# Moduli of stable pairs

## By

#### Kôji Yokogawa

## Introduction

Let S be a scheme of finite type over a universally Japanese ring  $\Xi$  and let  $f: X \to S$  be a smooth, projective, geometrically integral morphism. We shall fix an f-very ample invertible sheaf  $\mathcal{O}_{\chi}(1)$  and a locally free  $\mathcal{O}_{\chi}$ -module E of finite rank. An E-pair is a pair  $(F, \varphi)$  of a coherent sheaf F on a geometric fiber of f and an  $\mathcal{O}_X$ -homomorphism  $\varphi$  of F to  $F \otimes_{\mathcal{O}_X} E$  such that  $\varphi$  induces a canonical structure of  $S^*(E^{\vee})$ -module on F. An E-pair  $(F, \varphi)$  is said to be stable (or, semistable) if F is torsion free and if it satisfies the stability (or, semi-stability, resp.) inequality for all  $\varphi$ -invariant subsheaves of F (see §1). Stable pairs were first introduced by N. J. Hitchin [3] in the case where S = Spec(k) with k and algebraically closed field and where X is a curve and E is a line bundle. In this case, the moduli spaces of stable *E*-pairs were constructed by N. Nitsure [10], and W. M. Oxbury studied some properties of the moduli spaces [11]. In higher dimensional cases, C. T. Simpson constructed the moduli spaces of semi-stable Epairs over an algebraically closed field of characteristic zero [13]. In the method of C. T. Simpson, an E-pair  $(F, \varphi)$  were considered as a sheaf on Y =  $\operatorname{Proj}(S^*(E^{\vee}) \oplus \mathcal{O}_X)$  and the problem was reduced to the study of stable points on  $Q = \operatorname{Quot}_{\mathscr{O}_{Y}(-N) \oplus m/Y/S}^{H}$  for large integers N, where  $\mathscr{O}_{Y}(1)$  is a very ample invertible sheaf on Y and H is the Hilbert polynomial of F with respect to  $\mathcal{O}_{\mathbf{Y}}(1)$ . To handle this problem he embedded Q into the Grassmann variety Grass  $(H^{0}(\mathcal{O}_{Y}(l-N)^{\oplus m}), H(l))$  with l a sufficiently large integer. His proof depends, in essential way, on the boundedness theorem of M. Maruyama (Theorem 4.6 of [8]) which fails to hold in positive characteristic cases. The aim of this article is to construct a moduli scheme of semi-stable E-pairs along the method by D. Gieseker [2], M. Maruyama [6] and [7] and then our results hold good without assuming characteristic zero. The main idea is to find a space which seems as the "Gieseker space" in [2], [6] and [7]. It is the projective space  $\mathbf{P}(\operatorname{Hom}_{\mathscr{O}_{\mathbf{X}}}(V \otimes_{\Xi} (\bigoplus_{i=0}^{r-1} S^{i}(E^{\vee})),$  $(L)^{\vee}$ ), where L is a line bundle on X and r is the rank of F. On the other hand, to parametrize E-pairs we have to use a scheme  $\Gamma$  constructed in §4 instead of Quotscheme in the case of usual stable sheaves and to study stable points of  $\Gamma$  we have to introduce a morphism of  $\Gamma$  to a projective bundle on Pic<sub>X/S</sub> whose fibers are

Received, Aug 15, 1989

new Gieseker spaces.

§1 is devoted to several definitions, a boundedness theorem and its corollaries. The moduli functor  $\bar{\Sigma}^{H}_{E/X/S}$  is defined in §2. In §3, we shall extend the results of D. Gieseker on semi-stable points of Gieseker spaces to our new Gieseker spaces. In §4, we shall construct the scheme  $\Gamma$  and a morphism to a projective bundle on  $\operatorname{Pic}_{X/S}$  whose fibers are new Gieseker spaces. And in §5, we shall construct the coarse moduli scheme of the functor  $\bar{\Sigma}^{H}_{E/X/S}$ .

M. Maruyama suggested trying this problem to me. W. M. Oxbury informed me the results of N. Nitsure and C. T. Simpson. I wish to thank Professors M. Maruyama, W. M. Oxbury and T. Sugie for their encoragement and valuable suggestions.

## Notation and Convention

For an  $\mathcal{O}_X$ -module E on a scheme X, we denote by  $S^i(E)$  the *i*-th symmetric product, by  $S^*(E)$  the symmetric  $\mathcal{O}_X$ -algebra and by  $S^*_r(E)$  the  $\mathcal{O}_X$ -module  $\bigoplus_{i=0}^{r-1} S^i(E)$  for each positive integer r.

Let  $f: X \to S$  be a smooth, projective, geometrically integral morphism of locally noetherian schemes and let  $\mathcal{O}_X(1)$  be an f-very ample invertivle  $\mathcal{O}_X$ module. If s is a geometric point of S, then  $X_s$  means the geometric fibre of Xover s. For a coherent  $\mathcal{O}_{X_s}$ -module F, the degree of F with respect to  $\mathcal{O}_X(1)$  is that of the first Chern class of F with respect to  $\mathcal{O}_{X_s}(1) = \mathcal{O}_X(1) \otimes \mathcal{O}_{X_s}$  and it is denoted by  $\deg_{\mathcal{O}_X(1)}F$  or simply deg F. Moreover the rank of F is denoted by rk(F) and we denote by  $\mu(F)$  (or,  $P_F(m)$ ) the number  $\deg(F)/rk(F)$  (or, the polynomial  $\chi(F \otimes \mathcal{O}_X(m))/rk(F)$ , resp.) when  $rk(F) \neq 0$ . When X and Y are S-schemes and E(or, F) is an  $\mathcal{O}_X$ -module (or,  $\mathcal{O}_Y$ -module, resp.),  $E \bigotimes_S F$  denotes the sheaf  $p_X^*(E) \bigotimes_{\mathcal{O}_X \times_S Y} p_Y^*(F)$ , where  $p_X$  (or,  $p_Y$ ) is the projection of  $X \times_S Y$  to X (or, Y, resp.). For an  $\mathcal{O}_S$ -module E and a morphism  $f: X \to S$ , we shall use the notation  $E_X$  instead of  $f^*(E)$ . In particular, if E and F are  $\mathcal{O}_X$ -modules, the  $E \bigotimes_X F$  means  $E \bigotimes_{\mathcal{O}_X} F$ .

## §1. Boundedness of the family of semi-stable pairs

Let  $f: X \to S$  be a smooth, projective, geometrically integral morphism of noetherian schemes and let  $\mathcal{O}_X(1)$  be an *f*-very ample invertible sheaf. Fix a locally free  $\mathcal{O}_X$ -module *E* of finite rank.

**Definition 1.1.** Let F be a coherent sheaf on X and  $\varphi$  be an  $\mathcal{O}_{X^-}$ homomorphism of F to  $F \otimes_X E$ .  $\varphi$  induces a natural homomorphism  $\varphi'$  of  $E^{\vee}$  to  $\mathscr{E}nd_{\mathscr{O}_X}(F)$ . A pair  $(F, \varphi)$  is said to be an E-pair if  $\varphi'$  can be extended to the natural homomorphism of  $S^*(E^{\vee})$  to  $\mathscr{E}nd_{\mathscr{O}_X}(F)$  as  $\mathscr{O}_X$ -algebras. For an E-pair  $(F, \varphi)$ , a subsheaf F' of F is said to be  $\varphi$ -invariant when  $\varphi(F')$  is contained in  $F' \otimes_X E$  and a quotient sheaf F'' of F is said to be  $\varphi$ -invariant when the kernel of the quotient map of F to F'' is  $\varphi$ -invariant. The numerical polynomial  $\chi(F(m))$  is

312

called the Hilbert polynomial of the E-pair  $(F, \varphi)$ .

For an *E*-pair (*F*,  $\varphi$ ), we obtain the following  $\mathcal{O}_{x}$ -homomorphism:

(1.1.1) 
$$\tilde{\varphi}: F \bigotimes_X S^*(E^{\vee}) \longrightarrow F.$$

For a coherent subsheaf F' of F, we put

(1.1.2) 
$$\overline{F}' = \widetilde{\varphi}(F' \bigotimes_X S^*(E^{\vee})).$$

It is easy to see that the sheaf  $\overline{F'}$  is the minimal  $\varphi$ -invariant subsheaf of F containing F'. Now let  $(F, \varphi)$  be an *E*-pair on a geometric fiber  $X_s$  of f and let r be the rank of F as an  $\mathcal{O}_{X_s}$ -module. For a coherent subsheaf F' of F, we put

(1.1.3) 
$$\overline{F}'_0 = \widetilde{\varphi}(F' \bigotimes_X S^*_r(E^{\vee})).$$

**Lemma 1.2.** Under the above situation, suppose that F is torsion free on  $X_s$ . Then the degree of  $\overline{F}'$  equals that of  $\overline{F}'_0$ .

