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Differentiable vectors and analytic vectors
in completions of certain representation

spaces of a Kac-Moody algebra

By

Kiyokazu SUTO

Introduction.

Let gR  be a Kac-Moody algebra over the real number field R with a symmetriz-
able generalized Cartan matrix (GCM), and 5R  the Cartan subalgebra of gR . Then,
the Kac-Moody algebra g over C corresponding to the same GCM and its Cartan
subalgebra '5 are given by

g =  CO R g R  a n d  b c ,

respectively. We denote by f the unitary form of g, and put fR =f n gR  (for the
precise definition, see [8] and [7]).

In  [8] and  [7], we constructed and  studied groups K A  and K/,‘ consisting of
unitary operators on a Hilbert space H(A) which is a completion of the integrable
highest weight module L (A ) for g  with dominant integral highest weight A eq.
These groups are generated by naturally defined exponentials of elements in  f  and
fR  respectively. In this paper, we show that the exponential map exp: f—>U(H(A))
can be extended to a certain completion H(ad) of f. We show, in prallel, that
taking the adjoint representation of g on itself in place of the highest weight represen-
tation on L(A), and completing the representation space g to a Hilbert space H(ad),
th e  exaponintial map exp : IMad)i— , B(H(ad)) can be defined naturally. Here
U (H ) is the group of unitary operators and B(H) is the algebra of bounded operators
on a Hilbert space H .  Note that the adjoint representation is quite different from
L(A ) at the point that the  se t o f its weights is unbounded both in positive and
negative directions when g  is  o f infinite-dimension. F or these exponentials, we
define the differentiable vectors and the analytic vectors, and prove some properties
of them, which we expect to utilize for studying fine structures of KA and K .

Let us explain in more detail. We denote by g the infinite direct products of
g °=  and the root spaces g  over a, and by L(A) that of all the weight spaces L(A ),
over i t ,  respectively, g acts on g and L (A ) naturally. Let H(ad) and H(A) be the
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completions of (g, (• I .),) and (L (A ), (- •) 4 ), respectively, where (• I •), and (• I •)4

are standard inner products o n  (g, ad) and L (A ) . We may consider H(ad) as a
subspace of g and H(A ) of L(A).

The spaces o f  vectors o f  class C m for g-action (m=0, 1, 2, •••) are  defined
naturally by

Ho(ad) = H(ad) ,
Hm(ad) = {y e  H„,_,(ad); [x , y]eH _,(ad) for a n y  x  gl ;
Ho (A )= H(A ) ,

Hm (A ) = { veH„,_,(A ); xveH„,_,(A ) for a n y  xeg} ,
f o r  0<m< + co.

As for spaces of infinitely differentiable vectors, we put

He.,(ad) =  n kao lik(ad) , H — (A ) = n kao l ik (A) ,

and for spaces of analytic vectors,

H ( a d )  l y  e H.,(ad); for any x e g , there exists e>0

such that
1 .

11(ad Xr5, 111<+°°)E rn a °
m!

H ( A )  = E  1 1 ( A ) ; for any x e g ,  there exists e >0

such that Erna() I  e m i If VI IA < + C x ) } •
"II!

We call an element ho e b R  strictly dominant if

a(110) >0 for any positive root a ,

and fix such an element in the follwing.
As the first main result, we show that the differentiability and the analyticity

are characterized by means of one  element h,. In  other words, we may replace
x e  g in the above definitions of spaces with only one element 170 , any strictly dominant
element in fh, (Theorem 2.6). Based on this result, we can define certain topologies
on the above spaces. Then with such topologies, H.(ad) and H0(ad) become topo-
logical Lie algebras, which we denote by g_ and g,, (see § 3).

Let H7(ad) be the closure of the unitary form  c g in the Hilbert space HI (ad)
of class C. ' vectors. We see that each element in H l ( a d )  acts on H(ad) and H(A)
as a closable operator (cf. § 4). The second goal is to prove the exponentiability of
elements in H7(ad) as operators on the Hilbert spaces H(ad) or H (A ) . On H(A),
the  exponentiability is considered also in  [3]. However, o n  H(ad), there exists
much more difficulty firstly because the inner product on H(ad) is not contravariant
and so the action of elements of In(ad) on H(ad) is not anti-symmetric, and secondly
because the weights of H(ad) are unbounded in both positive and negative directions.
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Let f. be the closure of f in g . .  The last goal is to show the invariance of the
spaces H m(ad) and H m(A ) of vectors of class Cm (m=0, 1, 2, o o ,  co) under the
exponentials of elements in f.. This result will be a useful tool for the study of the
fine structure of the group K 4 .

This paper is organized as follows. In § 1, we prepare notations and basic
results about Kac-Moody algebras. In § 2, we define the notion of differentiable
vectors and analytic vectors. And then, it is proved that the differentiability and
the analyticity are characterized by only one element h,. In § 3, topologies on the
spaces of differentiable vectors and of analytic vectors are studied. In § 4, we extend
the exponential map on f  to its closure H (a d )  in H i (a d ) . And then, in § 5, we
prove invariance of the spaces of differentiable vectors and of analytic vectors under
exponentials of elements of the closure f .  of f  in g . .  In § 6, we investigate con-
vergence of Campbell-Hausdorff formula for exponentials defined in § 4.

Notations. We denote by C the complex number field, R  the real number field,
Z  the ring of rational integers. For an ordered set (S , S )  and s ES, we define
subsets S > 3 and S  of S  by

f t e S ; t> s l ,
S , = e S ;

The author is grateful to Professor H. O m ori. In his letter to the author, he
kindly advised, among others, to study the chain of spaces of differentiable vectors
and their invariability under exponentials of elements of the unitary form f. And
the author expresses his hearty thanks to Professor T . Hirai for his constant en-
couragement and advice.

§ 1 .  Some basic results for Kac- Moody algebras.

In this section, we prepare notations and fundamental results about Kac-Moody
algebras which will be needed in the succeeding sections. For detailed accounts,
see [4] for example.

1.1. K a c - Moody algebras. Let n e Z ,„ and A =(a 11)7,1..1 be an integral matrix
which satisfies

i) au =2 for all i=1 ,•••,n ,
ii) au S  0 if i * j,

iii) a 13 =0 if and only i f  aj1 =0
Such a matrix is called a generalized Cartan matrix (GCM).

For a field k  with characteristic 0, we denote by gk =g k (A ) the Kac-Moody
algebra over k  associated with the GCM A, and fh=fh(A) its Cartan subalgebra
(cf. [4, Chap. I]).

Let 4 =4(A ) be the root system of (gk, bk), 4 += 4 +(A) the set of positive roots,
11 the simple roots, 11-  the simple coroots, and gk = k - F E . E ,, g% the root space
decomposition.
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Put n± ,k = n ± ,k ( A ) = E .„ +  gr . T h en  n t ,k a re  both subalgebras of gk  and gk =
n - ,k +b k +n +,k . Let P ± , k  and Pod, be the projections from gk onto u ± d , and bk  res-
pectively with respect to this decomposition.

