Homology of the Kac-Moody groups II

Dedicated to Professor Shôrô Araki on his 60th birthday

By
Akira Kono and Kazumoto Kozima

§ 1. Introduction

Let G be a compact, connected, simply connected, simple Lie group and \mathfrak{g} its Lie algebra. Let $X\langle n\rangle$ be the n-connected cover of the space X. Since $\pi_{3}(G) \cong Z$ is the first non-trivial homotopy, there is an S^{1}-fibration

$$
S^{1} \longrightarrow \Omega G\langle 2\rangle \rightarrow \Omega G
$$

(Notice that sometimes one likes to write $\Omega G\langle 3\rangle=\Omega(G\langle 3\rangle)$ instead of our $\Omega G\langle 2\rangle=(\Omega G)\langle 2\rangle$.) The homotopy type of the Kac-Moody group $\Omega\left(\mathfrak{g}^{(1)}\right)$ is $\Omega G\langle 2\rangle \times G$. (See [10] and [11].) Since the homology of G is known and $H_{*}(\Omega G\langle 2\rangle ; \boldsymbol{Z})$ is finitely generated, we have only to determine $H_{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right)$ for all prime p to determine $H_{*}\left(\mathcal{A}\left(\mathfrak{g}^{(1)}\right) ; \boldsymbol{Z}\right)$.

The homology of G has non trivial p-torsions if and only if (G, p) is one of the following:

$$
\begin{aligned}
& (\operatorname{Spin}(n), 2) n \geq 7,\left(E_{6}, 2\right),\left(E_{6}, 3\right) \\
& \left(E_{7}, 2\right),\left(E_{7}, 3\right),\left(E_{8}, 2\right),\left(E_{8}, 3\right),\left(E_{8}, 5\right), \\
& \left(F_{4}, 2\right),\left(F_{4}, 3\right) \text { and }\left(G_{2}, 2\right) .
\end{aligned}
$$

In [14], we computed $H_{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right)$ for such (G, p) except $(\operatorname{Spin}(n), 2)$ and $\left(E_{6}, 2\right)$.

The purpose of this paper is to determine it for the groups whose homology has no p-torsion. The major problem in the above case is that it is very difficult to compute the Gysin sequence of $\boldsymbol{Z}_{(p)}$-coefficients directly. To avoid this problem, we consider the Bockstein spectral sequence of the Gysin sequence. By using the Serre spectral sequence associated with $\Omega G\langle 2\rangle \rightarrow \Omega G \rightarrow C P^{\infty}$, we can prove that the first non trivial p-torsion of $H_{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right)$ is order p for all G. (See Theorem 3.1.) This fact becomes the "seed" of our computation of the above Bockstein spectral sequence and also gives the result for ($E_{6}, 2$).

We define $\boldsymbol{Z}_{(p)}$-modules $C(d, p)$ and $L(G, p)$ in $\S 3$. Then the main result is

Theorem 3.2. If $H_{*}\left(G ; \boldsymbol{Z}_{(p)}\right)$ has no p-torsion, then

$$
H_{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right) \cong C(d(G, p)-1, p) \otimes_{\mathbf{Z}_{(p)}} L(G, p)
$$

as a $\boldsymbol{Z}_{(p)}$-module.

§2. Bockstein spectral sequence

Let $\left(\boldsymbol{C}=\bigotimes_{j \geq 0} \boldsymbol{C}_{j}, \partial\right.$) be a differential graded commutative algebra over $\boldsymbol{Z}_{(p)}($ or $\boldsymbol{Z})$ where $\boldsymbol{C}_{\boldsymbol{j}}$ is free, $\partial \boldsymbol{C}_{j} \subset \boldsymbol{C}_{j-1}$ and ∂ is derivative: $\partial(x \cdot y)=(\partial x) \cdot y+$ $(-1)^{|x|} x \cdot \partial y$. Let put $\boldsymbol{D}=H(\boldsymbol{C})$ and $\boldsymbol{E}=H(\boldsymbol{C} \otimes \boldsymbol{Z} / p)$. Then we have an exact couple

where $i=\times p, j$ is the $\bmod p$ reduction ρ and k is the connected homomorphism d associated with the short exact sequence

$$
0 \longrightarrow \boldsymbol{Z}_{(p)} \xrightarrow{\times p} \boldsymbol{Z}_{(p)} \xrightarrow{\rho} \boldsymbol{Z} / p \longrightarrow 0 .
$$