*Proof.* Let U be the maximal open subscheme of  $X_s$  where F is locally free then we have  $\operatorname{codim}(X_s, X_s - U) \ge 2$ . It is sufficient to prove that  $\overline{F}'$  is equal to  $\overline{F}'_0$  on each open subset  $V = \operatorname{Spec}(A)$  of U where  $E^{\vee}$  is a free A-module with a basis  $x_1, \ldots, x_m$ . Then  $\overline{F}'$  (or,  $\overline{F}'_0$ ) is generated by the set

$$\{\varphi'(x_1)^{i_1} \cdots \varphi'(x_m)^{i_m}(f) | f \in F', \ 0 \le i_1, \dots, i_m\}$$
  
(or,  $\{\varphi'(x_1)^{i_1} \cdots \varphi'(x_m)^{i_m}(f) | f \in F', \ 0 \le i_1, \dots, i_m \le r-1\}$ , resp.),

where  $\varphi'$  is the induced homomorphism of  $S^*(E^{\vee})$  to  $\mathscr{End}_{\mathscr{O}_X}(F)$  by  $\varphi$ . On the other hand, by Hamilton-Caylay's Theorem, each  $\varphi'(x_i)$  satisfies a monic polynomial of degree r. Thus we see that  $\overline{F'} = \overline{F'_0}$ . Q.E.D.

**Definition 1.3.** An *E*-pair  $(F, \varphi)$  on a geometric fiber  $X_s$  of *f* is said to be semi-stable (or, stable) (with respect to  $\mathcal{O}_X(1)$ ) if *F* is torsion free and for all non-trivial  $\varphi$ -invariant coherent subsheaves *F'* of *F*, we have

$$P_{F'}(m) \le P_F(m)$$
 (or,  $P_{F'}(m) < P_F(m)$ , resp.)

for all large integers m.

**Definition 1.4.** An *E*-pair  $(F, \varphi)$  on a geometric fiber  $X_s$  of *f* is said to be  $\mu$ -semi-stable (or,  $\mu$ -stable) if *F* is torsion free and for all non-trivial  $\varphi$ -invariant coherent subsheaves *F'* of *F*,

$$\mu(F') \le \mu(F)$$
 (or,  $\mu(F') < \mu(F)$ , resp.).

As in the case of torsion free sheaves, we have the following relations:

$$\begin{array}{ccc} \mu \text{-stable} & \Longrightarrow & \text{stable} \\ & & & & & \\ & & & & & \\ \mu \text{-semi-stable} & \longleftarrow & \text{semi-stable} \end{array}$$

**Definition 1.5.** Let  $\alpha$  be a rational number. An *E*-pair (*F*,  $\varphi$ ) (or, a coherent sheaf *F*) on a geometric fiber  $X_s$  of *f* is said to be of type  $\alpha$ , if *F* is torsion free and for all non-trivial  $\varphi$ -invariant coherent subsheaves (or, for all non-trivial coherent subsheaves, resp.) *F'* of *F*, the following holds

$$\mu(F') \le \mu(F) + \alpha.$$

Now let us consider on the boundedness of the family of classes of *E*-pairs of type  $\alpha$  with a fixed Hilbert polynomial.

**Proposition 1.6.** Let  $\alpha$  be a rational number. There is a rational number  $\beta$  which depends only on  $\alpha$ , r and E such that if an E-pair (F,  $\varphi$ ) is of type  $\alpha$ , then F is of type  $\beta$ .

*Proof.* Let F' be a  $\mu$ -semi-stable subsheaf of F such that  $\mu(F')$  is maximal among all coherent subsheaves of F. We can take a positive integer l so that  $S_r^*(E^{\vee}) \bigotimes_X \mathcal{O}_X(l)$  is generated by global sections. Then for some positive integer m.  $\overline{F}'_0$  is a quotient sheaf of  $F' \bigotimes_X \mathcal{O}_X(-l)^{\oplus m}$ . Since  $F' \bigotimes_X \mathcal{O}_X(-l)^{\oplus m}$  is  $\mu$ -semistable, we have  $\mu(F' \bigotimes_X \mathcal{O}_X(-l)^{\oplus m}) = \mu(F') - l \cdot d \leq \mu(\overline{F}'_0)$ , where d is the degree of X with respect to  $\mathcal{O}_X(1)$ . By Lemma 1.2 and our hypothesis, we have  $\mu(\overline{F}'_0)$  $= \mu(\overline{F}') \leq \max(\mu(F), \mu(F) + \alpha)$ . Hence F is of type  $\max(0, \alpha) + l \cdot d$ . Q.E.D.

By the result of M. Maruyama [8], we have

Corollary 1.7. Suppose that one of the following conditions is satisfied:

- (a) S is a noetherian scheme over a field of characteristic zero.
- (b) The rank is not greater than 3.
- (c) The dimension of X over S is not greater than 2.

Then the family of classes of E-pairs of type  $\alpha$  with a fixed Hilbert polynomial is bounded. In particular, the family of  $\mu$ -semi-stable pairs with a fixed Hilbert polynomial is bounded.

**Definition 1.8.** Let e be a non-negative integer and let  $(F, \varphi)$  be an E-pair on a geometric fiber  $X_s$  of X over S.

1)  $(F, \varphi)$  is said to be *e*-semi-stable (or, *e*-stable) (with respect to  $\mathcal{O}_{X}(1)$ ) if it is semi-stable (or, stable) (with respect to  $\mathcal{O}_{X}(1)$ ) and if for general non-singular curves  $C = D_{1} \cdots D_{n-1}, D_{1}, \dots, D_{n-1} \in |\mathcal{O}_{X_{s}}(1)|, (F|_{C}, \varphi|_{C})$  is of type *e*, where *n* is the dimension of  $X_{s}$ .

2)  $(F, \varphi)$  is said to be strictly e-semi-stable if it is e-semi-stable and if for every  $\varphi$ -invariant coherent quotient sheaf F' of F with  $P_{F'}(m) = P_F(m)$ , the E-pair  $(F', \varphi')$  induced by  $(F, \varphi)$  is e-semi-stable.

Let  $\mathfrak{S}_{E/X/S}(e, H)$  be the family of classes of *E*-pairs on the fibers of *X* over *S* such that  $(F, \varphi)$  is contained in  $\mathfrak{S}_{E/X/S}(e, H)$  if and only if  $(F, \varphi)$  is *e*-semi-stable and its Hilbert polynomial is *H*.

By Lemma 3.3 of [6] and Proposition 1.6, we have

**Corollary 1.9.** For each e, H,  $\mathfrak{S}_{E/X/S}(e, H)$  is bounded.

By virtue of the fundamental lemma 2.2 in [6], Proposition 1.6 and the similar proof as in Proposition 3.6 in [6], we have

**Proposition 1.10.** For each  $\mathfrak{S}_{E/X/S}(e, H)$ , there exists an integer N such that 1) for all  $(F, \varphi) \in \mathfrak{S}_{E/X/S}(e, H)$ ,  $m \ge N$  and i > 0, F(m) is generated by its global sections and  $h^i(F(m)) = 0$ ,

2) if  $(F, \varphi)$  is contained in  $\mathfrak{S}_{E/X/S}(e, H)$  and if it is stable, then for all  $m \ge N$  and all  $\varphi$ -invariant coherent subsheaves F' of F with  $0 \neq F' \subsetneq F$ ,

$$h^{0}(F'(m))/\mathrm{rk}(F') < h^{0}(F(m))/\mathrm{rk}(F)$$

3) if  $(F, \varphi)$  is contained in  $\mathfrak{S}_{E/X/S}(e, H)$  and if it is not stable, then for all  $m \ge N$  and all  $\varphi$ -invariant coherent subsheaves F' of F with  $0 \ne F' \subsetneq F$ ,

$$h^{0}(F'(m))/\operatorname{rk}(F') \leq h^{0}(F(m))/\operatorname{rk}(F)$$

and, moreover, there exists a non-trivial  $\varphi$ -invariant coherent subsheaf  $F_0$  of F such that  $h^0(F_0(m))/\operatorname{rk}(F_0) = h^0(F(m))/\operatorname{rk}(F)$  for all  $m \ge N$ .

For the openness of the property "strictly e-semi-stability", we have

**Proposition 1.11.** Let  $g: Y \to T$  be a smooth, projective, geometrically integral morphism of locally noetherian schemes,  $\mathcal{O}_Y(1)$  be a g-very ample invertible sheaf on Y, E be a locally free  $\mathcal{O}_Y$ -module and  $(F, \varphi)$  be an E-pair such that F is T-flat. If  $H^i(Y_t, \mathcal{O}_Y(1) \otimes k(t)) = 0$  for all i > 0 and  $t \in T$ , then there exists an open set U of T such that for all algebraically closed field k,  $U(k) = \{t \in T(k) | (F, \varphi) \otimes k(t) \text{ is strictly e-semi-stable with respect to } \mathcal{O}_Y(1) \}.$ 

*Proof.* Let  $Quot_{(F,\varphi)/Y/T}$  be the subfunctor of  $Quot_{F/Y/T}$  defined in the following (1.11.1):

(1.11.1)  $\operatorname{Quot}_{(F,\varphi)/Y/T}(S) = \{x \in \operatorname{Quot}_{F/Y/T}(S) | \text{ the quotient sheaf } F' \text{ of } F_S \text{ corresponding to } x \text{ is } \varphi \text{-invariant}\}.$ 

Quot<sub>(F, $\varphi$ )/X/S</sub> is represented by a closed subscheme of Quot<sub>F/X/S</sub> (see Lemma 4.3). We omit the rest of the proof, since it is same as the proof of Proposition 3.6 in [7] if we use the scheme Quot<sub>(F, $\varphi$ )/X/S</sub> instead of Quot<sub>F/X/S</sub>.

