Moduli of stable pairs

By

Kôji Yokogawa

Introduction

Let S be a scheme of finite type over a universally Japanese ring Ξ and let $f: X \rightarrow S$ be a smooth, projective, geometrically integral morphism. We shall fix an f-very ample invertible sheaf $\mathcal{O}_{X}(1)$ and a locally free \mathcal{O}_{X}-module E of finite rank. An E-pair is a pair (F, φ) of a coherent sheaf F on a geometric fiber of f and an \mathcal{O}_{X}-homomorphism φ of F to $F \otimes_{\mathcal{O}_{X}} E$ such that φ induces a canonical structure of $S^{*}\left(E^{\vee}\right)$-module on F. An E-pair (F, φ) is said to be stable (or, semistable) if F is torsion free and if it satisfies the stability (or, semi-stability, resp.) inequality for all φ-invariant subsheaves of F (see §1). Stable pairs were first introduced by N. J. Hitchin [3] in the case where $S=\operatorname{Spec}(k)$ with k an algebraically closed field and where X is a curve and E is a line bundle. In this case, the moduli spaces of stable E-pairs were constructed by N. Nitsure [10], and W. M. Oxbury studied some properties of the moduli spaces [11]. In higher dimensional cases, C. T. Simpson constructed the moduli spaces of semi-stable Epairs over an algebraically closed field of characteristic zero [13]. In the method of C. T. Simpson, an E-pair (F, φ) were considered as a sheaf on Y $=\operatorname{Proj}\left(S^{*}\left(E^{\vee}\right) \oplus \mathcal{O}_{X}\right)$ and the problem was reduced to the study of stable points on $Q=$ Quot ${ }_{O_{Y}(-N)}^{H}{ }^{\oplus m / Y / S}$ for large integers N, where $\mathcal{O}_{Y}(1)$ is a very ample invertible sheaf on Y and H is the Hilbert polynomial of F with respect to $\mathcal{O}_{Y}(1)$. To handle this problem he embedded Q into the Grassmann variety Grass $\left(H^{0}\left(\mathcal{O}_{Y}(l-N)^{\oplus m}\right), H(l)\right)$ with l a sufficiently large integer. His proof depends, in essential way, on the boundedness theorem of M. Maruyama (Theorem 4.6 of [8]) which fails to hold in positive characteristic cases. The aim of this article is to construct a moduli scheme of semi-stable E-pairs along the method by D. Gieseker [2], M. Maruyama [6] and [7] and then our results hold good without assuming characteristic zero. The main idea is to find a space which seems as the "Gieseker space" in [2], [6] and [7]. It is the projective space $\mathbf{P}\left(\operatorname{Hom}_{\tilde{O}_{x}}\left(V \otimes_{E_{i}}\left(\underset{i}{r-1} S^{i}\left(E^{\vee}\right)\right)\right.\right.$, $L)^{\vee}$), where L is a line bundle on X and r is the rank of F. On the other hand, to parametrize E-pairs we have to use a scheme Γ constructed in $\S 4$ instead of Quotscheme in the case of usual stable sheaves and to study stable points of Γ we have to introduce a morphism of Γ to a projective bundle on $\mathrm{Pic}_{X / S}$ whose fibers are
new Gieseker spaces.
$\S 1$ is devoted to several definitions, a boundedness theorem and its corollaries. The moduli functor $\bar{\Sigma}_{E / X / S}^{H}$ is defined in $\S 2$. In $\S 3$, we shall extend the results of D. Gieseker on semi-stable points of Gieseker spaces to our new Gieseker spaces. In §4, we shall construct the scheme Γ and a morphism to a projective bundle on $\mathrm{Pic}_{X / S}$ whose fibers are new Gieseker spaces. And in §5, we shall construct the coarse moduli scheme of the functor $\bar{\Sigma}_{E / X / S}^{H}$.
M. Maruyama suggested trying this problem to me. W. M. Oxbury informed me the results of N. Nitsure and C. T. Simpson. I wish to thank Professors M. Maruyama, W. M. Oxbury and T. Sugie for their encoragement and valuable suggestions.

Notation and Convention

For an \mathcal{O}_{X}-module E on a scheme X, we denote by $S^{i}(E)$ the i-th symmetric product, by $S^{*}(E)$ the symmetric \mathcal{O}_{X}-algebra and by $S_{r}^{*}(E)$ the \mathcal{O}_{X}-module ${\underset{i}{r-1}}_{\oplus_{0}} S^{i}(E)$ for each positive integer r.

Let $f: X \rightarrow S$ be a smooth, projective, geometrically integral morphism of locally noetherian schemes and let $\mathcal{O}_{X}(1)$ be an f-very ample invertivle $\mathcal{O}_{X^{-}}$ module. If s is a geometric point of S, then X_{s} means the geometric fibre of X over s. For a coherent $\mathcal{O}_{X_{s}}$-module F, the degree of F with respect to $\mathcal{O}_{X}(1)$ is that of the first Chern class of F with respect to $\mathcal{O}_{X_{s}}(1)=\mathcal{O}_{X}(1) \otimes \mathcal{O}_{X_{s}}$ and it is denoted by $\operatorname{deg}_{o_{x(1)}} F$ or simply $\operatorname{deg} F$. Moreover the rank of F is denoted by $\operatorname{rk}(F)$ and we denote by $\mu(F)$ (or, $P_{F}(m)$) the number $\operatorname{deg}(F) / \mathrm{rk}(F)$ (or, the polynomial $\chi\left(F \otimes \mathcal{O}_{X}(m)\right) / \mathrm{rk}(F)$, resp.) when $\mathrm{rk}(F) \neq 0$. When X and Y are S-schemes and E (or, F) is an \mathcal{O}_{X}-module (or, \mathscr{C}_{Y}-module, resp.), $E \otimes_{S} F$ denotes the sheaf $p_{X}^{*}(E) \otimes_{\mathcal{C}_{\times \times s} Y} p_{Y}^{*}(F)$, where p_{X} (or, p_{Y}) is the projection of $X \times_{S} Y$ to X (or, Y, resp.). For an \mathcal{O}_{S}-module E and a morphism $f: X \rightarrow S$, we shall use the notation E_{X} instead of $f^{*}(E)$. In particular, if E and F are \mathcal{O}_{X}-modules, the $E \otimes_{X} F$ means $E \otimes_{O_{x}} F$.

§ 1. Boundedness of the family of semi-stable pairs

Let $f: X \rightarrow S$ be a smooth, projective, geometrically integral morphism of noetherian schemes and let $\mathcal{O}_{X}(1)$ be an f-very ample invertible sheaf. Fix a locally free \mathcal{O}_{X}-module E of finite rank.

Definition 1.1. Let F be a coherent sheaf on X and φ be an $\mathcal{O}_{X^{-}}$ homomorphism of F to $F \otimes_{x} E$. $\quad \varphi$ induces a natural homomorphism φ^{\prime} of E^{\vee} to $\mathscr{E n d}_{0_{x}}(F)$. A pair (F, φ) is said to be an E-pair if φ^{\prime} can be extended to the natural homomorphism of $S^{*}\left(E^{\vee}\right)$ to \mathscr{E} nd $\mathscr{O}_{x}(F)$ as \mathcal{O}_{X}-algebras. For an E-pair (F, φ), a subsheaf F^{\prime} of F is said to be φ-invariant when $\varphi\left(F^{\prime}\right)$ is contained in $F^{\prime} \otimes_{X} E$ and a quotient sheaf $F^{\prime \prime}$ of F is said to be φ-invariant when the kernel of the quotient map of F to $F^{\prime \prime}$ is φ-invariant. The numerical polynomial $\chi(F(m))$ is
called the Hilbert polynomial of the E-pair (F, φ).
For an E-pair (F, φ), we obtain the following \mathcal{O}_{X}-homomorphism:

$$
\begin{equation*}
\tilde{\varphi}: F \otimes_{X} S^{*}\left(E^{\vee}\right) \longrightarrow F \tag{1.1.1}
\end{equation*}
$$

For a coherent subsheaf F^{\prime} of F, we put

$$
\begin{equation*}
\bar{F}^{\prime}=\tilde{\varphi}\left(F^{\prime} \otimes_{X} S^{*}\left(E^{\vee}\right)\right) \tag{1.1.2}
\end{equation*}
$$

It is easy to see that the sheaf \bar{F}^{\prime} is the minimal φ-invariant subsheaf of F containing F^{\prime}. Now let (F, φ) be an E-pair on a geometric fiber X_{s} of f and let r be the rank of F as an $\mathcal{O}_{X_{s}}$-module. For a coherent subsheaf F^{\prime} of F, we put

$$
\begin{equation*}
\bar{F}_{0}^{\prime}=\tilde{\varphi}\left(F^{\prime} \otimes_{X} S_{r}^{*}\left(E^{\vee}\right)\right) . \tag{1.1.3}
\end{equation*}
$$

Lemma 1.2. Under the above situation, suppose that F is torsion free on X_{s}. Then the degree of \bar{F}^{\prime} equals that of \bar{F}_{0}^{\prime}.

Proof. Let U be the maximal open subscheme of X_{s} where F is locally free then we have $\operatorname{codim}\left(X_{s}, X_{s}-U\right) \geq 2$. It is sufficient to prove that \bar{F}^{\prime} is equal to \bar{F}_{0}^{\prime} on each open subset $V=\operatorname{Spec}(A)$ of U where E^{\vee} is a free A-module with a basis x_{1}, \ldots, x_{m}. Then \bar{F}^{\prime} (or, \bar{F}_{0}^{\prime}) is generated by the set

$$
\begin{gathered}
\left\{\varphi^{\prime}\left(x_{1}\right)^{i_{1}} \cdots \varphi^{\prime}\left(x_{m}\right)^{i_{m}}(f) \mid f \in F^{\prime}, 0 \leq i_{1}, \ldots, i_{m}\right\} \\
\text { (or, }\left\{\varphi^{\prime}\left(x_{1}\right)^{i_{1}} \cdots \varphi^{\prime}\left(x_{m}\right)^{i_{m}}(f) \mid f \in F^{\prime}, 0 \leq i_{1}, \ldots, i_{m} \leq r-1\right\}, \text { resp.) }
\end{gathered}
$$

where φ^{\prime} is the induced homomorphism of $S^{*}\left(E^{\vee}\right)$ to $\mathscr{E} n d_{0_{x}}(F)$ by φ. On the other hand, by Hamilton-Caylay's Theorem, each $\varphi^{\prime}\left(x_{i}\right)$ satisfies a monic polynomial of degree r. Thus we see that $\bar{F}^{\prime}=\bar{F}_{0}^{\prime}$.
Q.E.D.

