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A theorem of characterization of residual
transcendental extensions of a valuation

By

Victor ALEXANDRU, Nicolae POPESCU and Alexandru ZAHARESCU

Let K be a field and y a valuation on K .  The r.t. (residual transcendental) ex-
tensions of y to  K(X ) have been considered by Nagata [7] in  connection with some
problems in field theory . A lso  in [7] it is conjectured that if w is an r.t. extension
of y then k w , the residue class field of w, is a simple transcendental extension of a
finite algebraic extension of k„, the residue class fie ld  o f y . Althoug hthis problem
has been affirmatively solved in  [9] and independently in  [11], there exist many
interesting questions on r .t. extensions. Some questions about r.t. extensions have
been considered by O hm  in  [8] and  [10]. Particularly in  [10] three conjectures
relative to some natural numbers like ramification index and residual degree are
stated.

The main result of this work is Theorem 2.1 which gives a  characterization of
r i .  extensions w of a valuation y using the notion of minimal pair of definition. As
a consequence of our theorem, N agata's conjecture, all Ohm's conjectures and also
some interesting consequences given in Section 3 result in  a  natural way.

Finally we remark that in  [1] it is given a description of r .t. extensions using
the so called "pair of definition". Another description of r.t. extensions (based on
the obvious existence of minimal pair) is derived in this work (Corollary 2.4) and it
seems that this description is very satisfactory. However, in  contrast with pairs of
definition of an r.t. extension, which are easy to indicate, we do not have yet a cri-
terion to recognize if a pair of definition is a minimal one.

This question and some related problems shall make the object of a future work.

1. Notations and definitions.

Let K be a field and y a valuation on K .  Denote by k , the residue field, by r,
the value group and by  O. th e  valuation ring of v. If x E  O „  denote by x *  the
image of x  into k„. We refer the reader to [5], [6], [12] or [13], Vol. IT, for general
notions and definitions.

Let K 'IK  be an extension of fields. A  valuation y ' o n  K ' will be called an
extension of y if y'(x)=y(x) for all x E K .  If y' is an extension of y, we shall identify
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canonically k f, to a subfield of k„, and T„ to a  subgroup of r j .  We shall say that
KW ( is an immediate extension if k ,=k „, and r,-1",, (see [12, Ch. II]).

Let K(X ) be the field of rational functions of an indeterminate X .  A valuation
w on K(X ) will be called a residual transcendental (r. t.) extension of y if it is an ex-
tension of y and k m /k,, is a  transcendental extension. It is well known that tr.deg.
k ulk i,=1  (see [5, C h. V I, §10]). Then there exists element r E Ow ,  such that r*  is
transcendental over k„.

For any re K ( X ) , r K , define deg r=[K (X ): K O ]. Denote deg(w/v)=--least n
such that there exists r E 0,,, of degree n such that r* is transcendental over Ic„.

It is also easy to  see that [T,„: r,,]< co; the  number [r,„: r„] will be denoted
by e(w1v).

Let k  be the algebraic closure of k„ in it is easy to see that [k: k„]<co, and
the number [k: k.,] will be denoted byf(wly).

In what follows (see Corollary 2.2) we shall prove that generally one has:

e(w1v)f(wlv)... deg (w/v) .

Let us denote by k a fixed algebraic closure of K and by r) a fixed extension of
v to I?. If w is an extension of to K (X ), then there exists an extension w of w to
I?(X ) such that tif,  is also an extension of P. Let us denote

M .= -(w (X — a)jae K )-  g r,

MT =  { ( X —  a) I a E  c  T T, .

Let T  be an  ordered group which contains T v as an ordered subgroup and let
r e r  and a e  K . If f (X )eK [X ] one has the Taylor's expansion:

f ( X )  a o +a,(X — a)+•..+a„(X — a)" .

Let us define:

w (f (X ))= inf ( v ( a ) + i )  .

It is easy to check (see [5, Ch. VI, §10]) that w is a valuation on K[X ], which may be
canonically extended to a  valuation on K (X ) . We shall say that w is the valuation
on K(X ) defined by inf, Y, a, and r. Also it is easy to see that w is an r.t. extension
of y if and only if r has a finite order over r,.