### §2. Definition of moduli functors

Let X be a non-singular projective variety over an algebraically closed field k, with a very ample invertible sheaf  $\mathcal{O}_{X}(1)$  and let E be a locally free sheaf of finite rank on X.

**Definition 2.1.** Let  $(F, \varphi)$  be a semi-stable *E*-pair. A filtration  $0 = F_0 \subset F_1 \subset \cdots \subset F_t = F$  by  $\varphi$ -invariant coherent subsheaves is called a Jordan-Hölder filtration if  $(F_i/F_{i-1}, \varphi_i)$  is stable and  $P_{F_i}(m) = P_F(m)$   $(1 \le i \le t)$ , where  $\varphi_i$  is a homomorphism induced by  $\varphi$ . For a Jordan-Hölder filtration  $0 = F_0 \subset F_1 \subset \cdots$ 

 $\subset F_i = F$ , define gr $(F, \varphi)$  to be  $(\bigoplus_{i=0}^t F_i/F_{i-1}, \bigoplus_{i=0}^t \varphi_i)$ .

By the same argument as in Proposition 1.2 of [7], we have the following.

**Proposition 2.2.** Every semi-stable E-pair  $(F, \varphi)$  has a Jordan-Hölder filtration. If  $0 = F_0 \subset F_1 \subset \cdots \subset F_t = F$  and  $0 = F'_0 \subset F'_1 \subset \cdots \subset F'_s = F$  are two Jordan-Hölder filtrations for  $(F, \varphi)$ , then t = s and there exists a permutation  $\sigma$  of  $\{1, 2, ..., t\}$  such that  $(F_i/F_{i-1}, \varphi_i)$  is isomorphic to  $(F'_{\sigma(i)}/F'_{\sigma(i-1)}, \varphi'_{\sigma(i)})$ .

Now we define the moduli functor of semi-stable *E*-pairs. Let  $f: X \to S$  be a smooth, projective, geometrically integral morphism of noetherian schemes with an f-very ample invertible sheaf  $\mathcal{O}_X(1)$ . We denote by (Sch/S) the category of locally noetherian schemes over S. Let *E* be a locally free  $\mathcal{O}_X$ -module of finite rank and H(m) be a numerical polynomial. The functor  $\overline{\Sigma}^H_{E/X/S}$  of (Sch/S) to the category of sets is defined as follows.

For an object T of (Sch/S),

$$\overline{\Sigma}_{E/X/S}^{H}(T) = \{(F, \varphi) | F \text{ is a } T\text{-flat, coherent } \mathcal{O}_{X \times_S T}\text{-module and } \varphi \text{ is an } \mathcal{O}_{X \times_S T}\text{-homomorphism of } F \text{ to } F \bigotimes_X E \text{ with the property } (2.3.1)\}/\sim, \text{ where } \sim \text{ is the equivalence relation defined in (2.3.2).}$$

(2.3.1) For every geometric point t of T,  $(F \otimes_T k(t), \varphi \otimes_T k(t))$  is a semistable  $E \otimes_S k(t)$ -pair and the Hilbert polynomial of  $F \otimes_T k(t)$  is H(m).

(2.3.2)  $(F, \varphi) \sim (F', \varphi')$  is and only if (1)  $(F, \varphi) \simeq (F' \otimes_T L, \varphi \otimes_T i d_L)$  or (2) there exist filtrations  $0 = F_0 \subset F_1 \subset \cdots \subset F_u = F$  and  $0 = F'_0 \subset F'_1 \subset \cdots \subset F'_u = F'$ by  $\varphi$  (or,  $\varphi'$ ) invariant coherent  $\mathcal{O}_{X \times sT}$ -modules such that for every geometric point t of T, their restrictions to  $X \times_T$  Spec k(t) provide us with Jordan-Hölder filtrations of  $(F \otimes_T k(t), \varphi \otimes_T k(t))$  and  $(F' \otimes_T k(t), \varphi' \otimes_T k(t))$ , respectively,  $\bigoplus_{i=0}^{u} F_i / F_{i-1}$  is Tflat and that  $(\bigoplus_{i=0}^{u} F_i / F_{i-1}, \bigoplus_{i=0}^{u} \varphi_i) \simeq ((\bigoplus_{i=0}^{u} F'_i / F'_{i-1}) \otimes_T L, \bigoplus_{i=0}^{u} \varphi'_i \otimes i d_L)$ , for some invertible sheaf L on T. The equivalence class of  $(F, \varphi)$  is denoted by  $[(F, \varphi)]$ .

For a morphism  $g: T' \to T$  in (Sch/S),  $g^*$  defines a map of  $\overline{\Sigma}^H_{E/X/S}(T)$  to  $\overline{\Sigma}^H_{E/X/S}(T')$ . It is obvious that  $\overline{\Sigma}^H_{E/X/S}$  is a contravariant functor of (Sch/S) to (Sets).

Moreover, we need to define a subfunctor of  $\overline{\Sigma}^{H}_{E/X/S}$ . Let *e* be a non-negative integer. For an object *T* of (Sch/S),

 $\bar{\Sigma}^{H,e}_{E/X/S}(T) = \left\{ \left[ (F, \varphi) \right] \in \bar{\Sigma}^{H}_{E/X/S}(T) | (F, \varphi) \text{ satisfies the property } (2.4)^{e} \right\}.$ 

 $(2.4)^e$  For every geometric point t of T,  $(F \otimes_T k(t), \varphi \otimes_T k(t))$  is strictly e-semi-stable.

If  $(F, \varphi) \sim (F', \varphi')$  and  $(F, \varphi)$  satisfies the property  $(2.4)^e$ , then  $(F', \varphi')$  has the same property (see § 3 of [7]). Hence the above definition is well-defined. By virtue of Proposition 1.11, if  $H^i(X_s, \mathcal{O}_X(1) \otimes \mathcal{O}_{X_s}) = 0$  for all  $i > 0, s \in S$ , then  $\overline{\Sigma}_{E/X/S}^{H,e}$  is an open subfunctor of  $\overline{\Sigma}_{E/X/S}^{H}$ .

316

#### §3. Semi-stable points of extended Gieseker spaces

Let X be a smooth, projective variety over a field k and  $\mathcal{O}_X(1)$  be a very ample invertible sheaf. Take an N-dimensional vector space V over k. Let E and F be locally free  $\mathcal{O}_X$ -modules of rank l and m, respectively. Fix a non-negative integer r. The algebraic group  $G = GL(V) \simeq GL(k, N)$  acts naturally on the vector space  $W = \operatorname{Hom}_{\mathscr{O}_X}(\bigwedge^r(V \otimes_k E), F)$ . Hence we have an action of G on the projective space  $\mathbf{P}(W^{\vee})$  and a G-linearized invertible sheaf  $\mathcal{O}(1)$  on  $\mathbf{P}(W^{\vee})$ . If  $E = \mathcal{O}_X$ , then  $W = \operatorname{Hom}_k(\bigwedge^r V, H^0(X, F))$  and  $\mathbf{P}(W^{\vee})$  is the Gieseker space  $P(V, r, H^0(X, F))$ which has been exploited to construct a moduli of semi-stable sheaves (see [2], [6], [7]). We denote  $\mathbf{P}(W^{\vee})$  with the action of G and the G-linearized invertible sheaf  $\mathcal{O}(1)$  defined as above by  $P_E(V, r, F)$ . It is called also a Gieseker space. From now on, we assume that F is an invertible sheaf.

For a field K containing k, a non-zero element T of  $\operatorname{Hom}_{\mathscr{O}_{X}}(\bigwedge'(V \otimes_{k} E), F) \otimes_{k} K = \operatorname{Hom}_{\mathscr{O}_{X_{K}}}(\bigwedge'(V_{K} \otimes_{K} E_{K}), F_{K})$  gives rise to a K-rational point of  $P_{E}(V, r, F)$ , which is denoted by T, too. For vector subspaces  $V_{1}, \ldots, V_{r}$  of  $V \otimes_{k} K$ , the image of  $(V_{1} \otimes_{K} E_{K}) \otimes \cdots \otimes (V_{r} \otimes_{K} E_{K})$  by the canonical homomorphism  $(V_{K} \otimes_{K} E_{K})^{\otimes r} \to \bigwedge'(V_{K} \otimes_{K} E_{K})$  is denoted by  $[V_{1}, \ldots, V_{r}]$  and if  $V_{i}$  is a one-dimensional subspace generated by  $x_{i}$ , we use the notation  $[V_{1}, \ldots, V_{i-1}, x_{i}, V_{i+1}, \ldots, V_{r}]$  for  $[V_{1}, \ldots, V_{r}]$ .

