Homology of the Kac-Moody groups II

Dedicated to Professor Shôrô Araki on his 60th birthday

By

Akira Kono and Kazumoto Kozima

§1. Introduction

Let G be a compact, connected, simply connected, simple Lie group and g its Lie algebra. Let $X \langle n \rangle$ be the *n*-connected cover of the space X. Since $\pi_3(G) \cong \mathbb{Z}$ is the first non-trivial homotopy, there is an S¹-fibration

 $S^1 \longrightarrow \Omega G \langle 2 \rangle \longrightarrow \Omega G.$

(Notice that sometimes one likes to write $\Omega G\langle 3 \rangle = \Omega(G\langle 3 \rangle)$ instead of our $\Omega G\langle 2 \rangle = (\Omega G)\langle 2 \rangle$.) The homotopy type of the Kac-Moody group $\Re(g^{(1)})$ is $\Omega G\langle 2 \rangle \times G$. (See [10] and [11].) Since the homology of G is known and $H_*(\Omega G\langle 2 \rangle; \mathbb{Z})$ is finitely generated, we have only to determine $H_*(\Omega G\langle 2 \rangle; \mathbb{Z}_{(p)})$ for all prime p to determine $H_*(\Re(g^{(1)}); \mathbb{Z})$.

The homology of G has non trivial p-torsions if and only if (G, p) is one of the following:

$$(Spin(n), 2) \ n \ge 7, (E_6, 2), (E_6, 3)$$

 $(E_7, 2), (E_7, 3), (E_8, 2), (E_8, 3), (E_8, 5),$
 $(F_4, 2), (F_4, 3) \ \text{and} \ (G_2, 2).$

In [14], we computed $H_*(\Omega G\langle 2 \rangle; Z_{(p)})$ for such (G, p) except (Spin(n), 2) and $(E_6, 2)$.

The purpose of this paper is to determine it for the groups whose homology has no *p*-torsion. The major problem in the above case is that it is very difficult to compute the Gysin sequence of $Z_{(p)}$ -coefficients directly. To avoid this problem, we consider the Bockstein spectral sequence of the Gysin sequence. By using the Serre spectral sequence associated with $\Omega G\langle 2 \rangle \rightarrow \Omega G \rightarrow CP^{\infty}$, we can prove that the first non trivial *p*-torsion of $H_*(\Omega G\langle 2 \rangle; Z_{(p)})$ is order *p* for all *G*. (See Theorem 3.1.) This fact becomes the "seed" of our computation of the above Bockstein spectral sequence and also gives the result for $(E_6, 2)$.

We define $Z_{(p)}$ -modules C(d, p) and L(G, p) in §3. Then the main result is

Received June 12, 1989

Kac-Moody groups II

Theorem 3.2. If $H_*(G; \mathbb{Z}_{(p)})$ has no p-torsion, then

$$H_*(\Omega G\langle 2 \rangle; \mathbb{Z}_{(p)}) \cong C(d(G, p) - 1, p) \bigotimes_{\mathbb{Z}_{(p)}} L(G, p)$$

as a $Z_{(p)}$ -module.

§2. Bockstein spectral sequence

Let $(C = \bigotimes_{j \ge 0} C_j, \partial)$ be a differential graded commutative algebra over $Z_{(p)}$ (or Z) where C_j is free, $\partial C_j \subset C_{j-1}$ and ∂ is derivative: $\partial(x \cdot y) = (\partial x) \cdot y + (-1)^{|x|} x \cdot \partial y$. Let put D = H(C) and $E = H(C \otimes Z/p)$. Then we have an exact couple

where i = x p, j is the mod p reduction ρ and k is the connected homomorphism d associated with the short exact sequence

$$0 \longrightarrow \mathbf{Z}_{(p)} \xrightarrow{\times p} \mathbf{Z}_{(p)} \xrightarrow{\rho} \mathbf{Z}/p \longrightarrow 0.$$

