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On the birational structure of certain Calabi-Yau threefolds

By

Yoshinori NAMIKAWA

§ 0 .  Introduction

L et X  b e  the fibre product over F "  o f two rational elliptic surfaces with
sections n: S — >P ' and  A: S +  P ' .  Then X  is  a projective threefold with the
trivial first Chern class. W e shall assume the following general conditions.

(1.1) Generic fibres of n and A are not isogenous.
(1.2) All singular fibres of n and A are of 1,-type.
(1.3) F o r every point peP l , n (p) or 2 -  '(p) is smooth.

Under these assumptions, it is easily shown that X  is nonsingular. In  general
there are  infinitely many ( — 1)-curves o n  S  an d  S t  Hence if we consider the
curve P x p i m on X  with e and m ( — 1)-curves on S and S + , respectively, then we
can find infinitely many ( — 1, — 1)-curves (i.e. rational curves of which normal
bundles are isomorphic to C,,,( — 1)0  (  —  1 ) )  on X .  Let E denote the divisor V
x p iS +  o n  X .  Then we have infinitely many extremal rays with respect to  K x

+ eE for a rational number e, 0 < e  < 1 . In fact, e x p,m's with m ( — 1)-curves on
S +  form extremal rays. Moreover ( — 1, — 1)-curves have m uch to do  with the
birational structure of X .  F or example, blowing up X  along some of mutually
disjoint these  curves, w e can  produce a  num ber o f  13 '  x  P '  a s  exceptional
divisors. B low ing dow n them  to other directions, w e h a v e  a  new Moishezon
threefold bimeromorphic to X .  If we choose suitable ( — 1, — 1)-curves, then we
can proceed above operations in  the  category of projective varieties. H ence  w e
have many Calabi-Yau threefolds (i.e. compact Kdhler threefolds with K = 0  and
with the finite fundamental group) birational to X .  Conversely, any such threefold
can be obtained from X  by a  similar process called a flop, and these thrreefolds
give th e  decomposition of Mov (X)n Big(X) into many chambers ([1]), where
Mov(X) and Big(X) denote the movable cone of X  and the cone generated by big
divisors on X , respectively. In  our case, the number of chambers is infinite. But
th e r e  is  a  p o ss ib ility  th a t tw o  manifolds ob ta ined  by  d iffe ren t flops are
isom orphic. As a consequence, we have a finite number of Calabi-Yau threefolds
birational to  X , up to  isom orphism s. The number is

56120347647983773489.

Let us explain the contents of this p ap e r. In  § 1  we shall study movable and big
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line bundles o n  X .  Indeed, a  flop  in  th e  category of projective varieties is
determined by a  movable and big line bundle by [l, Theorem 5.3, Theorem 5.7].

By Propositions (1.1), (1.2) we know on what curves we should operate a  flop
so as to obtain a  projective threefold. In §2 first we shall determine Bir(X) and
A ut(X ). Next, by applying the theory of Del Pezzo surfaces (i.e. surfaces of which
anti-canonical bundles are am ple) we shall classify the Calabi-Yau threefolds
birational u p  to  X  to isomorphisms.

Notation and Conventions

In  this paper we shall work over the complex number field C.
F o r  a  coherent sheaf a o n  a  complete variety X ,  hi (X , a) denotes the

dimension of the vector space Il i (X, For a  nonsingular variety X , we denote
by  K ,  the  canonical line bundle of X .  Let L  be  a  line bundle o n  a  complete
variety X .  Then we say that L is movable if the natural map H ° (X, L) (9x -4 L
is surjective in codimension one, and L is called big if the Iitaka dimension ic(X, L)
is equal to dim X .  If (L , C)> 0 for every curve C on  X , then L  is called nef.

§

Let S and S +  be rational elliptic surfaces with sections, and we denote by IC

and A, their fibrations over P 1 , respectively. We shall consider the case where the
following are satisfied :

(1.1) Generic fibres of IL  and A are not isogenous to each other.
(1.2) All singular fibres of it a n d  A are of 1 1-type.
(1.3) For every point p e p ' , 7 -1 ,

p x
)  o r 1-1 (p) is smooth.

Taking the fibre product of S and S +  over P', we obtain the following diagram
(1.4):

p i

By the assumption (1.3), S x ,,,S +  i s  a  nonsingular projective threefold. W e
denote this threefold by X  in  the  remaining of this section.