Definition 1.3. An E-pair (F, φ) on a geometric fiber X_{s} of f is said to be semi-stable (or, stable) (with respect to $\mathcal{O}_{X}(1)$) if F is torsion free and for all nontrivial φ-invariant coherent subsheaves F^{\prime} of F, we have

$$
P_{F^{\prime}}(m) \leq P_{F^{\prime}}(m) \quad\left(\text { or }, P_{F^{\prime}}(m)<P_{F}(m), \text { resp. }\right)
$$

for all large integers m.
Definition 1.4. An E-pair (F, φ) on a geometric fiber X_{s} of f is said to be μ -semi-stable (or, μ-stable) if F is torsion free and for all non-trivial φ-invariant coherent subsheaves F^{\prime} of F,

$$
\left.\mu\left(F^{\prime}\right) \leq \mu(F) \quad \text { (or, } \mu\left(F^{\prime}\right)<\mu(F), \text { resp. }\right)
$$

As in the case of torsion free sheaves, we have the following relations:

Definition 1.5. Let α be a rational number. An E-pair (F, φ) (or, a coherent sheaf F) on a geometric fiber X_{s} of f is said to be of type α, if F is torsion free and for all non-trivial φ-invariant coherent subsheaves (or, for all non-trivial coherent subsheaves, resp.) F^{\prime} of F, the following holds

$$
\mu\left(F^{\prime}\right) \leq \mu(F)+\alpha
$$

Now let us consider on the boundedness of the family of classes of E-pairs of type α with a fixed Hilbert polynomial.

Proposition 1.6. Let α be a rational number. There is a rational number β which depends only on α, r and E such that if an E-pair (F, φ) is of type α, then F is of type β.

Proof. Let F^{\prime} be a μ-semi-stable subsheaf of F such that $\mu\left(F^{\prime}\right)$ is maximal among all coherent subsheaves of F. We can take a positive integer l so that $S_{r}^{*}\left(E^{\vee}\right) \otimes_{X} \mathcal{O}_{X}(l)$ is generated by global sections. Then for some positive integer m. \bar{F}_{0}^{\prime} is a quotient sheaf of $F^{\prime} \otimes_{X} \mathscr{O}_{X}(-l)^{\oplus m}$. Since $F^{\prime} \otimes_{X} \mathcal{O}_{X}(-l)^{\oplus m}$ is μ-semistable, we have $\mu\left(F^{\prime} \otimes_{X} \mathcal{O}_{X}(-l)^{\oplus m}\right)=\mu\left(F^{\prime}\right)-l \cdot d \leq \mu\left(\bar{F}_{0}^{\prime}\right)$, where d is the degree of X with respect to $\mathcal{O}_{X}(1)$. By Lemma 1.2 and our hypothesis, we have $\mu\left(\bar{F}_{0}^{\prime}\right)$ $=\mu\left(\bar{F}^{\prime}\right) \leq \max (\mu(F), \mu(F)+\alpha)$. Hence F is of type $\max (0, \alpha)+l \cdot d$. \quad Q.E.D.

By the result of M. Maruyama [8], we have
Corollary 1.7. Suppose that one of the following conditions is satisfied:
(a) S is a noetherian scheme over a field of characteristic zero.
(b) The rank is not greater than 3.
(c) The dimension of X over S is not greater than 2.

Then the family of classes of E-pairs of type α with a fixed Hilbert polynomial is bounded. In particular, the family of μ-semi-stable pairs with a fixed Hilbert polynomial is bounded.

Definition 1.8. Let e be a non-negative integer and let (F, φ) be an E-pair on a geometric fiber X_{s} of X over S.

1) (F, φ) is said to be e-semi-stable (or, e-stable) (with respect to $\left.\mathcal{O}_{X}(1)\right)$ if it is semi-stable (or, stable) (with respect to $\left.\mathcal{O}_{X}(1)\right)$ and if for general non-singular curves $C=D_{1} \cdots \cdots D_{n-1}, D_{1}, \ldots, D_{n-1} \in\left|\mathcal{O}_{X_{s}}(1)\right|,\left(\left.F\right|_{c},\left.\varphi\right|_{c}\right)$ is of type e, where n is the dimension of X_{s}.
2) (F, φ) is said to be strictly e-semi-stable if it is e-semi-stable and if for every φ-invariant coherent quotient sheaf F^{\prime} of F with $P_{F^{\prime}}(m)=P_{F}(m)$, the E-pair ($F^{\prime}, \varphi^{\prime}$) induced by (F, φ) is e-semi-stable.

Let $\Theta_{E / X / S}(e, H)$ be the family of classes of E-pairs on the fibers of X over S such that (F, φ) is contained in $\Im_{E / X / S}(e, H)$ if and only if (F, φ) is e-semi-stable and its Hilbert polynomial is H.

By Lemma 3.3 of [6] and Proposition 1.6, we have
Corollary 1.9. For each e, $H, \Im_{E / X / S}(e, H)$ is bounded.

By virtue of the fundamental lemma 2.2 in [6], Proposition 1.6 and the similar proof as in Proposition 3.6 in [6], we have

Proposition 1.10. For each $\Im_{E / X / S}(e, H)$, there exists an integer N such that

1) for all $(F, \varphi) \in \mathfrak{G}_{E / X / S}(e, H), m \geq N$ and $i>0, F(m)$ is generated by its global sections and $h^{i}(F(m))=0$,
2) if (F, φ) is contained in $\widehat{G}_{E / X / S}(e, H)$ and if it is stable, then for all $m \geq N$ and all φ-invariant coherent subsheaves F^{\prime} of F with $0 \neq F^{\prime} \varsubsetneqq F$,

$$
h^{0}\left(F^{\prime}(m)\right) / \operatorname{rk}\left(F^{\prime}\right)<h^{0}(F(m)) / r k(F)
$$

3) if (F, φ) is contained in $\widehat{S}_{E / X / S}(e, H)$ and if it is not stable, then for all $m \geq N$ and all φ-invariant coherent subsheaves F^{\prime} of F with $0 \neq F^{\prime} \varsubsetneqq F$,

$$
h^{0}\left(F^{\prime}(m)\right) / \operatorname{rk}\left(F^{\prime}\right) \leq h^{0}(F(m)) / \operatorname{rk}(F)
$$

and, moreover, there exists a non-trivial φ-invariant coherent subsheaf F_{0} of F such that $h^{0}\left(F_{0}(m)\right) / \operatorname{rk}\left(F_{0}\right)=h^{0}(F(m)) / r k(F)$ for all $m \geq N$.

For the openness of the property "strictly e-semi-stability", we have
Proposition 1.11. Let $g: Y \rightarrow T$ be a smooth, projective, geometrically integral morphism of locally noetherian schemes, $\mathcal{O}_{Y}(1)$ be a g-very ample invertible sheaf on Y, E be a locally free \mathcal{O}_{Y}-module and (F, φ) be an E-pair such that F is T-flat. If $H^{i}\left(Y_{t}, \mathcal{O}_{Y}(1) \otimes k(t)\right)=0$ for all $i>0$ and $t \in T$, then there exists an open set U of T such that for all algebraically closed field $k, U(k)=\{t \in T(k) \mid(F, \varphi) \otimes k(t)$ is strictly e-semi-stable with respect to $\left.\mathcal{O}_{Y}(1)\right\}$.

Proof. Let Quot $_{(F, \varphi) / Y / T}$ be the subfunctor of Quot $_{F / Y / T}$ defined in the following (1.11.1):
(1.11.1) $\operatorname{Quot}_{(F, \varphi) / Y / T}(S)=\left\{x \in \operatorname{Quot}_{F / Y / T}(S) \mid\right.$ the quotient sheaf F^{\prime} of F_{S} corresponding to x is φ-invariant $\}$.

Quot ${ }_{(F, \varphi) / X / S}$ is represented by a closed subscheme of Quot $_{F / X / S}$ (see Lemma 4.3). We omit the rest of the proof, since it is same as the proof of Proposition 3.6 in [7] if we use the scheme Quot $_{(F, \varphi) / X / S}$ instead of Quot $_{F / X / S}$.

§ 2. Definition of moduli functors

Let X be a non-singular projective variety over an algebraically closed field k, with a very ample invertible sheaf $\mathcal{O}_{\boldsymbol{X}}(1)$ and let E be a locally free sheaf of finite rank on X.

Definition 2.1. Let (F, φ) be a semi-stable E-pair. A filtration $0=F_{0} \subset F_{1}$ $\subset \cdots \subset F_{t}=F$ by φ-invariant coherent subsheaves is called a Jordan-Hölder filtration if $\left(F_{i} / F_{i-1}, \varphi_{i}\right)$ is stable and $P_{F_{i}}(m)=P_{F}(m)(1 \leq i \leq t)$, where φ_{i} is a homomorphism induced by φ. For a Jordan-Hölder filtration $0=F_{0} \subset F_{1} \subset \cdots$
$\subset F_{t}=F$, define $\operatorname{gr}(F, \varphi)$ to be $\left(\oplus_{i=0}^{t} F_{i} / F_{i-1}, \bigoplus_{i=0}^{t} \varphi_{i}\right)$.
By the same argument as in Proposition 1.2 of [7], we have the following.
Proposition 2.2. Every semi-stable E-pair (F, φ) has a Jordan-Hölder filtration. If $0=F_{0} \subset F_{1} \subset \cdots \subset F_{t}=F$ and $0=F_{0}^{\prime} \subset F_{1}^{\prime} \subset \cdots \subset F_{s}^{\prime}=F$ are two Jordan-Hölder filtrations for (F, φ), then $t=s$ and there exists a permutation σ of $\{1,2, \ldots, t\}$ such that $\left(F_{i} / F_{i-1}, \varphi_{i}\right)$ is isomorphic to $\left(F_{\sigma(i)}^{\prime} / F_{\sigma(i-1)}^{\prime}, \varphi_{\sigma(i)}^{\prime}\right)$.

