Supplement to the decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators

By
Masaru Ueda

In the previous paper [U], we calculated the trace of the Hecke operator $\tilde{T}_{k+1 / 2, N, \chi}\left(n^{2}\right)$ on the space of cusp forms $S(k+1 / 2, N, \chi)$ of half-integral weight under the assumption $\chi^{2}=1$. The purpose of this calculation is to find a relation between these traces and those of the Hecke operators of integral weight $2 k$. When the 2 -order of the level $N\left(=\operatorname{ord}_{2}(N)\right)$ is small, we found certain relations between the traces, in [U].

In this paper, we report relations for the remaining cases.

Notations.

In the following, we keep the notations and the assumptions in the previous paper [U]. For a prime number $p,| |_{p}$ denotes the p-adic norm such that $|p|_{p}$ $=p^{-1}$. For a Dirichlet character $\chi, f(\chi)$ denotes the conductor of χ. For a finitedimensional vector space V over \mathbf{C} and a linear operator T on $V, \operatorname{tr}(T \mid V)$ denotes the trace of T on V.

For the sake of simplicity, we omit the subscripts of the Hecke operators, i.e., $\tilde{T}\left(n^{2}\right)=\tilde{T}_{k+1 / 2, N, x}\left(n^{2}\right), T(n)=T_{2 k, N}(n)$, and $W\left(N_{0}\right)=\left[W\left(N_{0}\right)\right]_{2 k}$, etc..

Statement of results

Theorem. Let k be a positive integer and N a positive integer divisible by 4 and put $M=2^{-\mu} N$ with $\mu=\operatorname{ord}_{2}(N)$. Let χ be an even character modulo N such that $\chi^{2}=1$. We have the following relations between traces.
(1) Suppose that $4 \leq \mu \leq 6$ and besides $f\left(\chi_{2}\right)$ divides 4 if $\mu=4$, 6. For all natural numbers n with $(n, N)=1$,

$$
\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,2^{\mu} M, \chi\right)\right)=2 \Theta\left[2 k, 2^{\mu-2} M, \chi\right] \quad \text { if } k \geq 2
$$

and

$$
\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid V\left(2^{\mu} M, \chi\right)\right)=2 \Theta\left[2,2^{\mu-2} M, \chi\right] .
$$

(2) Suppose that $\mu=7$. Put $\varepsilon=\chi_{2}(-1)$. For all natural numbers n with $(n, N)=1$,

$$
\begin{aligned}
& \operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,2^{7} M, \chi\right)\right)-\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \left\lvert\, S\left(k+1 / 2,2^{6} M,\left(\frac{2 \varepsilon}{-}\right) \chi_{M}\right)\right.\right) \\
& =2\left(\Theta\left[2 k, 2^{5} M, \chi\right]-\Theta\left[2 k, 2^{4} M,\left(\frac{2 \varepsilon}{-}\right) \chi_{M}\right]\right) \text { if } k \geq 2
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid V\left(2^{7} M, \chi\right)\right)-\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \left\lvert\, V\left(2^{6} M,\left(\frac{2 \varepsilon}{}\right) \chi_{M}\right)\right.\right) \\
& \quad=2\left(\Theta\left[2,2^{5} M, \chi\right]-\Theta\left[2,2^{4} M,\left(\frac{2 \varepsilon}{}\right) \chi_{M}\right]\right)
\end{aligned}
$$

(3) Suppose that $\mu \geq 8$. For all natural numbers n with $(n, N)=1$,

$$
\begin{aligned}
& \operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,2^{\mu} M, \chi\right)\right)-\operatorname{tr}\left(\widetilde{T}\left(n^{2}\right) \left\lvert\, S\left(k+1 / 2,2^{\mu-1} M, \chi\left(\frac{2}{-}\right)\right)\right.\right) \\
&=2\left(\Theta\left[2 k, 2^{\mu-2} M, \chi\right]-\Theta\left[2 k, 2^{\mu-3} M, \chi\left(\frac{2}{-}\right)\right]\right) \text { if } k \geq 2
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid V\left(2^{\mu} M, \chi\right)\right)-\operatorname{tr}\left(\widetilde{T}\left(n^{2}\right) \left\lvert\, V\left(2^{\mu-1} M, \chi\left(\frac{2}{-}\right)\right)\right.\right) \\
&=2\left(\Theta\left[2,2^{\mu-2} M, \chi\right]-\Theta\left[2,2^{\mu-3} M, \chi\left(\frac{2}{-}\right)\right]\right) .
\end{aligned}
$$

The above notations are as follows.

$$
\Theta\left[2 k, 2^{\mu-2} M, \chi\right]=\sum_{0} \Lambda\left(n, \tilde{L}_{0}\right) \operatorname{tr}\left(W\left(\tilde{L}_{0}\right) T(n) \mid S\left(2 k, \tilde{L}_{0} L_{1}\right)\right),
$$

where \tilde{L}_{0} in the sum \sum_{0} runs over all square divisors of $2^{\mu-2} M$ such that $\operatorname{ord}_{2}\left(\tilde{L}_{0}\right) \neq 2$ and

$$
\begin{gathered}
L_{1}=2^{\mu-2} M \prod_{p \mid \mathcal{L}_{0}}\left|2^{\mu-2} M\right|_{p} \\
\Lambda\left(n, \tilde{L}_{0}\right)=\prod_{p \mid 2 M} \lambda\left(p, n ; \operatorname{ord}_{p}\left(\tilde{L}_{0}\right) / 2\right),
\end{gathered}
$$

where for a prime divisor p of M,

$$
\lambda(p, n ; e)= \begin{cases}1, & \text { if } e=0 \\ 1+\left(\frac{-n}{p}\right), & \text { if } 1 \leq e \leq[(v-1) / 2] \\ \chi_{p}(-n), & \text { if } e=v / 2 \text { and } v \text { is even, }\end{cases}
$$

with $v=\operatorname{ord}_{p}(M)$, and

$$
\lambda(2, n ; e)= \begin{cases}1, & \text { if } e=0 \\ 0, & \text { if } e=1 \\ \xi(n)\left(1+\left(\frac{2}{n}\right)\right), & \text { if } 2 \leq e \leq[(\mu-3) / 2] \\ \xi(n) \chi_{2}(-n), & \text { if } e=(\mu / 2)-1 \text { and } \mu \text { is even, }\end{cases}
$$

with $\xi(n)=\left(1-\left(\frac{-1}{n}\right)\right) / 2$. We decompose the character $\chi=\chi_{2} \cdot \chi_{M}$, where χ_{2} is the 2-primary component of χ and χ_{M} is the odd part of χ.

Proof. We can deduce these relations, similarly to the proof of the Theorem of [U].

Remarks. (1) Combining this Theorem with the Theorem of [U], we get the relations between the traces except for the case of $\mu=6$ and $f\left(\chi_{2}\right)=8$.
(2) When the 2-order of the level N is big, the form of the relations differ from those of the Theorem of [U]. In particular, we point out the following. In the case of the Theorem of [U], cusp forms of half-integral weight $k+1 / 2$ of level N correspond to cusp forms of integral weight $2 k$ of level $N / 2$. But, in the case of this paper, cusp forms of half-integral weight $k+1 / 2$ of level N correspond to cusp forms of integral weight $2 k$ of level (at most) $N / 4$.

Department of Mathematics Kyoto University.

References

[U] M. Ueda, The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators, J. Math. Kyoto Univ., 28 (1988), 505-555.