Proposition (1.1) A )  L et _V' be a movable and big line bundle on X and T a
set of  irreducible reduced curves having negative interssections w ith Y . T hen T  =
{Pi x  p oni ;(i, j ) e e }  where e I s  (or mls) are mutually disjoint ( — 1)-curves on S (or
S+ , resp.), and S  is  the subset o f  [l, r] x [1 , k ] with the following properties:

1) There exists a descending chain of  sebsets of  [ l, k ] of  length p (p r ) :
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{h, •• • { h,•••, j k ,} ••• { j i , . . . ,  j k p l ,  where k i's  are positive integers
with k ik 2.

2) There ex ists a subset o f  [ l, r]: { i 1 . . . . .  i} [ l ,  r].

= (j1 , jk ,), .0 , — ,  0 2 ,  JO, ••• (in , On, .ik,)}.

B )  Conversely, if  we have mutually disjoint curves E i's, ITO  and the set S  with the
properties above, there is a  movable and big line bundle _V ' described in A).

Proof  o f  A ) . Consider the following exact commutative diagram:

Pic S x  Pic ,S+ P i c  n '( ri )  x Pic /1- 1 ( ) 0

ii e w e e
w

Z f*E9(1) Pic S  x  p iS+ Pic f - 1 (q) - >  0 ,

where ri is a generic point of P 1 . p * ( ) 0 q*(q) is an isomorphism by (1.1). Since
f*E9(1)•- • p*n*(9(1), p* 0 q* is  surjective. Hence fo r  a  line bundle o n  X , we
have ..97  = p * L  q * M , where L (or M) is  a  line bundle on  S  (or S + ,  resp.). By
Kiinneth formula, f * (gF) n * L 0.1 4 M , and if .97  is effective, we may assume that L
a n d  M  are  effec tive . In  fac t, if .0.- i s  effective, then f 4 ,  h a s  a non-zero
sec tion . Since n * L and /1* M are vector bundles on 111 , they are direct sums of line
bundles. Hence we conclude that fo r a  suitable line bundle K  o n  P 1, n * L 0 K
and A M  0  K - 1  h a v e  n o n - z e r o  s e c t i o n s .  W e  c a n  w r i t e  gor°

p*(L0 n* K) 0 q* (M  0 K - 1 ). Since LO n* K and M  , * K  - 1  are effective,
we may assume tha t L  and M  are effective.

L e t u s  s ta r t th e  proof o f  A ) .  B y th e  above argument, w e can w rite  Y
p*L C)q*M , for effective divisors L  a n d  M . L e t  C  be  an  irreducible reduced

curve having a  negative intersection with Set p(C)= É, and q(C ) = m . Then
we have (p*L 0 q*M , C )= [m : P i ] (L, e) + [ e: P 1](M , m )< O. W e  m a y  assume
that (L, É) is negative. The self intersection number of e is negative because L is
effective. T h e  arithemetic genus Pa (e) of e can be com puted by the adjunction
formula; 2P(e)—  2 = £ 2 + (e, K s ). Since S  i s  a  rational elliptic surface with
sections, (e, K s ) O. This we have P a (e) = 0 and e is a  ( — 1)-curve or a  ( — 2)-
c u rv e . But S  contains no ( — 2)-curves by the assumption (1.2). So t  is a  ( — 1)-
c u rv e . kr I  h a s  a n  irreducible elem ent because sr is m ovable and  b ig . T h is
divisor defines a non-zero effective divisor on e x p i S t  This shows that m is also
a  ( — 1)-curve o n  S + . N ote th a t C = E X  p .m  in  this case.

Suppose that (Y , E +  X  p I M + )  <O  for other ( — 1)-curves 4. a n d  m+ . At first
we shall consider the case where m = m +  a n d  e n e +  c / o .  An irreducible element
o f  1.,29 1 defines a non-zero effective d ivisor o n  S  x ,m ; -xpi. — ae + be
+ (other effective divisors), where a, h  > 0. If  a > b , then (Y ', e+ x p,m)> (aE
+ be t ,  e+)> 0. This contradicts our assumption. In the case where a <b , we
have a contradiction in the same manner. Next consider the case where e e+,
m o m+  a n d  e n e 0 .  Then we obtain the following inequalities by the same
argument as above :
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(L , t) + (M , ni) < 0

(L, e) + 0
(1.5)

(L, V) + (M, m + ) 0

(L, e+) + (m, m+) < O

B u t there  are  no 4-uples { (L , t), (L, -e + ), (M , (M , m+ )}  satisfying these
inequalities. This is a contradiction.

