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On a multiplicative structure of BP-cohomology

operation algebra

By

Kouichi INouE

§ O. Introduction

The BP-theory is obtained as a factor of the p-localized complex cobordism
theory, and has a close relation to the theory of p-typical formal group laws. For
example, (BP* , BP* B P) has a  particular algeraic structure, named Hopf-algebroid
[10], a n d  w e can form ulate  its left un it, righ t unit, coproduct and canonical
antipodal isomorphism in  term s o f  th e  form al group law  obtained from  the
complex orientation of the BP-theory. Since the E 2 -term of the Adams-Novikov
spectral sequence is a cohomology of the Hopf-algebroid (BP* , BP* BP), we can
obtain many useful information from these formulae.

BP* BP, which is a  dual of BP* B P, is a cohomology operation algera of the
BP-theory, and can be regarded as a kind of (non-commutative) Hopf-algebra. D.
Quillen [ 9 ]  s t u d i e d  i t s  H o p f - a l g e b r a i c  structure, a n d  asserted t h a t
B P*  B P  H om „.( BP* BP, BP* ) H om ,(Z [t,, t 2 , --•], B P* ) BP* (5 R. where R
=  tr E : E = (e 1 , e 2 , • — ) 1  is  a  dual basis o f  ft E  =  t  t2 • • • 1, the B P - f r e e  b a s is  of
BP* B P  ( s e e  a ls o  [1 ] ) .  W e  c a l l  th e s e  TE t h e  Q uillen  e lem ents. B u t  its
multiplicative structure has been expressed a s  a  d u a l of the comultiplicative
structure of BP* B P, so that the complicatedness of this coproduct formula seems
to p r e v e n t  o u r  in t im a t e  s t u d y in g  o f  th e  m u lt ip lic a t iv e  s t ru c tu re  o f
B P* B P. Exceptionally, R . Kane [5], [6] demonstrated some interesting results
ab o u t BP-operations and S teenrod operations from  their behavior under the
rationalization and  the  product formula modulo (y 1 , v 2 , • • •).

T he  purposes o f  th is paper a re  to describe the  complete formula for the
product of BP-operations and to study the algebraic structure of BP* BP by means
of this formula.

§ 1 .  Product formula

BP* BP is a stable cohomology operation algebra of the B P -theory . This is a
dual algebra of BP* B P  B P * [t i ,  t 2 , • • • ]  (deg t i = 2 (p l

 —  1)) because BP* B P is a
free left module over the coefficient ring BP* 'Lt Z w [v 1 , v 2 , . ]  (deg y, = 2(p 1 —  1)).
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S o  w e  can  describe  B P* B P a s  sta ted  in  the  in troduc tion . N o tice  that w e
understand  BP* L' B P _ ,  s o  t h a t  rE e B P "B P  w it h  n = E  2ei (p i — 1) and
vi e BP 2 ( 1 - P4 . A s also stated in the introduction, BP* BP has no t on ly  a ring
structure but a BP*-Hopf-algebraic struc ture . Its multiplicative structure depends
on the composition of operations, and its comultiplicative structure depends on the
action on the product of two elements of BP*X , where X  is a  CW -complex. In
th e  sequel, n, e ,  fr a n d  i t  denote unit, counit (augmentation), coproduct and
product, respectively.

ri(a) =  a • 1.

{1 : E  =  0
e ( r E )  =  0 :  otherwise.

i/i : BP* BP —4 B P* B P B P* B P : ( r  E ) = E  r
E

® r
G •

B P. F+G=E

The above infinite tensor product over B P* is a  tensor product of left BP* -
modules.

a: B P *  B P  BP*BP BP*BP: Theorem 1.2.

N otation 1.1. Throughout th is paper, xE d e n o te s  a  monomial xel ixe2 2 ••• ,
where x i s are some specified elements, and we call E = (e 1 , e2 ,•••) an  exponential
sequence.