The derived couple of this exact couple is

where $\boldsymbol{E}_{r}=k^{-1}\left(\operatorname{Im} i^{r}\right) / j\left(\operatorname{Ker} i^{r}\right), \boldsymbol{D}_{r}=\operatorname{Im} i^{r}, i_{r}=i \mid \boldsymbol{D}_{r}, k_{r}$ is the map induced from k naturally and $j_{r}=j^{\circ}\left(i^{r}\right)^{-1}$. Let us introduce some notation. For $\alpha \in \operatorname{Ker} \partial$, we denote its class in $H(\boldsymbol{C})$ as [α]. If $\partial \alpha \in p \cdot \boldsymbol{C}$, we write $\langle\alpha\rangle$ for the class of α in $H(\boldsymbol{C} \otimes \boldsymbol{Z} / p)$. For $a \in k^{-1}\left(\operatorname{Im} i^{r}\right) \subset H(\boldsymbol{C} \otimes \boldsymbol{Z} / p)$, we denote the corresponding element in \boldsymbol{E}_{r}-term as $\{a\}_{r}$.

Lemma 2.1. Let $a \in k^{-1}\left(\operatorname{Im} i^{r}\right)$. Then there exists $b \in H(C \otimes Z / p)$ satisfying $d_{r}\left(\{a\}_{r}\right)=\{b\}$ and $d_{r+1}\left(\left\{a^{p}\right\}_{r+1}\right)=\left\{b \cdot a^{p-1}\right\}_{r+1}$

Proof. From the assumption, we can take an element $\tilde{b} \in H_{2 n-1}(C)$ so as to satisfy $d a=i^{r} \tilde{b}$. Let $x \in C_{2 n}$ (respectively $y \in C_{2 n-1}$) be a representaive element of a (respectively \tilde{b}). Since $d a=\left[\frac{\partial x}{p}\right]$, there is $u \in C_{2 n}$ satisfying

$$
\frac{\partial x}{p}=p^{r} \cdot y+\partial u
$$

in $C_{2 n-1}$. Using the fact that $C_{2 n-1}$ and $C_{2 n}$ are free, we obtain an equation

$$
\frac{1}{p} \cdot \partial(x-p \cdot u)=p^{r} \cdot y .
$$

So $\partial(x-p \cdot u) \in p \cdot C_{2 n-1}$ and $\langle x-p \cdot u\rangle=\langle x\rangle=a$. We put $b=\langle y\rangle$. Then we have

$$
d_{r}\left(\{a\}_{r}\right)=j_{r} \circ k_{r}\left(\{a\}_{r}\right)=j_{r}\left(p^{r} \cdot y\right)=\{b\}_{r} .
$$

Since d_{r} is derivative, $d_{r}\left(a^{p}\right)=0$ and

$$
\begin{aligned}
& k_{r+1}\left(a^{p}\right)=d\left(a^{p}\right)=\left[\frac{1}{p} \cdot \partial(x-p \cdot u)^{p}\right]=\left[\partial(x-p \cdot u) \cdot(x-p \cdot u)^{p-1}\right]= \\
& {\left[p^{r+1} \cdot y \cdot(x-p \cdot u)^{p-1}\right] .}
\end{aligned}
$$

Since $j_{r+1}\left[p^{r+1} \cdot y \cdot(x-p \cdot u)^{p-1}\right]=\left\{\left\langle y \cdot(x-p \cdot u)^{p-1}\right\rangle\right\}_{r+1}=\left\{b \cdot a^{p-1}\right\}_{r+1}$, we obtain $d_{r+1}\left(\left\{a^{p}\right\}_{r+1}\right)=\left\{b \cdot a^{p-1}\right\}_{r+1}$.