We shall extend the notion "T-independence" to our new Gieseker spaces.

**Definition 3.1.** Let K be an algebraically closed field containing k and let T be a non zero element of  $\operatorname{Hom}_{\sigma_{X_K}}(\bigwedge(V_K \otimes_K E_K), F_K)$  or a K-rational point of  $P_E(V, r, F)$ . Vectors  $x_1, \ldots, x_d$  in  $V_K$  are said to be T-independent if the restriction of T to the subspace  $[x_1, \ldots, x_d, V, \ldots, V]$  is not zero. A vector x is said to be Tdependent on  $x_1, \ldots, x_d$  if the restriction of T to the subspace  $[x_1, \ldots, x_d, x, V, \ldots, V]$  is zero. For a vector subspace V' of  $V_K$ , vectors  $x_1, \ldots, x_d$ in V' is called a T-base of V' if  $x_1, \ldots, x_d$  are T-independent and if all vectors in V' are T-dependent on  $x_1, \ldots, x_d$ . For a T-base  $x_1, \ldots, x_d$ , the number d is called its length and the maximal (or, minimal) length among all T-bases of V' is called the maximal (or, minimal) T-dimension of V' and denoted by  $\overline{\dim}_T V'$  (or,  $\underline{\dim}_T V'$ , resp.).

By a similar proof as in Proposition 2.2 and Proposition 2.3 of [2], we hae

**Proposition 3.2.** Let K be an algebraically closed field containing k.

1) A point T in  $P_E(V, r, F)(K)$  is properly stable (or, semi-stable) with respect to the action  $\bar{\sigma}$  of PGL(V) if for all vector subspaces V' of  $V_K$ , the following inequalities hold

 $\dim_{K} V' < (N/r) \cdot \underline{\dim}_{T} V'$ 

(or, 
$$\dim_{K} V' \leq (N/r) \cdot \underline{\dim}_{T} V'$$
, resp).

2) If a point T in  $P_E(V, r, F)(K)$  stable (or, semi-stable), then for all vector subspaces V' of  $V_K$ , the following inequalities hold

 $\dim_{K} V' < (N/r) \cdot \overline{\dim}_{T} V'$ 

(or, 
$$\dim_{K} V' \leq (N/r) \cdot \overline{\dim}_{T} V'$$
, resp).

**Corollary 3.3.** Let T be a K-valued geometric point of  $P_E(V, r, F)$  with the following property (3.3.1).

(3.3.1) For all vector subspaces V' of  $V_{\kappa}$ ,  $\overline{\dim}_{T} V' = \underline{\dim}_{T} V'$ .

Then T is semi-stable (or, stable) if and only if for all vector subspaces V' of  $V_K(or, for all vector ubspaces V' of V_K such that <math>0 < \dim_T V' < r$ ),

$$\dim_{K} V' < (N/r) \cdot \dim_{T} V'$$
  
(or, 
$$\dim_{K} V' \le (N/r) \cdot \dim_{T} V', \ resp).$$

Next we must analyze orbit spaces of  $P_E(V, r, F)$ .

**Definition 3.4.** Let T, T' and T'' be K-valued geometric points of  $P_E(V, r, F)$ ,  $P_E(V', r', F')$  and  $P_E(V'', r'', F'')$ , respectively. Let  $\phi: F' \otimes F'' \to F$  be an injective homomorphism. T is said to be a  $\phi$ -extention or, simply an extention of T'' by T' if the following conditions are satisfied;

1) 
$$r = r' + r''$$
,

2) there exists an exact sequence

$$0 \longrightarrow V' \otimes_k K \xrightarrow{f} V \otimes_k K \xrightarrow{g} V'' \otimes_k K \longrightarrow 0$$

such that the following diagram is commutative:

In this case T' (or, T'') is said to be a subpoint (or, quotient point, resp.) of T.

**Definition 3.5.** Let T be a K-valued geometric point of  $P_E(V, r, F)$ . T is said to be excellent if it has the property (3.3.1) and the following (3.5.1).

(3.5.1) For every subpoint T' of T, if  $x_1, \ldots, x_d$  is a T'-base of a subspace  $V'_0$ 

of V', then  $f(x_1), \ldots, f(x_d)$  is a T-base of  $V'_0$ .

(3.5.1) implies the following (3.5.1)'.

(3.5.1)' For every subpoint T' of T and every subspace  $V'_0$  of  $V'_K$ ,

$$\underline{\dim}_T V'_0 \leq \underline{\dim}_{T'} V'_0 \leq \overline{\dim}_{T'} V'_0 \leq \overline{\dim}_T V'_0.$$

**Definition 3.6.** Let T, T' and T'' be K-valued geometric points of  $P_E(V, r, F)$ ,  $P_E(V', r', F')$  and  $P_E(V'', r'', F'')$ , respectively and let  $\phi: F' \otimes F'' \to F$  be an injective homomorphism. Assume T is a  $\phi$ -extention of T'' by T' and let

$$0 \longrightarrow V' \bigotimes_{k} K \xrightarrow{f} V \bigotimes_{k} K \xrightarrow{g} V'' \bigotimes_{k} K \longrightarrow 0$$

be the underlying exact sequence of the extention. T is said to be a  $\phi$ -direct sum of T' and T" if there exists a linear map  $i: V'' \bigotimes_k K \to V \bigotimes_k K$  such that  $g \circ i$  $= id_{V'' \otimes K}$  and  $T|_{[i(y_1),...,i(y_s),w_{s+1},...,w_r]} = 0$  for all  $y_1,..., y_s$  in  $V'' \bigotimes_k K$  and for all  $w_{s+1},..., w_r$  in  $V \bigotimes_k K$  whenever s > r''.

If  $T_1$  and  $T_2$  are two  $\phi$ -direct sums of T' and T'', then  $T_1 \simeq T_2$  (see Lemma 2.16 of [7]). Thus a direct sum of T' and T'' can be denoted by  $T' \oplus T''$ . Moreover let  $T'_i$  be a K-valued geometric point of  $P_E(V'_i, l_i, F'_i)$   $(1 \le i \le t)$  and put  $r_i = l_1 + \cdots + l_i$  and  $V_i = V'_1 \oplus \cdots \oplus V'_i$ . Let  $\phi_i : F_{i-1} \otimes F'_i \to F_i$  be a sequence of injective homomorphisms  $(1 \le i \le t, F_0 = \mathcal{O}_X)$ . We can define  $\phi_i$ -direct sum of  $T_{i-1}$  and  $T'_i$  inductively. Each  $T_i$  is a K-valued geometric point of  $P_E(V_i, r_i, F_i)$  and it is denoted by  $(\cdots ((T'_1 \oplus T'_2) \oplus T'_3) \oplus \cdots) \oplus T'_i)$ . By a similar argument as in Lemma 2.19 and corollary 2.19.1 of [7] we can denote  $T_i$  by  $T'_1 \oplus \cdots \oplus T'_i$ .

Now the main result in  $\S2$  of [7] can be extended to our case. Since the proof is similar to that of Theorem 2.13 and 2.22 of [7] and it is not difficult to rewrite so as to suit our case, we omit the proof.

**Theorem 3.7.** Let  $\phi_i: F_{i-1} \otimes F'_i \to F_i$  be injective homomorphisms  $(1 \le i \le t, F_0 = \mathcal{O}_X), 0 < r_1 < \cdots < r_t = r$  be a sequence of integers and let  $D_i$  be a GL ( $V_i$ )-invariant closed set of  $P_E(V_i, r_i, F_i)$   $(1 \le i \le t)$ . Assume that for every algebraically closed field K containing k, all the points of  $D_i(K)$  are excellent and that  $\dim_k V_1/r_1 = \cdots = \dim_k V_t/r_t$ . Let  $S_i$  be a stable, excellent point in  $P_E(V'_i, l_i, F'_i)(\bar{k})$  which is k-rational, where  $l_i = r_i - r_{i-1}$  and  $\bar{k}$  is the algebraic closure of k. Then there exists a  $GL(V_i)$ -invariant closed set  $Z_t = Z(S_1, \ldots, S_t)$  of  $D_t^{ss} = D_t^{ss}(\mathcal{O}(1) \otimes \mathcal{O}_{D_t})$  such that for every algebraically closed field K containing k,

 $Z_t(K) = \{T \in D_t(K) | T \text{ has the following property } (*)_t\}.$ 

(\*)<sub>t</sub>: There exists a K-valued geometric point  $T_i$  in each  $D_i^{ss} = D_i^{ss}(\mathcal{O}(1) \otimes \mathcal{O}_{D_i})$ such that  $T_1 = S_1$ ,  $T_i$  is a  $\phi_i$ -extention of  $S_i$  by  $T_{i-1}(2 \le i \le t)$  and  $T = T_t$ .