Hence we conclude that ene + =0 and m n m + = 0. As a consequence it has
been shown that T=  { i , x pi n ;  (i, j)e e l  for mutually disjoint ( — 1)-curves e;,s on
S , and mutually disjoint ( — 1)-curves in »  on  s+, w here Z  is a certain subset of
[1, r] x [1, k].

To complete the proof, it suffices to show th a t Z  h a s  the properties in the
statem ent. Suppose to  the contrary. Then we observe that for some i, i + e [1, r]
and some J J e [ 1 ,  k], (i, j) and (i t , j + ) belong to Z  but neither (i + , j) nor (i, j + )
b e lo n g s  to  Z . S ay  Y  =  p* L C) q* M . Put (L , e ;) = a , ( L , i +) = b, (M, in i ) = c
and (M, m i +) = d. They m ust satisfy the inequalities similar to (1.5):

a + c  <0

a + d > 0

b + c > 0

b + d < 0

This is a  contradiction. The proof of A ) is now completed.

Proof  o f  B ) .  W e choose th e  integers o- (l < k1) and  r p (1 p ) as
follows:

<O i f  a k f l

(1.6) + > 0  if a >  1(0

F o r  a  very ample line bundle H  (or H + )  on  S  (or s+, resp.), put

L = nH  + a i Vi i + ••• +

M  = n +  H + + h 1 m3 +  +

where we adjust the coefficients n, n 4 , a ,  be Z  + in  such a  way (L , P)= -c 1 , . . . ,
(L, Li p ) =  T p , (M, m i ,) = o- , , . . . ,  (M , m i k ,) = o-

k ,. W e  s h a l l  s h o w  that Y
= p*L O q*M  is a  desired one for sufficiently large n and n .  I n  fact it is clear
that i s  big. S u p p o se  that LP is not movable. Then fixed components of 1 Y1
are unions of S x p l MO and e i , x pi S ' s .  For simplicity we may assume that Ei

x ,„,S +  is contained in  fixed components. N ote tha t i  refers to one member of
{i 1 . .... i}. T h e n  the following diagram is obtained:
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H ° (X , p*(L—  Pi) 0 q*M ) H ° (X , p* LO q*M)

(1.7)

H ° (P1, n * (L — Pi) 0 .1 * M) H ° (P1, n * L 0  ) * M)

Here L depends on the positive integer n, but we have

Lem m a (1.8). h i (O(L— 0 ) is bounded above by  som e constant A (t), where
A (T) depends only on T  =  (T 1 , ,

Proof  of  (1.8). By abuse of notation we denote (L, e i)  by  T i .

(The case where T i +  1 > 0)

If n is sufficiently large, L—  t i is linearly equivalent to F + E — Ti p ) e i s ,
ip# l,tj p <

where F  is a  nonsingular curve on S  and F n f io = 0  for every ifl w ith  ifl i ,
< O .  Set E = F + E — t o e i p .  Then we obtain

111(e s ) ((.9 s (L  —  i)) --+ 1-1 1((.9 E (E)).

By Serre duality we have h l (CE (E)) = h° ((9,(K s )). — K s  is linearly equivalent to a
fibre of 7E. Hence it follows that h° (F, (QF (Ks )) = 0 and h° (( E (K s )) = E h° (( — t id

C(K s )). Therefore, h i (O(L — Le) ) .  A(T) for some constant A(T).
(The case where T i ±  I  G  0)

If n is sufficiently large, L— Li is linearly equivalent to F  +  ( - 1  - -ri)Li + E
— Ti p )  ei s , where F is a  nonsingular curve with Fn 8, = 0, F n = 41.  The same

argument as above shows the assertion in this case, too. Q.E.D.

By the  spectral sequence of Leray, w e have h i (n,(9(L — e,)) (C(L— 0).
Decomposing ir,(L — 0  into a direct sum of line bundles 0,1(d 1 ) 0 ••• CO ,,,(d"),
it can be shown by (1.8) that min {d1 ,... , dk o o } B ( T ) ,  where B(t) is a constant
depending only on T. Since L is it-very ample, R 17r,e(L—  Pi ) = O. It is  o b v io u s
that 7r,C ,,(L) = (9,1(t i). Thus we obtain

0 7r,9(L — --- ) ,(L) O.