Proposition 1.1. Let w be an extension of v to K (X ). The follow ing assertions
are equivalent:

a) w is an r.t. extension of v;
b) g  is an r.t. extension of P;
c )  T i =1"'-u7 , the set MT, is bounded in riT, and contains its upper bound.

P ro o f  The equivalence a)<=>b) is obvious.
b) c). Let w be an r.t. extension of r). According to [1, Proposition 2], W is
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defined by inf, j 3 ,  aErC and sE r i,=r i ,  Moreover one has 0(X— a)=6 . Then
a=sup M . Indeed , if fl R. then Fv(X — ,B)=Tv(X — a+ a —19)=inf (3, TO—  )9)) _< 8 .

c) b ) .  Let aE  be such that IT(X—a)=8—sup M .  The equality
shows that there exists a n  element d  k  such that tiv(X — a )= P (d )-8 . Hence

X— )/ d )= 0 . We assert that t=((X—a)Id)* is transcendental over k7) . Indeed,
if t is algebraic then t ekq, since k-u. is algebraically closed (because i? is algebraically
closed by hypothesis). Hence there exists a n  element a e g  such that V(a)=0 and

t. But then (TAX—a)ld—a)>0 and so w(X—(ced-ad))>17(d)=8, a contradiction.

Remark 1.2. According to the hypothesis made above, M u, is also a bounded
set. Conversely, even if  M u,  is a  bounded set, M is not necessarily bounded,
although r , = r .  Indeed, let Q be the  fie ld  of rational numbers, p  a  suitable
prime number, Q p  the field of p-adic numbers and y the p-adic valuation on both
Q  and Q .  Denote by t a unit of Q p  such that t is transcendental over Q. Let X
be a root of the polynomial /7 2 —pt 2 . Then X is also transcendental over Q .  Let
y, be the unique extension of y to Q p(X), and let w be the restriction of y, to Q(X).
It is clear that w is an extension of y to Q (X ), but w is not an r.t. extension of v.
However, M u, is bounded since X EWp .

Let 4 be an algebraic closure of Q, r, an extension of y to 4, and IP an extension
of w to 4 (X ) such that ff7 induces 13 on  4. We assert that M is not bounded in
r r o =r i,. Indeed, le t {an } n be a Cauchy sequence of rational numbers such that
lim a „ = t . Then {-V —p an} n is  a Cauchy sequence of ( r e l a t i v e  to ij) and X =
lim p  a „ . It is now clear that i1 is not bounded.

The above proof can be adapted to an arbitrary field K as follows:

Proposition 1.3. Let w be an r.t. extension of v to K (X ) .  The following assertions
are equivalent:

a) w is defined by inf, v, a K an d  S e r i ;
b) e(w1v)—f(wlv)=1 and the set M. is bounded and contains its upper bound.

Corollary 1.4. L et v he a  rank  one and discrete valuation on K and w an r.t.
extension of v to K(X) such that e(w1v)=f(wlv)=1. Then w is defined by inf, y, a E K,
and 8 E r y .

P ro o f  According to Proposition 1.3, it will be enough to show that M . is
bounded and contains its upper bound. Indeed, since  K(X)/K is not an immediate
extension, then M t, is bounded and since r„ is discrete and rank one, then M u, con-
tains its upper bound.

According to [5] (see also [6]). a valuation y on K is said to be Henselian if, for
every algebraic extension LIK, v has a unique extension to L.

2. The representation theorem for r.t. extensions.

We preserve all notation made in previous section.
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If w is an r.t. extension of y to K(X ), then IT is an r.t. extension of P to  1?(X),
and moreover there exist an  element a e K  and an element S e l '  such that v is
defined by inf, P, a  and 8 ([1, Proposition 2]). In particular, one has 0(X — a)=8.
Therefore any r.t. extension W of P to K(X ) is well defined by a pair (a, 8 )ekx r i ,
called a pair of definition for 17). Sometimes IT is called the valuation defined by the
pair (a, 8).

