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Hypoellipticity for infinitely degenerate elliptic
and parabolic operators of second order

By

Toshihiko HOSHIRO

§ 1. Introduction and results.

We are mainly concerned with hypoellipticity of differential operators (in R 3)
of the form

(1.1) L = M -kf(t)D !4-g(t).1302, .

Throughout this paper, we assume that f ( t )  and g ( t )  are functions of class C -

satisfying

(1.2) f(0 )  =  g (0 )  =  0  , f ( t ) > 0  a n d  g ( t )> 0 f o r  t *  .

It is well known that L is hypoelliptic if it is finitely degenerate elliptic operator.
So we shall consider the case where one of f ( t )  or g ( t )  (or both of f ( t )  and g ( t ) )
vanishes to infinite order at t=0.

Before the statement of results, let us explain our motivation. On one hand,
concerning the operator

L1 =  M - F f(t) 13, ! - FV.,,

(here we assume t f ( t ) 0 in addition to (1.2)), S. Kusuoka and D. Strook [4] have
recently shown that it is hypoelliptic if and only if

(1.3) lim I t lo g f( t) (=  0 .
t io

(See also Y. Morimoto [71 , -110] and T. Hoshiro [2], [3].) On the other hand, by the
argument of V.S. Fedii [1], one can see that the operator

L, D N -f(t)V x + f(t)D 2 ,

is h y p o e llip tic  w ith o u t t h e  assumption (1.3). Concretely, L ,  w ith  f ( t ) =
exp (-1/1 t I (7) (c >-0) is hypoelliptic if  a n d  only  i f  ct < I, w h ile  L , with f ( t )=
exp (-1/ I t (a >0) is hypoellip tic . So  one can notice that there is significant
difference concerning conditions for hypoellipticity between L , and  L,. In the

Received June, 2,1987



616 Toshihiko Hoshiro

present paper, to understand the reason for the difference, we consider the operators
of the form (1.1) generalizing L, and L,.

Our main results are the followings. (In this paper, we treat partial differential
operators in R 3 and, since our interest is devoted to hypoellipticity, ellipticity or
parabolicity of them except at t=0 allows us to restrict our consideration to neigh-
borhood of t =0.)

Theorem 1. L et L  be a differential operator of the form  (1.1) satisfying (1.2).
Assume moreover that

(1.4) f ( t )  and g (t) are monotone increasing for 0< t<S ,

and

(1.5) there exists a constant r(0<r< 1) such that

g (rt) I t log f ( t ) I . e > 0 f o r  0 < t<8  .

Then L  is not hypoelliptic.

Theorem 2 . L et L  be a dif ferential operator of the form  (1.1) satisfying (1.2).
Assume moreover that

(1.6) f ( t )  and g (t )  are monotone increasing for 0< t <8

and monotone decreasing for — 8<t<0, and

(1.7)
lim Y g (t )  t  log f (t )1  =  0

lim V i (t) I t log g(t)I =  0  .
t+0

Then L  is hypoelliptic.

Note. The assumptions (1.4) and (1.6) do not play crutial roles concerning
hypoellipticity (they could be replaced by more general conditions). However,
they make our proofs easy.

Let us now explain the difference between L ,  and L2 . Roughly speaking,
Theorem 1 asserts that large difference of "vanishing speed" between f ( t )  and g (t)
m akes L  not hypoelliptic, i.e., under the condition (1.5), f ( t )  vanishes much
more rapidly than g (t )  ((1.5) can be written as f (t )S e x p (- -e / V g (r t ) t ) because
log f ( t )< 0  for small t). On the other hand, if f (t ) - .  g (t ) ,  L  satisfies automatically
(1.7) (because I log f(t)I5...C.,I f(t)I - 6  for any a >0), so L  is hypoelliptic. (Notice
that the condition (1.7) is not compatible with (1.5).)

To understand our results (or assumptions (1.5) and (1.7)) precisely, let us now
consider the following examples.

Example 1. Let a be a positive constant and k be a positive integer. Theorem
1 and 2 show that the operator



Hypoellipticity for operators of second order 617

L  =  D74-exp(-1/1t 0-1 )m +  12AD;

is hypoelliptic if and only if (1< k -I-1 . Also notice that, in the case where it
does not satisfy Morimoto's criterion: For any e>0 and for any compact set K c R 3 ,
there exists a constant Ce Jr such that

(1.8) Il log <D>u112 Se(Lu, , v u e C c7(K) .

This can be seen by taking 14(t, x, y)=u(pt, ex , y )  (p -* c o ) . (See, for instance
section 4 of [2].)

Example 2 . Let a, and a, be positive numbers. Theorem 2  shows that the
operator

L (— 1/ t  G-1)D!-I-exP (— 1/ I t I er2)D2
y

is hypoelliptic.

