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On the homotopy group n8n+4(SP(n))

and the Hopf Invariant

By

Kaoru MORISUGI

The purpose of this note is to study the homotopy groups of U(n) and Sp(n) of the
first dimension over the  meta-stable ra n g e . O u r m ethod is to  use the classical
EHP-sequence.

§0. Notations

F = C  (the complex number) o r  H(the quarternion).
n: a  fixed positive integer.

QF
EC13 ,7° (The stunted complex projective spaces) if F = C,

=
Q°, 1 (T h e  s tu n te d  quaternionic quasi-projective space) if F = H.

d = dim,F.

U (n )  if F =  C ,
GF(n)=

Sp(n ) if F = H.

T h is  p a p e r  is  o rg a n iz e d  a s  follows : I n  § 1  w e  p re p a re  t h e  required
preliminaries. In  §2 w e state our results. In  §3 we collect necessary lemmas for
the proofs of the results in § 2 . § 4  is devoted to the proofs of lemmas in § 3 .  In
§5 we give the proofs of our resu lts. §6 consists of the corrections of my previous
paper [M l]  about the  meta-stable homotopy groups of Sp(n). In  §7 (Appendix)
we give a  necessary condition for the existence of the Hopf invariant one map.

§1. Preliminaries

Since QF is d(n + 1) — 2 connected, by the suspension theorem, the suspension
E: 7-Ck(QF) —> 70 2 F )  is isomorphic for k 2d(n +1) — 4 and onto for k  = 2d(n + 1)
— 3. For nk (GF(n)), the range dn + d — 2 k 2d(n  + 1 ) — 5 is called the meta-
s ta b le  r a n g e .  I n  t h i s  n o t e  w e  sh a ll in v e s tig a te  t h e  homotophy group
n 2d  (  n  1 ) —  4 (

GF(n)). As is known, QF is a  subcomplex of GF(oo)/GF(n) and the pair
(GF(co)/GF(n), QF) is  2dn + 3d — 3 connected [J]. Recall that
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H*(QF; Z{
N n +  g n  +  2

,
 I n +  3

,
 •  

} ,  where dim oci  =  dj — 1.

L et i: S d(n+ 1 ) - 1 Q F  b e  a  generator of 7E
d(n + 1)—  1(QF)-='' Z .  H (2 ) stands for the

mod 2  reduction of the Hopf invariant,

H: n2d(n+ 1) — 1( E Q F ) 72d(n+ 1)—  1(E
Q F  A  Q F ) '. '  Z .

The following theorem is the starting point of our investigation.

Theorem  1.1 (O sh im a  [01 ]). I f  n  + 1  0  2', th e n  H(2 )
 
(7r2d(fl + 1)- 1(EQF))

=  O . Therefore, using EHP-sequence, there ex ists a short ex act sequence;

Z/2 - 4  7 r 2d(ti + 1)- 302F) ns2d(n + 1)- 3 (Q1 ) - -  0 ,

where A (1)= [1 ,i], the W hitehead product, and E  is the suspension.

The following proposition is well known.

Proposition 1.2.
(1) There exists a short exact sequence ;

0 •— ) • Z 714n +1(U IU(n)) ir4 n (U(n)) O.

(2) There is an  isomorphism [M 2] ;
7
E 8 n  +  4

(Sp(n))'L' Z/2 C) n 8 5 (SpISp(n)).

In the above proposition, from (1), in order to determine the group 74„(U(n)),
w e have to  so lve  th e  unstable James number problem a n d  a  group extension
problem (See, for example [C K ]) . However fortunately in the quaternionic case,
n8n+ 4 (S P (n )) has no relation with James numbers.

§ 2 .  Statement of results

Theorem 2.1. I f  n  +1  0  2 ,  then the sequence (1.1) splits, that is,

1t 2d(n+ 1)— Z I2 s,7C.d(n +1) — 3 (Q n •

N ow  reca ll tha t rc
d ( n +  1 ) - 2 (GF(n)) i s  a  finite cyclic g ro u p . W e denote its

generator by o- „. Let <an , a,,> be the Samelson product of a n and  itself. T h e n  w e
have the following theorem ;

Theorem  2.2. Let 1 an d  n + 1 0 2'. T hen th e  elem ent <a n , an >  in
7 E 2 d ( n +  1 ) - 4 (GF(n)) gives a direct summand of  order 2.

From  the above theorem we easily get the following corollary.

Corollary 2.3. L et n 1 and n + 1 0 2'. Then,

n 8 n + 4 (Sp(n))L-'- Z I2 e Z/2 C) E s8n+ 5 (Qr7D+ 1) •

Here the f irst Z/2 summand is generated by y 8 „.,
1
 o n  S ' = S p(1) and the second is
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generated ( c f  [ 0 1 ] )  b y  the  S am e/son  product <a n ,  a„> o f  t h e  generator

an e  
7
r4n + 2 (

Sp(n)) whcih is a cyclic group of order a(n) • (2n + 1)!, where a(k)= 1 or 2
according as  k  is even o r odd.

A s an application of Corollary 2.3, we have Mimura-Toda's result[MT],

2 7 2 0
(Sp(2)) Z /2  C ) Z 12  C ) Z/2, because 2 702 ,(Q) L-2 Z/2 [M3], where 2 n 4 (—) or

2 74(— ) stands for its 2-primary component.
If there is an element of Hopf invariant one in TE2 d ( n  +  1 ) -  1 ( 1 Q F), then from the

EHP-sequence it is obvious that n 2 d ( „+ , ) _ 3 (QF) TC..d(n+ 1)- 3(Qn• The following
theorem gives a non-trivial example, which does not seem to follow from the well-
known solution of Hopf invariant problem on  spheres.