In [1, Proposition 3], it is shown that two pairs (a 1 , ai ) and (a2 , 82) define the
same valuation IT,  if and only if:

( 1 ) 8 , = a, a n d  q a 1 —a2) >S 1 .

By minimal pair (of definition) for w we mean a pair of definition (a, 3) such
that [K (a): K ] is minimal. Now it is clear that every r.t. extension w  of w has a
minimal pair, and if (a, 8), (a', 8) are two minimal pairs, then [K (a): K ]=[K (a): K ].

If K  gK i gTC, and r  P i , denote by e(r, K O the  smallest natural number e
such that er e r , i , where y, is the restriction of P to K1 .

We shall prove the following result.

Theorem 2.1. L et v  be a valuation on K  and let w  be an r.t. extension of  v  to
K (X ). Then there ex ists a pair of definition (a, a) f or w, a K , an d  ô E T T, such that:

a) I f  we denote [K (a): K ]=n, then for every  polynom ial g(X ) of  K[X ], such
that deg g(X )<n, one has

w (g(X)) =- (a)) .

b) For the monic minimal polynomial f(X ) of  a  ov er K , le t r= w(f(X )) and
e =e (r, K (a) ) . Then there exists l(X ) K [X ] w ith deg l <n such that f o r r= fell
one has w (r)=0, and r* is transcendental over lc,.

c) If  v , is the restriction of  Ï5 to K(a), then

deg (w/v) /1. e(7- , K(a)); e(w 1v) e(v i l v)e(r , K(a)) .

d) The field k„, can be canonically  identif ied with the algebraic closure of  k ,
in k,, and

f(w10

Pro o f . Let (a, a) be a minimal pair of definition of w . Denote

f (X ) N v ax x v m x )(X — a)

It is easy to see that f (X ) is the minimal polynomial of a over K .  Moreover f (X )
is monic.

a )  L e t  g(X )EK [X ], m — deg g(X )<n. Let also ft, •••, I9 ,, be all roots of g(X )
in K .  Then one has

g (X ) = a 11 (X— i9 1) .

Now since [K(:11): K ]5m <n , then for every i, 1 <m , one has:



Residual transcendental extensions of a valuation 583

( 2 ) — /9;)< 8 .

Indeed, if P(a—fl1) >8 , then according to (1), 09 6) is also a pair of definition
of contradicting the minimality of (a, 6).

Then by (2) one has tiv(X—fl i)—inf (8, go— 19 0)— ga —130, and so:

w (g(X )) = fgg(X )) = i(a)+>j W (X - 19 )

= P(a)d- 8  = P(a  I I  (a-9)) = P(g(a)) .

b) Now since er = w (f  e)er v i , there exists /(X )eK [X ], deg l<n=[K (a): K ],
such that er =P(1(a))=w(l(X )). Hence w (f 71)=0. Now we show that t=(f  70*
is transcendental over k v ; let

f (X ) = ( X — a 0  ,  a, = a

be the decomposition of f  in K(X), and let di ETC be such that ti ( X —  a ) = ( ) ,
1=1, •••, n . Let d=d,•••d„. Then 37,  ( ( X —  a i )1(4)=0 fo r  a ll i, and  so  w (f id)=0.
Now since ((X—a)1d,)* is transcendental over ki, (see Proposition 1.1, c) b ) ) ,
it follows that (f1d)* and also ( f e Ide)* are transcendental over k,. Therefore

r*  ( P 1 1)*  ( ( f eldV ild e))*  = ( f eld erlY ld er

is also transcendental over k, since (I/de)* is obviously algebraic (see the proof of a)).
c) Firstly, let gE K[X ] be a polynomial such that deg g < n e . Then we may

write:

( 3 ) g = e-1

where g i  E K[X ] and deg g i < n , for all i=0, 1, •••, e - 1 .  Moreover, one has

( 4 ) w(g) = inf w(gi f i)

since, according to the definition of e=e(r, K (a)), any two terms in the right of the
equality (3) are of distinct values.