§3. Proof of Theorem

Let G be a compact Lie group as in $\S 1$ and $G\langle 3\rangle$ be the 3 -connected cover of G. For a graded module $A=\oplus A_{i}$ of finite type over \boldsymbol{F}_{p}, we define $P(A, q)$ $=\sum\left(\operatorname{dim} A_{i}\right) q_{i}$. Let $m(1)=1<m(2) \leq \cdots \leq m(l)$ be the exponent of the Weyl group of G. Let $t \in H^{2}\left(\Omega G ; \boldsymbol{F}_{p}\right)$ be a generator. Since G is compact and $H^{*}\left(\Omega G ; \boldsymbol{F}_{p}\right)$ is a Hopf algebra, there exists an integer $d(G, p)$ satisfying

$$
t^{p^{d(G, p)-1}} \neq 0 \text { and } t^{p^{d(G, p)}}=0
$$

Now let us recall the result of Kono [13].
Theorem A (Kono [13], Theorem 2.). If $H_{*}\left(G ; \boldsymbol{Z}_{(p)}\right)$ has no p-torsion, then $d(G, p)$ is given by the following
(1) For the classical groups,

$$
d(G, p)= \begin{cases}r(n, p) & \text { if } G=S U(n), \\ r(2 n, p) & \text { if } G=\operatorname{Spin}(2 n+1), \operatorname{Spin}(2 n) \text { or } \operatorname{Sp}(n) \\ & \text { and } p \text { is an odd prime, } \\ 1 & \text { if } G=S p(n) \text { and } p=2,\end{cases}
$$

where $p^{r(n, p)-1}<n \leq p^{r(n, p)}$.
(2) For the exceptional groups, $d(G, p)$ is given by the following table:

G	G_{2}		F_{4}, E_{6}		E_{7}		E_{8}	
p	5	$\neq 5$	≤ 11	>11	$5 \leq p \leq 17$	>17	$7 \leq p \leq 29$	>29
$d(G, p)$	2	1	2	1	2	1	2	1

Theorem B (Kono [13], Theorem 1.)

$$
P\left(H^{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{F}_{p}\right), q\right)=P(A(G, p), q) \cdot\left(1+q^{2 a(G, p)-1}\right)
$$

where $A(G, p)$ is a graded algebra satisfying

$$
P(A(G, p), q)^{-1}=\left(\prod_{j=2}^{l}\left(1-q^{2 m(j)}\right)\right) \cdot\left(1-q^{2 a(G, p)}\right)
$$

and $a(G, p)=p^{d(G, p)}$.
Since the fibration

$$
\Omega G\langle 2\rangle \rightarrow \Omega G \longrightarrow C P^{\infty}
$$

is a Hopf fibration, the $\boldsymbol{Z}_{(p)}$-homology Serre spectral sequence of this fibration is the Hopf algebra spectral sequence. The homology of $C P^{\infty}$ is the devided polynomial algebra, so

$$
H_{*}\left(C P^{\infty} ; \boldsymbol{Z}_{(p)}\right) \cong \boldsymbol{Z}_{(p)}\left[e_{1}, e_{2}, \ldots, e_{j}, \cdots\right] /\left(e_{j}^{p}=p \cdot e_{j+1}, j>0\right)
$$

where $\operatorname{deg} e_{j}=2 p^{j-1}$. Since $H_{*}\left(\Omega G ; \boldsymbol{Z}_{(p)}\right)$ is zero at the odd dimensions and $H_{2 n-1}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right)$ is zero for $n<a(G, p), e_{j} \otimes 1$ is a permanent cycle for $j \leq d(G, p)$ and $e_{d(G, p)+1}$ is transgressive to the generator b of

$$
H_{2 a(G, p)-1}\left(\Omega G\langle 2\rangle ; Z_{(p)}\right)
$$

which is the cyclic group $\boldsymbol{Z} / p^{\alpha}$ where $\alpha>0$ by Theorem B. Since $e_{d(G, p)}^{p}$ is clearly transgressive to zero, $p \cdot b$ which is the transgressive image of $e_{d(G, p)+1}=e_{d(G, p)}^{p}$ is zero. Thus we have

Theorem 3.1. $H_{2 n-1}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right)$ is zero for $n<a(G, p)$ and

$$
H_{2 a(G, p)-1}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right) \cong \boldsymbol{Z} / p .
$$

The homology Gysin sequence associated with an S^{1}-fibration S^{1} $\rightarrow \Omega G\langle 2\rangle \xrightarrow{\Omega i} \Omega G$ is split to the following exact sequence:

$$
\begin{aligned}
0 \longrightarrow H_{2 n}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right) \xrightarrow{\Omega i_{*}} & H_{2 n}\left(\Omega G ; \boldsymbol{Z}_{(p)}\right) \xrightarrow{\chi} \\
& H_{2 n-2}\left(\Omega G ; \boldsymbol{Z}_{(p)}\right) \longrightarrow H_{2 n-1}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right) \longrightarrow 0 .
\end{aligned}
$$