Let us add here the following generalization of Theorem 2:

Theorem 3 . Let L be a differential operator of the form

(1.9) L  D N - D z (f(t, x, y)D x )+ D y (g(t, x, y)Dy ) ,

where f(t, x, y) and g(t, x, y) are functions of class C-  satisfying the following condition:

(1.10) There exists a positive constant C such that

C - Y (t)S f(t, x , y )S C f(t)
1 C - 1 g(t),Sg(t, x, y)SCg(t)

and
E  I D 'Oy f(t, x, y)1 SCf(t)

E  I MD; g(t, x, y)l C g  ( t )

f or --8 < t< s, (x, y)e D . If f (t ) and g(t) satisfy moreover (1.2), (1.6) and (1.7), then
L is hypoelliptic in (—a, a) x

Remark 1.1. Theorem 3 is of course applicable to operators with f(t, x,
f(t)a(t, x, y) and g(t, x, y)=g(t) b(t, x, y), where a(t, x, y) and b(t, x, y) are functions
of class C -  satisfying a(t, x, y )> 0 and b(t, x, y)>0 for —a< t<8, (x, y)E D.

By a slight modification, our arguments can also be applied to the operators of
parabolic type:

Theorem 4 . Let P be a differential operator of the form

(1.11) P  M -Ff(t)M -I- ig(t)D y  ,

where f ( t )  and g (t )  are functions of class C - ; satisfying (1.2) and (1.6). Assume
moreover that
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1im g(t)t 2 Ilogf(t)! 0
(1.12)

lim N/f(t) I t log g(t)I = 0 .i+0

Then P is hypoelliptic.

Example 3. Theorem 4 and the argument in proof o f Theorem 1 show that
the operator

P = (-1/ 1 t ,

where a is a positive number and k  is a positive integer, is hypoelliptic if and only
if  a< 2k+ 2 .

The outline of this article is as fo llow s: In  section 2, we prove Theorem I.
We explain and show some basic facts necessary for the proof o f Theorem 2 in
section 3. In section 4, we complete the proof of Theorem 2. Proofs of Theorem
3 and 4 will be given in  sec tion  5 . Finally in section 6, we prove the lemma in
section 4.

The author would like to express his gratitude to Professors S. Mizohata, W.
Matsumoto and N. Shimakura for helpful encouragements. He also thanks Pro-
fessor T. eikaji for having called him attention to  the article [12] (concerning the
Gevrey hypoellipticity).

§  2 .  Proof of Theorem 1.

We shall begin with proving the following lemma. The idea of proof here is
essentially due to Y . M orim oto [7]. W e m odify his argument slightly so a s  to
apply it to the following eigen value problem (with real parameter e):

(2.1)
— v"(t)H -f(t)e 2 v(t) =  22 g ( t )v ( t ) for —a< t<a

v(a) = v(—a) o  .

Here we regard 2(>0) as an eigen value. Let us denote by 21(e) the smallest eigen
value and by v(t; e) the corresponding eigen function normalized in such a way that

I v(t; e)12c1t=1.
-8

Lemma 2 . 1 .  Suppose that f ( t )  and g ( t )  satisfy  conditions (1.2), (1.4) and (1.5).
Then:

(2.2) There exists a constant C, such that
0 ‹  Ai (e)s c , log1 ei , f o r le  i large.

(2.3) For any  a' (0<s' <a) independent of  C,
8 ' I V(1̀ ; 01 2 dt —› I as
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Remark 2.1. (2.3) asserts that the mass in L 2 -norm of the eigen function will
concentrate to the origin a s  le 1—.00.

Pro o f  It is know n that v(t; e) is characterized a s  a  function which attains
the infimum of Rayleigh's ratio, i.e.,

21 (C)2 = i n f { V 12 did f e l v i 2 dt}/ g I v I 2dt
veCN-8,8)

v * 0

Let us now denote by Je the  interval (rA(e), A(C)), where A=A(e) is a positive
number O<A<S such that f(A)C2 = 1 (ICI is supposed sufficiently large) and 7- is the
same number 0< r<1 as in the assumption (1.5). Now, notice that the assumption
(1.4) implies

J f(t)e2s
g g (r A(e))

f o r  t e J E

Then, with aid of Poincares inequality, we obtain

(2.4) 21(02s inf I V 12 cit+ e 2 10 2dt}/ g Ivikit
veC r(4 )

v s 0

1 • inf I v'rdt+11 vI 2 d t i j  I vrd t =
g (7-A(0) ye C(Je)

vso
1

7r
)

2

+ 1 ] .
g (r A (e ) ) [ {  —rm(e)

On the other hand, it follows from the assumption (1.5) that

1 (2.5) const. (log I e 1)2*V ,
g (7- A(0) —

when I CI is sufficiently large. So, combining (2.4) and (2.5), one can conclude (2.2).
To show (2.3), let us observe that

(2.6) [  in f  f(t)ie 2i v ( t ;  e )  I 2 dt
e<111<8 e<Itl<8
8

f(t)e 2 iv(t; e)12dt-8
8 8

11/0; e)12 dt+S f(t)e 2 Ivo; 012 at

2 1(02 • LA O q t; e ) I 2dt ' const. 21(e)2 .