If the  GCM A  is symmetrizable, that is, there is a  non-degenerate diagonal
matrix D such that DA is symmetric, then there exists a symmetric, non-degenerate,
invariant bilinear form (• 1.) k  on gk called the standard invariant form, which plays
an important role in the theory of Kac-Moody algebras (loc. cit. Chap. II).

By the invariance of (1• 1)k , we have

(1.2) (g:1 )k =  0 i f  a+fi*0 ,
(1.3) (bk 0 (a e 4 ) •

In paticular, the restriction of (• 1.) k  to bk  is non-degenerate. Hence, there exists a
linear bijection vk from bk  onto its dual b: such that

(h1 1h2) kv h ( h i ) ( 112) (hp h2 bk)
and it holds that

(1.4) [x, y] =  (x1 y) ;' (a)( a  E 4, x e g:, y e .

Throughout this paper, we assume A  to be a  symmetrizable GCM, and hence
we have the standard invariant form (• 1.) k  on  gk .

1 .2 . Unitary form . In  the  following, we concentrate on the case where k = R
or C .  If  k—C, then th e  subscript C  should be om m itted. Clearly g=CO R gR

and b=co R bR .
There exists a canonically defined anti-linear anti-automorphism

such that

(1.5) (e )  =  g ' (a E 4 ),

(1.6) h* h (hebR ).

We define a real subalgebra f, called the unitary form, of g by

(1.7) f -(xeg ; x± x*  = .

If g is finite-dimensional, f is nothing but a compact real form of g.
Define a sesquilinear form (•1•) 0 on g by

(1.8) (x Y)0 = (x  Y* ) (x, Y e g)) •

(• I •)0 is Hermitian and positive definite on each root space g -  (cf. [5, Th.1]). By
invariance of (• 1.) and orthgonality (1.2) and (1.3), it holds that

(1.9) (Lx, z)0=(Y [x* , z])o (x, Y, z e g)
(1.10) (g' I go)0 =  0 for a*  fi; (f) e ) 0 =0 for EE 4.

In  paticular, ( • 1•), is f-invariant and positive definite on the space n_+n + . We
call the property (1.9) the contravariance.
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1 .3 . Irreducible highest weight m odules. L et 20 * .  We denote by L (A )
the irreducible highest weight m odule for g with highest weight 2, P(2) the set of
weights of L(2), and L (2 )=E iLe po O L(2),, the weight space decomposition of L(2).

If 2 is in b t, then there exists a  non-degenerate Hermitian form (• j •)), (see
[8, § 2] for example), unique up to scalar multiples, which is contravariant:

(1.11) (xv I u)), (v x*u)x( x e  g ,  y , ue  L(2)) •

Moreover, if 2 is dominant integral, that is, 2 ( e )  is a non-negative integer for any
simple coroot ,  then (• •)?, is definite ([5, Th. 1]).

In the following, we denote by A  a dominant integral element of VI and fix a
contravariant inner product (• j -)A on L(A ).

1 .4 . Inner product on g .  Take a  basis h„ •••,16_ 1, /=rank A , of hR such that

((h11 111)01,1 =(e iaii)r,i

where ei is +1 for each 15i S2n-1.
We define an inner product (• I •), on b by

( h lk ) ,  = Ei cie; f o r  h =  E i ci hi ,  h' =  E i c;h i E b ,

and extend it to g by

(x y) 1 = (P--(x) I P -(0 0 -1-(P0(x) I P0(Y))1+(P+(x) I P 4 0 0 (x , Y E g) •

where P ±  and P 0  are projections from g onto n±  and b respectively defined in 1.1.
Let T be an operator on g given as follows. On bcg ,

(Th,, • ••, Th2. - 1) = (h1, ••• ,112„- 1)(6 i8 i.dia

and on n_ +rt., c g, it is equal to the identity. T is a unitary and selfadjoint operator
with respect to (• j •),. In particular, T  is involutive: 7' 2 —id. Moreover, there
hold that

(1.12) .Y)0 = ( x ,  Y  (I) •
(1.13) id— T  = 2 (the orthogonal projection onto

the —1-eigenspace of T)

5 2 P 0 .

1 .5 . Completions of g and L (A ). Put g°=b, and define infinite products g and
L(A ) by

(1.14) g = llseeufol L(A ) HdercA)L(A)A

Each element x of g acts o n  g D g  and on L (A )D L (A ) naturally. And (• i •)0
and (• I •)A  are exended to the pairings of g x g and of L (A )x  L (A ) respectively so
that (1.9) and (1.11) hold with x, ze g, u e L (4 ), y  g , v eL (A ).

L et H(ad) a n d  H (A ) be th e  completions of (g, (.J *)).) and (L (4 ), (• •)4 )
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respectively. We may regard them as subspaces of g and L(A) respectively:

H(ad) = {(x) ; E c, I lx„I I <  0 0 } ,
H(A) = {(vih)p. L ( A ) ;  EplIvidLi< + 00}

Since T is identical on each root space, it is extended to a linear bijection from
g onto g itself, which is denoted again by the same symbol. Similarly, *-operation
is extended to g, and again we use the same notation for the extension.

§  2 . Differentiable vectors and analytic vectors.

In this section, we define differentiable vectors and analytic vectors for g-
action on the Hilbert spaces H(ad) and H(A), which are obtained by completing
g-modules (g, ad) and L(A) respectively. Then, we shall prove that the differenti-
ability and the analyticity are charcterized by means of a strictly dominant element
of hit .

2 . 1 .  Estimate of norms of g- action. Take and fix an element h, of hR such that

(2.1) a(h0)>0 for all a G .

We call such an element strictly dominant.
For our purpose described above, we need to improve the estimates of g-

action on g-modules (g, ad) and L (A ) in [8]. And, modifying slightly the method in
[5, Prop. 3.1], we obtain the following evaluations.

Proposition 2 . 1 .  There exist positive numbers Co, C1, CO3 4 and C1, 4  such that
i) for (g, ad),

P-(Y)iiii (xen+, yeg),
Il[x, A111+11[h0, (x, YES),

ii) for L(A),

OA) (xen+, v e L (A )),

411114,1+11xIII Iiho OA ) (xeg, vGL(A)).

Here, P .  i s  the projection f rom  g onto n_ defined in 1.1, and 11•11,, HI 4  are norms
defined by the inner products (• I.) , and (• 1 •)A respectively.

Proof is essentially the same as in [5, Prop. 3.1].
From these estimates, we have the following proposition, which gives rather

exact estimates of norms of iterations of g-actions. The order of increasing of
these norms according to m are very important in the following, for instance, when
we wish to define exponential maps.

Proposition 2 .2 .  For any x1, x,, ••-, x„,Gg and vGL(A), we have the following
evaluations.
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i) In case of (g, ad),

11[x, [x 2 , • • • , xm1•-111115
CSri !...,pn,117-111(ad ho)

where the sum is taken over non-negative integers p p  •••, p m  such that 1,1+ •••+p„,=

m -1 , and c are defined inductively as follows:

0 " )! h h (for m >1)
r i •  o • bm—

C M - 1 )
(PM-I+Pm)! 