Now we define the moduli functor of semi-stable E-pairs. Let $f: X \rightarrow S$ be a smooth, projective, geometrically integral morphism of noetherian schemes with an f-very ample invertible sheaf $\mathcal{O}_{X}(1)$. We denote by $(S c h / S)$ the category of locally noetherian schemes over S. Let E be a locally free \mathcal{O}_{X}-module of finite rank and $H(m)$ be a numerical polynomial. The functor $\bar{\Sigma}_{E / X / S}^{H}$ of $(S c h / S)$ to the category of sets is defined as follows.

For an object T of $(S c h / S)$,

$$
\begin{aligned}
\bar{\Sigma}_{E / X / S}^{H}(T)= & \left\{(F, \varphi) \mid F \text { is a } T \text {-flat, coherent } \mathcal{O}_{X \times s T} \text {-module and } \varphi\right. \text { is an } \\
& \mathcal{O}_{X \times s} \text {-homomorphism of } F \text { to } F \otimes_{X} E \text { with the property } \\
& (2.3 .1)\} / \sim \text {, where } \sim \text { is the equivalence relation defined in (2.3.2). }
\end{aligned}
$$

(2.3.1) For every geometric point t of $T,\left(F \otimes_{T} k(t), \varphi \otimes_{T} k(t)\right)$ is a semistable $E \otimes_{S} k(t)$-pair and the Hilbert polynomial of $F \otimes_{T} k(t)$ is $H(m)$.
(2.3.2) $\quad(F, \varphi) \sim\left(F^{\prime}, \varphi^{\prime}\right)$ is and only if (1) $(F, \varphi) \simeq\left(F^{\prime} \otimes_{T} L, \varphi \otimes_{T} i d_{L}\right)$ or (2) there exist filtrations $0=F_{0} \subset F_{1} \subset \cdots \subset F_{u}=F$ and $0=F_{0}^{\prime} \subset F_{1}^{\prime} \subset \cdots \subset F_{u}^{\prime}=F^{\prime}$ by φ (or, φ^{\prime}) invariant coherent $\mathcal{O}_{X \times S T}$-modules such that for every geometric point t of T, their restrictions to $X \times{ }_{T} \operatorname{Spec} k(t)$ provide us with Jordan-Hölder filtrations of $\left(F \otimes_{T} k(t), \varphi \otimes_{T} k(t)\right)$ and $\left(F^{\prime} \otimes_{T} k(t), \varphi^{\prime} \otimes_{T} k(t)\right)$, respectively, $\oplus_{i=0}^{u} F_{i} / F_{i-1}$ is T flat and that $\left(\underset{i=0}{\stackrel{u}{\oplus}} F_{i} / F_{i-1}, \stackrel{u}{\oplus} \oplus_{i=0} \varphi_{i}\right) \simeq\left(\left(\oplus_{i=0}^{u} F_{i}^{\prime} / F_{i-1}^{\prime}\right) \otimes_{T} L,{\underset{i=0}{u}}_{\oplus}^{\left.\varphi_{i}^{\prime} \otimes i d_{L}\right) \text {, for some }}\right.$ invertible sheaf L on T. The equivalence class of (F, φ) is denoted by $[(F, \varphi)]$.

For a morphism $g: T^{\prime} \rightarrow T$ in $(S c h / S), g^{*}$ defines a map of $\bar{\Sigma}_{E / X / S}^{H}(T)$ to $\bar{\Sigma}_{E / X / S}^{H}\left(T^{\prime}\right)$. It is obvious that $\bar{\Sigma}_{E / X / S}^{H}$ is a contravariant functor of (Sch / S) to (Sets).

Moreover, we need to define a subfunctor of $\bar{\Sigma}_{E / X / S}^{H}$. Let e be a non-negative integer. For an object T of $(S c h / S)$,

$$
\bar{\Sigma}_{E / X / S}^{H, e}(T)=\left\{[(F, \varphi)] \in \bar{\Sigma}_{E / X / S}^{H}(T) \mid(F, \varphi) \text { satisfies the property }(2.4)^{e}\right\} .
$$

(2.4) ${ }^{e}$ For every geometric point t of $T,\left(F \otimes_{T} k(t), \varphi \otimes_{T} k(t)\right)$ is strictly e -semi-stable.

If $(F, \varphi) \sim\left(F^{\prime}, \varphi^{\prime}\right)$ and (F, φ) satisfies the property $(2.4)^{e}$, then $\left(F^{\prime}, \varphi^{\prime}\right)$ has the same property (see $\S 3$ of [7]). Hence the above definition is well-defined. By virtue of Proposition 1.11, if $H^{i}\left(X_{s}, \mathcal{O}_{X}(1) \otimes \mathcal{O}_{X_{s}}\right)=0$ for all $i>0, s \in S$, then $\bar{\Sigma}_{E / X / S}^{H, e}$ is an open subfunctor of $\bar{\Sigma}_{E / X / S}^{H}$.

§ 3. Semi-stable points of extended Gieseker spaces

Let X be a smooth, projective variety over a field k and $\mathcal{O}_{X}(1)$ be a very ample invertible sheaf. Take an N-dimensional vector space V over k. Let E and F be locally free \mathcal{O}_{X}-modules of rank l and m, respectively. Fix a non-negative integer r. The algebraic group $G=G L(V) \simeq G L(k, N)$ acts naturally on the vector space $W=\operatorname{Hom}_{\mathcal{O}_{x}}\left({ }^{r} \wedge\left(V \otimes_{k} E\right), F\right)$. Hence we have an action of G on the projective space $\mathbf{P}\left(W^{\vee}\right)$ and a G-linearized invertible sheaf $\mathcal{O}(1)$ on $\mathbf{P}\left(W^{\vee}\right)$. If $E=\mathcal{O}_{X}$, then $W=\operatorname{Hom}_{k}\left(\stackrel{r}{\wedge} V, H^{0}(X, F)\right)$ and $\mathbf{P}\left(W^{\vee}\right)$ is the Gieseker space $P\left(V, r, H^{0}(X, F)\right)$ which has been exploited to construct a moduli of semi-stable sheaves (see [2], [6], [7]). We denote $\mathbf{P}\left(W^{\vee}\right)$ with the action of G and the G-linearized invertible sheaf $\mathcal{O}(1)$ defined as above by $P_{E}(V, r, F)$. It is called also a Gieseker space. From now on, we assume that F is an invertible sheaf.

For a field K containing k, a non-zero element T of $\operatorname{Hom}_{\boldsymbol{O}_{\mathbf{x}}}\left(\stackrel{r}{\wedge}\left(V \otimes_{k} E\right)\right.$, $F) \otimes_{k} K=\operatorname{Hom}_{\mathcal{O}_{K}}\left(\stackrel{r}{\wedge}\left(V_{K} \otimes_{K} E_{K}\right), F_{K}\right)$ gives rise to a K-rational point of $P_{E}(V, r, F)$, which is denoted by T, too. For vector subspaces V_{1}, \ldots, V_{r} of $V \otimes_{k} K$, the image of $\left(V_{1} \otimes_{K} E_{K}\right) \otimes \cdots \otimes\left(V_{r} \otimes_{K} E_{K}\right)$ by the canonical homomorphism $\left(V_{K} \otimes_{K} E_{K}\right)^{\otimes r} \rightarrow \stackrel{r}{\wedge}\left(V_{K} \otimes_{K} E_{K}\right)$ is denoted by $\left[V_{1}, \ldots, V_{r}\right]$ and if V_{i} is a onedimensional subspace generated by x_{i}, we use the notation $\left[V_{1}, \ldots, V_{i-1}, x_{i}\right.$, V_{i+1}, \ldots, V_{r}] for [V_{1}, \ldots, V_{r}].

We shall extend the notion " T-independence" to our new Gieseker spaces.
Definition 3.1. Let K be an algebraically closed field containing k and let T be a non zero element of $\operatorname{Hom}_{\boldsymbol{o}_{X_{K}}}\left({ }^{r}\left(V_{K} \otimes_{K} E_{K}\right), F_{K}\right)$ or a K-rational point of $P_{E}(V, r, F)$. Vectors x_{1}, \ldots, x_{d} in V_{K} are said to be T-independent if the restriction of T to the subspace $\left[x_{1}, \ldots, x_{d}, V, \ldots, V\right]$ is not zero. A vector x is said to be T dependent on x_{1}, \ldots, x_{d} if the restriction of T to the subspace $\left[x_{1}, \ldots, x_{d}, x, V, \ldots, V\right]$ is zero. For a vector subspace V^{\prime} of V_{K}, vectors x_{1}, \ldots, x_{d} in V^{\prime} is called a T-base of V^{\prime} if x_{1}, \ldots, x_{d} are T-independent and if all vectors in V^{\prime} are T-dependent on x_{1}, \ldots, x_{d}. For a T-base x_{1}, \ldots, x_{d}, the number d is called its length and the maximal (or, minimal) length among all T-bases of V^{\prime} is called the maximal (or, minimal) T-dimension of V^{\prime} and denoted by $\overline{\operatorname{dim}}_{T} V^{\prime}$ (or, $\underline{\operatorname{dim}}_{T} V^{\prime}$, resp.).