Furthermore, notice that 2 ,(e)/lel —o as (recall (2.2)). Then, multiply-
ing the both sides of (2.6) by lie, we see that
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8/<Itl<8 
Iv(t; e)rdt--> 0 as

which is equivalent to (2.3). q.e.d.

Proof of  Theorem 1. We prove it by contradiction. If L  is hypoelliptic, the
following inequality follows from the argument of Banach's closed graph theorem.

For any positive integer k  and for any  open sets co, of  R 3 such that co'iaco,
there exist a positive integer I and a constant C such that

(2.7) I ID! uill 2c., ) -5 C {Y u  E  C l e 5 )  .
lokIV

Let us now put

= 18X Qi 9 C°' =  X Q2

18 = { t ; — 8 <t<a} , 1 ,  = { t; — 8'<t<8'}

Q1= { (x , y); 0<x<a, o<y<a}
Q2 = {(x, y) ; 672<x <6 ' ,672<y <81  .

Furthermore, let us substitute the sequence of functions

(2.8) ut, = u,s(t, x, y) =  exp(inx -  al (n)y)v(t; n), n 1, 2,

(they are solutions of L u=0 in a)) to the both sides of (2.7). Then the right hand
side of (2.7) is not greater than

8
(2.9) Cx exl ( n) 8  x meas x I v(t; n)I 2 clt • (32 .n 2c,s

-8 

On the other hand, the left hand side of (2.7) is not smaller than

(2.10) n2k x meas Q x (t ; n)1 3 cit n'" • — • (1 — e) ,
-8, 4

when n is sufficiently large (recall (2.3)). Therefore, taking a positive integer k  so
that k>C 18, we can see that the inequality (2.7) never holds under the assumption
(1 .5 ). This completes the proof of Theorem 1.

§  3 .  Criterion for hypoellipticity.

In the present section, we are going to explain our plan of the proof of Theorem
2 .  The proof is divided into two steps, namely, by showing the following pro-
positions.

Let us consider the following ordinary differential operator (with real parameters
n))

with

and
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L = — d-f(t)e± g(t)7? .

Proposition 3.1. Suppose that f (t) and g(t) satisfy  the conditions (1.2), (1.6)
and (1.7). Then the following inequalities hold for L:

Given any e >0, there exists a positive number no such that

(3.1) g(t)(log I CD' I v (t)rdt.S e L o(t)• v (t)dt

(3.2) f (t)(log 17/1)2 1v(t)I 2d t  e L4.v(t)•v(t)dt

for all v C A -8 , 8) and for all C e ie  satisfying e2 -I-772 ng.

Remark 3.1. In the right hand sides of (3.1) and (3.2), observe that

Lcv(t)•v(t)dt = I  v'(t)rdt f(t)e2 I v (t)12 at +  g(t)772 1v(t)I 2dt .

Proposition 3.2. If  Lc enjoys (3.1) and (3.2), then L is hypoelliptic.

Remark 3.2. The inequalities (3.1) and (3.2) give also necessary conditions for
hypoellipticity. It is because, if (3.1) does not hold, then (2.2) and (2.3) hold and
this implies non-hypoellipticity of L .  (Recall characterization of me) by Rayleigh's
ratio.)

The proof of Proposition 3.2 will be given in the next section, using microlocal
energy method. In the remaining part of this section, we shall prove Proposition
3 .1 . The method used there is so-called "sew together" argument, which has first
appeared in Visik-Grusin's paper (see FediI [1]).

Proof of Proposition 3.1. Inequality (3.1) is not trivial only when C approaches
asymptotically to e -ax is . So we prove it supposing that C is contained in conic
neighborhood of e -ax is . Proof of (3.2) follows from the argument here and inter-
changing roles of (f (t), e) and (g(t), 77).
I) For v(t) with support in ft ( - S ,  (3); f(t)leiv 2 1 / 2 1 :  It is very easy to see
that, if IC I is sufficiently large,

g(t)(log I e 1)21 v(t) rdt.Sconst. I C I I v(t)I 2 dt

Sconst. 2 le i ro I v(t)i ,  dt

e v(t). v(t)dt

II) For v(t) with support in ft ( - 6 ,  6); f (t)le ,S 2)- : Let a=a(e) denote a
positive number such that f(a)I e Pa=-2 and write v(t) as

a

V ( I )  = V(s)ds.
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Then, it is easy to see that

a a

(3.3) og(t) I v(t)I 2dt _S o g(t)(a—t)dt Iv'(s)1 2 ds

a

g(t)(a—t)dt L07(s)•v(s)ds

g(a)a 2 L.0)(s)•v(s)ds

On the other hand, the assumption (1.7) together with the fact that a(e)-÷0 as
lei , 00 yield that, if  lei is sufficiently large,

(3.4) (log I ei)2 g(a)a2 S log l e iy•(log f(a ))

= e(log I w(Iog 21e I - 1 /2) - 2

Sconst. e.