Now let u=g1h be an element of K(X ) such that deg u <n e . This means that
both polynomials g and h are of degree smaller than ne, and so one has

L I  =  —

g g 0 +  g l f+  +ge— If  e - 1

h hi + hof- F— ± 17. - i f e - 1

where deg gi <n , deg hi <n , i=0 , 1 , • • • ,e -1 . Let us assume th a t  w (u )= 0 . But
according to (4) one has:

w(u) = w(g)— w(h) = inf (w(g i f i))— inf (w(h i f i)) = 0
0 .1 < e

and so, according to the definition of e there exists only one index io, 0 <i 0 <e - 1
such that
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( 5 ) w(g) = w(g i o f io) = w(h) = w(h i o fio)

Therefore one has:

g0g e _ i f e _ l
- -

g i o  g i o f `
°
g i o f i °  u — hi o  h ,  + » . + 1 + . »  h e _i f e - 1

kof t o hiofio

and so

w (u) =- w(g i o /hi o ) =- O, a n d  u* = (g i o lh i o )* .

Furthermore, we check that u* is algebraic over lc,. Indeed, in g[X ] one has:

g10(X) = a (x—fio , h 0 (X) b (x—e1) , fie,

There exist elements di , pi er? such that

P(X--if/ i ) =  TP(di ) , f4,-(X—e 1) = T7(0  .

Denote d=111 d ,  p = r1 p .i . Since deg g i o <n , deg hio < n , then according to the

choice of a (see a)) and (1), it follows that for all i and j  the elements

((X—/31)/d1) *  a n d  ((X— e N O *

a re  algebraic over lc,. B ut o n e h a s :  u* — (g i o lh i o )* =((cilp)(g i o ld)(plh i o ))* =
(dip)* II ((x--,e,)/di )* H (p 1l(x -6 ; ))*. Therefore u* is also algebraic over lc,. In

conclusion, it follows that

deg (w/v) ne = deg r.

Now consider the extension of degree ne:

K (r)-* K (X ).

If u is an element of K(X ) we may write:

( 6 ) u = u o (r)+u ,(r)X +•••+u_ ,(r ) x n e - 1

where /qv) E K ( r) .  Let

M r) =  g i ( r) lh ( r) ,  M r), h(r)EK [r] .

Then (6) can be written

u = ((g o(r)-kg i (r)X + •• • +g_,(r)X en —1)/h(r))

and if we consider the numerator of u as a polynomial of X  one has

( 7 ) u =  ((t o(X )d-t i (X )r+•-•+t s (X )rs)lh(r))

where deg t i (X )<ne for all 0 < s .  We assert that
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( 8 ) w(to +t i r+ •• • + t v e )  = inf (w(t i ))

This is the case if there exists only one index io such that w(t io)=inf (w(t i )) . Otherwise
we assume that there exists at least two indices i0 <1 1 such that

w(t10) =  w(t 1) = inf (w(t i ))

but (8) is not t r u e .  Then by (7) we may write:

hutTo
l = ( t o lt i o )+( t i lt O r+ •• • -Frio+ •-• +(t h it i o )rii+ ••• +(t s lt i o )r s

and since w(hutro
l )>0  (we have assumed that (8) is not true) one has:

(to/tio
)*

 • • •  (r* )b0 + •  +( t i i lti v )* (r * )i i + ••• = 0 .

But then according to above considerations all (t i /t i o )*  are algebraic over k ,  and
(ti i /t i o )* * O . This shows that r*  is algebraic over k v ,  a  contrad ic tion . Hence:

w(u) = inf (w(ti ))— w(h(r))

and so, according to (4) we may derive that w (u)E r v i + Z r ,  hence . r . c r v i + Z r
and since the reverse inclusion is obvious,

e(w1v) = e(v,Iv)e(r, K(a))

d )  L e t  g=e(a, K (a)) and  b E K (a) such that P ( b ) = 0 .  Let fi be a  root of
the polynomial X q — b. It is easy to see that [K(a, fi): K(a)]= q and 15(fi)= 6 .  Let
w, be the restriction of IT to K (a, 19)(X ) and y, the restriction of i to K (a, 19). Since
(a, a) is a pair of definition of w, the assertion a) of Proposition 1.3 is valid relative
to w,, y,, aE K (a, 19) and 8E  r v e  Hence according to Proposition 1.3 b), k v2 is
algebraically closed in k w e  Now by the commutative diagram canonically defined:

k vk v ,

k a,2

we may derive that k , the algebraic closure of k , in k w , is included in Icq .
Now we shall show the reverse inclusion: k i c k .  It will be enough to show