By a similar proof as in Proposition 2.2 and Proposition 2.3 of [2], we hae
Proposition 3.2. Let K be an algebraically closed field containing k.

1) A point T in $P_{E}(V, r, F)(K)$ is properly stable (or, semi-stable) with respect to the action $\bar{\sigma}$ of $P G L(V)$ if for all vector subspaces V^{\prime} of V_{K}, the following inequalities hold

$$
\begin{gathered}
\operatorname{dim}_{K} V^{\prime}<(N / r) \cdot \underline{\operatorname{dim}}_{T} V^{\prime} \\
\left(o r, \operatorname{dim}_{K} V^{\prime} \leq(N / r) \cdot \underline{\operatorname{dim}}_{T} V^{\prime}, r e s p\right) .
\end{gathered}
$$

2) If a point T in $P_{E}(V, r, F)(K)$ stable (or, semi-stable), then for all vector subspaces V^{\prime} of V_{K}, the following inequalities hold

$$
\begin{gathered}
\operatorname{dim}_{K} V^{\prime}<(N / r) \cdot \overline{\operatorname{dim}}_{T} V^{\prime} \\
\left(o r, \operatorname{dim}_{K} V^{\prime} \leq(N / r) \cdot \overline{\operatorname{dim}}_{T} V^{\prime}, r e s p\right) .
\end{gathered}
$$

Corollary 3.3. Let T be a K-valued geometric point of $P_{E}(V, r, F)$ with the following property (3.3.1).
(3.3.1) For all vector subspaces V^{\prime} of $V_{K}, \overline{\operatorname{dim}}_{T} V^{\prime}=\operatorname{dim}_{T} V^{\prime}$.

Then T is semi-stable (or, stable) if and only if for all vector subspaces V^{\prime} of $V_{K}(o r$, for all vector ubspaces V^{\prime} of V_{K} such that $0<\operatorname{dim}_{T} V^{\prime}<r$),

$$
\begin{aligned}
\operatorname{dim}_{K} V^{\prime} & <(N / r) \cdot \operatorname{dim}_{T} V^{\prime} \\
\left(o r, \operatorname{dim}_{K} V^{\prime}\right. & \left.\leq(N / r) \cdot \operatorname{dim}_{T} V^{\prime}, r e s p\right)
\end{aligned}
$$

Next we must analyze orbit spaces of $P_{E}(V, r, F)$.
Definition 3.4. Let T, T^{\prime} and $T^{\prime \prime}$ be K-valued geometric points of $P_{E}(V, r, F)$, $P_{E}\left(V^{\prime}, r^{\prime}, F^{\prime}\right)$ and $P_{E}\left(V^{\prime \prime}, r^{\prime \prime}, F^{\prime \prime}\right)$, respectively. Let $\phi: F^{\prime} \otimes F^{\prime \prime} \rightarrow F$ be an injective homomorphism. $\quad T$ is said to be a ϕ-extention or, simply an extention of $T^{\prime \prime}$ by T^{\prime} if the following conditions are satisfied;

1) $r=r^{\prime}+r^{\prime \prime}$,
2) there exists an exact sequence

$$
0 \longrightarrow V^{\prime} \otimes_{k} K \xrightarrow{f} V \otimes_{k} K \xrightarrow{g} V^{\prime \prime} \otimes_{k} K \longrightarrow 0
$$

such that the following diagram is commutative:

$$
\begin{aligned}
& { }^{r^{\prime}}{ }^{\prime}\left(V_{K}^{\prime} \otimes_{K} E_{K}\right) \otimes_{\mathcal{O}_{K}}{ }^{r^{\prime \prime}}\left(V_{K} \otimes_{K} E_{K}\right) \longrightarrow \stackrel{r}{\wedge}\left(V_{K} \otimes_{K} E_{K}\right) \\
& T^{\prime} \otimes\left({ }_{\Lambda}^{\prime \prime \prime}\left(g \otimes i d_{E)}\right) \downarrow \square\right. \\
& F_{K}^{\prime} \otimes_{0_{X_{K}}} F_{K}^{\prime \prime} \longrightarrow F_{\phi_{K}} .
\end{aligned}
$$

In this case T^{\prime} (or, $T^{\prime \prime}$) is said to be a subpoint (or, quotient point, resp.) of T.
Definition 3.5. Let T be a K-valued geometric point of $P_{E}(V, r, F)$. $\quad T$ is said to be excellent if it has the property (3.3.1) and the following (3.5.1).
(3.5.1) For every subpoint T^{\prime} of T, if x_{1}, \ldots, x_{d} is a T^{\prime}-base of a subspace V_{0}^{\prime}
of V^{\prime}, then $f\left(x_{1}\right), \ldots, f\left(x_{d}\right)$ is a T-base of V_{0}^{\prime}.
(3.5.1) implies the following (3.5.1)'.
(3.5.1)' For every subpoint T^{\prime} of T and every subspace V_{0}^{\prime} of V_{K}^{\prime},

$$
\underline{\operatorname{dim}}_{T} V_{0}^{\prime} \leq \underline{\operatorname{dim}}_{T^{\prime}} V_{0}^{\prime} \leq \overline{\operatorname{dim}}_{T^{\prime}} V_{0}^{\prime} \leq \overline{\operatorname{dim}}_{T} V_{0}^{\prime} .
$$

Definition 3.6. Let T, T^{\prime} and $T^{\prime \prime}$ be K-valued geometric points of $P_{E}(V, r, F)$, $P_{E}\left(V^{\prime}, r^{\prime}, F^{\prime}\right)$ and $P_{E}\left(V^{\prime \prime}, r^{\prime \prime}, F^{\prime \prime}\right)$, respectively and let $\phi: F^{\prime} \otimes F^{\prime \prime} \rightarrow F$ be an injective homomorphism. Assume T is a ϕ-extention of $T^{\prime \prime}$ by T^{\prime} and let

$$
0 \longrightarrow V^{\prime} \otimes_{k} K \xrightarrow{f} V \otimes_{k} K \xrightarrow{g} V^{\prime \prime} \otimes_{k} K \longrightarrow 0
$$

be the underlying exact sequence of the extention. $\quad T$ is said to be a ϕ-direct sum of T^{\prime} and $T^{\prime \prime}$ if there exists a linear map $i: V^{\prime \prime} \otimes_{k} K \rightarrow V \otimes_{k} K$ such that $g \circ i$ $=i d_{V^{\prime \prime} \otimes K}$ and $\left.T\right|_{\left[i\left(y_{1}\right), \ldots, i\left(y_{s}\right), w_{s}+1, \ldots, w_{r}\right]}=0$ for all y_{1}, \ldots, y_{s} in $V^{\prime \prime} \otimes_{k} K$ and for all w_{s+1}, \ldots, w_{r} in $V \otimes_{k} K$ whenever $s>r^{\prime \prime}$.

If T_{1} and T_{2} are two ϕ-direct sums of T^{\prime} and $T^{\prime \prime}$, then $T_{1} \simeq T_{2}$ (see Lemma 2.16 of [7]). Thus a direct sum of T^{\prime} and $T^{\prime \prime}$ can be denoted by $T^{\prime} \oplus T^{\prime \prime}$. Moreover let T_{i}^{\prime} be a K-valued geometric point of $P_{E}\left(V_{i}^{\prime}, l_{i}, F_{i}^{\prime}\right)$ $(1 \leq i \leq t)$ and put $r_{i}=l_{1}+\cdots+l_{i}$ and $V_{i}=V_{1}^{\prime} \oplus \cdots \oplus V_{i}^{\prime}$. Let $\phi_{i}: F_{i-1} \otimes F_{i}^{\prime}$ $\rightarrow F_{i}$ be a sequence of injective homomorphisms ($1 \leq i \leq t, F_{0}=\mathcal{O}_{X}$). We can define ϕ_{i}-direct sum of T_{i-1} and T_{i}^{\prime} inductively. Each T_{i} is a K-valued geometric point of $P_{E}\left(V_{i}, r_{i}, F_{i}\right)$ and it is denoted by $\left.\left(\cdots\left(\left(T_{1}^{\prime} \oplus T_{2}^{\prime}\right) \oplus T_{3}^{\prime}\right) \oplus \cdots\right) \oplus T_{i}^{\prime}\right)$. By a similar argument as in Lemma 2.19 and corollary 2.19.1 of [7] we can denote T_{i} by $T_{1}^{\prime} \oplus \cdots \oplus T_{i}^{\prime}$.

Now the main result in §2 of [7] can be extended to our case. Since the proof is similar to that of Theorem 2.13 and 2.22 of [7] and it is not difficult to rewrite so as to suit our case, we omit the proof.

Theorem 3.7. Let $\phi_{i}: F_{i-1} \otimes F_{i}^{\prime} \rightarrow F_{i}$ be injective homomorphisms $(1 \leq i \leq t$, $\left.F_{0}=\mathcal{O}_{X}\right), 0<r_{1}<\cdots<r_{t}=r$ be a sequence of integers and let D_{i} be a $G L\left(V_{i}\right)-$ invariant closed set of $P_{E}\left(V_{i}, r_{i}, F_{i}\right)(1 \leq i \leq t)$. Assume that for every algebraically closed field K containing k, all the points of $D_{i}(K)$ are excellent and that $\operatorname{dim}_{k} V_{1} / r_{1}$ $=\cdots=\operatorname{dim}_{k} V_{t} / r_{t}$. Let S_{i} be a stable, excellent point in $P_{E}\left(V_{i}^{\prime}, l_{i}, F_{i}^{\prime}\right)(\bar{k})$ which is k rational, where $l_{i}=r_{i}-r_{i-1}$ and k is the algebraic closure of k. Then there exists a $G L\left(V_{t}\right)$-invariant closed set $Z_{t}=Z\left(S_{1}, \ldots, S_{t}\right)$ of $D_{t}^{s s}=D_{t}^{s s}\left(\mathcal{O}(1) \otimes \mathcal{O}_{D_{t}}\right)$ such that for every algebraically closed field K containing k,

$$
Z_{t}(K)=\left\{T \in D_{t}(K) \mid T \text { has the following property }(*)_{t}\right\} .
$$

$(*)_{t}$: \quad There exists a K-valued geometric point T_{i} in each $D_{i}^{s s}=D_{i}^{s s}\left(\mathcal{O}(1) \otimes \mathcal{O}_{D_{i}}\right)$ such that $T_{1}=S_{1}, T_{i}$ is a ϕ_{i}-extention of S_{i} by $T_{i-1}(2 \leq i \leq t)$ and $T=T_{t}$.