Therefore combining (3.3) and (3.4), we obtain (3.1) for v(t) w ith support
0

sufficiently near to t= 0 . (The integral S g(t)I v(t) 12dt can be estimated in the

same way, where b=b(e) denotes a negative number such that f(b)Ie 1 1/2 =2.)
I I I )  Now we prove (3.1) for general v(t)ECF, (-6 , (3). W e are going to  "sew
together" the results in I) and II) which are valid in overlapping regions.

Let us first take a function q5=- 0 (t )e c c7 with OS 0(051, 0 (0=1  in  I t I 1/2
and 0(0=0 in I t2 ,  and put

xi(t) =  o (f(t)I I X 2 =  1 %

t V 2  = X 2 V  •

Then it follows from the results in I) and II) that

(3.5) g(t)(log le i)2I v(t)1
2(it

S2(log iel) 2 {  g ( t ) lv t (t)1 2 cit+  g(t)I v 2(t)1 2 dt}

S2e 1,071(t)•v 1(t )d td - L v 2(t)• v2(t)dt}

54e v(t)• v(t)dt+ remainder .

The "remainder" is estimated by

e4{2Sjzfl lvi ividt 4 x i l 2 Ivrdt}

5e4{2 12til2IvI2dt} ,

and furthermore, since f (t ) Ie j 1/2 1/2 in the support of 2q,



Hypoellipticity for operators of  second order 623

xi' I const. e e I const. f(t)Ie 1 2 .

Therefore we can see

(3.6) remainder c o n s t .  L v (t)•v (t)dt .

Now, Proposition 3.1 follows from (3.5) and (3.6).

§ 4. Microlocal energy method.

We start this section by preparing the Sobolev spaces and microlocal energy
which are necessary for the proof of Proposition 3.2. First we define the following
Sobolev spaces.

Definition. We denote by H k • I (R 3)  ( —  0 0  k, 1< 00) the space of all distributions
u  S '(R 3) satisfying

iù(r, e, n)1 2(1-H-2 )k(1-1-e2 +772)1 drdedn<  co ,

where Ù is Fourier transform of u.
Furthermore we say that u .gY  ( ( - 8 ,  8)x 2) is locally of class Hk.' at (t0, xe , ye )

if  there exists a  function E C ,;((-6 , 8 )x  f 2 ) with 0 = 1  in  a  neighborhood of
(t0 , x0, y e ) such that y5 ti e H k , i (R 3).

This definition enables us to do some reductions. At first, if u '(( —ô, 8)x  12)
and (4, x e , y 0) e ( - 8 ,  8 )x  9 , there exists a pair of real numbers (k , 1) such that
ueH k .' at (4, x e , y e ). The second is that, if u Hk' t and L uE C -  at (t 0, x , ,  y e ), then
we have ueH k÷ 2 ' 1 - 2  at (t0 , x e , y e ). This is shown (in case of t0 = 0) in the following
w a y : Let 0 1 E Cy((--(5, (7) x S2) be a  function with çb =1 in  a  neighborhood of
(0, x0 , y0) such that C u E IP A R 3), and choose /5(t, x, y)=x(t)11/(x, y) (2( and lb, are
equal to 1 in  a neighborhood of t= 0  and (x0, yo)—(x0 , y0) respectively) so that the
support of is contained in  a  closed set where çf.),=  I (we write 0 .7 5 , ) .  Then the
right hand side of equation

D(rtfru) = x](.1fru)+20p.Lu— zlir(fDd-gD)u

is of class Hk• I I R 3). In fact, the second and third terms belong to Co'  and Hkd - 2

respectively. The first one is of class C6° because of ellipticity of L  except at t=0.
Hence we see that ; r ol l  E  H k + 2 ,1 -2 ,  and furthermore by repeating this argument,
that u is locally of class fl Hk + md- m at (t e , xe , y e ). If t0 * 0 ,  ellipticity of L  yields

11 n R h .' ( = H )  at (to, xo,  y d 'ka
Thus in  the proof of Proposition 3.2, the partial Fourier transform of u at

(t„ xo , Yo), i.e.,

z (t)(fru)^ (t; C, 77) (270 - 1  e " ( z <INpu)(1- , C, n)dr
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is smooth with respect to t for almost every (e, 72). So we can apply (3.1) and (3.2)
to it. (Lu is supposed to be smooth when we prove Proposition 3.2)

Now, we define the notion of microlocal smoothness of ueg'((--8 , 8 )x 9),
since our proof of Proposition 3.2 will be microlocal (it is more precise to say "semi-
microlocal").