(see a) above) that for every h(X )EK [X ], such that deg h(X )<n and qh(a))=0,
one has h(a)* e k. But according to a )  o n e  has: w(h(X))= P(h(a))— v i (h(a))= O.
We assert that

( 9 ) h(X)* h(a)*

Indeed, let h(X )= fi (X— 4? s ) ,  m <n . Since (a, (3) is a minimal pair of definition
J = 1

of w, it follows that w(X — P(a— )<vi)(X — a) =  and so:

11) ((X — i)1(a — P )  — 1 ) 1 74(X — a)1(a-19 ))>0
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Hence

((X—Ri)/(a—Ri))* =  1

and consequently (h(X)111(a))* =1 , therefore (9) is true, i.e. k 1 k ,  as c la im ed . In
particular,

Aw/v) = f(vi/v)  •

The proof of Theorem 2.1 is complete.

Now we list some direct consequences of Theorem 2.1. We preserve hypotheses
and notation used in Theorem 2.1.

Corollary 2.2. (see also [10, 1.2])

deg (w/v)_ f(wlv)e(wlv) .

This follows immediately from c) and d) in Theorem 2.1.

Corollary 2 . 1 .  (Nagata's conjecture [7]; see also [9] and [11]) One has:

k i, =lc„i (r*) .

The proof follows from the considerations made in the proof of c) and d).

Corollary 2.4. The valuation w is defined as follows:
i) If  h(r)=a0 -1--ai rd-•••+a„,rm eK [r], then

w(h(r)) = inf (v(ai )) .

ii) If  g(X )e K [X ] and deg g(X )<n, then

w(g(X)) = i3(g(a)) .

If g(X )eK [X ] is such that deg g<ne, then we have the unique representat-
ion:

g(X ) = g o (X)±g,(X)f(X)± • • • +g e _,(X )f e '(X ) , deg g(X )<n, 0

and

w(g (X )) = inf 03(g1(a))+ir) .

iv) If  u  K (X ) and if we represent u according to (6) and (7), then:

w(u) = inf (w(t i (X)))—w(h(r)) .

The proof is contained in the proof of Theorem 2.1.

Corollary 2 .5 .  (See [10, Conjecture 0 .3 ])  I f  v  is  Henselian and char k„=0,
then:

deg (w/v) f (w /v )e(w /v )
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P ro o f  Using notations of Theorem 2.1, one has:

deg (w/v) =  ne(r, K(a)) [K (a): K ]e(r, K (a)).

Now, according to [2, Corollary, p. 63], or to [5, Ch. VI, § 8, Exercise 9, a)] it follows
that [K(a): K]=n=f(v,Iv)e(v i lv), and so:

deg (w/v) = f (v i lv)e(v i lv)e(r, K(a))= f(w1v)e(wlv).

Corollary 2 .6 .  (See [10, Conjectures 0.1 and 0.4]) The equality:

deg (w/v) = f(w1v)e(wl v)

is true if:
a) v is of rank one, and char k„=0.
b) v is of rank one and discrete.

P ro o f  Let v be of rank one; then w is also of rank one. Let K(X ) be the
completion of K (X ) (see [12, Ch. II], or [5, Ch. VI, §5]) relative to w, and w" the
canonical extension of w to K (X ). Since [r,,: " vi < 00 , then .1' is a  cofinal subset
of I'  and so k the adherence of K  in K(X ), is  the topological completion of K
relative to v. Let i be the restriction of w" to k . Now, since V,  is an immediate
extension of v (see [12, Ch. then, it follows that X  is also transcendental over
k . Let us denote by ti,i) the restriction of w" to fe (X ).  Now it is easy to see that

is an r.t. extension of i to K(X ) and that

(10) k„ , =  k ;  ,  r, =_ ,  r',, =r.r z .
According to [12, Ch. Il], i is  Henselian.