E  e p i(di )
1sisk(n)

&p i e r)

W e  c a n  w r ite  n* L =  e(d., + ei ) 0 (9 (d )  f o r  som e non-negative integers e;

(1 < j  <  k(n)) and for some integer d. If  some ei  i s  positive, it follow s that h°

(n.e(L—  P i) 0 .1,M ) < h ° (7r,L 0 2,M ) for n + >  C(T), where M = n+ H + + (others)
and C (t) is a constant depending only on T. On the other hand, if ei  = 0 for all j,
w e  h a v e  d = t,. I n  t h i s  c a se , a l s o  t h e  inequality  h° (n.e(L  — ) .M )
< h ° (7E,L0 A M) h o l d s .  T h is  contradicts t h e  a ssu m p tio n  th a t .2 9   is n o t
movable. Hence l é  is movable.
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Finally, let C  be an  irreducible curve on  X  with (C, < O. B y  A) C  is e
x p on for a ( — 1)-curve e on  S  and for a ( — 1)-curve m on  S .  I f  e does not
coincide with any i t and m  does not coincide with any nip  w e have (C, 2 ') >  0 by
the construction of Y . T hus w e m ay assume that C  = t i x pi m. Then we obtain

(C, Y) = (m, (L, — K s +) + M).

If  m  does not coincide with any m i , th en  w e  have (m, M) > (m, n + H + ). For
sufficiently large n ,  n + F + + (L, e i)(— K s ,)  is very a m p le . It is clear that in this
case (m, (L, € i)(—  K s +) + M )> 0. This completes the proof of B).

By the notion of a f lop, we can grasp the relationship between two minimal
m odels birational to each other. For the definition of a f lop, see El, (4.4), (4.4')]

Proposition (1.2). W ith the notation in Proposition (1.1) the strict transform
o f  Y  becomes nef  and big by  the f lop of  all curves which belong to T.

P ro o f . It is obvious that ..r + is  big. F o r an  irreducible reduced curve C on X,
le t C + b e  i t s  s tric t  transf orm  by  the f lo p . I t  s u f f ic e s  to  show  that (C + ,
2 ')  >  O. W e can write = p *  L C )  q * M  for an effective divisor L on S and for
an effective d iv isor M  on S .  W e  m a y  assume th a t  C  is contained in  p* L
+ q * M . In fact it is easy to see that (2 ' + , C + ) > 0 for C which is not contained
in  p * L + q * M . In the situation of (1.4), we have

Lemma (1.9). If  P(C) is contained in the f ixed components of  L ® " f o r all n
> 0 , then the inequality (L, p(C)) < O holds.

P ro o f . By abuse of notation, let us denote p(C) b y  C .  Suppose w e have
(L , C)> 0 under the assumption. W e shall derive a contradiction in each case of

a) C  is a ( — 1)-curve;
b) C  is no t a ( — 1)-curve.

C a se  a )  First of all, an irreducible reduced divisor D  c  L can be chosen so that
(D  + C , C )> 0  h o ld s . In  fa c t , some irreducible reduced divisor D  c  L  must
intersect with C  because (L , C)> 0. C o n s id e r  the following exact sequence.

0 H°((9(D)) H0(((D + C)) H °((,(D  +  C)) 111((9(D)).

If D is not linearly equivalent to — K s , then I-P((J(D)) must van ish . T o  show this,
we may apply the exact sequence

F I l (e) —* ((9(D)) 111((9 D (D))

0
an d  th e  duality of l (& (D )) and H

°
((OD (K s )). I n  fact since — K , is linearly

equivalent to a fibre of 7r, D 0 —  K, means H ° (0(K 5 )) = O. Therefore, replacing
+ C  with a  new divisor F  C  one by one if D # —  K s , we come to one of the

following two cases:
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1) There is an effective divisor which is linearly equivalent to L and which
does not contain C.

2) L m( —  K s ) + nC + (other divisors which does not interect with C  for
in > 0 and n > O. W e  d e r iv e  a contradiction in case 1). In case 2) since (L, C)
= (m(— K s ) + nC , C )> 0 , it follows that in(—  K s ) + nC  is  nef and m > n. We
have (m( — K s ) + nC) 2  > 0  because m > n. Hence m( — K s ) + nC  is  b ig  b y  [2,
Lemma 3]. Moreover N(m(— K s ) + nC) is free for a sufficiently large integer N
by [1, T h 1.3]. This shows that there is an effective divisor linearly equivalent to
NL which does not contain C .  This is a  contradiction. Hence Case a) does not
occur. C ase b). By (1.2), we have (C2 ) > O. Note that S is a 9 points blow-up of
P2; o tp 2 .  L et us denote the exceptional curves by E1, ,  E 9 .  Set (C, E t)
= k i > 0  and a(C )= e. Then we obtain

c(*(C) = C + k i E,+ •-• + k 9 E 9 .