Definition. Let (t0 , x0, y o) e ( - 8 ,  8)x .9 and (e°, 72°) E R 2\0 . For u e g v —a,
8)x .9), we say that u is  microlocally of class H "  (=  n H°. 1) at (t0 , xo, yo : e°, 710 )  if

there exist a function OE CA( - 8, 8)x .9) with 0 = 1  in a neighborhood of (t0, X0 , yo)
and a conic neighborhood Po ( c/V) of (e°, 710) such that

b r  C, 77) 12(1+ e+ 772rdrded72< 0 0

(e,-.7)Ero

for any positive number s.

Remark 4 .1 .  By standard argument in microlocal analysis, one can easily show
that uE1/;),;c-  a t (to , x0, yo) if and only if u is  microlocally of class H "  at (t0 , X0 , yo ;
f ° , 77°) for all (e,

Remark 4 .2 . In the proof of Proposition 3.2, it suffices to show that u is of
class H "  at (t0 , xo, yo) when Lu is of class C -  at (to , xo , y d .  The reason is the same
as in  the  first part of the present section, i.e., u E H ',; and LueCT, c imply that
uEHL.1- 2 , /re f / U - 4 , •••, thus we can see uE n (=Hroc) when u E n , c

-  and
k,1

L I/ C  ro c .

We end the preparation of the proof of Proposition 3.2 by recalling microlocal
energy method which the author used in [3] after some refinements. The use of the
method here is slightly different from that in [3], because the smoothness of u stated
above does not have microlocal character but has precisely "semi-microlocal" one.

Choose first a sequence 1frN ecw (R 2), N=1, 2, with * N =1 in {(x, y); x2+.3/2

..-_r/4} and a/r,--0 in  {(x, y); x2--Ey2 rg}, satisfying:

DP+'1,1,N I s Ci c 0 (CN) 101

for I pIL<._N, lv I 5 K, (here CR.° and C are independent of N ) .  Our microlocalizers
fa (Œ , 72), fi „(x, y)} are defined in such a way that

(e, 77) = —77
0
) f i(x , Y) =  1/PN,Sx— X, Yo— Yo)

where N .= [log n]+ 1. Our microlocal energy is

SA v) E 114
0
 a;t) (D .,, Dy )13.0 0 (x, y)vir, vES'(/V),

1P+g1527 n

with

m -  IP+ ql • n IP I • (log n) -1 0 +111 .



Hypoellipticity for operators of second order 625

(Here aV=8p.842 a n , ,8 „c o = Eql D q,2  fin  • II II stands for the normin L 2(R 3).)

Note. S m ( v )  could be called a (semi-) microlocal energy at (x0, yo ; ne°, ne).
Since the hypotheses (3.1) and (3.2) are very weak compared with subelliptic
estimates, we are obliged to carry out carefully quantitative analysis, namely, micro-
localizers {an, fin } must be chosen as in the study of the analytic or the Gevrey
wave front sets.

We have now the following lemma whose proof will be given in section 6.

Lemma 4 . 1 .  Let u E U H°. 1 locally at (to, xo, y o). Then u is microlocally of class

H "  at (t o, xo, yo ; —
720 )  tj and only if there exists a function x(t)E  CA R ) w ith x=1

in  a neighborhood of t o such that microlocal energy of  xtt is rapidly decreasing as
n-->D0 (if ro >0 is sufficiently small), i.e., f o r any positive number s, there exist con-
stants M  and Cs such that

S ,11(xu),SCs n's

when n is large (we abbreviate as Sm
n (xu)=0(n -2 5 ).

Let us now begin the proof of Proposition 3.2. By using microlocal energy
method, we show that u is microlocally of class H "  at (to, xo, yo ; e°. 720 )  for every
(e°, no), when L u is locally of class C -  in  a  neighborhood of (to, xo , yo)  (receall
Remark 4.1 and 4.2).

Proof of Proposition 3 .2 .  The ellipticity of L except at t= 0  allows us to restrict
our consideration to the case of t0= 0 .  Moreover, by the same reason, the right hand
side of equation

*L (xtt) = x]u+x*Lu

is of class CW if Lu is of class C -  in a neighborhood of (0, xo , yo). (Here z(t) e  C6-

and VP(x, y) e C c; have supports in small neighborhoods of t= 0  and (x, y )= (x o, yo)
respectively.) So it suffices to show that microlocal energy of v = u  is rapidly
decreasing when *Lv  is of class CW.

Assume that I pd-q I ._N„ and r0 > 0  is chosen sufficiently small so that fi„ 1/...
Let us operate an9„ c o  to the equation *Lv=h , namely,

ang,t ( o Lv =  aV )
/9„( 0 11 .