We assert that in conditions a) and b) (in fact the statement is generally valid
without restriction on the rank of v) one has:

(11) deg (w/v) =  deg (01) .

Indeed, the inequality deg (w/v) deg W O  is obvious. On the other hand, if
u=g(X )Ih(X ) is an element of 1?(X) such that Vv(u)=0, and if u* is transcendental,
then in a canonical way we may define two sequences {g„(X))- „ and {h„(X)} „ of
polynomials of K(X ) such that:

deg g (X ) = deg g(X ); deg h (X ) = deg h (X ) , for all n,
and

00, qh— h„)— ). co .

Thus it is easy to see that for n large enough:

ii,"(u—u )> 0

where un —g„Ihn . Therefore w(un )= 0 ,  and u,T=u* is also transcendental over
k„—k,7. Hence deg (w/v) deg (Vv/i;) and so (11) is proved.
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Now by (10) it follows that:

f(w1v)= f(fv• IP) a n d  e(w1v) = e(iv"

Finally, the equality

deg (w/v) =  deg ( 03) = . f(11, 10e(wlv) = f(w1v)e(w1v)

follows in the case a) by Corollary 2.5, and in the case b) by the general theory of
discrete rank one and complete valuations (see [2] or [5]).

3 .  Condition e(w It0=f (w ly )=1.

As usual, let v be a valuation on K and w an r.t. extension of v to K (X ). We use
the same symbols as in previous sections. If K c K i c K  is an intermediate subfield
we assume tacitly that K , is endowed with restriction v, of P . Then Ki lK  is an
immediate extension if and only if e(v1lv)=f(v 1lv)=1.

Now we shall consider the case where

(12) e(w1v)= f(w1v)= 1 .

Condition (12) is fulfilled if w  is defined by inf, v , aEK  and a err  T here
exists also some cases where (12) is fulfilled but w is not defined by inf, any a e K
and Se r y .  Precisely one has the following result.

Proposition 3.1. The following assertions are equivalent:
a) e(w/v)=f(w1v)=1.
b) If  (a, 3) is  a m inim al pair of  definition of  W, then K(a)1K is an immediate

extension and deg (w1v)=[K(a): K].
c) There exists a  minimal pair (a, a) of definition of  tP such that K (a)/K  is  an

immediate extension and deg (w1v)=[K(a): K].

P r o o f .  a) b). Let (a, a) be a  minimal pair of definition of iv and v, the
restriction of P to K ( a) .  According to Theorem 2.1, one has:

e(vi lv) = f(v 11v) = 1

i.e. K(a)1K is an immediate extension. Moreover if f (X ) is the minimal polynomial
of a over K, then condition e(w1v)=1 shows that r= w (f(X ))er , and so e(r, K (a))
=1 , i.e. deg (w1v)=[K(a): K].

The other implications follow, according to Theorem 2.1, in an obvious manner.

Remark 3 .2 .  Let w be an  r.t. extension of v such that condition (12) is ac-
complished, and let (a, a) be a minimal pair of definition of w . L e t also f (X ) be
the minimal polynomial of a relative to K:

a )  F o r  g(X )eK [X ] expand

g(X )-= go(X )d-gi(X )f--k•••-kgs(x)fs
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where deg gi (X)<degf, Then according to Corollary 2.4, one has:

(13) w(g (X )) =  inf (P(gi (a))+ iw(f)) .
osis

b )  Let y, be the restriction of '0 to K(a) and w„ the restriction of IT to K(a)(X).
Also denote e=e(S, K(a)) and ea=v,(d), d e K (a ).  Then:

(14) e(w1119= e , f(w ,lv,)=  1  .

Indeed, (a, a) is also a minimal pair of definition of Wi =i7v-  and thus (13) follows by
Theorem 2.1 c) and d), since wi (X—a)—s. Moreover if g(x) K (a ) [X ], we may
write:

g(x ) = a11(X—a)1 ((X— a)'/d)'

and thus:

wi (g (X )) =  inf (inf yi (au )-E fa)) .

Now we shall consider the following question: Assume that condition (12) is
accomplished. Under what conditions w is defined by inf, y, a G K and 8 .1'.?