Moreover if  $Z(S_1, ..., S_t)$  is not empty, then  $GL(V_t)$ -orbit  $o(S_1, ..., S_t)$  of  $S_1 \oplus \cdots \oplus S_t$  is a unique closed orbit in  $Z(S_1, \cdots S_t)$ .

### §4. Morphism to Gieseker spaces

To construct a moduli scheme of semi-stable sheaves, D. Gieseker [2] and M. Maruyama [6], [7] constructed a morphism  $\mu$  of a Quot-scheme to a projective bundle in the étale topology on a finite union of connected components of Pic<sub>X/S</sub>. Our aim in this section is to construct a scheme which is an analogy of Quot-schemes for our problem and which plays the same role as the above  $\mu$ .

From now on, we shall fix the following situation:

(4.1) Let S be a scheme of finite type over a universally Japanese ring  $\Xi$  and let  $f: X \to S$  be a smooth, projective, geometrically integral morphism such that the dimension of each fiber of X over S is n. Let  $\mathcal{O}_X(1)$  be an f-very ample invertible sheaf such that for all points s in S and for all positive integers i,  $H^i(X_s, \mathcal{O}_X(1) \otimes \mathcal{O}_{X_s}) = 0$  and let E be a locally free  $\mathcal{O}_X$ -module of finite rank.

Let V be a free  $\Xi$ -module of rank N and let G be the  $\Xi$ -group scheme GL(V). Fix a numerical polynomial H(m) which is the Hilbert polynomial of a coherent sheaf of rank r on a geometric fiber of f. Take  $\tilde{Q}$  a union of some of connected components of  $\operatorname{Quot}_{W\otimes_{\Xi}S\sharp(E^{\vee})/X/S}^{H}$  and the universal quotient sheaf  $\tilde{\phi}: V \otimes_{\Xi}S_{*}^{*}(E^{\vee})_{X_{\bar{Q}}} \to \tilde{F}$  on  $X_{\bar{Q}}$ . We denote by  $\tilde{\phi}^{i}$  the restriction of  $\tilde{\phi}$  to  $V \otimes_{\Xi}S^{i}(E^{\vee})_{X_{\bar{Q}}}$ . Let  $\tilde{Q}$  be the subset of  $\tilde{Q}$  such that a point x of  $\tilde{Q}$  is contained in  $\tilde{Q}$  if and only if  $\tilde{\phi}^{0} \otimes_{\tilde{Q}} k(x)$  is surjective. By the properness of the projection of  $X_{\bar{Q}}$  to  $\tilde{Q}, \tilde{Q}^{0}$  is an open set of  $\tilde{Q}$  and clearly it is G-stable. Since the restriction of  $\tilde{\phi}^{0}$  to  $X_{\bar{Q}^{0}}$  is surjective, it defines a morphism of  $\tilde{Q}$  to  $\operatorname{Quot}_{V\otimes_{\Xi}\theta_{X}/X/S}^{H}$ . Clearly it is a G-morphism. Let Q be a union of connected components with a non-empty intersection with the image of  $\tilde{Q}^{0}$ . Then we obtain a G-morphism of  $\tilde{Q}^{0}$  to Q.

We shall need the following proposition (cf. EGA III (7.7.8), (7.7.9) or [1]).

**Proposition 4.2.** Let  $f: X \to S$  be a proper morphism of noetherian schemes, and let I and F be two coherent  $\mathcal{O}_X$ -modules with F flat over S. Then there exist a coherent  $\mathcal{O}_S$ -module H(I, F) and an element h(I, F) of  $\operatorname{Hom}_X(I, F \otimes_S H(I, F))$  which represents the functor

$$M \mapsto \operatorname{Hom}_{X}(I, F \otimes_{S} M)$$

defined on the category of quasi-coherent  $\mathcal{O}_{S}$ -modules M, and the formation of the pair commutes with base change; in other words, the Yoneda map defined by h(I, F)

$$(4.2.1.) y: \operatorname{Hom}_{T}(H(I, F)_{T}, M) \longrightarrow \operatorname{Hom}_{X_{T}}(I_{T}, F \bigotimes_{S} M)$$

is an isomorphism for every S-scheme T and every quasi-coherent  $\mathcal{O}_T$ -module M. Moreover if I is flat over S and if  $\operatorname{Ext}^1_{X_s}(I \otimes k(s), F \otimes k(s)) = 0$  for all points s of S, then H(I, F) is locally free.

Let  $\phi: V \otimes_{\Xi} \mathcal{O}_{X_Q} \to F$  be the universal quotient sheaf on  $X_Q$ . Now let us apply Proposition 4.2 to the case  $X = X_Q$ , S = Q, I = F and  $F = F \otimes_X E$ . Then we obtain a coherent  $\mathcal{O}_Q$ -module  $H(F, F \otimes_X E)$ . By virtue of Proposition 4.2, we

know that the scheme  $\Gamma' = \mathbf{V}(H(F, F \bigotimes_X E))$  represents the functor,

$$T \longmapsto \operatorname{Hom}_{X_T}(F_{X_T}, F_{X_T} \bigotimes_X E)$$

defined on the category of Q-schemes, moreover we have the universal homomorphism  $\Phi: F_{X_{\Gamma'}} \to F_{X_{\Gamma'}} \bigotimes_X E$ .

**Lemma 4.3.** Let  $f: X \to S$  be a proper morphism of noetherian schemes and let  $\varphi: I \to F$  be an  $\mathcal{O}_X$ -homomorphism of coherent  $\mathcal{O}_X$ -modules with F flat over S. Then there exists a unique closed subscheme Z of S such that for all morphism  $g: T \to S$ ,  $g^*(\varphi) = 0$  if and only if g factors through Z.

*Proof.* By the isomorphism (4.2.1),  $\varphi$  corresponds to an  $\mathcal{O}_S$ -homomorphism  $\psi: H(I, F) \to \mathcal{O}_S$ . The closed subscheme Z of S defined by the ideal sheaf Image  $(\psi)$  is the desired one.

By virtue of Lemma 4.3, there exists a closed subscheme  $\Gamma$  of  $\Gamma'$  such that for all morphism  $g: T \to \Gamma'$ ,  $g^*(\Phi)$  can be extended to the homomorphism  $F_{X_T} \bigotimes_X S^*(E^{\vee}) \to F_{X_T}$  defined as in (1.1.1) if and only if g factors through  $\Gamma$ . We have also the universal homomorphism  $\tilde{\Phi}: F_{X_T} \bigotimes_X S^*(E^{\vee}) \to F_{X_T}$ . Let  $\pi: \Gamma \to Q$ be the structure morphism. The surjective homomorphism  $\tilde{\Phi} \circ (\operatorname{id}_{X_Q} \times \pi)^*(\phi \otimes \operatorname{id}_{S^*(E^{\vee})}): V \bigotimes_{\Xi} S^*(E^{\vee})_{X_T} \to F_{X_T}$  defines a Q-morphism  $\lambda$  of  $\Gamma$  to  $\tilde{Q}^0$  and clearly  $\lambda$  is a G-morphism. It is easy to see that  $\lambda$  is a closed immersion if we use Lemma 4.3 repeatedly.



From now on, we assume

(4.4) if an invertible sheaf L on a geometric fiber  $X_s$  of  $X_{\tilde{Q}}$  has the same Hilbert polynomial as  $(\det \tilde{F}) \bigotimes_{\tilde{O}} k(s)$ , then

$$\operatorname{Ext}_{\mathscr{O}_{X_{s}}}^{j}(\Lambda(V\otimes_{\varXi}S_{r}^{*}(E^{\vee}))\otimes_{S}k(s),\ L)=0$$

for all positive integers j.

**Remark 4.5.** det  $\tilde{F}$  is the sheaf defined in Lemma 4.2 of [6] which is a Glinearized sheaf and we have a natural G-homomorphism  $\gamma$  of  $\stackrel{r}{\wedge} \tilde{F}$  to det  $\tilde{F}$ .