The derived couple of this exact couple is

where $E_r = k^{-1}(\operatorname{Im} i^r)/j(\operatorname{Ker} i^r)$, $D_r = \operatorname{Im} i^r$, $i_r = i|D_r$, k_r is the map induced from k naturally and $j_r = j \circ (i^r)^{-1}$. Let us introduce some notation. For $\alpha \in \operatorname{Ker} \partial$, we denote its class in H(C) as $[\alpha]$. If $\partial \alpha \in p \cdot C$, we write $\langle \alpha \rangle$ for the class of α in $H(C \otimes \mathbb{Z}/p)$. For $a \in k^{-1}(\operatorname{Im} i^r) \subset H(C \otimes \mathbb{Z}/p)$, we denote the corresponding element in E_r -term as $\{a\}_r$.

Lemma 2.1. Let $a \in k^{-1}(\text{Im } i^{r})$. Then there exists $b \in H(C \otimes \mathbb{Z}/p)$ satisfying $d_{r}(\{a\}_{r}) = \{b\}$ and $d_{r+1}(\{a^{p}\}_{r+1}) = \{b \cdot a^{p-1}\}_{r+1}$

Proof. From the assumption, we can take an element $\tilde{b} \in H_{2n-1}(C)$ so as to satisfy $da = i^r \tilde{b}$. Let $x \in C_{2n}$ (respectively $y \in C_{2n-1}$) be a representaive element of a (respectively \tilde{b}). Since $da = \left[\frac{\partial x}{p}\right]$, there is $u \in C_{2n}$ satisfying $\frac{\partial x}{p} = p^r \cdot y + \partial u$

in C_{2n-1} . Using the fact that C_{2n-1} and C_{2n} are free, we obtain an equation

166

Akira Kono and Kazumoto Kozima

$$\frac{1}{p} \cdot \partial(x - p \cdot u) = p^r \cdot y.$$

So $\partial(x - p \cdot u) \in p \cdot C_{2n-1}$ and $\langle x - p \cdot u \rangle = \langle x \rangle = a$. We put $b = \langle y \rangle$. Then we have

$$d_r(\{a\}_r) = j_r \circ k_r(\{a\}_r) = j_r(p^r \cdot y) = \{b\}_r.$$

Since d_r is derivative, $d_r(a^p) = 0$ and

$$k_{r+1}(a^p) = d(a^p) = \left[\frac{1}{p} \cdot \partial (x - p \cdot u)^p\right] = \left[\partial (x - p \cdot u) \cdot (x - p \cdot u)^{p-1}\right] = \left[p^{r+1} \cdot y \cdot (x - p \cdot u)^{p-1}\right].$$

Since $j_{r+1}[p^{r+1} \cdot y \cdot (x - p \cdot u)^{p-1}] = \{\langle y \cdot (x - p \cdot u)^{p-1} \rangle\}_{r+1} = \{b \cdot a^{p-1}\}_{r+1}$, we obtain $d_{r+1}(\{a^p\}_{r+1}) = \{b \cdot a^{p-1}\}_{r+1}$.

§3. Proof of Theorem

Let G be a compact Lie group as in §1 and $G\langle 3 \rangle$ be the 3-connected cover of G. For a graded module $A = \bigoplus A_i$ of finite type over F_p , we define $P(A, q) = \sum (\dim A_i)q_i$. Let $m(1) = 1 < m(2) \le \cdots \le m(l)$ be the exponent of the Weyl group of G. Let $t \in H^2(\Omega G; F_p)$ be a generator. Since G is compact and $H^*(\Omega G; F_p)$ is a Hopf algebra, there exists an integer d(G, p) satisfying

$$t^{p^{d(G,p)}-1} \neq 0$$
 and $t^{p^{d(G,p)}} = 0$.

Now let us recall the result of Kono [13].