Furthermore, the asymptotic expansion gives (note that [L , a n = 0 )

(4.1) Lvpg+ (oel)'iPML(V)rp.,„ = ,
O<IVI Z2

where vpg =4P ) i9n o o v, hpg =aV ) fin ( o h and Lo° is a  differential operator with symbol
Loo(t; e, = L(t ; r , f ,  77). Thus we have

(4.2) (Lvpq, v  )5  E  u ! --1 I (0 ) vm + ,„ vp0)  + 6- 1
Pe —

iih
Pq II P± e lIV 112II 9 •O<IVIZ2
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Now in the following, we are going to estimate the first terms on right hand
side of (4.2) (see (4.6) below), doing one by one, under the assumption: (e° , 72°)
«e, 77) ; 1771 5_21N- (this implies that c- 1 •n5__ le I c•n for (e, 77) esupp[a n]). In
case of (e°, 72°) {(e, 72) ; IC I _21771} (then c'•ti.<_ 1771.-.5c•n for (e, 77) Esupp[a n]),
one can do in the parallel way, applying (3.2) and exchanging the roles of (f(t), C )
and (g (t),
1) For v--(k, 0) with k= 1 or 2 (L ( = f ( t ) D ) :  It follows from the fact that
C l •n S  e Sc•n for (e, 77) Esupp[an], we see

(4.3) I (V" vp,q +v vpq )

=- I M f ( t ) e 2 - k v p , ( t ;  e 72)v ; (t ; C, n)dt de (1271

fe lv A l 2 citdedn+ M f e i  v de do
p,„ vp g )+ e(log n) - 2 0 1 (Lvp ,g „, v p . g „ )

when n is sufficiently large.
2) For v=(0, 1). (L ( v ) =g(t)D r  A ls o  notice that I v I = 1 . ) :  From the hypothesis
(3.1) together with the fact that c- l •n ICI Sc• n for (e, 71) esupp[a n], it follows

(4.4)I  (L ( v ) vp ,e „ , v p e )I

= e, 77)771, A(t ; e, n)dtcidnj

g722 IvAl 2 dt d 7 + e - 1 g l v p^,„1 2 dt de dn

vp p )-F e (log n) - 2 I'l (Lvp . e + v , vp . e + v )

when n is sufficiently la rg e . (Recall that vA(t; e, 77) is smooth with respect to  t for
almost all (e, n).)
3 )  For v—(0, 2). (L (v) = g  (t ) .  Also notice that I v I =2.):

(4.5)I  (L ( ' ) vp,,+v, vpg )I

=  Ig ( t ) v p + „(t; e, 77) v pi(t ; e, 77)dt de dn

<_(log /02g  I vA 12dtdedn +(log n) - 2  M g I v A + ,1 2 dtde dn

e(Lv p e , v p e )-Pe (log 1l) - 2 I'I(Lv g . q „ ,  vp ,, + „).

Thus we obtain the inequality:

(4.6) (Lv -1v E  (log 0-201(Lvp . ,,, vp ,q + 0+pq , p g _ !I h I12 + 6111'1,112

o5_1v1 2

for any positive number e (when n is sufficiently large).
Remaining part of the proof is quite analogous to the ones of theorem 1 and 2

in [3]. Let us now observe that
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M .
Hence (4.6) implies

(4.7) (Lwpg, wp p )S e  E 1'Vp,q„)+ellcLhp,112+
051Yr 2

el W pql 12

where wp g =4, v p g . Next, let us sum up the both sides of (4.7) with respect to (p, q)
satisfying p+ q N „  — 2. T hen  the first terms on the right hand side of (4.7)
will be absorbed into the left hand side (by taking e sufficiently small). Namely
we have

(4.8) E  (Lw p q , wp q ) 5 o(n --. 2s)+ e  E IIwp g 112 ,ip+.216N„
since microlocal energy of h=11.1.17 is rapidly decreasing as n— >co. (To establish
(4.8), notice that we may assume

(L w ,  w )  = 0 (n - 2 s),

by taking M  sufficiently la rge . C f  Lemma 1 of [3].)
By Poincaré's inequality,

(Lwpg, wpg)iiDew p  q ii2 -)  l iiwpg ir •

So from (4.8), we see that, for any positive number s, there exists a constant M
such that

S1(xu) E Ilwp g 112O ( n - 2 5).
1P+QI 1V„

Now the proof is complete. q.e.d.

§  5 .  Proofs of Theorem 3 and 4.

The proofs of Theorem 3 and 4 will be quite analogous to that of Theorem 2.
So we sketch them and point out the differences.