Moreover if $Z\left(S_{1}, \ldots, S_{t}\right)$ is not empty, then $G L\left(V_{t}\right)$-orbit $o\left(S_{1}, \ldots, S_{t}\right)$ of $S_{1} \oplus \cdots \oplus S_{t}$ is a unique closed orbit in $Z\left(S_{1}, \cdots S_{t}\right)$.

§4. Morphism to Gieseker spaces

To construct a moduli scheme of semi-stable sheaves, D. Gieseker [2] and M. Maruyama [6], [7] constructed a morphism μ of a Quot-scheme to a projective bundle in the étale topology on a finite union of connected components of Pic $_{X / S}$. Our aim in this section is to construct a scheme which is an analogy of Quot-schemes for our problem and which plays the same role as the above μ.

From now on, we shall fix the following situation:
(4.1) Let S be a scheme of finite type over a universally Japanese ring Ξ and let $f: X \rightarrow S$ be a smooth, projective, geometrically integral morphism such that the dimension of each fiber of X over S is n. Let $\mathcal{O}_{X}(1)$ be an f-very ample invertible sheaf such that for all points s in S and for all positive integers i, $H^{i}\left(X_{s}, \mathcal{O}_{X}(1) \otimes \mathcal{O}_{X_{s}}\right)=0$ and let E be a locally free \mathcal{O}_{X}-module of finite rank.

Let V be a free Ξ-module of rank N and let G be the Ξ-group scheme $G L(V)$. Fix a numerical polynomial $H(m)$ which is the Hilbert polynomial of a coherent sheaf of rank r on a geometric fiber of f. Take \tilde{Q} a union of some of connected components of Quot $_{\left.V \otimes_{\Xi} S_{\#} F^{\vee}\right) / X / S}$ and the universal quotient sheaf $\tilde{\phi}: V \bigotimes_{\Xi} S_{r}^{*}\left(E^{\vee}\right)_{X_{\tilde{Q}}} \rightarrow \tilde{F}$ on $X_{\tilde{Q}}$. We denote by $\tilde{\phi}^{i}$ the restriction of $\tilde{\phi}$ to $V \otimes_{\bar{E}} S^{i}\left(E^{v}\right)_{x_{\tilde{Q}}}$. Let \tilde{Q} be the subset of \tilde{Q} such that a point x of \tilde{Q} is contained in \tilde{Q} if and only if $\tilde{\phi}^{0} \otimes_{\mathscr{Q}} k(x)$ is surjective. By the properness of the projection of $X_{\tilde{Q}}$ to $\tilde{Q}, \widetilde{Q}^{0}$ is an open set of \widetilde{Q} and clearly it is G-stable. Since the restriction of $\widetilde{\phi}^{0}$ to $X_{\mathscr{Q}^{\circ}}$ is surjective, it defines a morphism of \tilde{Q} to Quot $_{V \otimes_{\Xi} \mathcal{O}_{X} / X / S}$. Clearly it is a G-morphism. Let Q be a union of connected components with a non-empty intersection with the image of \widetilde{Q}^{0}. Then we obtain a G-morphism of \widetilde{Q}^{0} to Q.

We shall need the following proposition (cf. EGA III (7.7.8), (7.7.9) or [1]).
Proposition 4.2. Let $f: X \rightarrow S$ be a proper morphism of noetherian schemes, and let I and F be two coherent \mathcal{O}_{X}-modules with F flat over S. Then there exist a coherent $\mathcal{O}_{S^{-}}$module $H(I, F)$ and an element $h(I, F)$ of $\operatorname{Hom}_{X}\left(I, F \otimes_{S} H(I, F)\right)$ which represents the functor

$$
M \longmapsto \operatorname{Hom}_{X}\left(I, F \otimes_{s} M\right)
$$

defined on the category of quasi-coherent \mathcal{O}_{S}-modules M, and the formation of the pair commutes with base change; in other words, the Yoneda map defined by $h(I, F)$

$$
\begin{equation*}
y: \operatorname{Hom}_{T}\left(H(I, F)_{T}, M\right) \longrightarrow \operatorname{Hom}_{X_{T}}\left(I_{T}, F \otimes_{S} M\right) \tag{4.2.1.}
\end{equation*}
$$

is an isomorphism for every S-scheme T and every quasi-coherent \mathcal{O}_{T}-module M. Moreover if I is flat over S and if $\operatorname{Ext}_{X_{s}}^{1}(I \otimes k(s), F \otimes k(s))=0$ for all points s of S, then $H(I, F)$ is locally free.

Let $\phi: V \otimes_{\Xi} \mathcal{O}_{X_{Q}} \rightarrow F$ be the universal quotient sheaf on X_{Q}. Now let us apply Proposition 4.2 to the case $X=X_{Q}, S=Q, I=F$ and $F=F \otimes_{X} E$. Then we obtain a coherent \mathcal{O}_{Q}-module $H\left(F, F \otimes_{X} E\right)$. By virtue of Proposition 4.2, we
know that the scheme $\Gamma^{\prime}=\mathrm{V}\left(H\left(F, F \otimes_{X} E\right)\right)$ represents the functor,

$$
T \longmapsto \operatorname{Hom}_{X_{T}}\left(F_{X_{T}}, F_{X_{T}} \otimes_{X} E\right)
$$

defined on the category of Q-schemes, moreover we have the universal homomorphism $\Phi: F_{X_{r^{\prime}}} \rightarrow F_{X_{\Gamma^{\prime}}} \otimes_{X} E$.

Lemma 4.3. Let $f: X \rightarrow S$ be a proper morphism of noetherian schemes and let $\varphi: I \rightarrow F$ be an \mathcal{O}_{X}-homomorphism of coherent \mathcal{O}_{X}-modules with F flat over S. Then there exists a unique closed subscheme Z of S such that for all morphism $g: T \rightarrow S$, $g^{*}(\varphi)=0$ if and only if g factors through Z.

Proof. By the isomorphism (4.2.1), φ corresponds to an \mathcal{O}_{S}-homomorphism $\psi: H(I, F) \rightarrow \mathcal{O}_{S}$. The closed subscheme Z of S defined by the ideal sheaf Image (ψ) is the desired one.

By virtue of Lemma 4.3, there exists a closed subscheme Γ of Γ^{\prime} such that for all morphism $g: T \rightarrow \Gamma^{\prime}, g^{*}(\Phi)$ can be extended to the homomorphism $F_{X_{T}} \otimes_{X} S^{*}\left(E^{\vee}\right) \rightarrow F_{X_{T}}$ defined as in (1.1.1) if and only if g factors through Γ. We have also the universal homomorphism $\tilde{\Phi}: F_{X_{\Gamma}} \otimes_{X} S^{*}\left(E^{\vee}\right) \rightarrow F_{X_{\Gamma}}$. Let $\pi: \Gamma \rightarrow Q$ be the structure morphism. The surjective homomorphism $\tilde{\Phi} \circ\left(\mathrm{id}_{X_{Q}}\right.$ $\times \pi)^{*}\left(\phi \otimes \mathrm{id}_{S^{*}\left(E^{\vee}\right)}\right): V \otimes_{\Xi} S^{*}\left(E^{\vee}\right)_{X_{\Gamma}} \rightarrow F_{X_{\Gamma}}$ defines a Q-morphism λ of Γ to \tilde{Q}^{0} and clearly λ is a G-morphism. It is easy to see that λ is a closed immersion if we use Lemma 4.3 repeatedly.

From now on, we assume
(4.4) if an invertible sheaf L on a geometric fiber X_{s} of $X_{\mathscr{Q}}$ has the same Hilbert polynomial as $(\operatorname{det} \tilde{F}) \otimes_{\varrho} k(s)$, then

$$
\operatorname{Ext}_{\partial_{x_{s}}^{j}}\left(\stackrel{r}{\wedge}\left(V \otimes_{\Xi} S_{r}^{*}\left(E^{\vee}\right)\right) \otimes_{s} k(s), L\right)=0
$$

for all positive integers j.
Remark 4.5. $\operatorname{det} \tilde{F}$ is the sheaf defined in Lemma 4.2 of [6] which is a G linearized sheaf and we have a natural G-homomorphism γ of $\wedge_{\wedge}^{\wedge} \widetilde{F}$ to $\operatorname{det} \tilde{F}$.