Theorem A (Kono [13], Theorem 2.). If $H_*(G; \mathbb{Z}_{(p)})$ has no p-torsion, then d(G, p) is given by the following

(1) For the classical groups,

 $d(G, p) = \begin{cases} r(n, p) & \text{if } G = SU(n), \\ r(2n, p) & \text{if } G = Spin(2n + 1), \ Spin(2n) \ or \ Sp(n) \\ & \text{and } p \ \text{is an odd prime}, \\ 1 & \text{if } G = Sp(n) \ and \ p = 2, \end{cases}$

where $p^{r(n,p)-1} < n \le p^{r(n,p)}$.

(2) For the exceptional groups, d(G, p) is given by the following table:

G	<i>G</i> ₂		F_{4}, E_{6}		Ε,		E ₈	
р	5	≠ 5	≤11	> 11	$5 \le p \le 17$	> 17	$7 \le p \le 29$	> 29
d(G, p)	2	1	2	1	2	1	2	1

167

Kac-Moody groups II

Theorem B (Kono [13], Theorem 1.)

$$P(H^*(\Omega G\langle 2 \rangle; F_p), q) = P(A(G, p), q) \cdot (1 + q^{2a(G,p)-1})$$

where A(G, p) is a graded algebra satisfying

$$P(A(G, p), q)^{-1} = \left(\prod_{j=2}^{l} (1 - q^{2m(j)})\right) \cdot (1 - q^{2a(G, p)})$$

and $a(G, p) = p^{d(G, p)}$.

Since the fibration

$$\Omega G\langle 2 \rangle \longrightarrow \Omega G \longrightarrow CP^{\infty}$$

is a Hopf fibration, the $Z_{(p)}$ -homology Serre spectral sequence of this fibration is the Hopf algebra spectral sequence. The homology of CP^{∞} is the devided polynomial algebra, so

$$H_*(CP^{\infty}; \mathbb{Z}_{(p)}) \cong \mathbb{Z}_{(p)}[e_1, e_2, \dots, e_j, \cdots]/(e_j^p = p \cdot e_{j+1}, j > 0)$$

where deg $e_j = 2p^{j-1}$. Since $H_*(\Omega G; \mathbb{Z}_{(p)})$ is zero at the odd dimensions and $H_{2n-1}(\Omega G\langle 2 \rangle; \mathbb{Z}_{(p)})$ is zero for $n < a(G, p), e_j \otimes 1$ is a permanent cycle for $j \leq d(G, p)$ and $e_{d(G, p)+1}$ is transgressive to the generator b of

$$H_{2a(G,p)-1}(\Omega G\langle 2 \rangle; Z_{(p)})$$

which is the cyclic group \mathbb{Z}/p^{α} where $\alpha > 0$ by Theorem B. Since $e_{d(G,p)}^{p}$ is clearly transgressive to zero, $p \cdot b$ which is the transgressive image of $e_{d(G,p)+1} = e_{d(G,p)}^{p}$ is zero. Thus we have

Theorem 3.1.
$$H_{2n-1}(\Omega G\langle 2 \rangle; Z_{(p)})$$
 is zero for $n < a(G, p)$ and
 $H_{2a(G,p)-1}(\Omega G\langle 2 \rangle; Z_{(p)}) \cong \mathbb{Z}/p.$

The homology Gysin sequence associated with an S^1 -fibration $S^1 \rightarrow \Omega G \langle 2 \rangle \xrightarrow{\Omega i} \Omega G$ is split to the following exact sequence:

$$\begin{split} 0 &\longrightarrow H_{2n}(\Omega G\langle 2 \rangle; \, \mathbb{Z}_{(p)}) \xrightarrow{\Omega i_*} H_{2n}(\Omega G; \, \mathbb{Z}_{(p)}) \xrightarrow{\chi} \\ & H_{2n-2}(\Omega G; \, \mathbb{Z}_{(p)}) \longrightarrow H_{2n-1}(\Omega G\langle 2 \rangle; \, \mathbb{Z}_{(p)}) \longrightarrow 0. \end{split}$$