If (9,2(0) is isomorphic to Cp 2(a) for some a, then we have

a2 = (C 2 ) + + •  + /4 .

Since (C2 ) > 0, we obtain
a2 > + •-• +

The dimension of the linear space of global sections of Cp 2(a) passing through each
a(E) with the multiplicity not less than k i ,  is at least

(1/2 a 2 + 3/2 a + 1) —  1/2 E k? — 1/2 k i

= 1/2(a 2  — E + 1/2(3a — E k i ) + 1 1.

Since each term is not negative, the dimension is possibly one only if a 2 =  E k2 and
k , = k 2  = ••• = kg . But this is the case C  is a multiple o f  — K s  a n d  C moves in
S. Therefore, we conclude that C  moves in  S  in  C ase b). Hence we derive a
contradiction. Thus Case b) does not occur.

Let us return to the proof of Proposition (1.2). We note here that Lemma
(1.9) holds not only for L, bu t also f o r  M . Hence replacing with Y' ® " for a
sufficiently large integer n, we may assume tha t C  is contained in x p,S +  fo r
some i e [1, r] o r C is contained in S x pi mi  for some j e [1, k ], where we take the
smallest r  and  k  such  tha t [1, r] x  [1 , k ] c o n ta in s  S . In fact, suppose to  the
contrary . Then p(C) does not coincide with any e t.  If p(C) does not intersect
with any t i , clearly we have (.29 + , C ± ) = (Y, C) > O. I f  p(C) intersects with some
ei ,  then  the  inequality (L, p(C)) > 0  holds. O therw ise w e have (L, V i ) > 0  and
(M, m i ) < 0 for some j  such that (i, j)e S .  But in this case the curve p(C) x p im i

has a  negative intersection with 2 .  This is a contradiction.
Since (L, p(C)) 0, we may assume that L does not contain C  by replacing L

w ith  O n a n d  applying Lem m a (1.9). T h e  sam e argum ent c a n  b e  u se d  for
M .  Thus we may assume tha t p*L O q*M  does not contain C , and  then (2 ' ,
C + ) >  0  holds.
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Let C be contained in S x p i mi . If C does not intersect with any e i x  p im i  for
(i, j)E S , we obtain (2 ,  C + )  =(2 ', C )> O . So it suffices to consider the case
where C  intersects with some Pi x  pdni . The strict transform of S x  p irni  b y  the
f lop is  a  blow-down of S  x  pi mp  t h a t  is, a surface obtained by contractions of
( — 1)-curves. In this situation the similar argument in case b) of Lemma (1.9) can
b e  ap p lied  a n d  it i s  s h o w n  th a t  C + m o v e s  in  th e  s t r ic t  transform o f S
x p i mi . Since ..r +  is movable, we conclude that (SP+ , C ± ) >  O . The case where
C is contained in e x ,,,s+ is treated in the same w ay . T h is completes the proof
of Proposition (1.2). Q.E.D.

By proposition (1.1), (1.2) and [1, Th. 5.3, 5.7] for the set T as is defined in
Proposition (1.1)A), w e  c a n  construct, b y  th e  f lo p , a  nonsingular projective
th reefo ld  w ith  triv ia l canon ica l bund le  b ira tiona l to  X . Conversely, every
projective threefold with the property is constructed by this procedure. In general,
the threefolds obtained by flops are not isomrophic to the original X.

§2.

In  this section we shall consider the birational structure of X  (the birational
automorphism group, the automorphism group, etc) and classify the isomrophism
classes of Calabi-Yau threefolds birational to  X.

Proposition (2.1). W ith the sam e notation as in §1.
A) the birational autom orphism  group  B ir(X ) o f  X  c o in c id e s  w ith  the

automorphism group Aut(X) of  X , and
B) every automorphism of  X  preserves the f ibration f: X  -4 P 1 .