Proof of  Theorem 3. Here we shall consider the operator L whose coefficients
depend also on x  an d  y . (After modification with f (t, x, y ) and g(t, x , y ) outside
of(—ô, 8)x  D, we suppose that L  is defined in (--(3, 8) x.R 2 , preserving the con-
dition (1.10).) Now, the assumption (1.10) implies

(5.1) (Lu, u) const. uli2+(f(t)Dxu, D 2 u)+(g(t)D 3,u, 13,u)},

w here ( , ) and II denote  the scalar product and the norm  in L 2 (IV ) respec-
tively. S o  the difficulty of proof is that there are many lower order terms in the
asymptotic expansion. Let us pay attention to this point. Observe now that, in
proof of Theorem 3, the inequality (4.2) will become

(5.2) (Lvp,, v p ,) 5 V
o < J v +  p l 5 N o  

! vp,)1

+qv p q ii2 •
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where 411 is a  differential operator with symbol 4).1(t, x, y; E, 77)— D M „L (t, x ,
y ; r, e, 77) and No is a positive integer which we choose below.

Let us first consider the remainder term ry g ,N o v. Writing the symbol by oscil-
latory integral together with the fact that •  n 5 (1 + le1+1 1)Sc•n for (e, n) e
supp [an ], we see that

lirPq,Nollx(HO, — k ,  L 9 5const. I rpg ,N o  I (ri
k )

p n cg  + 1 0 1 (10
2) LN (122_ I I I )5const. E l a rko (1; k-2+1, 1)1

where I I (") denotes the seminorm in Sr.0, i.e.,

=  max suplc4.(t, x, y; C, 77)1/(1+ le1+1771)m- N  •

Therefore, if u is locally of class H°• - k (recall that ti e  U1-1Z;;4 ), taking N , so that
No —k —l s, we have

(5.3) E
1P+ ,716 .R .

Sconst. E 1140.1,q,Ip+ol6N„ N01124H0,_k, m
Q ( - 2 s )

Next, for the first terms on the right hand side of (5.2), our purpose is to show
the following inequality:

(5.4) I (LMv p + ,,,,o + ,„ vp 0 )1
5 e ( L v p 0 ,  v )+  en" (log n) -2 1 '÷gi(Lvp + ,,,,q + ,,, vp + pq + v ) .

We show this as follows.
i) For (v, ,u) with I,u =0 a n d  15 I v I 52: We can observe that the same argu-
ments as  in  1), 2) and 3) of the preceding section together with (1.10) and (5.1)
yield (5.4) with these (v, ,u).
ii) For (id, ,u) such that I vd-,u I >2: Since LW is a differential operator o f order
2— I v I, we can show with aid of Poincaré's inequality in the following way:

(LW) vp-Fg,q+v, vpq)  -5 2: el I vpq I 1-re1 4 )2r.)v p+p,+vii 
• const. (Lvpg , v p 0 ) -F 6- 1  const. 0 2 - 1 v 1 ) Ii v II

2

• const. (Lv y q , v p g )d- en211' 1 (log n) - 2 1 ' " ( L v p ÷ p,,p + v ,

where const. s are constants depending only on L.
iii) F or the  other (v, ,u), i.e., in  case of 1,u1 = I I =1, or in case of 11)1=0 and
15 I,u I 52: 4 112) is one of

,

where I ,u I =1, Ap,+ .0 = 0 : ),Dx f  and ,g( + f ) =D 'x'y Dy g, or

D ( f o )N , Dy(g(oDy)

Iv+v,I=No+1

Sconst. l+k+i- No(cN)ip+0
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where 1S I 121 5 2 .  Here we shall consider only the first case . Taking account of
the conditions (1.10), (5.1) and (3.2), we easily see that

I(L!Av vp, ) I

- 2 1(.fooDxv p+p q +v, vpq )1 +1(.fa.+.0vp+w, q +v• vpq )I
_S_3(fv p q , vp q )+2(f D Dxvp+p.,q+,)+(fvp+,.1„, v p „ . q + ,)

e(Lv p q , v p q )d- eel"' (log t1) -2 1 '+ " 1(Lvp + , 4 + ,, vp + ,,,q + „).

Thus we arrive at the following estimate: For any positive number e,

061v+vd.zro

(Lv p q , v p q )S e n 2  (log n) -2 1 I(Lv p + p. q + ,, v p + p,,q + ,,)

6 - 1 11111pq 112 +IV pq .a °yin - +elk' 112pq11

when n is sufficiently large. Now, recalling (5.3), we can easily see that the same
arguments as in the proof of Theorem 2 can be applied to this case.

Proof of Theorem 4. The same arguments as in the proof of Proposition 3.1
together with the assumption (1.12) yield

(5.5) g(t)(log le i) v(012 dt

▪  e

P ç v(t)• v(t)dt

and

(5.6) f(t)(log  I i)2iv0912dt

▪

Pcv(t)•v (t)dt I •

where P c=DN - f ( t ) e -F ig ( t )1 . In order to prove Theorem 4 applying these in-
equalities, we have only to obtain

(5.7) I (Pvpq , vpq ) I .5_ e0 6 1 6 2  (log 0 2 1 1  I(Pv v p,q + v)I +e - 1 1111 pq II2 + env pq II2 •