.1.•••■ P m -2 .- . - 1 - 1- P

=  0

b 

Pm-OP.! i f P.--1 - F P -> 0

P.-i+Pm = 0

cSo =1, (f or m  = 1 ).

ii) In case of L(A )

E ,(117- 111(ad ho)P ixilli.)11hgvIlA

where the sum is taken over non-negative integers p„, ••• p m , q such that pi + ••• +P .+
q.. m and Cp";?...,p.,, is given by

C (P7?- .P .-1 , Pm ; —

= (C )P7,i ?P„,_ 1 ; P + q+ P,,,+q--1)(Pm+ q ) !
p !q !

pi d--••+p 1 + p + q < m  and p ± q > 0  ,

=  Cm - 1 ) P _ 1 ; p ! q !

p i + •••+ p „ ,_ 1 +p,,,d - q =  m  and p ± q > 0  ,

0i f  P i+ •••+ P m -t< In

=  0 otherwise,

0 , 1? =  CV ? =  C T ? =  1 , (f or m  = 1 ).

Proof is carried out by induction on m.
i) If m=1, then the assertion is clear.

Assume that the assertion is valid until m .  Then, we have

i[xt, •", [xm,
C (p7.)  ....1.(11711 I1(ad ho)Pi x;111)11(ad

CT- 1  E  C (p7,) „., p m a l , " : 1 1 11(ad

X  Ef,:o (fm )1[(ad ho)P., - *x, (ad ho) 4 x,„+ dlli .

By Proposition 2.1,

(f or m >1)
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C " )...,pm(117:1
111(ad /OP/ x i ! xP

X Ere:0(fc m)C1(11(ad hnx.+1111+

+ I j(ad ho)P..- k x„,11111 (ad h o)k+' II
= C T  E

X E:: 1 (  P I+  1 ) I 1(ad FOP, .
-I-1-k 

X , I li jKad h o )k x nt-1-1
 II

1

= c E Cp7)... _ ( P m + P m+ )(11 7.71111(ad h o) P i 4 0  •Pmm- rft i  1

Hence, the assertion is valid also for m+1.
ii) is proved in a similar way.

Corollary 2 .3 .  For any x1, x2 , •••, Xm G g and vEL(A), we have
in case of (g, ad),

[xm- i ,

5(m -1)!C T -1 E  II,  1  li(ad ho)Pjxillipi .•••.Pm 1,1 !

ii) in case of L(A),

xm v114 5

5 0 1+ 1)!C ra i E  {H , 1 IKad
p„.•••,Pns, 131! ql.

P ro o f  By induction on m ,  we see that

C ( m ) -P„, g<  M  !C O O <  On+ I ) !  
. =

p l !  •  Pm! p,!•••p„,!q!

Q.E.D.

Then, the assertions are obvious. Q.E.D.

2 .2 .  Differentiability and analyticity of elements of H(ad) and H(A)
Now, we introduce the notion of differentiable vectors and of analytic vectors,

from the point of view that an element of a Lie algebra can be regaraded as a differen-
tiable operator of degree I in the finite dimensional case . In  this sense, our definition
is quite natural, or rather necessary in studying Kac-Moody algebras.

Definition 2 .4 .  We define the subspaces Hm(ad) and Hm (A) of H(ad) and H(A)
inductively as follows:

Ho (ad) = H(ad) ,
H„, (ad) = H_, (ad); [x, y] H,,, _,(ad) for all x } ;
Ho(A) H ( A ) ,
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Hm (A ) = {ye H,„_ 1(A); xvEH„,...kA) for all xeg l ;
11,, (ad) n 0 H„, (ad) , H o,,(A) =- n 0 H,„(A) ,

We call elements of Ho.,(ad) and H o (A) differentiable vectors in H(ad) and H(A)
respectively.

Definition 2 .5 .  We define the spaces of analytic vectors H o (ad) and H (A ) as
follows:

H„,(ad) = {yEH .,(ad); for any xE g, there exists e>0

1 such that E o  
m !  

e  II(ad xryll,<+00} ,

H =  Iv  H  0,,(A); for any xE g, there exists e >0

such that E = o  
 1  

vIIA < +001.
m!

We call elements of H (a d )  and H„,(A) analytic vectors in H(ad) and in H (A)
respectively.

Roughly speaking, using the estimates of norms of g-actions on H(ad) and
H(A) given in Proposition 2.2, we can prove the following theorem, one of our main
results. Thanks to this theorem, one may concentrate on only one element 110 ,
instead of all the elements in  g, for the implication of the differentiability or the
analyticity of an element of H(ad) or H(A).

Theorem 2 .6 .  L et h,ef h t  strictly  dom inant. The spaces H m (ad) and Hm (A)
(m =0, 1, 2, •••, 00, co) are characterized by means of one element h, as follows:

i) in case of (g, ad),

(1)
(2)

Hm (ad) { Y  g; (ad hag  y H (ad)} (niE.Zo)
Hm (ad) = {yEH oc(ad); there exist e>0 such that

1 ell(ad ha)myll i < + .1  ;
m !

ii) in case of L(A),

(3) H m (A ) = eL (A ); h it; v E H(A))- Z ())
(4) H.,(A )= { vEH,.,(A ); there exist e>0 such that

1 6114v11A<+001•
in !

Proo f . It is clear that

min c,„ , I a (h o ) I =  min I a(ho ) I >0,

minwspo),A(h0 )*0 I 10 0)I >0
tuEP(A ); ,u(h0) = <  o ,



642 Kiyokazu Suto

Then, we have, for any yeg  and any veL(A ),

[ho , y ]  H(ad) y  e  H (ad ) ,
ho v e H (A )  v  e  H(A) .

These implications together with Proposition 2.2 imply (1) and (3) respectively.
Now, let y be an arbitrary element of the right-hand side of (2). By definition,

there is a positive number e such that

Emo 1 e m ll(ad ho)mYlli<+°° •m!

By Corollary 2.3, we see that for any xe g and a>0,

1  anwad
m!

SCT(E lao 1 
li t a i ll(ad ho/lx111) m E im 8 1

1! 11(ad ho)1.Yii •i 

Take a, (3' >0 so that

a '( Z io  1
1
,  aiii(ad ho) l xil i )< C T 1 a n d  (3- 6 .

Then, it holds that

( a 'a r l i ( a dm!

1 1 
E l /!ko 8 !! hoYYlli< +co11—C1 8' Emko

m !  
riKad hoYn Xilt

Hence, yElf.,(ad) and (2) is proved.
The equality (4) is proved in a similar way as (2). Q.E.D.

§  3 .  Topologies on the spaces of differentiable vectors or of analytic vectors.

Now, we consider natural topologies on the spaces o f  differentiable vectors
1-1(ad), I,,,,(A ) a n d  those o f  analytic vectors H of a d ) ,  -  0,(A) . W ith respect to
these topologies, the spaces Hr.,(ad) and Ho(ad) become topological Lie algebras.
Particularly, we obtain the Lie algebra g.-----H 0(ad) on which the adjoint action can
be exponentiated locally as shown in Corollary 3.8.