Let $\quad \boldsymbol{C}_{2 n}=H_{2 n}\left(\Omega G ; \boldsymbol{Z}_{(p)}\right), \quad \boldsymbol{C}_{2 n-1}=H_{2 n-2}\left(\Omega G ; \boldsymbol{Z}_{(p)}\right) \otimes s$ and $\partial(\alpha \otimes 1)=\chi(\alpha) \otimes s$, $\partial(\alpha \otimes s)=0$. Then $H_{i}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right)=H_{i}(\boldsymbol{C}, \partial)$ for all i. By Theorem 3.1, there is a generator $b \in H_{2 a(G, p)-1}\left(\Omega G\langle 2\rangle ; \boldsymbol{F}_{p}\right)$ and there exists $a \in H_{2 a(G, p)}\left(\Omega G\langle 2\rangle ; \boldsymbol{F}_{p}\right)$ satisfying $d_{1}\left(\{a\}_{1}\right)=\{b\}_{1}$. First recall that $P_{1}=$ the image of

$$
\Omega i_{*}: H_{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{F}_{p}\right) \longrightarrow H_{*}\left(\Omega G ; \boldsymbol{F}_{p}\right)
$$

is a polynomial algebra, since it is a Hopf subalgebra of a polynomial
algebra. $H_{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{F}_{p}\right)$ is isomorphic to the tensor product of P_{1} and $\Lambda(b)$. Hence for all $(G, p) \neq(S p(n), 2),\left(G_{2}, 5\right)$, the E_{1}-term of the Bockstein spectral sequence is generated by elements of degree not greater than $2 a(G, p)$ by dimensional reasons. Consider the fibration

$$
\Omega S p(n-1)\langle 2\rangle \longrightarrow \Omega S p(n)\langle 2\rangle \longrightarrow \Omega S^{4 n-1}
$$

The spectral sequence of the above fibration collapses since the Poincare series of $H_{*}\left(\Omega S p(n)\langle 2\rangle ; \boldsymbol{F}_{2}\right)$ is equal to the product of those of $H_{*}\left(\Omega S^{4 n-1} ; \boldsymbol{F}_{2}\right)$ and $H_{*}\left(\Omega S p(n-1)\langle 2\rangle ; \boldsymbol{F}_{2}\right)$. Therefore we can assume that $d_{1}(a)=b$ and $d_{r}($ other generators of $\operatorname{deg}<4 n-2)=0$ for $r \geq 1$. If d_{r} is non zero on the generator of $\operatorname{deg}=4 n-2$, the rank of the rational homology of $\Omega S p(n)\langle 2\rangle$ fails to match with the rank of $Q\left[s_{6}, s_{10}, \ldots, s_{4 n-2}\right]\left(\operatorname{deg} s_{i}=i\right)$ at deg $=4 n-2$. Thus the generators except a are permanent cycles in the Bockstein spectral sequence. (The case (G, p) $=\left(G_{2}, 5\right)$ is clear by dimensional reasons.) Therefore by using (2.1) inductively, we obtain the equation

$$
d_{r}\left(\left\{a^{p^{r-1}}\right\}_{r}\right)=\left\{b \cdot a^{p^{r-1}-1}\right\}_{r}
$$

for all $r \geq 1$. Define a graded $\boldsymbol{Z}_{(p)}$-module $C(d, p)$ by

$$
C(d, p)_{j}= \begin{cases}\boldsymbol{Z}_{(p)} & \text { if } j=0 \\ \boldsymbol{Z} / p^{r-d} & \text { if } j+1=2 p^{r} \cdot k,(k, p)=1 \text { and } r \geq d \\ 0 & \text { otherwize }\end{cases}
$$

We also define a graded free $\boldsymbol{Z}_{(p)}$-module $L(G, p)$ so as to satisfy

$$
P(L(G, p), q)^{-1}=\prod_{j=2}^{l}\left(1-q^{2 m(j)}\right)
$$

Now the Bockstein spectral sequence and Theorem A, B give the proof of the followng theorem.