Proof  o f  A ) . Let y  be a birational automorphism of X .  Suppose that y  is
n o t an  autom orphism . L et N  be  the strict transform of f*O p i(1) by  7. Since
every element of If*O p ,(1)I is irreducible, the same is true for I N I .  A s  is seen in
§ 1 , y  i s  a  f lo p  o f  a  num ber o f  curves. T hus these  curves have  negative
intersections with N .  We can write N  = p*L O q*M  for some effective divisor L
on S and for some effective divisor M on S t  (See the proof of Prop. (1.1)A).) If
neither L  n o r  M  i s  triv ia l, th e n  I  N I h a s  a  reducible elem ent. T h is  is a
contradiction. I f  M  i s  trivial, th en  w e  have N  = p*L  a n d  IL i h a s  n o  fixed
com ponents. In fact, if ILI has a  fixed component, then I NI also h a s . B u t this is
a contradiction by the properties of a  flop. O n the other hand, if ILi has no fixed
com ponents, then w e have (p*L. C )> 0  f o r  every curve a n d  th is  is  a ls o  a
contradiction. Q.E.D.

Proof  of  B )  Suppose that ye Aut (X ) does not preserve the libration. T h e n
there is a surjective morphism of a general fibre of f  to S(or S + ). A general fibre
off is a product of elliptic curves not isogenous to each other. On the other hand,
S  is a  nine points blow-up of P 2 . This is  a contradiction. Q.E.D.

Proposition (2.2). L et n: S he the same as in §1. Then we have Aut(S)
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= Aut,r (S) f o r a  general S , w here Aut„ (S) is  the n-automorphism group of S.

P ro o f . Consider the following exact sequence of groups :

1 —* Aut i r (S) —+ Aut(S) Coker I.

Let e  be a distinguished section of n: S --> P1. For y e Aut(S), y(E) is a ( — 1)-curve
on  S. There is a n-autom orphism  of S which sends y(E) to E. Hence we can
choose the representative of an element of Coker so that it sends E to  E. Let y be
such an autom orphism  of S . Then we have

P(n * (9(3E)) P(ii*n*(9(3e)) P(n*(9(3E))

Ïi
S

id
P i   p l

where j  is a  closed immersion and y = 11. Œ. S in c e  n,(9(3E) C) —  2) C)
C( — 3), we denote by Z , X  and Y  the following natural injections, rspectively :

C C) C( — 2) C) C( — 3),

C( — 2) e e - 2) () C( — 3),

(9( — 3) —> C) 0( —  2) C) C( — 3).

We can choose these sections in such a  way that

S = 1(X, Y, Z); Y 2 Z — (X 3 + aX Z 2 + bZ 3)" 01,

where a and b are global sections of C p i(4) and  0(6) respectively. Denoting
)7*(X), )7*( Y) and ')3*(Z) by g ,  Y and Z , respectively, we obtain

S = 1(X, Y, Z); Y 2 Z — (X 3 + .)7*(a)XZ 2 + ')7*(b)Z 3) =

We can write

5*(X )= cX  + dZ , 5*(Y )= eX  + fY  + gZ  and 6i*(Z) =  hZ,

w h e re  c ,  f  a n d  g  a re  n o n -z e ro  c o n s ta n ts , d  H ° ((J7(2)), e e 1-1 ° V9(1)),
g 1-1 °  ((9(3)). Since 5  sends S  to S, we have d = e = g = 0, a = )7* (a)h2 lc ' and b
= 1,-*(b)h3 I c3 . This shows that )7 is the identity map if a  and  b  are general.

Q.E.D.

Corollary (2.3). Let n: S — > P' and A :5 + —> P' be the same as in §1. A ssum e
that 5 + an d  S  are  not isom rophic to each other, and are general in the sense of
Proposition (2.2). T hen w e hav e Aut(X) = Aut f (X) = Aut„(S) x Aut,(S + ). where
Aut f (X ) is the f-automorphism group of  X.

P ro o f  Let y be an automorphism of X , and L a ( — 1) curve o n  S .  Then we



160 Y oshinori Namikawa

have y(e x piS + ) = E±  x p■S + f o r  some ( — 1)-curve V+ o n  S  o r  y (i x S+ ) = S
x ,,, m  for some ( — 1)-curve m on S .  I n  f a c t ,  since e  x p■S +  i s  an  irreducible,
isolated divisor on X , it follows from Prop. (2.1), the proof of case b) in Prop. (1.2),
that ye xp,S + ) is a pull back of a ( — 1)-curve on S  or on  S t  But y(i xpiS + )
= S  x p im does not occur because S  is not isomrophic to S + . T h u s  y(t x p ,S + )
=  t + x p iS + . Similarly y(S x p i m) = S  x p in'''. Prop. (2.1)B) a n d  Prop. (2.2)
implies that y = y, x y 2  f o r  some V i  E Aut,r (S) and for some y 2  e Aut,„(S + ).