3 . 1 .  Topologies on the spaces of differentiable vectors.
Definition 3 . 1 .  F o r m e Z o,  x , ye li„ ,(ad ), u, veH„,(A), define inner pro-

ducts on Hm (ad) and H m (A) respectively as

(xi Y)ado n E7110 ((ad ho)i xj(ad h)'Y)i
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(u I v)A . ,„ Er_ o (h i; u ht v)A

Clearly, (H„,(ad), (• I •)ad.,,,) and (1 1 .(A ), (- •)",,,) are both Hilbert spaces. On
1-1,.,(ad) and H o o (A), consider projective limit topologies of these Hilbert spaces.

Using Proposition 2.2, we can prove the following proposition, which gives a
topological Lie algebra structure to  1/.(ad) and its continuous representation on

Proposition 3 .2 . 1) T he brack et product o f  g :  gxgD(x, y)i—+[x, g , is
extended to a continuous bilinear map from Hm (ad)>< 1-1„(ad) into 1-1„,_Kad) f or m >0.
In particular, l i c.,(ad) is a L ie algebra and its bracket product is continuous.

ii) The m ap g x L(A) (x, x v e L ( A )  is ex tended to a  continuous bilinear
m ap from  Hn (ad)x H„,(A) into H„,_,(A) f o r m >0 . In  paticular, H.,(ad)D g acts
continuously on 1-1_(A).

We denote by go,, the topological Lie algebra l i c.,(ad).

Pro o f . i) By Proposition 2.2, we have, for any x , y  H„,(ad),

I 1(ad C 7' E Con,̀ ...0,p.q11(ad h0)x111•11(ad hOgylli •
p +q=

This implies i).
ii) is similarly proved. Q.E.D.

3 .2 . Topologies on the spaces of analytic vectors.

Definition 3 .3 .  For a>0, 1-1.(ad), a n d  v e ll( A ) ,  we define norms on
H.,(ad) and on H,(A ) which may take the value +00 as

114 .ad,co,8 E ; = 0  
1 a m i Kad hor  x ,I I

m!

II vlIA,..8
1 (3%4 v114 •ni!

Definition 3 .4 . We define the series o f  subspaces of H(ad) and H,0 (A) which
are parametrized in 0<eS+00, using norms defined above, by

110,(ad; e) H,o(ad): lixIlad...8<+ 00 for all 0<c7< ,
I„,(A; e) {veHjA): IlvilA,.. 8 < +  co for all 0<a<e}  .

The subspaces Hjad; e) with a  family of norms {11•11.d,..8 (0 ‹ a< e)} are Fréchet
spaces. Similarly, -(11-,0 (A; 6

) ,  H. (o< a< 01 are Fréchet spaces.

We see that

H,0(ad) = U H j a d ;  e )  a n d  1-1,,,(A) U  "H jA ; e).

So, we consider inductive limit topologies on H,0 (ad) and on 11,0 (A) associated with
these family of Fréchet spaces.
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Then, we get the following proposition on the continuity of g - action.

Proposition 3 .5 .  Fix  0<e5H-oo, and let 0<a<8'<e.
i) For x, y e  1-10,(ad ; e), it holds that

II[x, ci 211x1lad 8, 11yllad,..8,  •0 , _a

In paticular, 1-1.(ad; e) Dg is a subalgebra of  H.,(ad) and its bracket product is con-
tinuous.

ii) For xe e) and veH (A; e), it holds that

ilxviiii,...s C,,,,(11x1lad,,,,,8111'11A,.,8+ (a iixiiad,  ay.

In paticular, H.,(ad; e) Dg acts on H jil; e ) continuously.

We denote by g„,.. the topological Lie algebra 14,(ad; e).

Pro o f . By Corollary 2.3, it holds that

it(ad hor [x,Y]iii E71-o(T)Ii[(ad h0)1x, (ad ho
)m

c, Er-. (7)(ii(ad h0)1+1 xii 1 iKad hor - 1 .Y111+

±iKad hoYxiiiiKad

C, ( 11 )1 I(ad hor+1-1Yili •

Summing up this estimation over m, we get

1 Il[x, = E;..0 
m !  

ell(ad h n x ,  yl111

s c ,a - i on+1) (Pe )m-"Er...f.1  I , el Kad hoyxii, x

x 
 (m +

1
1- 0 !

 em+ 1 11(ad hor+ 1 - 1 .01

E rn a ' m(-1,-)m  •

The proof for HJA; e) is similar as for H.,(ad; e).

Corollary 3 .6 . i) H.,(ad)Dg, with the inductive limit topology, is a subalgebra
of  H.,(ad), with the projective lim it topology . M oreover, L ie algebra operation on
Hjad) is continuous. Thus, H(ad) is a topological L ie algebra.
ii) T he topological L ie algebra Hjad) acts continuously  on H (A )  w ith the in-
ductive limit topology.

Q.E.D.
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We denote by g. the topological Lie algebra H(ad).

3 .3 .  Exponentiation o f  g-action. T he next lemma and  its corollary are
concerned with the exponentiation of g„,-action, and will be needed in  the  next
section.

Lemma 3 .7 .  Fix 0<e S  cx, , and let 8, 8'>0, 8+8'<e.
i) Let xEg o,,,, y e l l ja d ;  e )D g .  If  C, 8 - 1 1 Ix' lad...8+8'< 1, then it holds that

E k  ma° liak(ad ho)k(ad
' k!m!

( 1 — C18 ' - '11xIlae,,,,,a+s') 'IIYIlad,,,,,8+8, •

Let x E g  and V E H jA ;  e). If  ci,A(1-0 - 1 )11x1lad,.,8+8, < 1, then it holds
that

1 
EknIZO elihIPX"

k!m!

5(1 — C L A (1 11+8 — 111x1.., ”act,to.8+0 - 2 11 VI lA"84-8' •

Proof . i) For any k, m E Z a o  and x e g  y  1-1.,(ad; e), we have, by Corol-
lary 2.3,

I l(ad ho)k(ad
k! 

II[(ad h o) g i x ,  • ••, [(ad h0) 0 '" x, (ad hdqo • • .1111
q1 ! ••• q,,,! q0

E " E ' k!m ! 
p1 ! ••• p„,!po !q1 ! •••

X {117. 1 II(ad ho)Pi+qixlij -II(ad ho)Po+qoyll i

where E ' means the sum running over all the non-negative integers q v  •••, q„„ qo

such that qi 4-•••+q-1-q,---k  and E "  the sum running over all the non-negative
integers p1, •••, p„„ pc, such that p,+ • ••

Hence, it holds that

1 1 
E k , n t 0 aka'm 11(ad ho)k(ad x)m yll i S E „ ,„  Cr (7'm E

k!m! P1! Pm!Po!

x  IT E 0 , 0e l l ( a d  ho)P i+ g xiii}(Egao ho)fro+gyill)

Erna° { c, E a 0  1  8 1  agi 1(ad ho)P+qx1 xp!q!

x(Ep.qao p 1
1
q  8'P el 1(ad ho)P+03, 111 )=---

= ■ad"8-1-0-111YI lado),8-1-8' •

Replacing x in this inequality with 8- 1 x, we get the assertion i).
ii) is proved similarly as i). Q.E.D.
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Corollary 3.8. Fix  0 <e '<e S + 0 0 , and  le t 0< <e —e'. L e t  x e g . . , ,  an d
cec.

i) I f  I c I <a(cillxIlad...e+8) - ', then
1(1) the series E„,,„ (ad Cx) tm y  is absolutely convergent in H(ad) and the

m!

sum (exp ad Cx)y— 1o (ad Cx)tmy  belongs to H.(ad ; e') f o r any y e  H.(ad ; e),
m!