Theorem 3.2. If $H_{*}\left(G ; \boldsymbol{Z}_{(p)}\right)$ has no p-torsion, then

$$
H_{*}\left(\Omega G\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right) \cong C(d(G, p)-1, p) \otimes_{\mathbf{Z}_{(p)}} L(G, p)
$$

as a $\boldsymbol{Z}_{(p)}$-module.
Example. (1) For $G=S U(2), L(G, p)=\boldsymbol{Z}_{(p)}$ and $d(G, p)=1$ for all p. Then $H_{*}\left(\Omega S U(2)\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right) \cong C(0, p)$ which is the result of Serre [18].
(2) For $G=S U(3), m(2)=2$ and $L(G, p)=\boldsymbol{Z}_{(p)}[s]$ where $\operatorname{deg} s=4$. In the case $p=2, d(G, 2)=2$. Therefore

$$
H_{*}\left(\Omega S U(3)\langle 2\rangle ; \boldsymbol{Z}_{(2)}\right) \cong C(1,2) \otimes_{\mathbf{z}_{(2)}} \boldsymbol{Z}_{(2)}[s]
$$

If p is an odd prime, then $d(G, p)=1$ and

$$
H_{*}\left(\Omega S U(3)\langle 2\rangle ; \boldsymbol{Z}_{(p)}\right) \cong C(0, p) \otimes_{\mathbf{Z}_{(p)}} \boldsymbol{Z}_{(p)}[s]
$$

Remark. As an application of (3.1), we can determine $H_{*}\left(\Omega E_{6}\langle 2\rangle ; \boldsymbol{Z}_{(2)}\right)$.
Since $H_{*}\left(\Omega E_{6}\langle 2\rangle ; \boldsymbol{Z} / 2\right) \cong \Lambda\left(y_{31}\right) \otimes_{\boldsymbol{z} / 2} \boldsymbol{Z} / 2\left[h_{8}, h_{10}, h_{14}, h_{16}, h_{22}, y_{32}\right]$ where $\Lambda()$ is the exterior algebra over $\boldsymbol{Z} / 2$ and all subscripts designate the degrees of the elements (See [14].), one can deduce that y_{31} is $S q_{*}^{1}$ image by (3.1). Then the argument in [14] works well and we have

$$
H_{*}\left(\Omega E_{6}\langle 2\rangle ; \boldsymbol{Z}_{(2)}\right) \cong C(3,2) \otimes_{\mathbf{z}_{(2)}} \boldsymbol{Z}_{(2)}\left[s_{8}, s_{10}, s_{14}, s_{16}, s_{22}\right]
$$

as the $\boldsymbol{Z}_{(2)}$-module where $\operatorname{deg} s_{i}=i$.

Department of Mathematics, Kyoto University
 Department of Mathematics, Kyoto University of Education

References

[1] S. Araki, Differential Hopf algebra and the cohomology mod 3 of the compact exceptional groups E_{7} and E_{8}, Ann. Math., 73 (1961), 404-436.
[2] S. Araki, Cohomology modulo 2 of the compact exceptional groups E_{6} and E_{7}, J. Math. Osaka City Univ., 12 (1961), 43-65.
[3] S. Araki and Y. Shikata, Cohomology mod 2 of the compact exceptional group E_{8}, Proc. Japan Acad., 37 (1961), 619-622.
[4] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
[5] A. Borel and J. P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math., 73 (1953), 409-448.
[6] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-281.
[7] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[8] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structure of mod 2 cohomology of simple Lie group, Publ. R.I.M.S. Kyoto Univ., 12 (1976), 141-167.
[9] V. G. Kac, Torsion in cohomology of compact Lie group and Chow rings of reductive algebraic groups, Inv. Math., 80 (1985), 69-79.
[10] V. G. Kac, Constructing groups associated to infinite dimensional Lie algebra, Infinite dimensional groups with applications, MSRI Publ., 4, 167-216.
[11] V. G. Kac and D. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci., 80 (1983), 1778-1782.
[12] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259298.
[13] A. Kono, On the cohomology of the 2-connected cover of the loop space of simple Lie groups, Publ. R.I.M.S. Kyoto Univ., 22 (1986), 537-541.
[14] A. Kono and K. Kozima, Homology of the Kac-Moody Lie groups I, J. Math. Kyoto Univ., 29 (1989), 449-453.
[15] J. Milnor and J. Moore, On the structure of Hopf algebra, Ann. Math., 81 (1965), 211-264.
[16] M. Mimura, Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
[17] M. Mimura and H. Toda, Cohomology operations and homotopy of compact Lie groups I, Topology, 9 (1970), 317-336.
[18] J. P. Serre, Homologie singulière des espces fibrés, Ann. Math., 54 (1951), 425-505.