Let $C_{2n} = H_{2n}(\Omega G; \mathbb{Z}_{(p)})$, $C_{2n-1} = H_{2n-2}(\Omega G; \mathbb{Z}_{(p)}) \otimes s$ and $\partial(\alpha \otimes 1) = \chi(\alpha) \otimes s$, $\partial(\alpha \otimes s) = 0$. Then $H_i(\Omega G \langle 2 \rangle; \mathbb{Z}_{(p)}) = H_i(\mathbb{C}, \partial)$ for all *i*. By Theorem 3.1, there is a generator $b \in H_{2a(G,p)-1}(\Omega G \langle 2 \rangle; \mathbb{F}_p)$ and there exists $a \in H_{2a(G,p)}(\Omega G \langle 2 \rangle; \mathbb{F}_p)$ satisfying $d_1(\{a\}_1) = \{b\}_1$. First recall that P_1 = the image of

$$\Omega i_* \colon H_*(\Omega G\langle 2 \rangle; F_p) \longrightarrow H_*(\Omega G; F_p)$$

is a polynomial algebra, since it is a Hopf subalgebra of a polynomial

168

algebra. $H_*(\Omega G\langle 2 \rangle; F_p)$ is isomorphic to the tensor product of P_1 and $\Lambda(b)$. Hence for all $(G, p) \neq (Sp(n), 2)$, $(G_2, 5)$, the E_1 -term of the Bockstein spectral sequence is generated by elements of degree not greater than 2a(G, p) by dimensional reasons. Consider the fibration

$$\Omega Sp(n-1)\langle 2\rangle \longrightarrow \Omega Sp(n)\langle 2\rangle \longrightarrow \Omega S^{4n-1}.$$

The spectral sequence of the above fibration collapses since the Poincaré series of $H_*(\Omega Sp(n)\langle 2 \rangle; F_2)$ is equal to the product of those of $H_*(\Omega S^{4n-1}; F_2)$ and $H_*(\Omega Sp(n-1)\langle 2 \rangle; F_2)$. Therefore we can assume that $d_1(a) = b$ and $d_r(other generators of deg <math>\langle 4n - 2 \rangle = 0$ for $r \geq 1$. If d_r is non zero on the generator of deg = 4n - 2, the rank of the rational homology of $\Omega Sp(n)\langle 2 \rangle$ fails to match with the rank of $Q[s_6, s_{10}, \ldots, s_{4n-2}]$ (deg $s_i = i$) at deg = 4n - 2. Thus the generators except a are permanent cycles in the Bockstein spectral sequence. (The case $(G, p) = (G_2, 5)$ is clear by dimensional reasons.) Therefore by using (2.1) inductively, we obtain the equation

$$d_r(\{a^{p^{r-1}}\}_r) = \{b \cdot a^{p^{r-1}-1}\}_r$$

for all $r \ge 1$. Define a graded $Z_{(p)}$ -module C(d, p) by

$$C(d, p)_{j} = \begin{cases} Z_{(p)} & \text{if } j = 0\\ Z/p^{r-d} & \text{if } j + 1 = 2p^{r} \cdot k, \ (k, p) = 1 \text{ and } r \ge d,\\ 0 & \text{otherwize.} \end{cases}$$

We also define a graded free $Z_{(p)}$ -module L(G, p) so as to satisfy

$$P(L(G, p), q)^{-1} = \prod_{j=2}^{l} (1 - q^{2m(j)})$$

Now the Bockstein spectral sequence and Theorem A, B give the proof of the followng theorem.

Theorem 3.2. If $H_*(G; \mathbb{Z}_{(p)})$ has no p-torsion, then

$$H_{\star}(\Omega G\langle 2 \rangle; \mathbb{Z}_{(p)}) \cong C(d(G, p) - 1, p) \bigotimes_{\mathbb{Z}_{(p)}} L(G, p)$$

as a $Z_{(p)}$ -module.