By (4.2.1), the homomorphism  $\gamma \circ (\bigwedge' \widetilde{\phi}) \colon \bigwedge' (V \otimes_{\Xi} S_r^* (E^{\vee})_{X_{\widetilde{Q}}}) \to \det \widetilde{F}$  defines the  $\mathcal{O}_{\widetilde{Q}}$ -homomorphism  $\delta$  of  $H(\bigwedge' (V \otimes_{\Xi} S_r^* (E^{\vee})_{X_{\widetilde{Q}}})$ , det  $\widetilde{F}$ ) to  $\mathcal{O}_{\widetilde{Q}}$ .  $\delta$  is surjective since for all points x of  $\widetilde{Q}$ ,  $\delta \otimes k(x)$  corresponds to the non-zero homomorphism  $(\gamma \circ (\bigwedge' \widetilde{\phi})) \otimes k(x)$  by (4.2.1). Hence  $\delta$  defines a section  $\sigma \colon \widetilde{Q} \to \mathbf{P}(H(\bigwedge' (V \otimes_{\Xi} S_r^*))) \otimes k(x))$ 

 $(E^{\vee})_{X\tilde{Q}}$ ), det  $\tilde{F}$ )). If f has a section, there exists a unique Poincaré sheaf L on  $X \times_{S} \operatorname{Pic}_{X/S}$ . det  $\tilde{F}$  defines a G-morphism  $\nu$  of  $\tilde{Q}$  to  $\operatorname{Pic}_{X/S}$  with the trivial action of G on  $\operatorname{Pic}_{X/S}$  (see Lemma 4.5 of [6]). Let P be a union of a finite number of connected components of  $\operatorname{Pic}_{X/S}$  having non-empty intersection with  $\nu(\tilde{Q})$ . By virtue of Proposition 4.2 and the assumption (4.4) the  $\mathcal{O}_{P}$ -module  $H(\bigwedge(V \otimes_{\Xi} S_r^*(E^{\vee})_{X\tilde{Q}}), L)$  is locally free. Set  $Z = \mathbf{P}(H(\bigwedge(V \otimes_{\Xi} S_r^*(E^{\vee})_{X\tilde{Q}}), L))$ . By the universality of L, we see that  $(1_X \times \nu)^*(L) \simeq (\det \tilde{F}) \otimes_{\tilde{Q}} M$  for some invertible sheaf M on  $\tilde{Q}$ . By the universality of H(-, -), we see that

$$v^*(H(\Lambda \otimes V \otimes_{\Xi} S^*_r(E^{\vee})_{X_p}), L) \simeq H(\Lambda (V \otimes_{\Xi} S^*_r(E^{\vee})_{X_{\bar{\mathcal{O}}}}), (\det \tilde{F}) \otimes_{\bar{\mathcal{O}}} M)$$
$$\simeq H(\Lambda (V \otimes_{\Xi} S^*_r(E^{\vee})_{X_{\bar{\mathcal{O}}}}), \det \tilde{F}) \otimes_{\bar{\mathcal{O}}} M^{\vee}.$$

Therefore we have  $Z \times_P \tilde{Q} \simeq \mathbf{P}(H(\bigwedge^r (V \otimes_{\Xi} S_r^*(E^{\vee})_{X_{\tilde{Q}}})))$ , det  $\tilde{F}$ ) and the section  $\sigma$  defines a *P*-morphism  $\mu$  of  $\tilde{Q}$  to *Z* which is also a *G*-morphism.



Let  $\tilde{R}$  be the open set of  $\tilde{Q}$  such that for every algebraically closed field K,  $\tilde{R}(K) = \{x \in \tilde{Q}(K) | \tilde{F} \otimes k(x) \text{ is torsion free} \}$  (see [5]).  $\tilde{Q}$  has a natural G-action and clearly  $\tilde{R}$  is a G-stable open set of  $\tilde{Q}$ . By the similar argument as in [6], we have

**Proposition 4.7.** Assume (4.4) holds for  $\tilde{Q}$  and  $\tilde{F}$ . Then there exist an open and closed subscheme P of  $\operatorname{Pic}_{X/S}$  of finite type over S and a  $\mathbf{P}^m$ -bundle  $p: Z \to P$  in the étale topology on P such that

- 1) G acts on Z and there exists a p-ample G-linearized invertible sheaf H on Z,
- 2) there exists a G-morphism  $\mu: \tilde{Q} \to Z$  with  $\mu|_{\tilde{R}}$  an immersion.

3) if  $u: S' \to S$  is an étale, surjective morphism such that  $f' = f \times_S S'$  has a section, then  $Z \times_S S'$  and  $\mu \times_S S'$  are the same defined in (4.6).

Consequently we obtain the following commutative diagram of G-morphism:



### §5. Construction of moduli spaces

Let  $f: X \to S$ ,  $\mathcal{O}_X(1)$  and E be as in (4.1). We may assume that S is

connected. Set  $H^{(i)}(m) = i \cdot H(m)/r$  for  $1 \le i \le r$ , where r = rk(F) for an  $(F, \varphi)$  with  $[(F, \varphi)] \in \overline{\Sigma}^{H}_{E/X/S}$  (Spec k(s)). By an argument similar to Lemma 4.2 of [7] and Proposition 1.10, we have

**Lemma 5.1.** For each non-nagative integer e, there exists an integer  $m_e$  such that if  $m \ge m_e$ , then for all geometric points s of S and for all strictly e-semi-stable pairs  $(F, \varphi)$  on  $X_s$  with  $\operatorname{rk}(F) = i$  and  $\chi(F(m)) = H^{(i)}(m)$ ,

(5.1.1) F(m) is generated by its global sections and  $h^{j}(X_{s}, F(m)) = 0$  if j > 0,

(5.1.2) for all  $\varphi$ -invariant coherent subsheaves F' of F with  $F' \neq 0$ ,  $h^0(F'(m)) \leq \mathrm{rk}(F') \cdot h^0(F(m))/i$  and moreover, the equality holds if and only if  $P_{F'}(m) = P_F(m) = H(m)/r$ ,

(5.1.3.) if an invertible sheaf L on  $X_s$  has the same Hilbert polynomial as det (F(m)), then  $\operatorname{Ext}_{0x_s}^j(\bigwedge^r(V \otimes_{\Xi} S_r^*(E^{\vee}), L) = 0$  for all positive integers j, where V is a free  $\Xi$ -module of rank r.

**Remark 5.1.4.** If (5.1.3) holds, then for all invertible sheaf L on  $X_s$  with the same Hilbert polynomial as det (F(m)) and for all free  $\Xi$ -module V,  $\operatorname{Ext}_{\mathscr{O}_{X_s}}^{j}(\wedge (V \otimes_{\Xi} S_r^*(E^{\vee}), L) = 0 \ (j > 0).$ 

We may assume that  $m_e \ge m_{e'}$  if  $e \ge e'$ . Set  $H^{(i,e)}(m) = H^{(i)}(m + m_e)$  and  $N^{(i,e)} = H^{(i,e)}(0) = H^{(i)}(m_e)$ . Let  $V_{i,e}$  be a free  $\Xi$ -module of rank  $N^{(i,e)}$  and let  $G_i$  be the  $\Xi$ -group scheme  $GL(V_{i,e})$ . Let us consider the scheme

$$\tilde{Q}_i = \operatorname{Quot}_{V_{i,e} \otimes \Xi S_r^*(E^{\vee})/X/S}^{H^{(i,e)}}$$

and its subscheme  $\Gamma_i$  constructed in §4. Let  $\phi_i^e: V_{i,e} \otimes_{\Xi} \mathcal{O}_{X_{\Gamma_i}} \to F_i^e$  be the universal quotient and  $\phi_i^e: F_i^e \to F_i^e \otimes_X E$  be the universal homomorphism on  $X_{\Gamma_i}$ . By virtue of Proposition 1.11 and (5.1,1), there exists an open set  $R_i^{e,e'}$  in  $\Gamma_i$  such that a geometric point y of  $\Gamma_i$  is contained in  $R_i^{e,e'}$  if and only if

(5.2.1)  $\Gamma(\phi_i^e \otimes k(y)): V_{i,e} \otimes_{\Xi} k(y) \to H^0(X_y, F_i^e \otimes_{F_i} k(y))$  is bijective and

(5.2.2) 
$$(F_i^e \bigotimes_{\Gamma_i} k(y), \varphi_i^e \bigotimes_{\Gamma_i} k(y))$$
 is strictly e'-semi-stable.

By virtue of (5.1.1) and the universality of  $\Gamma_i$ , for every geometric point s of S, we have the surjective map;

$$\begin{aligned} \xi_i^{e,e'}(s) \colon R_i^{e,e'}(k(s)) &\longrightarrow \bar{\Sigma}_{E/X/S}^{H^{(i),e'}}(m_e) (\operatorname{Spec} k(s)) \\ &= \{ [(F(m_e), \ \varphi \otimes 1_{\mathscr{O}(m_e)})] | (F, \ \varphi) \in \bar{\Sigma}_{E/X/S}^{H^{(i),e'}} (\operatorname{Spec} k(s)) \}, \end{aligned}$$

where  $\xi_i^{e,e'}(s)$  maps k(s)-valued point y of  $R_i^{e,e'}$  to the pair  $(F_i^e \otimes_{\Gamma_i} k(y), \varphi_i^e \otimes_{\Gamma_i} k(y))$ . Moreover,  $R_i^{e,e'}$  is  $G_i$ -invariant and K-valued geometric points  $y_1$  and  $y_2$  of  $R_i^{e,e'}$  are in the same orbit of  $G_i(K)$  if and only if  $(F_i^e \otimes_{\Gamma_i} k(y_1), \varphi_i^e \otimes_{\Gamma_i} k(y_1)) \simeq (F_i^e \otimes_{\Gamma_i} k(y_2), \varphi_i^e \otimes_{\Gamma_i} k(y_2))$  (see §5 of [6]).