Theorem 1.2. L et rE , r, be two Quillen elements. Then the product of them is
described as follows:

rE 0r, = —  Irmo) • • • fi(Xn)mm(x.)+•••+ man) rv(x„)•
E a0=E
F a 0 = F

eao=vao
Eao=i/ar—o

mao*o ..... mao*o

In the above formula, X , is a three-dimensional tensor, and X 1 , X two-
dimensional matrices, i.e., X , = where non-negative integers X i j k  are defined for
i,j,k 0  except (j, k) = (0, 0), and X m  =  (X ), where non-negative integers x i i  are
defined f o r i >  0, j > 1.

I X 1 1 0  X 1 2 0  X 1 3 0
X 1 0 1  X 1 1 1  X 1 2 1  X 1 3 1

X 1 0 2  X 1 1 2  X 1 2 2  X 1 3 2

X 0 1 0  X 0 2 0  X 0 3 0  X = (x i i1 ) = ‘,0 1 1 >
, 0 0 1 . '0 2 1  X 0 3 1

X 0 0 2  X 0 1 2  X 0 2 2  X 0 3 2
V

  

X =
X 0 1  X H  X 2 I  X 3 1

X 0 2  X 1 2  X 2 2  X 3 2

X 0 3  X 1 3  X 2 3  X 3 3

  

BP* - -B P * B P

e: BP* BP —+ BP*
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m i 's  are the polynom ial generators o f  1-1 B P  Z ( ,) [m i , m 2 , - - ]  (deg mi = 2
(pi — 1 )), w hich contains 7r B P = B P 1, Z o j v i ,  v 2 , • • • ]  a s  a  s u b rin g . A nd the
functions V, M , E ,  F  and /3 are defined as follows:

V (X )= (a 1 , a 2 , • ••), am  = E xi i, 
i +j+k =m i + j=m

M(X) = (b 1 , b2 , • • .), bm = X nijk ( =
j,k

E (X )= (c l , c 2 ,•••) , cm = EP1Xjmk (  =  E
i,k

F(X )= (d 1 , d2, • • dm E  p i + ix i i m ,

A X ) = Ham  !Illx iik !  ( = f l  am  !/T1 xi i k  O.

The right expression of the product formula is summed over all n >  0 and X 0 ,
X 1 , . . . ,  X „ satisfying the conditions written below E.

P ro o f . The coproduct map of B P B P  is defined recursively by the following
equations (see [1], [2], [9]):

E  rni(p t )P  = E 0  tr,' + ' ,  for n  = 1, 2, • •
i + j= n i + j+ k = n

We now follow the same way as J. Milnor [8] obtained the product formula
for t h e  S t e e n r o d  a lg e b r a .  W e  a p p ly  the f o r m u l a  ( Y i  +  •  +  y n )e

= E (e!/i 1 ! •••in !)y i,' ••• y i
n. ' t o  the  left a n d  right expressions of the above

equations. Then we obtain :

( E mi(00°')e"
i + j= 1

(e„!lx „_,,1!••• x 0 ,0(m n_1tlitir)X  1,1( t j x o „

X„ _ + • • • + xo,„ =

(en!lx .-1,1 ?••••x 0,n0m i l '— ' ••• n t r  I x . -  1 ,1

X„ + • • • + Xo,,, =

and

( E m i ti  ® t r i l e"
i + j+ k = n,(j,k )* (0,0)

E X j k = e.
i + j+k = n ,(j,k )*  (0 ,0)

(en ! /11X iik 0111 X i i k
 •  •  •  MnI 3 1 " 1-  • i k  tIP ' X " k

 •  •  •  
tnX 0 n 0  0 i l

•  t,x,°°".

Multiplying the corresponding expressions for n = 1, 2, ... , we obtain :

(1.3) E  f i ( x ) m m (x) o t E(X) E  fl(x )mm (x)tm x, ® tF(X ),

V (X )= V V (X )= V

w here V = (e i , e 2 , • • •) i s  a  fixed exponential sequence. T h e  le ft expression is
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summed over all matrices X  = (x i i : 0, i 1) satisfying V(X) =  V, and the right
expression is summed over all tesors X  = (x i i k : j, j, k 0, (j, k) (0, 0)) satisfying
V(X) =  V.