(2) the map

exp (ad Cx): H.(ad ; e)D y E--) E „,, 0

is continuous.
il) I f  IC 1< (1 + a - iy A c i4 ,1 1 x 1 la d . . . . '+ 8 ) -1 ,  then

(1) the series E rn
1
a° (cx)my is absolutely convergent in H(A ) and the sum

m!

(exp Cx)v=E„,,,  1 (cx)'" v belongs to H.(A ; e') for any v H . ( A ; e),
m!

(2) the map
1 exp Cx: H.(A ; e)D v E rna°(C x ) tm  vEHJA; e')

m!
is continuous.

Remark 3.9. Let xE L .  In Corollary 3.8, the range of CEC, in which the
exponentials ead 4 . 1 y  (y e  H.(ad)) or e4.sv (vE II.(A )) can be defined, depends heavily
on y or v. In this sense, the definition of exponentials on g. by means of absolutely
convergent series is local in y E H.(ad) or v e k (A ) .  But, restricting ourselves to
the  closure H (a d )  of the unitary form f in  Hi (ad), we get globally defined ex-
ponentials as shown in the next section.

3.4. Relations between the spaces defined above. H ere, for convinience of
readers, we illustrate the relations between the spaces introduced in § 2.

3.4.1. Continuous inclusions.

g = M e e  U 11 6

H(ad) = 'Mad) D  Hi (ad)D 1/2(ad)D • • • D  g.0  H ( a d )  =  n H,„(ad)

g . =  H (a d ) =  U  H .(a d  ; e)
o < e - F c .

g c g .,„ „ c • • •c g ..,  =  H.(ad; e) c  •••c g .. 8 =H .(ad; a) (0 < a< E 5 + 0 0 ).

L (A ) = 11, Ep(m L(A ),

H(A ) = Ho(A )D Hi (A )D H 2(A)D  • • • D  H c.,(A )  = n H (A )

H . ( A ) =  u  H.(A ; e)

L (A )C H .(A ; +0 0 )c ••• cH .(A ; e )c •••cH .(A ; a )  (0 < 5 < e . - Foo)



Representation spaces of a Kac-Moody algebra 647

3 .4 .2 . Continuous actions of subspaces of H(ad).

[H,„(ad), Hm(ad)1 c H„,_,(ad), H„,(ad) • H„,(A )c  H m _  1 ( A )  (0< m <  0 °) •
[8, fl.Acg- , g.• H.(A )c 11.,(A ) .
[g., gw ] c g . , g .• H.(A )c H.(A ) .

g..,• H.(A ; e)C H ,,,(A ; e) (0<e:

§  4 .  1-parameter groups exp t(ad x) and exp Lx.

In this section, we construct the exponentials of each element x in the closure
H7(ad) of unitary form f in Hi (ad) as an operator on H(ad) and on H(A).

4 .1 .  Completions of the unitary form . Since the  *- operation on g is isometric
with respect to (• I •), and h, is *-invariant, all the spaces Hm(ad)CH(ad) defined in
§2  are *-invariant and *-operation is isometric for mGZ a o , and bicontinuous for
m= 00 or a). And so, we can define the completions of unitary form as follows.

Definitions 4.1. We define real subspaces of H(ad) as

HL(ad) = { x  H„,(ad); x+ x* = 0} (m  = 0, 1, • • • , 00, ca),

H aad ; e )  =  { x  H,,,(ad ; e); x + x * = 0} (0< e + o 0 ) ;

and define real Lie subalgebras L , f,, of g.—H.(ad), g„,=H,,,(ad) respectively as

L  H " , ( a d )  ,  f .  =  H (ad ).

O ur goal of this section is to prove the following theorem. We denote by
B (H) the set of all bounded linear operators on a Hilbert space H  and by U(H)
the group of all the unitary operators on H.

Theorem 4.2. Take an arbitrary  elem ent x =E. E ,,, ( 0 ) x  E H (ad).
i) There exists a unique 1-parameter group of  operators exp t(ad x) =e t  a d  s

B(H(ad)) whose infinitesimal generator contains ad x:

—
d  

{(exp t(ad x))y} (exp t(ad x))[x, y] f or a l l  y E I i i (ad) .
dt

Moreover, the operator norm of exp t(ad x) is evaluated as

t(ad x )H o e x P ( 2  It I (Eyed 1141 Ilx.111)112) f or all t  eR  .

ii) There ex ists a un ique  1-parameter group exp tx—esx in  U(H(A))-- U(A)
whose infinitesimal generator contains x:

d l(exp tx)v} = (exp tx)xv fo r a ll v e l l f (A ).

4.2. Resolvents of the closures of operators ad x  on H(ad) with x  in H7(ad).
For the proof of Theorem 4.2, we need several lemmas.
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Recall the  operator T o n  g  defined in  1.4. For any x, y, zeH i (ad)cg, we
have

((ro(ad x))Y1z)i = YlIz)0 = (Y1[x* , Zn]) = (Y1(To(ad x* )).01
Hence,

(4.1) (To(ad x))+ =  To(ad x*) for all xeH,(ad) .

where + means the  ad jo in t with respect to (• 1 •)„. Therefore, To(ad x) has the
densely defined adjoint, and so To(ad x) is closable. Hence, ad x is also closable
for any xeH,(ad) because T is unitary. We denote the  closure of ad x again by
the same symbol ad x and its domain by H(ad; x).

Let xe1/1(ad). Because of (4.1) and x+x*=0, To(ad x) is anti-symmetric.
Hence, it holds that for yeH(ad; x)

11(1—ad x)y11? = Yl111-2 Re (yl[x, Y])1
IIYII1+11[x, —2 Re (Y1( 1 —  n[x, y])1 •

By (1.13), we see that

Re (Y1( 1 —  n[x, YDili

where Po is the projection from g onto » defined in  1.1. Further, using the equality
(1.4), we have

11P0(fx, yDlli E „ ., y-Oli
=Ea., Rx.I I 11P- 1 (a)111

Ilx.111 IIY-Œllillalli
Hall? Ilx.11W Ily.11Dia •

1141Di/2 .11AL •
Thus, we obtain the following estimate.

Lemma 4.3. For any x 1/(ad) and any y E H(ad ; x), it holds that

11(1—ad {1 - 4 (Ewee 11alli1141?)1 }11Y11?+11[x, Y]11? •

Remark 4.4. By the same argument as in the proof of Theorem 2.6, we see
that xeg belongs to H1(ad) if and only if

E . E 4  11a11?1141?<±co ,

whence the above inequality has a sense for xelMad).