Let  $\overline{R}_{i}^{e,e'}$  be the scheme theoretic closure of  $R_{i}^{e,e'}$  in  $\widetilde{Q}_{i}$ . Now we replace  $\widetilde{Q}_{i}$  by a

union of connected components of  $\tilde{Q}_i$  having a non-empty intersection with  $R_i^{e,e'}$ . Let  $v_i$  be the morphism of  $\tilde{Q}_i$  to  $\operatorname{Pic}_{X/S}$  defined in §4 and let  $P_i$  be the union of connected components which intersect with  $v_i(\tilde{Q}_i)$ . Then by the condition (5.1.3) we obtain a  $G_i$ -morphism  $\mu_i$  of  $\tilde{Q}_i$  to  $Z_i$  defined in Proposition 4.7. Let  $\Delta_i$  be the scheme theoretic image of  $R_i^{e,e'}$  by  $\mu_i$ . Then  $\mu_i$  induces an open immersion of  $R_i^{e,e'}$  to  $\Delta_i$ . Consequently, we obtain the following commutative diagram of  $G_i$ -morphisms:



For all K-valued geometric points x of  $P_i$ ,  $(Z_i)_x$  is isomorphic to the Gieseker space  $P_{S^{*}(E^{\vee})}(V_{i,e} \otimes_{\Xi} K, i, L_x)$ , where  $L_x$  is an invertible sheaf on  $X_K$  corresponding to x. By an argument similar to Lemma 4.4 of [7], we know that if T is a K'valued geometric point of  $(\Delta_i)_x$ , then T is excellent in  $(Z_i)_x$  $= P_{S^{*}(E^{\vee})}(V_{i,e} \otimes_{\Xi} K, i, L_x)$  and for every vector subspace V of  $V_{i,e} \otimes_{\Xi} K'$ ,

(5.3.1) 
$$\overline{\dim}_{T} V = \underline{\dim}_{T} V = \operatorname{rk} \left( \Phi_{i}^{e}(V \otimes_{K} S_{r}^{*}(E^{\vee})) \right)$$

Let  $L_i$  be a  $G_i$ -linearized  $p_i$ -ample invertible sheaf on  $Z_i$ . Then there exist  $G_i$ invariant open subshemes  $\Delta_i^s$  and  $\Delta_i^{ss}$  of  $\Delta_i$  such that for all algebraically closed field K,  $\Delta_i^s(K) = \{x \in \Delta_i(K) | x \text{ is a properly stable point of } (\Delta_i)_y$  with respect to the pull back of  $L_i$  to  $(\Delta_i)_y$ , where  $y = p_i(K)(x)\}$  and  $\Delta_i^{ss}(K) = \{x \in \Delta_i(K) | x \text{ is a semi$  $stable point of } (\Delta_i)_y$  with respect to the pull back of  $L_i$  to  $(\Delta_i)_y$ , where  $y = p_i(K)(x)\}$ . By virtue of Corollary 3.3, (5.1.2) and (5.3.1), the same argument as in Lemma 4.15 of [6] provides us with the following.

**Lemma 5.4.**  $\mu_i$  induces an open immersion of  $R_i^{e,e'}$  to  $\Delta_i^{ss}$ . Moreover, for a geometric point x of  $R_i^{e,e'}$ , if  $(F_i^e \otimes k(x), \varphi_i^e \otimes k(x))$  is stable, then  $\mu_i(x)$  is in  $\Delta_i^s$ .

By virtue of Theorem 4 of [12], there exists a good quotient  $\pi: \Delta_r^{ss} \to Y$ . Since S is of finite type over a universally Japanese ring, Y is projective over S.  $\Delta_r^{ss} - \mu_r(R_r^{e,e'})$  is  $G_r$ -invariant closed set of  $\Delta_r^{ss}$ . Set  $\overline{M}_{e,e'} = Y - \pi(\Delta_r^{ss} - \mu_r(R_r^{e,e'}))$ .  $\overline{M}_{e,e'}$  is an open subscheme of Y. Hence  $\overline{M}_{e,e'}$  is quasi-projective over S.

Let x be a k-valued geometric point of  $R_i^{e,e'}$ . Since  $(F, \varphi) = (F_i^e \otimes k(x), \varphi_i^e \otimes k(x))$  is strictly e'-semi-stable, we can find a Jordan-Hölder filtration  $0 = F_0 \subset F_1 \subset \cdots \subset F_{\alpha} = F$ . Set  $r_i = rk(F_i)$  and  $l_i = r_i - r_{i-1}$ . Then  $(F_{\alpha-1}, \varphi_{\alpha-1})$  and  $(\overline{F}_{\alpha-1}, \varphi_{\alpha-1})$  and  $(\overline{F}_{\alpha}, \overline{\varphi}_{\alpha})$  are strictly e'-semi-stable (see lemma 3.5 of [7]) where  $\overline{F}_{\alpha} = F/F_{\alpha-1}$ . By virtue of (5.1.1), we get the following commutative diagrom;

$$0 \longrightarrow H^{0}(X_{x}, F_{\alpha-1}) \longrightarrow H^{0}(X_{x}, F) \longrightarrow H^{0}(X_{x}, F/F_{\alpha-1}) \longrightarrow 0$$
$$\eta_{\alpha-1} \uparrow^{\simeq} \qquad \eta_{\alpha} \to^{\simeq} \qquad \eta_{\alpha}$$

where  $\eta_{\alpha} = \Gamma(\phi_{r}^{e} \otimes k(x))$ . An isomorphism  $\eta_{\alpha-1}$  (or,  $\eta_{\bar{\alpha}}$ ) defines a k-rational point  $x_{\alpha-1}$  (or  $\bar{x}_{\alpha}$ , resp.) of  $R_{\alpha-1}^{e,e'}$  (or,  $R_{l_{\alpha}}^{e,e'}$ , resp.). If  $T_{\alpha} = \mu_{r}(k)(x)$ ,  $T_{\alpha-1} = \mu_{r_{\alpha-1}}(k)(x_{\alpha-1})$  and  $\bar{T}_{\alpha} = \mu_{l_{\alpha}}(k)(\bar{x}_{\alpha})$ , then  $T_{\alpha} \in P_{S \not \models (E^{\vee})}(V_{r,e} \bigotimes_{\Xi} k, r, \det F)$ ,  $T_{\alpha-1} \in P_{S \not \models (E^{\vee})}(V_{r_{\alpha-1},e} \bigotimes_{\Xi} k, r_{\alpha-1}, \det F_{\alpha-1})$  and  $\bar{T}_{\alpha} \in P_{S \not \models (E^{\vee})}(V_{l_{\alpha},e} \bigotimes_{\Xi} k, l_{\alpha}, \det \bar{F}_{\alpha})$ . Let  $\psi_{\alpha}$ : det  $F_{\alpha-1} \otimes \det \bar{F}_{\alpha}$  det  $\bar{F}_{\alpha}$  det  $F_{\alpha}$  be the canonical isomorphism. Then  $T_{\alpha}$  is a  $\psi_{\alpha}$ -extention of  $\bar{T}_{\alpha-1}$  (see §4 of [7]). Let  $\bar{F}_{j} = F_{j}/F_{j-1}$  and  $\psi_{j}$ : det  $F_{j-1} \otimes \det \bar{F}_{j} \to \det F_{j}$ . Repeating the similar argument to the above, we get  $T_{j}$  in  $P_{S \not \models (E^{\vee})}(V_{r_{j,e}} \bigotimes_{\Xi} k, r_{j}, \det F_{j})$  ( $1 \le j \le \alpha$ ) and  $\bar{T}_{j}$  in  $P_{S \not \models (E^{\vee})}(V_{l_{j,e}} \bigotimes_{\Xi} k, l_{j}, \det \bar{F}_{j})(1 \le j \le \alpha)$  such that

(5.4.1)  $T_j = \mu_{r_j}(k)(x_j)$  for some  $x_j$  in  $R_{r_j}^{e,e'}(k)$  and  $\overline{T}_j = \mu_{l_j}(k)(\overline{x}_j)$  for some  $\overline{x}$  in  $R_{l_j}^{e,e'}(k)$ . Moreover,  $\overline{T}_j$  is in  $\Delta_{l_j}^s(k)$ .

(5.4.2)  $T_j$  is a  $\psi_j$ -extention of  $\overline{T}_j$  by  $T_{j-1}$  and  $T_1 \simeq \overline{T}_1$ .

By a proof similar to lemma 4.7 of [7], we have

**Lemma 5.5.**  $T_j \simeq T_{j-1} \oplus T_j$  if and only if  $(F_j, \varphi_j) \simeq (F_{j-1}, \varphi_{j-1}) \oplus (\overline{F}_j, \overline{\varphi}_j)$ .