Here we regard the collection of all equations (1.3) corresponding to every
exponential sequence a s  simultaneous equations o f tPtE . T hat is, if we define a
sequence-indexed matrix A  =  (A D  b y  A17.• = /3(X )m m , th e n  th e  above

v(x)= V
equation is described as follows:

E(X )= E

E (x)A (II t E )  =  ( 1 1 v ) ,  where it , = 13(x )m m ,x )tE  ® t.F(X )

V(X) - v

Obviously, [Pt' has the highest degree in the left expression of (1.3). This fact
suggests that A  is indeed a  lower triangular matrix whose diagonal entries are
l's. Hence A '  = E ( -  1)"(A — /)". Therefore we obtain the formula of tptv  as

1•0
follows:

(1.4) tiitv = — 1rfl(x 0 ) • • • f i ( x n ) m m (x .) , ••• +m ( x ) t E(X .) ® t R x .) .

V (X )-= V
V (X ,,- 1)=-- E (X )

V (X 0)= E(X
M(X  1)* 0 M (X ,,)* 0

Theorem follows from (1.4) a n d  <rE or,, x> = 1<rE , x ,>>, where
x eB PB P, tlix  = E x ,  C) x 2 . Q.E.D.

T he form ula  of this theorem  seem s to  be quite  com plicated, b u t  h a s  a
remarkbable resemblance to the product formula of the Steenrod operations under
some conditions.

Corollary 1.5. I f  E = (e 1 ,..., e n _,) and F = (f ,, f 2 , • ••), fi = 0 unless n i ,  then

rE°rr =  E  ry(x)•m(x)= E
E(X )= F

where X  = (x i i : j ,  j > 0 and (i, j) (0, 0)).

P ro o f .  These conditions imply:

t ( ) ( ) T n A l ( X ) = fl(Z)n1114(Z)
V (X )= V M (Y  )= 0 V (Z )=V
E(X )= EE ( Y ) = E  F(Z )=V (Y )
F(X )=F F(Y )= F

where X , Y  a re  tensors a n d  Z  is  a  m atrix stated in  T h e o e m  1 .2 . T hen  the
corollary easily follows. Q.E.D.

Remark. This corollary holds when the conditions for E and F are inverted.

m od (v,, v 2 , •••), where X = (x1i),Corollary 1.6. rE
,'r i , fl(X )rv(x)

m(x)=E
E(X )= F
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J0  and (i, j) 0 (0.0).

P ro o f . The ideal (v 1 , y 2 , •••) equals to (m 1 , m 2 , • • • ) n B P , .  The terms of n > 1
or M(X 0 )  0  0  vanish modulo (m1 , m 2 , •••). Q.E.D.

Remark. This corollary is first stated by R. Kane [6].

We must consider the action of rE on the coefficient ring for the purpose of the
com plete description of the p ro d u c t o f  B P-operations since (x .rE).(y .r,)
=  E  x .  rE ,(y)•rE 2 or,, where x  and y are some elements of the coefficient ring.

EI-I-E2=E

Lemma 1.7. r E (mv ) = E  MX)mm ( x ) ,  where X  = (x i i : j > 0 , (i, j) (0, 0)).
v(x)=Y
E(X)= E

E  = (0, , 0 , e1), e 1 =
P ro o f . rE (m„)= (See [9]).

0 : otherwise
Then the coproduct formula of TE  easily certifies this lemma Q.E.D.

We close this section by the mention of two little lemmas about converting vi 's
and mi 's.

Lemma 1.8. L et vi b e  Hazewinkel's generator [3 ]  and I  =( i l , i 2 , . . . ,  i,„) be a
f inite (possibly  em pty ) sequence o f  positiv e integers. L e t  III = m  a n d  1W1
=E l k . W e de f ine  v, recursively by vo = 1, and y, = v i i (v,,)", where a = p 1' and I'
= (i 2 , i 3 ,•••). Then the following equation holds:

v  V
Mn L„, „III •

n In =

This lem m a is stated by D . C. R avenel [10] rather for the case of Araki's
generator [2].

Lemma 1.9.

vv  = (pm)" + —  irfl(xo )... f3( x . ) m m(x.)+•••+Apx„)(p m )E(x,,,.