We shall show this, supposing (e°, OG{(e, 0; 1721 5_ 21eil. If  ( e, 77°) {(e , n);
I e I  2,172 II, one can show (5.7), applying (5.6), by the same arguments as in the
preceding section.
1') For v =(k , 0) with k = 1 or = 2  (P (" = f ( t ) D ) :  We can do in the same way
as 1) in the proof of Proposition 3.2.
2') For 1)—(0, 1). (P ( = ig ( t ) .  Also notice th a t I  id  = 1 ):  The inequality (5.5)
together with the fact that c- i •n 5  lei 5 c •n  for (e , esupp[a n ] will yield

C, 71)v A(t ; , 77)dtcledn I

(7v)rp,g+v

(t

v, p  :01
g (t )

;

_5_ (log n) g v dt de 4 +  (log n) - 1 g ( t ) I  v  q p̂ + ,I 2 dt de d77

e I(Pv p q , v p q )I +e (log n) -
21' 1 I (Pvp,q +v, vp, q +v)I •

Thus we can obtain (5.7). Now by the same arguments as in section 4, we
can prove Theorem 4.
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§ 6. Proof of Lemma 4.1.

Here we give the proof of Lemma 4.1.

N ecessity : First we suppose 0=x (t)*(x , y) plays the same role in definition
of microlocal smoothness of u, where x E Cc'', with x=1 in a neighborhood of t= t,
and .0,E C,7 with Vt=1 in a neighborhood of (x , y)=(x o , yo). Furthermore, choose
r0>0 sufficiently small so that f in c a l i f r  and supp[an]c r o. Now let us put v =zu
and consider the equation

(6.1) c7,,a((Dx , N f i n c o (x , y )v  = 4,ce f i n c o (11,v)
=  E . 0, -1 c7,q

1 VI 61P0

On the first terms on right hand side of (6.1), we have

Ifi.„,  a r v ) (1frv)I12_ (sup fin„,1 .suplaV+v)iy x

X const.2 S i f r v ( r ,  C. 77)1 2 (1 + e 2 +772) 5dr de dn
r

Therefore, if uE H "  at (to , xo, yo ; e0 ,  720),

(6.2) E E  jcpf l q finc ,+„aV+v)(0)11 2 =- Q(-2s)
1P-1-71 . I Mg.& 0

for any positive number s. (Recall that 4 0 = ivf - 1P+0 n-1 0 1 (log n)- 1 P+0  and the choice
of {an, fin}.)

Concerning the last term on right hand side of (6.1), let us observe that

I Ir  inbN oli - k L2) const. I r , A,0 1 T h )

<const. E I n I fi +,01(17

Sconst. nk- IPI- N0- 1 (CN,3 1P+qi .

Therefore, if u e li° , - k at (to , xo, yo) (for some positive number k),

(6.3) Eic7,q r„,,,o(*oi 12

1P-Fgl .tf„

const. E Ic 0 r pq ,N ,112
x ( H o,- k ,  L2)

IP-Fg1 14„

Sconst.

Moreover, the right hand side of (6.3) is estimated by const. n '"  if we take No so
that N0-1-1— k_s.

Now, combining (6.1), (6.2) and (6.3), we can conclude that S m„(xu)=0(n - 2 s)
for any positive number s.

Sufficiency: First we show that, for any ifre CW(R2) with support sufficiently
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small such that ik= fi n , ila n(Dx , D .,)=.1frvrj =0(n - s) if SA v)=0(17 - 2 8 ) (where v=2, u).
To see this, let us consider the following inequality:

Ilan*v11 = IlaM /9 .011
E v! - ' sup k t '  o I Ila;,v)fin v11+11rNo fin vI1

ivigNo

First observe that,

vl = '(log Om) if SA v) =  0(t/ - 2 5 ) .

Moreover, by similar argument as in the first part of the proof, we have ilt-N o  finvi I=
0(nk - N o l when u e  at (to, x,„, yo). Hence, taking No so that N 0+ 1 — s ,  we
see Ilan lirvil =0 (n - s) if S ( v ) =0 ( n 's )  and u is locally of class 1/°• - k at (to , x o ,

Next, let us observe that
O .

a„(e, 77)2n23-1-̀ const. 
( I  + e 2 + 7 7 2 ) s - e t 2

„.1

for (C, 77) contained in some conic neighborhood P o of (e°, 0 and C2 + 772 1 .  This
fact can be seen by noticing that ti2 const. (1+e 2 +-772)  for (e, 77)e supp[a n] and

72
---that, for (C, 77) e2+2E T o satisfying the number of n  such that a n(e, 71)=1 is

estimated from below by const. (1 +e2+2)'.
Thus, combining the above arguments, we see that

C, n)1 2( 1 +e2-kn2) - '12 dr de d77

,Ilan (D x , D,)i/ivIl 2 . n2 ' < oo

for every u e  u H°. - k satisfying S (x u )=0 (n - 2 3 ).
k > 0

Now, the proof is complete. q.e.d.
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