We see that if x el-Mad), and e R is sufficiently small, then (1—ad ex)H,(ad)
is dense in H(ad), which is proved in another paper [10, § 4], and hence we have
the following.

Lemma 4.5. L et xeH K ad ). If  eER is sufficiently small, then there holds that
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H(ad) = (1—ad ex)H(ad; x) .

Corollary 4.6. L et x E  H (a d ) . For any sufficiently small e E R , the inverse
(1—ad ex) - 1  exists and belongs to B(H (ad)). Further, we have

11(1—ad ex) - '11„p 5 11-416 (EsE4 IIaII
 

I lx.11?)1121-112 •

4 .3 .  Proof of Theorem 4.2. We apply to the closed operator ad x on H(ad)
the criterions in [9, Chap. IX] for exponentiability of a closed operator on a Banach
space.

i) For 0 5 s< 1 , it holds that

(1—s)0 _ 1 - -
1

s(1±   s

2 4(1 — s)

Take 0< 6 <1 . If 41 e I(E . E , 8 , then, by the above formula, we
have

(1-41e I (EsEelIalI 11411)1121 --1/2

11 - 2 16 1(Emee liallillx0111)112( 1 + a) 1 -1 •4(1-8)

Hence, by [9, Chap. IX § 9, Cor. 1] and Corollary 4.6, there exists a unique
continuous 1-parameter group exp t(ad x) in B(H(ad)) such that its infinitesimal
generator is equal to ad x, the closed one, and

8  
Ilexp t ( a d  x)Ilop exP 121t REmee .

4(1-8)

Since 8 may be arbitrarily small, i) is proved.
ii) is proved in a similar way but much more easily than i), because any element

x in HT(ad) acts as an anti-symmetric operator on H(A). Q.E.D.

4 .4 .  A  consequence of Theorem 4.2. By Theorem 4.2, we see that differen-
tiable vectors in H(ad) or H(A) defined in 2.1 are really defferentiable as expected.

Proposition 4.7. For in E  Z 0 , every vector y E Hm (ad) or v E Hm (A ) is m-times
differentiable in the sense that for any x E Htgad), it holds that

dim
d tm  {(exp t(ad x))yl = (exp t(ad x))(ad x) my , ,

(1" {(exp tx)v} = (exp tx)xm V.
dim

§  5 .  Properties of exponentials exp ad f., and exp L.
In this section, we prove some properties of the exponentials exp ad f  an d

exp L. The first one, one of our main results, says that the spaces of differentiable
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vectors and of analytic vectors are invariant under the action of the exponentials.
The others concern the natural relations of actions of the exponentials.

5 .1 . Invariance of the spaces of differentiable vectors and of analytic vectors
under exp ad f . or exp f„,. At first, we show that the analytic vectors y EHJad)
and vEH„(A) are really analytic, similarly as differentiable vectors in Proposition
4.7.

Proposition 5 .1 . Let x e  f..
i) For any  y EHÙ,(ad), there ex ists e> 0  such  that i f  it 1< e ,  the  series

Emko 
1  

 t (ad x)m y  is absolutely convergent in H(ad) and equals to (exp t(ad x))y.m !
ii) For any  vEH„,(A), there exists e > 0  su ch  th at i f  It I < e ,  the series

Erna() 
1

m! tmx
.  v is absolutely convergent in H(A) and is equal to (exp tx)v.

Proof . i) Absolutely convergence is already proved in Corollary 3.8.
According to [9, Chap. IX], the 1-parameter group exp t(ad x) is defined by

(*) (exp t(ad x))z =lim 1  tm(ad xr(1-8 (ad x)) - mz , (z E H(ad)) .8+0 m!

Here, we have

(1 —6(ad x)) - m —1 = S(ad x) (1---s(ad x)) -  .

Let e,, e, be positive numbers such that IIxIL , 1 , IIYIIaä, i < + 0 O and that

{ 1 — 4 6 2(Ewee i al Ix.111)1/21 2

For this 
e 1 ,  

take e >0 so that

5 < 6 1/(2 C1 11x1 lad,w,81) •

Then, by Corollaries 3.8 and 4.6, for any 0 < 8 ..e 2 and ItI 5 6., it holds that,

1  Iltm(ad x)m(1 —(ad x))8 - my—t m (ad x)myll,
m!

-6
m ! 11

8 (ad x)(E7_, (1 — (ad  x)) l e n (ad x)mYiii

1 t(ad x))
(m -1)!

II(ad x)(2 mYlli.

1Since ô may be arbitrarily small, the sum E „,„
i n !

 en(ad x) » 'y is equal to e i ( a d

by (*).
Proof of ii) is similar as for i). Q.E.D.

Lemma 5 .2 . Let 0 < 8 < e  + o 0 , x H (ad  ; e) and y E g .  Let C, and C o be
the constants in Proposition 2.1.
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i) If  Ci llxli a d „,8 <a, then there holds the equality

[y ,  ead X =  eadx[e-adz z] f or a l l  z  H , (ad) .

ii) If  max (C 1 , C i . A )I Ix' la d 8 < (1 +6 - 1 ) - 1 , then there holds the equality

yex y = y)v f o r a l l  v e H i (A ).

Pro o f . W e begin with ii). For any vE H i (A), there exists a  sequence {vi }
in L(A) which converges to  y in H,(A).

Let u  L (A ) .  By Proposition 5.1 and Corollary 3.8, it holds that

11(ex (e - ad  x y)vju)4  =  ((E „ , k , (—ad x ry )(lim  y 1)1 E ik o  — (— X Y 1 i)
M! i1 ! A .

1Since e' x  y  = E , ,
m !

 (— ad x)m y E1-1(ad)cii i (ad) by Corollary 3 .8 , and each

element in Hi (ad) defines a continuous linear map from 111(A) into H (A ) by Pro-
position 3.2, we have

(ex  (C a "  Y )v iu ) =
1

__m  E„„io (x'((—ad x)'" y)yi lu)A
MU!

1 (y.x* vi ) I u)A
k!
1=  iim Ekao

k !
( y 1  I (—X)1eY*14)4

lim (v 1 1 e-  y* u)4

= ( y e l  vII)A  •

This implies ii), because (• 1.) A gives a  non-degenerate pairing of L(A)><L(A) as
noted in 1.5.

i) is proved quite similarly as ii), using (• 1 •)0 (not ( • 1 • ) 1 ) . Q . E . D .

Now, we prove another main result which advances our study on fine structures
of our group KA in [8, § 3] associated with the unitary form f.

Theorem 5.3. Let x f „ ,  and m=0, 1, 2, •••, 00, co.
i) e 'x  leaves invariant each H,„(ad), and the restriction of eadx to H m (ad) is

continuous with respect to its topology defined in§ 3.
ii) ex leaves invariant each H„,(A), and the restriction of  ex  to H m (A ) is con-

tinous with respect to its topology defined in§ 3.