V (X 1 )=T I

/ (X „ )= E (X , , -  1)
M (X 0 M (X ,,)*  0

P ro o f . vn 's  are recursively defined by p m „= E m i vn _im. Then we obtain
the following equation :

E  fi( x ) m M(X) v E(X) .
V(X) = Y

Hence the lemma follows in the same way as Theorem 1.2. Q.E.D.
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§2. BP*-algebraic generators of FS*

FS * = B P* 0 R  is a dense BP*-subcoalgebra of B P* B P. But FS* also has a
BP*-subalgebraic structure of BP* BP, so  that the (Hopf-) algebraic structure of
B P*B P is  a  completion of th a t of FS * . B P*B P is  a  quite large object whose
ca rd ina lity  is  N . O n  th e  o ther hand , FS *  is  so  sm a ll th a t  BP* B P can be
reconstructed as BP* B P  Hom„.(FS*, B P* ). This means that FS* is accessible
as well as essential.

Lemma 2.1. FS * is a B P*-subHopf-algebra of  BP* BP.

P ro o f . The formula of Theorem 1.2 is a finite summation. Q.E.D.

Remark. The target of the coproduct m ap 0 of FS* is a finite tensor product
FS* C) FS*.

FS * has a close resemblance to the Steenrod algebra. F irst w e observe the
following commutative diagram of spectra constitutes a ring homomorphism (Y (E)
means Sq(2E) for p = 2).

B P  r E BP

Z.
X(g'(E)) /

H /  p H Z  / p

Lemma 2.2. D ef in e  p : B P*  B P H Z Ip * H Z Ip  = : the Steenrod algebra by
the correspondence of  the abov e diagram . T hen p is a ring homomorphism.

P ro o f . This is obvious from Corollary 1.6 and the fact that (p, v 1, v 2 , ••.) is
invariant under the action of the BP-operations (see [4], [7]). Q.E.D.

It is well-known that Y P" for n > 0 generate .51/(/3) (in case of p = 2, Sq 2 " for
n  > I  generate slf l(Sq l )). F S *  also resembles the Steenrod algebra in  th a t the
following theorem holds.

Theorem 2.3. r(p) f or n  > 0  generate FS* as a B P*-algebra.

R em ark Since the cardinality of BP* BP is N, the cardinality of its algebraic
generators is also N.
2) Any proper subset o f {r(p")} cannot generate  r( p )  which is not contained in
this subset.

P ro o f . The necessity is immediate. If we can write down  r( p )  from other
elements which are not projected to x(Y "") under the map p  mentioned in lemma
2.2, then this equation remains valid after applying p. But this contradicts the fact
tha t x( P") is indecomposable.

O n  t h e  o th e r  hand , an  induc tive  a rgum en t is r e q u ire d  to  p ro v e  its
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sufficiency. To begin with, we give the following definitions.

D efinition 2.4. 1) F(n) = BP* 0  Ir(e ,, e 2 ,...): e i < p" + ' - `1.
2) R i = r(0, , pi), where p i occurs at the k-th entry.
3) For an exponential sequence E (or for rE ), we define its excess by ex(E)

Suppose all elements o f  F(n — 1) are generated from r(p")'s. We will now
argue by an inner induction on excess that any element in F (n) — F (n — 1) can be
decomposed in  terms of r(p n )s . The element of minimal excess is R .  F o r  this
element we have the following lemma.

Lem m a 2.5. R,?+ ,  = Ruj, fo r  all n > 1.

P ro o f .  For n = 1,

R7./21 = R3 + (p + 1)r(p + 1) —  v1 r(1, 1),

121. R? = (p + 1)r(p + 1)—  v 1 r(1, 1).

For n> 1, we obtain from Corollary 1.5:

R,°, • RI = R;;., 1 + r(pn, 0, , 1),

W I • R,? = Op", 0, ..., 1).

Hence the lemma follows. Q.E.D.

So consider rE eF(n) —  F(n —  1) assuming that elements o f lower excess can be
generated from r(pn)'s. If E = (e 1 ,..., e k)  has one or m ore non-empty entries in
addition to  ek ,  then Corollary 1.5 implies r(e i , e k _ 1 )00, ..., e k ) = r(e,,..., e k )
+ lower excess terms in F(n). In case of E = (0, ..., 0, ek ) but rE  R n " ,  e k has a

ek
p-adic expansion of the form ek = E a i pl, where an _k(0  O. This im p lie s  

p n
_

k  
* 0

mod p, i.e.
ek. is invertible in  

Z ( P ) .  
W e have:n — k

(2.6) r(0, , 0, ek p n-k ) R ik,- k pne k  k  r (0 , , 0, ek ) + lower excess terms.