By (4.2.1), the homomorphism $\gamma \circ\left({ }_{\wedge}^{r} \tilde{\phi}\right):{ }^{r}\left(V \otimes_{\bar{E}} S_{r}^{*}\left(E^{\vee}\right)_{X_{\bar{Q}}}\right) \rightarrow \operatorname{det} \tilde{F}$ defines the $\mathcal{O}_{\tilde{Q}}$-homomorphism δ of $H\left(\wedge^{r}\left(V \otimes_{\bar{E}} S_{r}^{*}\left(E^{\vee}\right)_{X_{\tilde{Q}}}\right)\right.$, $\left.\operatorname{det} \tilde{F}\right)$ to $\mathcal{O}_{\tilde{Q}}$. δ is surjective since for all points x of $\tilde{Q}, \delta \otimes k(x)$ corresponds to the non-zero homomorphism $\left(\gamma \circ\left({ }_{\wedge}^{r} \tilde{\phi}\right)\right) \otimes k(x)$ by (4.2.1). Hence δ defines a section $\sigma: \widetilde{Q} \rightarrow \mathbf{P}\left(H\left({ }_{\wedge}^{r}\left(V \otimes_{\Xi} S_{r}^{*}\right.\right.\right.$
$\left.\left(E^{\vee}\right)_{X_{\tilde{Q}}}\right)$, det $\left.\tilde{F}\right)$). If f has a section, there exists a unique Poincaré sheaf L on $X \times{ }_{S} \operatorname{Pic}_{X / S}$. det \tilde{F} defines a G-morphism v of \tilde{Q} to $\operatorname{Pic}_{X / S}$ with the trivial action of G on $\operatorname{Pic}_{X / S}$ (see Lemma 4.5 of [6]). Let P be a union of a finite number of connected components of $\mathrm{Pic}_{X / S}$ having non-empty intersection with $v(\widetilde{Q})$. By virtue of Proposition 4.2 and the assumption (4.4) the \mathcal{O}_{P}-module $H\left(\stackrel{r}{\wedge}\left(V \otimes_{\bar{E}} S_{r}^{*}\left(E^{\vee}\right)_{X_{\bar{Q}}}\right), L\right)$ is locally free. Set $Z=\mathbf{P}\left(H\left({ }_{\wedge}^{r}\left(V \otimes_{\bar{E}} S_{r}^{*}\left(E^{\vee}\right)_{X_{\bar{Q}}}\right), L\right)\right)$. By the universality of L, we see that $\left(1_{X} \times v\right)^{*}(L) \simeq(\operatorname{det} \tilde{F}) \otimes_{\varrho} M$ for some invertible sheaf M on \widetilde{Q}. By the universality of $H(-,-)$, we see that

$$
\begin{aligned}
v^{*}\left(H\left(\stackrel{r}{\wedge} \otimes V \otimes_{\bar{E}} S_{r}^{*}\left(E^{\vee}\right)_{X_{p}}\right), L\right) & \simeq H\left(\stackrel{r}{\wedge}\left(V \otimes_{\Xi} S_{r}^{*}\left(E^{\vee}\right)_{X_{\tilde{Q}}}\right),(\operatorname{det} \tilde{F}) \otimes_{\tilde{Q}} M\right) \\
& \simeq H\left(\stackrel{r}{\wedge}\left(V \otimes_{\Xi} S_{r}^{*}\left(E^{\vee}\right)_{X_{\tilde{Q}}}\right), \operatorname{det} \tilde{F}\right) \otimes_{\tilde{Q}} M^{\vee} .
\end{aligned}
$$

Therefore we have $Z \times_{P} \tilde{Q} \simeq \mathbf{P}\left(H\left(\stackrel{r}{\wedge}\left(V \otimes_{\bar{E}} S_{r}^{*}\left(E^{\vee}\right)_{X_{\tilde{Q}}}\right)\right.\right.$, det $\left.\tilde{F}\right)$ and the section σ defines a P-morphism μ of \widetilde{Q} to Z which is also a G-morphism.

Let \tilde{R} be the open set of \tilde{Q} such that for every algebraically closed field K, $\tilde{R}(K)=\{x \in \widetilde{Q}(K) \mid \tilde{F} \otimes k(x)$ is torsion free $\}$ (see [5]). \tilde{Q} has a natural G-action and clearly \tilde{R} is a G-stable open set of \tilde{Q}. By the similar argument as in [6], we have

Proposition 4.7. Assume (4.4) holds for \tilde{Q} and \tilde{F}. Then there exist an open and closed subscheme P of $\mathrm{Pic}_{X / S}$ of finite type over S and a \mathbf{P}^{m}-bundle $p: Z \rightarrow P$ in the étale topology on P such that

1) G acts on Z and there exists a p-ample G-linearized invertible sheaf H on Z,
2) there exists a G-morphism $\mu: \tilde{Q} \rightarrow Z$ with $\left.\mu\right|_{\tilde{R}}$ an immersion.
3) if $u: S^{\prime} \rightarrow S$ is an étale, surjective morphism such that $f^{\prime}=f \times{ }_{S} S^{\prime}$ has a section, then $Z \times{ }_{S} S^{\prime}$ and $\mu \times{ }_{S} S^{\prime}$ are the same defined in (4.6).

Consequently we obtain the following commutative diagram of G-morphism:

§5. Construction of moduli spaces

Let $f: X \rightarrow S, \mathcal{O}_{X}(1)$ and E be as in (4.1). We may assume that S is
connected. \quad Set $H^{(i)}(m)=i \cdot H(m) / r$ for $1 \leq i \leq r$, where $r=r k(F)$ for an (F, φ) with $[(F, \varphi)] \in \bar{\Sigma}_{E / X / S}^{H}(\operatorname{Spec} k(s))$. By an argument similar to Lemma 4.2 of [7] and Proposition 1.10, we have

Lemma 5.1. For each non-nagative integer e, there exists an integer m_{e} such that if $m \geq m_{e}$, then for all geometric points s of S and for all strictly e-semi-stable pairs (F, φ) on X_{s} with $\operatorname{rk}(F)=i$ and $\chi(F(m))=H^{(i)}(m)$,
(5.1.1) $F(m)$ is generated by its global sections and $h^{j}\left(X_{s}, F(m)\right)=0$ if $j>0$,
(5.1.2) for all φ-invariant coherent subsheaves F^{\prime} of F with $F^{\prime} \neq 0$, $h^{0}\left(F^{\prime}(m)\right) \leq \operatorname{rk}\left(F^{\prime}\right) \cdot h^{0}(F(m)) / i$ and moreover, the equality holds if and only if $P_{F^{\prime}}(m)$ $=P_{F}(m)=H(m) / r$,
(5.1.3.) if an invertible sheaf L on X_{s} has the same Hilbert polynomial as $\operatorname{det}(F(m))$, then $\operatorname{Ext}_{\text {o }_{X_{s}}}\left({ }^{r}\left(V \otimes_{\Xi} S_{r}^{*}\left(E^{\vee}\right), L\right)=0\right.$ for all positive integers j, where V is a free E-module of rank r.

Remark 5.1.4. If (5.1.3) holds, then for all invertible sheaf L on X_{s} with the same Hilbert polynomial as $\operatorname{det}(F(m))$ and for all free Ξ-module V,

We may assume that $m_{e} \geq m_{e^{\prime}}$ if $e \geq e^{\prime}$. Set $H^{(i, e)}(m)=H^{(i)}\left(m+m_{e}\right)$ and $N^{(i, e)}$ $=H^{(i, e)}(0)=H^{(i)}\left(m_{e}\right)$. Let $V_{i, e}$ be a free Ξ-module of rank $N^{(i, e)}$ and let G_{i} be the Ξ-group scheme $G L\left(V_{i, e}\right)$. Let us consider the scheme

$$
\tilde{Q}_{i}=\operatorname{Quot}_{V_{i, e} \otimes_{S} S_{r}^{*}\left(E^{v}\right) / X / S}^{H^{(i, e)}}
$$

and its subscheme Γ_{i} constructed in §4. Let $\phi_{i}^{e}: V_{i, e} \otimes_{\bar{Z}} \mathcal{O}_{X_{\Gamma_{i}}} \rightarrow F_{i}^{e}$ be the universal quotient and $\varphi_{i}^{e}: F_{i}^{e} \rightarrow F_{i}^{e} \otimes_{X} E$ be the universal homomorphism on $X_{\Gamma_{i}}$. By virtue of Proposition 1.11 and (5.1,1), there exists an open set $R_{i}^{e, e^{\prime}}$ in Γ_{i} such that a geometric point y of Γ_{i} is contained in $R_{i}^{e, e^{\prime}}$ if and only if
(5.2.1) $\quad \Gamma\left(\phi_{i}^{e} \otimes k(y)\right): V_{i, e} \otimes_{\Xi} k(y) \rightarrow H^{0}\left(X_{y}, F_{i}^{e} \otimes_{\Gamma_{i}} k(y)\right)$ is bijective and
(5.2.2) $\quad\left(F_{i}^{e} \otimes_{\Gamma_{i}} k(y), \varphi_{i}^{e} \otimes_{\Gamma_{i}} k(y)\right)$ is strictly e^{\prime}-semi-stable.

By virtue of (5.1.1) and the universality of Γ_{i}, for every geometric point s of S, we have the surjective map;

$$
\begin{aligned}
\xi_{i}^{e, e^{\prime}}(s): R_{i}^{e, e^{\prime}}(k(s)) & \longrightarrow \bar{\Sigma}_{E / X / S}^{H(i), e^{\prime}}\left(m_{e}\right)(\operatorname{Spec} k(s)) \\
& =\left\{\left[\left(F\left(m_{e}\right), \varphi \otimes 1_{\mathcal{O}\left(m_{e}\right)}\right)\right] \mid(F, \varphi) \in \bar{\Sigma}_{E / X \mid S}^{H(i), e^{\prime}}(\operatorname{Spec} k(s))\right\},
\end{aligned}
$$

where $\xi_{i}^{e, e^{\prime}}(s)$ maps $k(s)$-valued point y of $R_{i}^{e, e^{\prime}}$ to the pair $\left(F_{i}^{e} \otimes_{\Gamma_{i}} k(y), \varphi_{i}^{e} \otimes_{\Gamma_{i}} k(y)\right.$). Moreover, $R_{i}^{e, e^{\prime}}$ is G_{i}-invariant and K-valued geometric points y_{1} and y_{2} of $R_{i}^{e, e^{\prime}}$ are in the same orbit of $G_{i}(K)$ if and only if $\left(F_{i}^{e} \otimes_{\Gamma_{i}} k\left(y_{1}\right), \varphi_{i}^{e} \otimes_{\Gamma_{i}} k\left(y_{1}\right)\right)$ $\simeq\left(F_{i}^{e} \otimes_{\Gamma_{i}} k\left(y_{2}\right), \varphi_{i}^{e} \otimes_{\Gamma} k\left(y_{2}\right)\right)$ (see §5 of [6]).
Let $\bar{R}_{i}^{, e e^{\prime}}$ be the scheme theoretic closure of $R_{i}^{e, e^{\prime}}$ in \tilde{Q}_{i}. Now we replace \widetilde{Q}_{i} by a
union of connected components of \tilde{Q}_{i} having a non-empty intersection with $R_{i}^{e, e^{\prime}}$. Let v_{i} be the morphism of \tilde{Q}_{i} to $\operatorname{Pic}_{X / S}$ defined in $\S 4$ and let P_{i} be the union of connected components which intersect with $v_{i}\left(\widetilde{Q}_{i}\right)$. Then by the condition (5.1.3) we obtain a G_{i}-morphism μ_{i} of \widetilde{Q}_{i} to Z_{i} defined in Proposition 4.7. Let Δ_{i} be the scheme theoretic image of $R_{i}^{e, e^{\prime}}$ by μ_{i}. Then μ_{i} induces an open immersion of $R_{i}^{e, e^{\prime}}$ to Δ_{i}. Consequently, we obtain the following commutative diagram of G_{i} morphisms:

For all K-valued geometric points x of $P_{i},\left(Z_{i}\right)_{x}$ is isomorphic to the Gieseker space $P_{S_{F}\left(E^{\vee}\right)}\left(V_{i, e} \otimes_{\Xi} K, i, L_{x}\right)$, where L_{x} is an invertible sheaf on X_{K} corresponding to x. By an argument similar to Lemma 4.4 of [7], we know that if T is a $K^{\prime}-$ valued geometric point of $\left(\Delta_{i}\right)_{x}$, then T is excellent in $\left(Z_{i}\right)_{x}$ $=P_{S_{\ddagger\left(E^{\vee}\right)}}\left(V_{i, e} \otimes_{\Xi} K, i, L_{x}\right)$ and for every vector subspace V of $V_{i, e} \otimes_{\Xi} K^{\prime}$,

Let L_{i} be a G_{i}-linearized p_{i}-ample invertible sheaf on Z_{i}. Then there exist $G_{i^{-}}$ invariant open subshemes Δ_{i}^{s} and $\Delta_{i}^{s s}$ of Δ_{i} such that for all algebraically closed field $K, \Delta_{i}^{s}(K)=\left\{x \in \Delta_{i}(K) \mid x\right.$ is a properly stable point of $\left(\Delta_{i}\right)_{y}$ with respect to the pull back of L_{i} to $\left(\Delta_{i}\right)_{y}$, where $\left.y=p_{i}(K)(x)\right\}$ and $\Delta_{i}^{s s}(K)=\left\{x \in \Delta_{i}(K) \mid x\right.$ is a semistable point of $\left(\Delta_{i}\right)_{y}$ with respect to the pull back of L_{i} to $\left(\Delta_{i}\right)_{y}$, where y $\left.=p_{i}(K)(x)\right\}$. By virtue of Corollary 3.3, (5.1.2) and (5.3.1), the same argument as in Lemma 4.15 of [6] provides us with the following.

Lemma 5.4. μ_{i} induces an open immersion of $R_{i}^{\text {e, é }}$ to $\Delta_{i}^{s s}$. Moreover, for a geometric point x of $R_{i}^{e, e^{\prime}}$, if $\left(F_{i}^{e} \otimes k(x), \varphi_{i}^{e} \otimes k(x)\right)$ is stable, then $\mu_{i}(x)$ is in Δ_{i}^{s}.

By virtue of Theorem 4 of [12], there exists a good quotient $\pi: \Delta_{r}^{s s}$ $\rightarrow Y$. Since S is of finite type over a universally Japanese ring, Y is projective over $S . \quad \Delta_{r}^{s s}-\mu_{r}\left(R_{r}^{e, e^{\prime}}\right)$ is G_{r}-invariant closed set of $\Delta_{r}^{s s}$. Set $\bar{M}_{e, e^{\prime}}=Y-\pi\left(\Delta_{r}^{s s}\right.$ $\left.-\mu_{r}\left(R_{r}^{e, e^{\prime}}\right)\right) . \quad \bar{M}_{e, e^{\prime}}$ is an open subscheme of Y. Hence $\bar{M}_{e, e^{\prime}}$ is quasi-projective over S.

Let x be a k-valued geometric point of $R_{i}^{e, e^{\prime}}$. Since $(F, \varphi)=\left(F_{i}^{e} \otimes k(x)\right.$, $\left.\varphi_{i}^{e} \otimes k(x)\right)$ is strictly e^{\prime}-semi-stable, we can find a Jordan-Hölder filtration $0=F_{0}$ $\subset F_{1} \subset \cdots \subset F_{\alpha}=F$. Set $r_{i}=r k\left(F_{i}\right)$ and $l_{i}=r_{i}-r_{i-1}$. Then $\left(F_{\alpha-1}, \varphi_{\alpha-1}\right)$ and $\left(\bar{F}_{\alpha-1}, \varphi_{\alpha-1}\right)$ and $\left(\bar{F}_{\alpha}, \bar{\varphi}_{\alpha}\right)$ are strictly e^{\prime}-semi-stable (see lemma 3.5 of [7]) where \bar{F}_{α} $=F / F_{\alpha-1}$. By virtue of (5.1.1), we get the following commutative diagrom;

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(X_{x}, F_{\alpha-1}\right) \longrightarrow H^{0}\left(X_{x}, F\right) \longrightarrow H^{0}\left(X_{x}, F / F_{\alpha-1}\right) \longrightarrow 0 \\
& \begin{array}{llll}
\eta_{\alpha-1} \uparrow \simeq & \eta_{x} \uparrow \simeq & & \eta_{\bar{\alpha}} \uparrow \simeq \\
V_{r-1, e} \otimes_{\Xi} k & \longrightarrow & V_{r, e} \otimes_{\Xi} k & \longrightarrow
\end{array} V_{l_{\alpha, e} \otimes_{\Xi} k}
\end{aligned}
$$

where $\eta_{\alpha}=\Gamma\left(\phi_{r}^{e} \otimes k(x)\right)$. An isomorphism $\eta_{\alpha-1}\left(\right.$ or, $\left.\eta_{\bar{\alpha}}\right)$ defines a k-rational point $x_{\alpha-1}$ (or \bar{x}_{α}, resp.) of $R_{\alpha-1}^{e, e^{\prime}}$ (or, $R_{l_{\alpha}^{e}}^{e, e^{\prime}}$, resp.). If $T_{\alpha}=\mu_{r}(k)(x), T_{\alpha-1}=\mu_{r_{\alpha-1}}(k)\left(x_{\alpha-1}\right)$ and $\bar{T}_{\alpha}=\mu_{l_{\alpha}}(k)\left(\bar{x}_{\alpha}\right)$, then $T_{\alpha} \in P_{S^{*}\left(E^{v}\right)}\left(V_{r, e} \bigotimes_{\Xi} k, r, \operatorname{det} F\right), T_{\alpha-1} \in P_{\left.S_{z_{r}(E)}\right)}\left(V_{r_{\alpha-1}, e} \otimes_{\Xi} k\right.$, $r_{\alpha-1}$, $\left.\operatorname{det} F_{\alpha-1}\right)$ and $\bar{T}_{\alpha} \in P_{\left.S^{*}(E)\right)}\left(V_{l_{\alpha}, e} \otimes_{\Xi} k, l_{\alpha}\right.$, $\left.\operatorname{det} \bar{F}_{\alpha}\right)$. Let $\psi_{\alpha}: \operatorname{det} F_{\alpha-1} \otimes \operatorname{det} \bar{F}_{\alpha}$ $\rightarrow \operatorname{det} F_{\alpha}$ be the canonical isomorphism. Then T_{α} is a ψ_{α}-extention of $\bar{T}_{\alpha-1}$ (see $\S 4$ of [7]). Let $\bar{F}_{j}=F_{j} / F_{j-1}$ and $\psi_{j}: \operatorname{det} F_{j-1} \otimes \operatorname{det} \bar{F}_{j} \rightarrow \operatorname{det} F_{j}$. Repeating the similar argument to the above, we get T_{j} in $P_{S^{*}\left(E^{\vee}\right)}\left(V_{r_{j}, e} \otimes_{\bar{E}} k, r_{j}\right.$, $\left.\operatorname{det} F_{j}\right)(1 \leq j \leq \alpha)$ and \bar{T}_{j} in $P_{S^{*}\left(E^{v}\right)}\left(V_{l_{j}, e} \bigotimes_{\Xi} k, l_{j}\right.$, $\left.\operatorname{det} \bar{F}_{j}\right)(1 \leq j \leq \alpha)$ such that
(5.4.1) $T_{j}=\mu_{r_{j}}(k)\left(x_{j}\right)$ for some x_{j} in $R_{r_{j}}^{e, e^{\prime}}(k)$ and $\bar{T}_{j}=\mu_{l_{j}}(k)\left(\bar{x}_{j}\right)$ for some \bar{x} in $R_{l_{j}}^{e, e^{\prime}}(k)$. Moreover, \bar{T}_{j} is in $\Delta_{l_{j}}^{s}(k)$.
(5.4.2) $\quad T_{j}$ is a ψ_{j}-extention of \bar{T}_{j} by T_{j-1} and $T_{1} \simeq \bar{T}_{1}$.

By a proof similar to lemma 4.7 of [7], we have
Lemma 5.5. $\quad T_{j} \simeq T_{j-1} \oplus T_{j}$ if and only if $\left(F_{j}, \varphi_{j}\right) \simeq\left(F_{j-1}, \varphi_{j-1}\right) \oplus\left(\bar{F}_{j}, \bar{\varphi}_{j}\right)$.
Since $\operatorname{gr}(F, \varphi)$ is strictly e^{\prime}-semi-stable (see Corollary 3.5.1 of [7]), $\operatorname{gr}(F, \varphi)$ corresponds to a point y in $R_{r}^{e, e^{\prime}}(k)$.