We are now in a position to clarify how may different Calabi-Yau manifolds
birational to  X  = S  x p 1S+ exist. We have remarked in §1 that every Calabi-Yau
manifold birational to  X  is constructed by a  flop of X .  In  general, they are not
isomorphic to each other, but there is some possibility that two manifolds obtained
by different flops are isomorphic to each other. To see in what cases such things
happen, we may consider the following diagram:

X + - >  X "

fi

1,1

: Y1 :Y2

X  - ) •  X

,  where X + a n d  X '  are threefolds obtained by different flops y ,  and  y2 ,
respectively. If there is an isomorphism 6 between X + a n d  X ' ,  then we have a
birational automorphism a  of X  satisfying the above commutative diagram. But
a is an automorphism of X  by Prop. (2.1) A ). A s is proved in  Prop. (1.1), y, and
y2  a re  flops of mutually disjoint rational curves. W e denote by T i (or T2 ) the set
of such curves with respect to y i (or y 2 , resp.). T h e n  a must send each curve in  T,
to  a  curve in  T 2 .  Since Aut(X) = Aut f (X) = Aut,r (S) x Aut,,(S + )  for general S
and S + by Colorally (2.3), we can check this condition explicity. Before classifying
isomorphism classes of Calabi-Yau threefolds birational to  X , we must prove the
following lemma.

Lemma (2.4). Let be mutually disjoint (—  1)-curves on S f o r r > 2,
where S is the same as abov e . If  aeAut,t (S ) induces a permutation of 41,
then one of  the following cases occurs:

1) a  is  the identity map.
2) r = 2 and a: x—> — x + £2 , where £2 , w here + denote the addition with

respect to  the group structure in which e ,  i s  the identity.
P ro o f  L et e ,  be  a ditinguished section, and w e  deno te  by  +  and —  the

addition and the subtraction with respect to this section. I f  a  is a translation, then
we have a: x—÷x — Ei for the e ; such that a(8 1) =  Ei . But in this case we obtain

= — e i . —  and e ; always have intersections for i 1 .  Hence a( f 1) does
not coincide with any e i and this contradicts the assumption of the lem m a. If a is
a  com position of the involution and a translation, then  w e  have a: x —  x
+  £1(i > 2). W e  m a y  assum e th a t  f ; = £2. Since 0. 2  =  id , a  is (t i i , 812) &6,
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ei ,,)•••( , ) as an  element of the perm utation group. N ote that O f e2  and
a(V 2 ) = e1 . Suppose tha t r  is  la rg e r th an  2 . If 0- (e 1) =  Ei ( i > 3), then we have
—  e i e 2  =  L. H ence w e obtain  e2 =2e i . But 2e, intersects with el , and this is
a  con trad ic tion . If  o(L 1) = e  (i j  a n d  i, j  >  3 ) , th e n  w e  h a v e  ei = — e i

+ e 2 . H ence w e obtain e2 = Li + Pi . O n  th e  o ther hand, — e ,  a n d  Ei  have
intersections because L, does not intersect with L .  Thus Li + t i  intersects with
L1 . T h i s  implies that L2 intersects with P1 , and this contradicts the assumption of
the lemma. Q . E . D .

Let T and  S  be  the same as those in Proposition (1.1). Let p i (or p2 ) denote
the projection of [1, r] x  [1 , k ] onto [1, r] (or [1, k ], resp.). We shall denote by
X ,  th e  threefold corresponding to T W ritting n = #(Pi(S)) and m = #0/2(a)),
we call X +  o f  type (n, m ). From  the above considerations, it is clear that two
threefolds of different types are not isom orphic. For simplicity, we may assume
that P i ( )  = {1, n }  and p 2 (S) = { 1, ..., m}. We define for n, m _.•ç_ 9
L  := {{e1 ,..., e„} ; e i 's are mutually disjoint ( — 1)-curves on S I  modulo Aut(S),
M := {{m i ,..., m n } ; mi 's  a r e  m utually disjoint ( —  1)-curves on S + I m odu lo
Aut(S + ),
To comute #L  ,  we may assume tha t el  is  e q u a l to  a ditinguished section L  of
S. In  th e  c a se  where n = 1, # L  = L  Suppose that n > 2. S in c e  the blow-down
of L is a Del Pezzo surface, we have 9(8) •• • 9(10 — n)/(n — 1)! ways of choosing the
n-uples {e, e 2 , ,  en } if 2 n 8, and we have („a(8)••• cp(3)• 2 1 /8! w ays if n = 9
by [3, Theorem 26.2], where yo(k) denote the number of ( — 1)-curves on a Del
Pezzo surface V with (K )2 = 9 — k. Consider the automorphisms of S  (Ti : x  x
— Li and Ti: X —  X  ±  e i .  Then, in the case where n > 2, we obtain from Lemma
(2.4)

108) • • • cp(10 —  n) .#L  =   if 2 < n < 8  and
(n — 1)! 2n

1 9(8) • • • 9(3)• 2 .1
if n = 9.