To see that the lower excess terms in this expression are actually contained in
F(n), we need the following lemma.

Lemma 2.7. Define the weight of an exponential sequence E (or of rE ) by w(E)
= l e i pl, then the w eight of  r, w hich appears in the right hand of  the formula of
Theorem 1.2 dose not exceed w(E) + w(F).

P ro o f . W e  a lso  d e f in e  w(X) =  x i i k p ' i + k  f o r  X : tensor (E  x i i p i + i for
m atrices). Then w(V(X)) =  w ( X )  w(E(X )) + w(F(X )) for X : tensor, and w(V(X))
= w(X) = w(E(X)) for  X : m a trix . H ence  the lemma follows. Q . E . D .

Therefore if r(c i ,... , cm ) appears in  the  right expression of the formula (2.6),
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then c i p i < w (r(c,,..., c„,))_ ek pk  < pn+1. Hence ci <  e + i - i .  This implies
r(c i , ... , c,„)E F(n).

Xi,' -  k now remains to be considered. In case of k  > 2, Corollary 1.5 implies:

= ± r( 9 ' ' s p l i -  0,p n - k S ,
s= 1

E
r (p n _ 1 t, . . . . .  n  _k p t ,  t ) .

1=1

where s  a n d  t  occu r a t the  k -th  entry. Every term  except RF k in  t h e  right
expression is contained in F(n —  1). Hence we obtain the decomposition of R V '
for k  > 2.

R"2 - 2  needs more deliberation. Here we consider [XI -  2 , FVF I ]  as the case of
k  > 2, but Corollary 1.5 is not available any lo n g e r . First we observe the product
formula of n  Quillen operations is described in the same way as Theorem 1.2 by
means of (n  + 1)-dimensional tensor.

(2.8) rE , • • • o r , =
k  0

( — 1 )
k fi(X 0 ). .. fl(xonima0)+  +maid 

r v a i d .

E i(X 0)=E 1

.E (X o )=E k
E(X 1)= V (X 0),...,E(X k ) = V (X k -

M (X i)#O ...... M(X k ) * 0

X ,  is  a n  (n  + 1)-dimensional tensor, i.e., X ,  = where non-negative
integers x 10 1 a r e  defined for i0 , . . . ,  0 except (i . . . .  in )
= (0, ..., 0). X 1 , ,  X k  a r e  two-dimensional m atrices as s ta ted  i n  Theorem
1.2. The vector-valued functions V, M, E 1 , ,  E„ and the integer-valued function
fi are similarly defined a s  follows:

V (X )=(a 1 , (12, --•), am =
+ + ( ,■ = rii

M (X ) = (b 1 , b 2 , • • ), b,„ =
i„

E ,(X )=(c 1 , c 2 , - • ) ,  c m = E p i°+ •"
+ 1k -

where the k-th index of x is replaced with in , and the sum extends over all non-
negative integers • • • , ik -  1 > i k + 1 , • • • n•

/3(X) =a m  vfl xio.„i„!•

Definition 2.9. Let X , Y  be (n  + 1)-dimensional tensors.
1) X  will be called simple if and only if M (X ) = 0.
2) X  will be called trivial if and only if x i. "  =  0  un less  the positive-valued index

ik i s  unique.
3) X  will be called a  reduction of Y (Y will be called an expansion of X ) if and

only if X  is  simple and
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x 0,1 1 ...i„ = for all , in .
to

4 )  We also define the  weight and the excess of X  by

w(X) = p i° ex (X )= E xio ...i„.
The formula (2.8) is too troublesome to write repeatedly, so we will use the

following notation.