Pro o f . i) Take ô >0 so that

11x1lad,.,8<  + 0 0  .

Clearly, we may assume that

=  Ern E kk0

c,a- 1 11x1lad,..8< 1 .
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(I) The Case 05m<d- 00• F o r  any y e H„,(ad), we have by Lemma 5.2

e ad xy  = Headx(e-adx h o )rn y l 11

z horYI 11 9
Heads' IopiKe -ad

and e- adsho EH,„(ad) by Corollary 3.8. Hence, the assertion is clear from Proposi-
tion 2.2 i).

(II) The case m  co is immediate from the definition of H.,(ad) and the
Case (I).

(III) The Case  m =w . S ince e- ad xho EH.,(ad), by Corollary 3.8, there exists,
for any y e Hjad), e >0 such that

Emao 1 e m il(dae- a d x hanYiii<+ 0 0

m!

Hence, by Lemma 5.2, we have the evaluation

1 1 
En,o 11(adho) Ileadx110•Emo 

n i !  

6  11(ad C a d  x  hori IY + .
in!

Here, Head /l o p denotes the operator norm of e "x  as an  operator on H(ad).
Therefore, e d  X y e H(ad), whence H(ad) is left invariant under eadx.

The continuity follows from the above inequality and Proposition 3.7.
ii) is proved in a quite similar way as i). Q.E.D.

5.2. Mutual relations of actions of exponentials. Finally, we complete the
assertions in Lemma 5.2, taking off many restrictive assumptions in it, as follows.

Proposition 5.4. Let x E f„, and yEH,(ad).
i) For any z E H,(ad), there holds the equality

[y ,  ead =. e nd x[e -ad xy ,

ii) For any veH ,(A ), there holds the equality

y e x v =  e x(e -adx „\ vy )  .

Proof is immediate from continuity of ead x and ex as operators on H i (ad) and
H 1(A) respectively.

Proposition 5.5. For any x e f .  and y el-Mad), it holds that

i) ead x e ad y e -ad x ead (Old xy )

ii) eX ey=  e (e adxy )

Pro o f . Both sides of i) are continuous 1-parameter groups in B(H(ad)) with
the same infinitesimal generator ad(eaci x y), by Proposition 5.4. Hence, they are
the same thing.

ii) is valid by the same reason as i). Q.E.D.
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Let KA  be the subgroup of U(A ), the unirary group on H(A ), generated by
exp f„„ and !let K ?  be the subgroup of B(H(ad))  x  , the group of all the invertible
elements in B(H(ad)), generated by exp ad L .  If A  is strictly dominant, the last
two propositions enable us to define a group homomorphism Ad from K.A into K ?
such that

g • x• v  = ((ad g)x)v for a n y  g eK „,11, x  H i (a d ) , v  H(21) .

Thus we get the adjoint representation of KA., through the homomorphism Ad.
Furthermore, Proposition 5.4 connects the group structure of K.A and of K 4  with
the Lie algebra structure of t o .

§ 6 .  Remarks about the Campbell - Hausdorff formula.

This section is devoted to analyse the posibility to apply the Campbell-Hausdorff
formula for our study of groups. In that case, the central problem is the convergence
of Campbell-Hausdorff formula for the Lie algebra g . .  Since g . is not a normed
Lie algebra, this is a very delicate and hard problem.

6.1. Dynkin - Cartier's formula. Let a be a Lie algebra freely generated by two
elements x  and y .  In [1], it was proved the following equality in the algebra of
non-comutative formal power series:

(6.1) log ((exp x)(exp y))
ok-i

k • (p i + q 1 + • • • +14+ 94)* Pi! 91! Ph!9k!
x (ad x)P1(ad y)Iii • • • (ad x)"k(ad ,

where log and exp are defined by means of formal power series, and the sum is
taken over the set C  of sequences Q =(k ; p„ q„ •••, ph , q k ) for which

F k E Z >0 ; 9i, Pk, 9k eZ ao(6.2)
p1d-q1>0 for a l l  j  = 1, •••, k .

Here, if q =0 , we understand as

(ad x)Pi (ad y)qi • •• (ad x)Pk(ad y)qk - 'y  =
=  (ad x)Pi (ad y) q 1 ••• (ad x)Pk - i x

Note that in cace q k > 1  or in case q , = 0  and p k > l ,  the corresponding term is
understood as O. W e  p u t Q I =P 1 - 1 - 9 1 +. . .+p k +q k  for Q  C.

Notice that in the right-hand side of (6.1), there appear plural terms which
differ only in their coefficients. For example, there appear three terms

(
( k  =  Pi= P 2 = 9 2 = 1 , 91 =  0 ) ,2.(1+0+1+1)•1!0!1!1!
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(- 1 ) [x ,[x , y ]] (k  = 1, p i .-- 2, q, = 1) ,

241+1+1+  0)•1!1!1!0!

The absolute convergence proved in [1] concerns the reduced series whose terms
are the sums of such terms in the original series (6.1), with x , y  in a Banach Lie
algebra. However, in Banach Lie algebra case, we can prove that the right-hand
side of (6.1) is already term-by-term absolutely convergent as shown in Corollary
6.2 below.

We denote by c„,(x, y) the sum of terms of degree m in the right-hand side of (6.1):

(6.2) c„,(x, y) =

E
Qeia,1(21=mk•m•P1!q1! Pk!qk!

x (ad x)Pi (ad y)gi • • • (ad x)Pk(ad

The following lemma gives the key evaluation for the convergence of the
Campbell-Hausdorff formula in its original fom in (6.1).

Lemma 6.1. Let 0- a S b .  W e denote by f„,(a, b) the sum of terms of degree
m  in the series

1  aPi+...+Ph • M1 + -1 - 4  ,
QE0k•(p,--Fiq i -l-•-• +p k +q k)•p l !q,!••• p k !gk !

that is,

1 f m (a, b) -=E a o i + - + P k b a i + . - + q h  .
Q ec„ I Qi=rn k •m •p i !q i ! ••• pk !qk !

Then, we have the evaluations

m mm- 2  •bm2 m n i ' •  
am

m! m!

Pro o f . Clearly, it holds that

1 E a
m

Q ue, IQ I=m k•rn*P i!R i! — P k !q k !

1 es E E1  r r k 1=—  a --,7- I l i - 1
m k g i .  ri  ,  —  .  rk>0  / C pi+G-I-r; p i !q i !

1.1 1- ••• + rk = »I

1 ng 1=—  a  .2_, 2m.
m k•t-1! ••• rk !

1Put ck =  E . Then, there holds that
,rh>0 k •r l ! ••• rk!

1 (2+1) • 2! 1!
( - 1 ) 2

[x ,[y , x]] (k  = 2, p , = q i  = p , = 1 ,  =  0 )  .



Representation spaces of a Kac-Moody algebra 655

k ( m
k ) c k =

.rma•o. =  1 '1  •  •  •  I'm ! m!
and that

l c ( k . m !  
k !(m — k )!--  "A k -1 )1 ".2 m -1

Hence, we have

fm(a, b) Par Er..2ck( 2 a )m • 2 -- "'+' Er_ i k e n  )c
2mtm2.am

By a similar calculation as above, it holds the inequality

.f .(a, b)5 I  (20" ck  •

Since Ic('n )  tit, we have

f„,(a, b) 1 (2b)m • 1  E m  k ( m )f ' 2 m n i m - 2 . b mE t- 1k  - k
m!

