canonical rings of elliptic threefolds, J. Math. Soc. Japan., 38-1 (1986), 19-37.
[6] S. Iitaka, Deformations of compact complex surfaces, ii. J. Math. Soc. Japan, 22 (1970), 247-261.
[7] T. Katsura and Ueno, On elliptic surfaces in characteristic p. Math. Ann., 272 (1985), 291330.
[8] Ma. Kato, Some remarks on subvarieties of Hopf manifolds. Suriken-Kokyuroku, 240 (1975), 64-87.
[9] Ma, Kato, Complex structures on $S^{1} \times S^{5}$, J. Math. Soc. Japan, 28 (1976), 550-576.
[10] Ma, Kato, On a characterization of submanifolds of Hopf manifolds. Iwanami Shoten Publ. Tokyo, (1977).
[11] K. Kodaira, On compact analytic surfaces, ii-iii, Ann of Math, 77 (1963) 563-626, (1963), 1-40.
[12] K. Kodaira, On the structure of compact complex analytic surface, II, Amer. J. Math., 84 (1964), 751-798.
[13] M. Namba, Lectures on branched coverings and algebraic functions. (preprint)
[14] K. Ueno, On compact analytic threefolds with non-trivial Albanese tori. (preprint)
[15] K. Ueno, On algebraic fiber spaces of abelian varieties, Math. Ann., 217 (1978), 1-22.

[^0]: Received, June 6, 1987