Corollary 5.5.1. $\quad \mu_{r}(k)(y)=\bar{T}_{1} \oplus \cdots \oplus \bar{T}_{\alpha}$.
By virtue of Theorem 3.7 and a proof similar to Proposition 4.8, we obtain
Proposition 5.6. Let y be a k-valued geometric point of P_{r} and let s be the image of y by the structure morphism $P_{r} \rightarrow S . \quad$ Let $\left(\bar{F}_{1}, \varphi_{1}\right), \ldots,\left(\bar{F}_{\alpha}, \varphi_{\alpha}\right)$ be e^{\prime}-stable E-pairs on X_{s} such that $l_{i}=r k\left(\bar{F}_{i}\right), \chi\left(\bar{F}_{i}(m)\right)=H^{\left(l_{i}\right)}(m)$ and $l_{1}+\cdots+l_{\alpha}=r$. Then there exists a G_{r}-invariant closed subset $Z\left(\left(\bar{F}_{1}, \varphi_{1}\right), \ldots,\left(\bar{F}_{\alpha}, \varphi_{\alpha}\right)\right)$ of $\left(R_{r}^{e, e^{\prime}}\right)_{y}$ $=\left(v_{r}\right)^{-1}(y) \cap R_{r}^{e, e^{\prime}}$ such that
(5.6.1) $\mu_{r}\left(Z\left(\left(\bar{F}_{1}, \varphi_{1}\right), \ldots,\left(\bar{F}_{\alpha}, \varphi_{\alpha}\right)\right)\right)$ is closed in $\left(\Delta_{r}^{s s}\right)_{y}$,
(5.6.2) for every algebraically closed field K containing $k, Z\left(\left(\bar{F}_{1}\right.\right.$, $\left.\left.\varphi_{1}\right), \ldots,\left(\bar{F}_{\alpha}, \varphi_{\alpha}\right)\right)(K)=\left\{x \in\left(R_{r}^{e, e^{\prime}}\right) \mid \operatorname{gr}\left(\left(F_{r}^{e}, \varphi_{r}^{e}\right) \otimes k(x)\right) \simeq\left(\oplus \bar{F}_{i}, \oplus \varphi_{i}\right)_{K}\right\}$
(5.5.6) the G_{r}-orbit of x_{0} corresponding to $\left(\oplus \bar{F}_{i}, \oplus \varphi_{i}\right)$ is the unique closed orbit in $Z\left(\left(\bar{F}_{1}, \varphi_{1}\right), \ldots,\left(\bar{F}_{\alpha}, \varphi_{\alpha}\right)\right)$.

By Theorem 4 of [12], Proposition 5.6 and a proof similar to that of Proposition 4.9 and 4.10 of [7], we have

Proposition 5.7. $\bar{M}_{e, e^{\prime}}$ has the following properties:
(5.7.1) For each geometric point s of S, there exists a natural bijection $\bar{\theta}_{s}: \bar{\Sigma}_{E / X / S}^{H, e^{\prime}}(\operatorname{Spec}(k(s))) \rightarrow \bar{M}_{e, e^{\prime}}(k(s))$.
(5.7.2) For $T \in(S c h / S)$ and a pair (F, φ) of a T-flat coherent $\mathcal{O}_{X \times{ }_{S} T}$-module F and an $\mathcal{O}_{X \times s T}$-homomorphism of F to $F \otimes_{X} E$ with the property (2.3.1) and (2.4) ${ }^{e^{\prime} \text {, }}$ there exists a morphism $\bar{f}_{(F, \varphi)}^{e, e^{\prime}}$ of T to $\bar{M}_{e, e^{\prime}}$ such that $\bar{f}_{(F, \varphi)}^{e, e^{\prime}}(t)=\bar{\theta}\left(\left[\left(F \otimes_{T} k(t)\right.\right.\right.$, $\left.\left.\left.\varphi \otimes_{T} k(t)\right)\right]\right)$ for all points t in $T(k(s))$. Moreover, for a morphism $g: T^{\prime} \rightarrow T$ in
(Sch/S),

$$
\bar{f}_{(F, \varphi)^{e, e^{\prime}}}^{\circ} g=\bar{f}_{\left(1{ }_{1} \times e^{e} e^{\prime}\right)^{*}(F, \varphi)} .
$$

(5.7.3) If $\bar{M}^{\prime} \in(S c h / S)$ and maps $\bar{\theta}_{s}^{\prime}: \bar{\Sigma}_{E / X / S}^{H \cdot \rho^{\prime}}(\operatorname{Spec}(k(s))) \rightarrow \bar{M}^{\prime}(k(s))$ have the above property (5.7.2), then there exists a unique S-morphism $\bar{\Psi}$ of $\bar{M}_{e, e^{\prime}}$ to \bar{M}^{\prime} such that $\bar{\Psi}(k(s)) \circ \bar{\theta}_{s}=\bar{\theta}_{s}^{\prime}$ and $\bar{\Psi}^{\circ} \bar{f}_{(F, \varphi)}^{e, e^{\prime}}=\bar{f}_{(F, \varphi)}^{\prime}$ for all geometric points s of S and for all (F, φ), where $\bar{f}_{(F, \varphi)}^{\prime}$ is the morphism given by the property (5.7.2) for \bar{M}^{\prime} and $\bar{\theta}_{s}^{\prime}$.

The construction of a moduli scheme of the functor $\bar{\Sigma}_{E / X / S}^{H}$ is completely same as in $\S 4$ of [7], that is, $\bar{M}_{E / X / S}(H)=\underline{\underline{l}} \frac{1 m}{e} \bar{M}_{e, e}$.

Theorem 5.8. In the situation of (4.1), there exists an S-scheme $\bar{M}_{E / X / S}(H)$ with the following properties:

1) $\bar{M}_{E / X / S}(H)$ is locally of finite type and separated over S.
2) There exists a coarse moduli scheme $M_{E / X / S}(H)$ of stable E-pairs with Hilbert polynimial H and it is contained in $\bar{M}_{E / X / S}(H)$ as an open subscheme.
3) For each geometric point s of S, there exists a natural bijection $\bar{\theta}_{s}: \bar{\Sigma}_{E / X / S}^{H}(\operatorname{Spec}(k(s))) \rightarrow \bar{M}_{E / X / S}(H)(k(s))$.
4) For $T \in(S c h / S)$ and a pair (F, φ) of a T-flat coherent $\mathcal{O}_{X \times S} T$-module F and an $\mathcal{O}_{X \times s} T^{-h o m o m o r p h i s m ~ o f ~} F$ to $F \otimes_{X} E$ with the property (2.3.1), there exists a morphism $\bar{f}_{(F, \varphi)}$ of T to $\bar{M}_{E / X \mid S}(H)$ such that $\bar{f}_{(F, \varphi)}(t)=\bar{\theta}_{S}\left(\left[\left(F \otimes_{T} k(t), \varphi \otimes_{T} k(t)\right)\right]\right)$ for all points t in $T(k(s))$. Moreover, for a morphism $g: T^{\prime} \rightarrow T$ in $(S c h / S)$,

$$
\bar{f}_{(F, \varphi)^{\circ}} \circ g=\bar{f}_{\left(1_{x} \times g\right)^{*}(F, \varphi)} .
$$

5) If $\bar{M}^{\prime} \in(S c h / S)$ and maps $\bar{\theta}_{s}^{\prime}: \bar{\Sigma}_{E / X / S}^{H}(\operatorname{Spec}(k(s))) \rightarrow \bar{M}^{\prime}(k(s))$ have the above property 4), then there exists a unique S-morphism $\bar{\Psi}$ of $\bar{M}_{E / X / S}(H)$ to \bar{M}^{\prime} such that $\bar{\Psi}(k(s)) \circ \bar{\theta}_{s}=\bar{\theta}_{s}^{\prime}$ and $\bar{\Psi} \circ \bar{f}_{(F, \varphi)}=\bar{f}_{(F, \varphi)}^{\prime}$ for all geometric points s of S and for all (F, φ), where $\bar{f}_{(F, \varphi)}^{\prime}$ is the morphism given by the property 4) for \bar{M}^{\prime} and $\bar{\theta}_{s}^{\prime}$.

Corollary 5.8.1. If $\mathfrak{S}_{E / X / S}(H)$ is bounded, then $\bar{M}_{E / X / S}(H)$ is quasi-projective over S.

Department of Mathematics Kyoto University

References

[1] A. Altman and S. Kleiman, Compactifying the Picard Scheme, Adv. in Math., 35 (1980), 50112.
[2] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math., 106 (1977), 45-60.
[EGA] A. Grothendieck and J. Dieudonné, Élement de Géométrie Algébrique, Chaps. I, II, III, IV, Publ. Math. I.H.E.S. Nos. 4, 8, 11, 17, 20, 24, 28 and 32.
[FGA] A. Grothendieck, Techniquis de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert, Sem. Bourbaki, t. 13, 1960/61, n ${ }^{\circ} 221$.
[3] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. Londen Math. Soc. (3), 55 (1987), 59-126.
[4] N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J., 54 (1987), 91-114.
[5] M. Maruyama, Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., 16 (1976), 627-637.
[6] M. Maruyama, Moduli of stable sheaves, I, J. Math. Kyoto Univ., 17 (1977), 91-126.
[7] M. Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ., 18 (1978), 557-614.
[8] M. Maruyama, On boundedness of families of torsion free sheaves, J. Math. Kyoto Univ., 21 (1981), 673-701.
[9] D. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
[10] N. Nitsure, Moduli spaces for stable pairs on a curve, Preprint (1988).
[11] W. M. Oxbury, Spectral curves of vector bundle endomorphisms, Preprint (1988).
[12] C. S. Seshadri, Geometric reductivity over arbitrary base, Adv. in Math., 26 (1977), 225-274.
[13] C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety, Preprint, Princeton University.