Notation 2 .1 0 . F or X : simple tensor of any dimension, we use the notation
P(X ) for the following expression:

( — 1)̀ ,̀(I(X0 ) mx o m maco + +mak i 
r v a o •

Ic20
Xo:expansion o f  X

E(X I )  = V(X0)

E(Xk)=1 7 (Xk - 1 )
M (X1)* 0 ...... M (Xk)* 0

Using this notation, we can concisely describe the product formula (2.8) as
follows:

rE,0 ••• or„= E P(X ),

where the  sum  extends over all (n  + 1)-dimensional simple tensors X  satisfying
E k (X ) =  E , for k  =1 , 2, ... , n. N o t ic e  that the trivial tensor has the highest excess
among these simple tensors.

Lemma 2 .1 1 .  If  Y  is an (n +1)-dim ensinal simple tensor, then there ex ists a
triv ial tensor Z  of  some dimension and satisfies P(Y) = P(Z).

P ro o f . Suitably order the positive-valued entries o f  Y  If  y ( , ) = is the
k-th term in this order, let E k = (O,..., y ( , ) ), where y (k ) occurs at the /-th entry with

1 = E i .  T hen  can  define  Z  so as to satisfy Ek (Z ) =  E k  and to  be  trivial. It is
.J=1

evident that Z is what we need. Q.E.D.

Remark. E w(E0 = w(Y), and w(E k) max w(Ei n -
J

Here we consider the simple tensors which appear in  the right expression of
the equation [R 2 , R3 - 1  =  +  P ( X ) .  Observe that P(X ) corresponding to the
trivial tensor is already canceled. By Lemma 2.11, we can cancel these P(X )'s by
adding o r  subtracting rE ,0•••01-„0•••, so  tha t the remainder is a  summation of
+ P(Y)'s, where Y's are  of lower excess than that o f  X 's . T h is  process can be
continued until the remainder amounts to zero because the maximal excess of the
tensor w hich appears in  t h e  remainder certainly decreases a s  t h e  canceling
proceeds. The weight of r „  which appears in the resulting equation is equal to or
low er than p". This means rE k eF(n — 1) o r  r „ =  R  .  But R I '  for m > 2
cannot appear because its degree is higher than that of R"2

- 2 . A n d  R n2
- 2  appears
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in  this equation once and only once because of the  degree reason of the same
kind. Therefore R 2  can be decomposed in  terms of r(p")'s. Q.E.D.

T heo rem  2 .3  a sse rts  t h e  resemblance between F S *  and the  S teenrod
a lgeb ra . B u t  the re  shou ld  be  m any  d iffe rences be tw een  them . T h e  next
proposition is  one of such differences.

Proposition 2.12. There is no zero-divisor in  FS*.

P ro o f . Given x, y e FS*, x  A  O. y 0 0, we have only to show xy(m w ) 0 0 for
some W . To begin with, consider the case of x = r E  and  y  =  r F . From lemma

+E+r1.7, we have rEo Fr 
( n

w ) = E][W  + E, F]m w  + higher excess terms, where
[A, B ] = D a b  b i) is a  product of binomial coefficients, and the excess means the
excess o f W . T h is equation implies rE orF  A  O.

N ext consider th e  general case : x cimm'rE, y  =  di m iv ir,„ where c1,
di e Z ( p ) . If W  has sufficiently large entries, we have:

(cir E ,) (di m" ,  rE., )(mw )

= c i di [W  + N i  — Fi — Ei , E i][W —  Fi , F i ]m
w + m - E , + 1 V 1 - F ,

+  higher excess terms.

Then the lowest excess term of xy(m w )  is  of the form :

1E ci. di , [ iv + N  —  F —  E i s , E i s ][W — F i „ F i,]}
+  T ( x ) +  T  ( y )

s ,t

where T(x) (resp. T(y)) is the exponential sequence (with possibly negative entries)
of the lowest excess of M i — E. (resp. N J — F i ), and is  (resp. JO are such indices that
M is

 — E1 =  T (x )  (resp . N F i , =  T(y)). N o tic e  t h a t  the  coeffic ien t b(W)
= b(w i , w 2 , of the above term is indeed a non-trivial polynomial expression for
finitely many variables w 1 , w 2 , • Hence there exist non-negative integers w,
satisfying b(W) A  O. This fact implies xy O . Q.E.D.
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