Q.E.D.

Corollary 6.2. Take a normalized norm 'HI on a Banach Lie algebra such that

II[x, 5_-11x11 Hid! f or a n y  x, y .

If  max(ifx1I, Hyll)5(2e) - 1 , then we have

Q ue  k •(p 1 +q 1 +...± p k ± q )p 1 !q 1 ! pk!9k!
x  II(ad x)Pi(ad y)i ••• (ad x)Pk(ad I <  0 0

In other words, the right-hand side of (6.1) is term-by-term absolutely convergent for
sufficiently small x , y , in the case of a Banach Lie algebra.

6 .2 .  Analytic scale of Goodman - Wallach [3]. Now, let us consider the case
o f  a n  analytic scale introduced in  [3. § 4]. By definition a n  analytic scale is a
filtration {fit• I I II/I to  o f  Banach spaces, which are  subspaces of a  L ie  algebra,
parametrized by non-negative numbers t e R a o , and has the following properties:
let 0 <s<t, then g, is a dense subspace of g, and it holds that

(6.3) i
. 11xIls5.11xIlt for any X e g t  ,

[g i, sic%  ,

Il[x, 111x11, 11Y11, for any x, y e g, .y1113
t—s

A s seen in Proposition 3.5, th e  series o f  L ie  algebras g 5 =11(ad; e)Dg,
e>0, are very like the analytic scale, where each gc„,„ is not a  Banach space but a
Fréchet space in general.

k  k m!



656 Kiyokazu Suto

Let us return to the Goodman-Wallach's case . We see from [loc. cit. § 4] that
for any 8>0 and t > 0 , there holds

(6.4) [x2, •••, iix2iit+s •••

for any x1, x2 , ..• , x„,_1 , x„,Eg t + 8 .
Hence, for x, y t + s ,  when

hand side of (6.1) by using the
fl 

Lemma 6.1 by the above factor (

we estimate the norm of each term of the right
evaluation (6.4), we have to multiply M a ,  b) in

ns
—  )  in (6.4). Therefore, we arrived the series
8

1 (6.5) E  - X
Qeia k•(P1d-- q1- E* - - 1- Ph+9)*P1!q1! — "Pk !qk !

X
(

 i
Q1

)

1Q1

'11X11%+8— + P k ilY111,
+

+8. . . + q k

=  E • ( )  • f„ , (a ,  b )
.Q1 8

with a =-- min (11xiit+1, Ylit+8), and b = max (11x111-1-0, Y lli+s)•
 Then, b y  the first

inequality in Lemma 6.1, this series is evaluated from below as

E  
2 m - 2

 (mr 
• =  + 0 0 i f  a > 0 ,

.Q1 m!

contrary to the proof of [3, T h . 4 .2 ]. In fact, the key inequality in their proof of
Theorem 4.2 in [3]

(E1-1 ri) r i

does not hold, for instance when 1-1 = • —r k —r E Z > 0 ,  whereas, as in [2, p. 234],
there holds the inequality for any fixed k>0

irri pk.111-1 eri

with a positive constant Dk depending on k.

6.3. Naimark-tern's induction formula. Let c„,(x, y ) be as before the sum
of terms of degree m in the equality (6.1) for m -1 , 2, •••.

For the case where x, y are taken from  a  finite dimensional Lie algebra b,
N aim ark-tern  [6 , Chap. XI, § 1 ] proved the following induction formula for
c,„(x, y), m >0:

(6.6) (m+ 1)c„,+ ,(x, y) =-

=  1 crn(x, .1)l+

H- Epa1,2ps.kb• E y), y), x+Yl...11
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for 2, and

ci (x, y ) = x +y , ,

where k20 are Bernoulli numbers defined by

— Z — 1-1-Ep a i  k 2 p z2 1' ,
1—e - 1  2

and the last sum in (6.6) is taken over the non-negative integers m„ •••, mu  such
that m1 + ••• +m u = m .  Note that the convergence radius of the right hand side in
(6.7) is 27r.

They proved that the so called Campbell-Hausdorff series F(x , y )=E,,, a ,c,„(x, y)
is absolutely convergent if x  and 1y are in a small neighbourhood of 0 in the Lie
algebra b, that is,

Thus, they gave a formula

(exp x)•(exp y) expF(x, y)

in  a  small neighbourhood of the identity element, for any Lie group associated
with b.

We explain their proof briefly. Consider the differentiable equation

(6.8) dw =
dz 2

where q (w )=1 +E p a 1 k2 • w2 0  . Since q(w) has the convergence radius 27r by defini-
tion of k 2 0 , (6.8) has an analytic solution

(6.9) w(z) = Ekal Pez k

in a neighbourhood of O. Substituting (6.9) into (6.8), we have an induction formula
for {o„,} ma ,:

(6.10)
P .(m +1) p „,+1 =  -  +  E  k2 1' E  Pm, PM 2p2 Pa1,2P - m + ••• +>2120.=

for m l ,  and (12 =1.
On the other hand, by (6.6), it holds that

(6.11) ( n+ 1)iicm+Ax,
y ) I I +2 r E  k2 1'E rnti I Ic.,(x, y)I I

where r=m ax ak ii, iiYii), a n d
 i i• i i is a norm on b such that

Mx, .11x11.11Y11 (x, y e b )

(6.7)
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From (6.10) and (6.11), we have

(6.12) Y)11-(2r)mPm , r max(iixii, iiYii)

for any m=1, 2, 3, •••. Hence the series E ma , cm (x, y) is absolutely convergent if r
is sufficiently small.

Let us return to the case of infinite-dimensional Lie algebra, and try to apply
their method to the analytic scale fill together with the evaluation (6.4), coming
from definition of analytic scale. W e look for an evaluation such as

(6.13) Y)Ili (2r)m a,„ , r max(IlxIlt+8,

with a  series {am } of positive numbers such that Z„, k , a„,• z -  h a s  a positive con-
vergent radius. Then we have to find a differential equation which has an analytic
solution w (z)=E„,, ,,,• e such that the following inequality follows directly from
the power series expression of the equation on w(z):

„ zp
(6.14) (112+1)0m+icr-L-" E  k )2P • • g m2a •Pa1,2P5mô „ , ,  . . •  „ , 2 p .=,„

However we see that such an equation does not exist because the convergent radius
of (6.9) is finite, in which the factors ( 21 4  do not appear.

Similarly as for the Goodman-Wallach's case, we can see also that the method
of Naimark-'Stern can not be applied to our system -41.A- ex ,  and so the posibility
of applying the Campbell-Hausdorff formula to our study of groups still remains
in doubt.

Thus, in reality, Lie algebras with analytic scales have not yet been able to be
treated in their full generality, except the case where the Lie algebra in question is
itself Banach from the beginning.
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