8! 18

In the case where n = 2, taking the case 2) of Lemma (2.4) into consideration, we
have

# L  =  
08)

.

2

The same results also hold for # M .  Next we shall consider how many different CrT,
c a n  b e  c h o s e n  f o r  a  fixed  e lem en t {e, L 2 .... . Ln } X  { 111, M2, ,  M m } o f  L
x  M .  Note here that S is a  subset of [1, n] x [1, m] with the properties 1), 2), 3)
of Prop. (1.1) and that P i ( )  = [1 , n], p 2 (3 )  =  [1 , m ]. An easy claculation shows
that the number of such subsets is given by

m in (n,m ) n! m!
n ! • • • n ! m ! • • • m r ! .r=1 + •••+n,=n 1 • r • 1 •

m t +  • • •  +m r = m
ri, >. 0,m i  > 0



8 7 6 5 4
240 56 27 16 10

3 2 1
6  3  19 ( k )
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If n > 2  and m >  2 , then each subset calculated above defines a different Calabi-
Yau threefold. In the case where n = 2 or m = 2, by Lemma (2.4) it is shown that
some different subsets define the same Calabi-Yau threefold. Hence the number
P m „  of isomorphism classes of type (n, m) is given by the following:

m in {  n,m) n!
r=1 n i +• • • +n ,= ,  n l ! • nr .mi -F•••+.,.=m'4 ,, 0,m;  >0

m! tli(n — 1)0(m — 1)
m i!•••m !

r• 4mn

if n > 2  and In > 2,

E
r=1  n i+• • • +n ,=n  ni! ... nr!

",>o,mi >o
2mn

if n>  2  and m < 2,

n! tli(n —1)0(m — 1)

if n = 2  and in = 2,

if n = 2  and in = 1,

if n  =1  and in = 1,

1
where 0(k):=

k !

 q)(8)...-. (p(9 — k) if 1 < k < 8

:= —

1 

9(8)—  9(3)• 2  1  if k =  8,
8

1 if k  = 0.

9 (k ) := the number o f ( — 1)-curves on  a  D e l Pezzo surface V  with
11(v )2 = 9 — k.

' „ m =  P m n =

The birational autom orphism  group o f th e  threefold o f  each type is
isomorphic to Bir(X), of which order is infinite. Finally we shall write out the
automorphism group of the threefold of each type and concrete values of P„„,.

Z /2Z  x Z /2Z if n < 2  and in < 2,

Z /2Z if n < 2  and in > 2  or

if n > 2  and in  < 2,

ticll otherwise.

P 21 — 240, P21 = 57600

P3 1  =  1120, P32 = 940800, P41 = 7560, P42 = 13608000

P 51 = 24192, P52 =- 89994240, P61 = 40320, P62 = 304819200,

Aut(X +

P l i  —
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P71 =

P9 1 =

P33 =

P43 =

P53 =

P63 =

P73 =

P83 =

P93 =

P44 =

P54 =

P64 =

P74 =

P 8 4  =

P94 =

P 5 5  =

P6 5  =

P7 5 =

34560, P72 = 526694400, P81 =

960, P92 = 58867200,

91571200,

2548627200,

29289738240,

163157299200,

448732569600,

526916275200,

120380467200,

118250798400,

2118066693120,

17603003980800,

70120870041600,

116788221446400,

37275476313600,

55833708478464,

656713214115840,

3600710556549120,

12960, P82 = 396576000,

P „ = 8087394351697920,

P95 = 3427617028792320,

P66 = 10546654906368000,

P 7 6  = 76937694046617600,

P86 = 225492404652748800,

P96 = 122850607548211200,

P 7 7  =  728691787328716800,

P 8 7  =  2721984964453785600,

P 9 7  =  1863036528902553600,

P88 = 12730939089698534400,

P98 = 10759573724427417600,

P 9 9  =  11078327049524121600,

Total =  56120347647983773489.
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