Since gr(F,  $\varphi$ ) is strictly e'-semi-stable (see Corollary 3.5.1 of [7]), gr(F,  $\varphi$ ) corresponds to a point y in  $R_r^{e,e'}(k)$ .

**Corollary 5.5.1.**  $\mu_r(k)(y) = \overline{T}_1 \oplus \cdots \oplus \overline{T}_{\alpha}$ .

By virtue of Theorem 3.7 and a proof similar to Proposition 4.8, we obtain

**Proposition 5.6.** Let y be a k-valued geometric point of  $P_r$  and let s be the image of y by the structure morphism  $P_r \to S$ . Let  $(\overline{F}_1, \varphi_1), \ldots, (\overline{F}_{\alpha}, \varphi_{\alpha})$  be e'-stable E-pairs on  $X_s$  such that  $l_i = rk(\overline{F}_i), \chi(\overline{F}_i(m)) = H^{(l_i)}(m)$  and  $l_1 + \cdots + l_{\alpha} = r$ . Then there exists a  $G_r$ -invariant closed subset  $Z((\overline{F}_1, \varphi_1), \ldots, (\overline{F}_{\alpha}, \varphi_{\alpha}))$  of  $(R_r^{e,e'})_y = (v_r)^{-1}(y) \cap R_r^{e,e'}$  such that

(5.6.1)  $\mu_r(Z((\overline{F}_1, \varphi_1), \dots, (\overline{F}_{\alpha}, \varphi_{\alpha})))$  is closed in  $(\Delta_r^{ss})_{y}$ ,

(5.6.2) for every algebraically closed field K containing k,  $Z((\bar{F}_1, \varphi_1), \ldots, (\bar{F}_a, \varphi_a))(K) = \{x \in (R_r^{e,e'}) | gr((F_r^e, \varphi_r^e) \otimes k(x)) \simeq (\oplus \bar{F}_i, \oplus \varphi_i)_K \}$ 

(5.5.6) the  $G_r$ -orbit of  $x_0$  corresponding to  $(\oplus \overline{F}_i, \oplus \varphi_i)$  is the unique closed orbit in  $Z((\overline{F}_1, \varphi_1), \dots, (\overline{F}_{\alpha}, \varphi_{\alpha}))$ .

By Theorem 4 of [12], Proposition 5.6 and a proof similar to that of Proposition 4.9 and 4.10 of [7], we have

**Proposition 5.7.**  $\overline{M}_{e,e'}$  has the following properties:

(5.7.1) For each geometric point s of S, there exists a natural bijection  $\bar{\theta}_s: \bar{\Sigma}_{E/X/S}^{H,e'}(\text{Spec }(k(s))) \to \bar{M}_{e,e'}(k(s)).$ 

(5.7.2) For  $T \in (Sch/S)$  and a pair  $(F, \varphi)$  of a T-flat coherent  $\mathcal{O}_{X \times sT}$ -module F and an  $\mathcal{O}_{X \times sT}$ -homomorphism of F to  $F \bigotimes_X E$  with the property (2.3.1) and (2.4)<sup>e'</sup>, there exists a morphism  $\overline{f}_{(F,\varphi)}^{e,e'}$  of T to  $\overline{M}_{e,e'}$  such that  $\overline{f}_{(F,\varphi)}^{e,e'}(t) = \overline{\theta}([(F \bigotimes_T k(t), \varphi \bigotimes_T k(t))])$  for all points t in T(k(s)). Moreover, for a morphism  $g: T' \to T$  in (Sch/S),

$$\bar{f}^{\boldsymbol{e},\boldsymbol{e}'}_{(F,\varphi)}\circ g=\bar{f}^{\boldsymbol{e},\boldsymbol{e}'}_{(1_X\times g)^*(F,\varphi)}.$$

(5.7.3) If  $\overline{M}' \in (Sch/S)$  and maps  $\overline{\theta}'_s: \overline{\Sigma}^{H,e'}_{E/X/S}(\operatorname{Spec}(k(s))) \to \overline{M}'(k(s))$  have the above property (5.7.2), then there exists a unique S-morphism  $\overline{\Psi}$  of  $\overline{M}_{e,e'}$  to  $\overline{M}'$  such that  $\overline{\Psi}(k(s)) \circ \overline{\theta}_s = \overline{\theta}'_s$  and  $\overline{\Psi} \circ \overline{f}^{e,e'}_{(F,\varphi)} = \overline{f}'_{(F,\varphi)}$  for all geometric points s of S and for all  $(F, \varphi)$ , where  $\overline{f}'_{(F,\varphi)}$  is the morphism given by the property (5.7.2) for  $\overline{M}'$  and  $\overline{\theta}'_s$ .

The construction of a moduli scheme of the functor  $\overline{\Sigma}_{E/X/S}^{H}$  is completely same as in §4 of [7], that is,  $\overline{M}_{E/X/S}(H) = \lim_{e} \overline{M}_{e,e}$ .

**Theorem 5.8.** In the situation of (4.1), there exists an S-scheme  $\overline{M}_{E/X/S}(H)$  with the following properties:

1)  $\overline{M}_{E/X/S}(H)$  is locally of finite type and separated over S.

2) There exists a coarse moduli scheme  $M_{E/X/S}(H)$  of stable E-pairs with Hilbert polynimial H and it is contained in  $\overline{M}_{E/X/S}(H)$  as an open subscheme.

3) For each geometric point s of S, there exists a natural bijection  $\bar{\theta}_s: \bar{\Sigma}^H_{E/X/S}(\operatorname{Spec}(k(s))) \to \bar{M}_{E/X/S}(H)(k(s)).$ 

4) For  $T \in (Sch/S)$  and a pair  $(F, \varphi)$  of a T-flat coherent  $\mathcal{O}_{X \times sT}$ -module F and an  $\mathcal{O}_{X \times sT}$ -homomorphism of F to  $F \bigotimes_X E$  with the property (2.3.1), there exists a morphism  $\overline{f}_{(F,\varphi)}$  of T to  $\overline{M}_{E/X/S}(H)$  such that  $\overline{f}_{(F,\varphi)}(t) = \overline{\theta}_s([(F \bigotimes_T k(t), \varphi \bigotimes_T k(t))])$  for all points t in T(k(s)). Moreover, for a morphism  $g: T' \to T$  in (Sch/S),

$$\bar{f}_{(F,\varphi)} \circ g = \bar{f}_{(1_X \times g)^*(F,\varphi)}.$$

5) If  $\overline{M}' \in (Sch/S)$  and maps  $\overline{\theta}'_s : \overline{\Sigma}^H_{E/X/S}(\operatorname{Spec}(k(s))) \to \overline{M}'(k(s))$  have the above property 4), then there exists a unique S-morphism  $\overline{\Psi}$  of  $\overline{M}_{E/X/S}(H)$  to  $\overline{M}'$  such that  $\overline{\Psi}(k(s)) \circ \overline{\theta}_s = \overline{\theta}'_s$  and  $\overline{\Psi} \circ \overline{f}_{(F,\varphi)} = \overline{f}'_{(F,\varphi)}$  for all geometric points s of S and for all  $(F, \varphi)$ , where  $\overline{f}'_{(F,\varphi)}$  is the morphism given by the property 4) for  $\overline{M}'$  and  $\overline{\theta}'_s$ .

**Corollary 5.8.1.** If  $\mathfrak{S}_{E/X/S}(H)$  is bounded, then  $\overline{M}_{E/X/S}(H)$  is quasi-projective over S.

## DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

#### References

- [1] A. Altman and S. Kleiman, Compactifying the Picard Scheme, Adv. in Math., 35 (1980), 50-112.
- [2] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math., 106 (1977), 45-60.
- [EGA] A. Grothendieck and J. Dieudonné, Élement de Géométrie Algébrique, Chaps. I, II, III, IV, Publ. Math. I.H.E.S. Nos. 4, 8, 11, 17, 20, 24, 28 and 32.
- [FGA] A. Grothendieck, Techniquis de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert, Sem. Bourbaki, t. 13, 1960/61, n°221.

326

- [3] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55 (1987), 59-126.
- [4] N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J., 54 (1987), 91-114.
- [5] M. Maruyama, Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., 16 (1976), 627-637.
- [6] M. Maruyama, Moduli of stable sheaves, I, J. Math. Kyoto Univ., 17 (1977), 91-126.
- [7] M. Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ., 18 (1978), 557-614.
- [8] M. Maruyama, On boundedness of families of torsion free sheaves, J. Math. Kyoto Univ., 21 (1981), 673-701.
- [9] D. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- [10] N. Nitsure, Moduli spaces for stable pairs on a curve, Preprint (1988).
- [11] W. M. Oxbury, Spectral curves of vector bundle endomorphisms, Preprint (1988).
- [12] C. S. Seshadri, Geometric reductivity over arbitrary base, Adv. in Math., 26 (1977), 225-274.
- [13] C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety, Preprint, Princeton University.