Before answering (partially) to this question we shall make some useful remarks.
To derive the equality (11), we shall use the same notations and considerations as in
the proof of Corollary 2.6. We point out that the valuation considered in the present
case is not necessarily of rank o n e . A s  usual k  is the completion in the sense of
[5, Chap. VI, Par. 5, N° 3] of K relative to v.

Let f  K [X ]  be such that w (f )= 0 .  Now since f  E  k (X ), then f * ,  the residue
of f  in kv„ is the same as the residue of f  considered as an element of k (X ) .  Hence,
if for example w is defined by inf, y, a EK  and a e  r v , then is also defined by inf,
v, a and 8.

Now let f E k  [X ] be such that ii, ( f ) = 0 .  Then there exists a polynomial
f i e K [X ],  of the same degree, such that w(fi )= 0  and  tii7(f—f1)>O, i.e. P c= f1 .
Therefore, if  for example '  defined by inf, y, aei? and a 1' =r,„ then w is
also defined by inf, y, a suitable a, E K and a.

According to these considerations, the study of the set of all polynomials g
over K such that w(g)=0 and g* is transcendental over k,, is equivalent to the study
of the set of all polynomials g  over k such that g ) = 0  and g* is transcendental
over lc;=k o . Therefore in what follows we may assume that K=î? and w=iv.

Theorem 3.3. Let K be a field and v a valuation o n  K . The following assertions
are equivalent:

a) If  w is an r.t. extension of  v to K(X) such that e(w1v)—f(wlv)=1, then w is
defined by inf, v, a eK a n d  erp.

b) k does not admit immediate finite extensions relative to 'O.
c )  k  is algebraically closed in a maximally complete extension of i? relative to
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Pro o f . The equivalence b)<=>e) is obvious.
b) a )  Let w be such that e(w1v)=f(w1v)=1 and let (a, (7) be a minimal pair

of definition of w . If a EEK (i.e. a) is not true), then according to Proposition 3.1,
K(a)1K is an immediate extension and condition ceci K shows that a E .k . Hence
k(a)/k is an immediate extension relative to y, a contradiction.

a) b )  Let us assume that k has an immediate algebraic extension k(fl)/k
relative to P and let y, be the corresponding extension of P to k (,9). Obviously, we
assume that ft k. T h en  the set

M( 19) = lv 1(19 — a)1 a e

is bounded in .1",-T=T y 1 . Let di e k be such that v1(d1)> r  for all rEM ( 19). Let
us denote by w, the valuation on 49)(X ) defined by inf, v1, ,8, and 81 =v 1 (d1)  and
let w' be the restriction of w, to k (X ). It is clear that w' is an r.t. extension of P
and 1",-,-= r v 1 =1". 1 =1". , , hence e(W/13)---e(w1ly1) = 1 .  Moreover, since k=ic„ i  and
f(w 1lv1)=1 ,  it follows that f (w '113)=1. Let w be the restriction of w' to  K(X ).
Since obviously e(w1v)=f(w1v)=1, by hypothesis, it follows that w is defined by
inf, y, a K  and aEr ,. Then one has: w (X — a)=6 . Let d E K be such that
v (d )=6 . Consider the equality:

(15) (X — a)ld = ((X - 19 )1‘10 • (cl1ld) - P( 9  —a)Id

If 61 =v (d1) >v (d)=8, then by (15) it follows that the image (X — a)ld in the residue
field is an element of Icy , a contradiction.

If v,(d,)=v(d), then by (15) it follows that v1(18—a)> y i (d,), which contradicts
the choice of d,.

Finally, assume that y(d)>y,(d,), and let b G K  be such that v(a— b)>v(d).
Then one has:

X — b = ((X — a)1d)d±(a— b),

X— b = ((X— 19)1d,)d,+(19 — b) .

Since w is the restriction of w, to K(X ), one has w1 (X — b)=w (X -13). But:

w(X — b) = inf (v(d), v(a— b)) = v(d)
w,(X — b) = inf (v,(d,), v1 (19— b))<v(d) .