Example. (1) For G = SU(2), $L(G, p) = \mathbb{Z}_{(p)}$ and d(G, p) = 1 for all p. Then $H_*(\Omega SU(2)\langle 2 \rangle; \mathbb{Z}_{(p)}) \cong C(0, p)$ which is the result of Serre [18]. (2) For G = SU(3), m(2) = 2 and $L(G, p) = \mathbb{Z}_{(p)}[s]$ where deg s = 4. In the case p = 2, d(G, 2) = 2. Therefore

$$H_*(\Omega SU(3)\langle 2\rangle; \mathbb{Z}_{(2)}) \cong C(1, 2) \bigotimes_{\mathbb{Z}_{(2)}} \mathbb{Z}_{(2)}[s].$$

If p is an odd prime, then d(G, p) = 1 and

$$H_*(\Omega SU(3)\langle 2\rangle; \mathbb{Z}_{(p)}) \cong C(0, p) \otimes_{\mathbb{Z}_{(p)}} \mathbb{Z}_{(p)}[s].$$

Remark. As an application of (3.1), we can determine $H_*(\Omega E_6 \langle 2 \rangle; Z_{(2)})$.

Since $H_*(\Omega E_6\langle 2 \rangle; \mathbb{Z}/2) \cong \Lambda(y_{31}) \otimes_{\mathbb{Z}/2} \mathbb{Z}/2[h_8, h_{10}, h_{14}, h_{16}, h_{22}, y_{32}]$ where $\Lambda()$ is the exterior algebra over $\mathbb{Z}/2$ and all subscripts designate the degrees of the elements (See [14].), one can deduce that y_{31} is Sq_*^1 image by (3.1). Then the argument in [14] works well and we have

$$H_*(\Omega E_6\langle 2 \rangle; \mathbf{Z}_{(2)}) \cong C(3, 2) \bigotimes_{\mathbf{Z}_{(2)}} \mathbf{Z}_{(2)}[s_8, s_{10}, s_{14}, s_{16}, s_{22}]$$

as the $Z_{(2)}$ -module where deg $s_i = i$.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY OF EDUCATION

References

- [1] S. Araki, Differential Hopf algebra and the cohomology mod 3 of the compact exceptional groups E_7 and E_8 , Ann. Math., 73 (1961), 404-436.
- [2] S. Araki, Cohomology modulo 2 of the compact exceptional groups E_6 and E_7 , J. Math. Osaka City Univ., 12 (1961), 43–65.
- [3] S. Araki and Y. Shikata, Cohomology mod 2 of the compact exceptional group E₈, Proc. Japan Acad., 37 (1961), 619-622.
- [4] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
- [5] A. Borel and J. P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math., 73 (1953), 409-448.
- [6] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-281.
- [7] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
- [8] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structure of mod 2 cohomology of simple Lie group, Publ. R.I.M.S. Kyoto Univ., 12 (1976), 141-167.
- [9] V. G. Kac, Torsion in cohomology of compact Lie group and Chow rings of reductive algebraic groups, Inv. Math., 80 (1985), 69-79.
- [10] V. G. Kac, Constructing groups associated to infinite dimensional Lie algebra, Infinite dimensional groups with applications, MSRI Publ., 4, 167-216.
- [11] V. G. Kac and D. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci., 80 (1983), 1778-1782.
- [12] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259– 298.
- [13] A. Kono, On the cohomology of the 2-connected cover of the loop space of simple Lie groups, Publ. R.I.M.S. Kyoto Univ., 22 (1986), 537-541.
- [14] A. Kono and K. Kozima, Homology of the Kac-Moody Lie groups I, J. Math. Kyoto Univ., 29 (1989), 449-453.
- [15] J. Milnor and J. Moore, On the structure of Hopf algebra, Ann. Math., 81 (1965), 211-264.
- [16] M. Mimura, Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
- [17] M. Mimura and H. Toda, Cohomology operations and homotopy of compact Lie groups I, Topology, 9 (1970), 317-336.
- [18] J. P. Serre, Homologie singulière des espces fibrés, Ann. Math., 54 (1951), 425-505.