We were considering the case where v(d)>v,(d,), and we have a contradiction. The
proof is complete.

Corollary 3.4. Let v be a valuation on K . T he equivalent conditions of Theorem
3.3 are accomplished if I? is maximally complete relative to P. This is the case if v is
of rank one and discrete or K  is maximally complete relative to V.

Other cases, where the conditions of Theorem 3.3 are verified, are given in the
following:
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Proposition 3 .5 .  Let K be afield and v a valuation on K such that:
a) 15 is Henselian and char ku =0

Or
b) v is of rank one and K is perfect of characteristic p>0.
Then k does not admit nontrivial finite and immediate extensions relative to v.

Proo f . According to [12, Ch. II, Theorem 4], in the case b) k is  Henselian
relative to P. Also it is easy to check that k is perfect.

Let I? be an algebraic closure of k and let j5 be the unique extension of P to K.
Suppose k(a) is a finite and immediate extension of k relative to P, such that a E k.
Let also zl(a) — inf 13(a—a) where a ' runs over all conjugate elements of a .  Then,
according to [1, Section 2, Proposition 2'], there exists an element a EIZ such that

—  a)= zl(a). It is easy to see that:

(16) P(a --a) --- 21(a) = sup {15(a— b ) lb e i}  .

Now since the extension k(a)/k is immediate we can assume that 13(a )= 0  and so
"fi(a —  a)> 0. Let d  K  be such that ii"(d)—  Ti(a —  a). Then P((a —  a)I d) = 0  and since
the extension ka )lk  is immediate, there exist a1 , d, E 1? such that 15(((a — a)ld) — a1)
=ri(611) > 0 .  But then P(a—a—ai d)=V(dd,)>Ti(a—a), which contradicts (16).

Remarks 3 .6 .  a) Let y be a valuation on K such that the equivalent assertions
of Theorem 3.3 are accomplished. Then P is necessarily H enselian. Indeed, let
K,/k be an algebraic extension, and let K2/k  be an immediate extension, such that
K, is maximally complete and that the condition c) of Theorem 3.3 is accomplished.
Then K,Ki lK, is an algebraic extension. Now if y, is the extension of P to K,, then
since y, is Henselian (see [12, Ch. H, Theorem 7]) it follows that P has a unique ex-
tension to K, i.e. P is Henselian.

b )  According to Corollary 2.5, if y is Henselian and char Icv = 0 , and the con-
dition (12) is accomplished, then w is defined by inf, y, a E K and a E r y .  Therefore
according to Theorem 3.3, k does not admit immediate extensions relative to P.
Moreover, it can be proved that P is also Henselian.

Proposition 3 .7 .  L et K be a f ield and v a  valuation on K . T he following as-
sertions are equivalent:

a) If w is an r i .  extension of v to K(X), then e(w1v)= f(w1v)= 1 .
b) Every extension ri of v to k is an immediate extension.

Proof b )  Let P be an extension of y to k .  Firstly we shall prove that
r v =r i .  Indeed, let us assume there exists f i  E k  such that a=13(fi) does not
belong to / ',. Let w be the valuation on K(X) defined by inf, y, a suitable a eK and
a. Then w(X—a)= a E r w , and a Eif r v , a contradiction.

Now we shall prove that kv = k ij. Indeed, assume that ki,* k F, and let e ekAk u .
Let a tZ . be such that 13( a )= 0  and a*— E. Let w  be the valuation on K(X)
defined by inf, y, a and a > 0 .  Then one has w(X—a)=a >0, and so w(X) — w(a) —
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13( a ) = 0 .  B ut th e n  X *=a*--e  EE k v . H en ce  f (w 1 v )* 1  a g a in , a contradiction.
Thus a) b) is proved.

b) a )  I n d e e d  k„=k-i is algebraically  closed and r y = r 7,  is divisible. T h is
m e a n s  th a t e(w1v)=f(w1v) for every r.t. extension of v t o  K (X ) and the proof is
complete.

The conditions of Proposition 3.7 are verified for the field R  of real num bers
relative to every nonarchimedean valuation and also for the field K  generated by all
roo ts of unity over the rational num ber field Q.
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