Theorem 2.4. There exists an elemet fe n 3 1  (E Q :) such that H (f )= 1. S ince
2 702 9 02f,°) Z I2 , there f ore ,

2 7 E 2 8
(Sp(3))' - ' ZI2 C) Z12.

From Theorem 2.4 we get the result of Hubbuck-Oshima [HO] which states
that there exists a  map f e n 3 1 (EC.13 )  with H (f )= 1 .

§3. Lemmas for the proof of Theorem 2.1

Let M k b e  the m od 2  Moore space, that is, M k =  s k -  
' u

 26,k. The folloiwng
Lemma is a  slight generalization of F. Cohen's observation (Proposition 11.4 in
[C].)

L e m m a  3.1. Let X  be a 2m -connected com p lex . A ssum e  that
n2 „,,,(X ) Z I 2  o r Z .  L et i: S 2 ' — > X  be a  generator of  n 2 „,,,(X ). S uppose
that H(2) is  triv ial on n 4 m + 3 ( E X ) .  Under these assumptions, [i, i] = 2x f o r some
x e n 4 „,,,(X ) if  and only if  there exists a m ap f : llen + 3  —> Z X  su c h  th at H (f )  O.

The followng lemma is easily verified.

,L e m m a  3.2. In H * (Q F; Z I2 ) 2•••},n + 1 , an

S e a m + , = (
k i d

) am+k/d+1 or 0,

according as k —= 0 m od d  or not, where Sq k i s  the S teenrod squaring operation.

Let I  be the following two-sided ideal of the m od 2  Steenrod algebra A;

i q =  {EA (k)Sq I A(q — k — 1)1k d , 1+ 0  m od dl,

where A (i) stands for an element of A  of homogeneous dimension i.

Lemma 3.3. L et n + 1 = 2 ' m  +  2 '  ( m  1  and 0). Then,

s 1
s q (n+ 1)d s e s d  W s ' 'md L  S q A (d(n + 1 —  2i)) m od / d ( ' +  i).

1=0

Lemma 3.4. L e t n  + 1  = 2s + 1 m + 2' (m  1 a n d  s  0). T hen f o r  any
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f  E  [m 2d(n + 15 E Q n ,

S e 'd (S2n + 2 - 2.) =0  f o r  0  i  s ,  in H*(C f ; ZI2),

where C f  is  the m apping cone of f  and fin + i eH d( "" ( C f ; Z I2) is the corresponding
elem ent to Ia n +  i e IP""(E Q F; Z I2) under the obvious isomorphism f o r  1  j  n
+ 1.

Lemma 3.5. If  n + 1 0 2', then f o r any f e
[ m 2 d ( n +  1 )  -  1  ,  EQF],

Sg ( n + i ) a (13n + 1 ) = O in H*(C f ; ZI2).

§ 4. Proof of lemmas

P r o o f  o f  Lemma 3.1. F ir s t , note that (Ei A  i) * : n4 „,+ 3 (S4 ' )
n4 „,, 3 (EX  A  X ) is epim orphic. So from  the naturality of the EHP-sequence

a n d  fro m  th e  assum ption , it fo llow s tha t th e  im a g e  o f  P: n 4 „, + 3 (EX  A X)
n4m + 1(X) is isomorphic to Z/2 generated by [i, i]. Let

s4m  + 1 2 ). s4m + 1 m 4m + 2 s4m + 2

b e  the  usual cofiber sequence. I f  [i, i] = 2x  fo r some X E7C4m + 1 (X ) ,  then there
e x is ts  a  m a p  f : M 4 " 2 —> f 2 E X  s u c h  t h a t  E ( x ) = f o j .  W e  a s s e r t  th a t
H ( f )  O. Suppose that H (f ) = O. Then there exists a  map g: M 4 " 2  —> X  such
that E (g ) = f . Since E(x — g . j )  = f  of  — f  of  = 0, from the EHP-sequence, we see
that x — g oj belongs to the im age of P .  Therefore, x — goj =  k [i, i] for some
integer k. Since [i, i] i s  o f  o rde r 2 , it fo llow s tha t [i, i] = 2x = 2x — 2(g . j )
= 2k [i, i] = O. This is clearly a  contradiction. Now suppose that there exists a

m a p  f : A prn+2  —>S2EX  such  tha t H ( f ) 0 0 .  B y the suspension theorem, there
exists a  map g: S 4 m —> X such that E(g) = f  o f .  S in c e  E(2g) = 0, we see that 2g
= k [i, i] fo r  som e integer k. W e asse rt tha t 2g  0  O . Suppose 2g = O. T h e n
there exists a  m ap  h: M 4 m+  2  —> X  such  tha t g = h o j .  Since ( f  — E(h))0j = 0,
th e r e  is  a  m a p  h': S 4 '  —* f lE X  s u c h  th a t  h' o g = f — E (h ). T hen H ( 2 ) (h)
= g*H(h')= H(f  — E ( h ) ) = H ( f )  O. T h is  con trad ic ts  t h e  assum ption that
H (2): 7r4 ,, + 3 (EX) —* Z I2 is  trivial. T h i s  completes the proof of Lemma 3.1.

Proof of Lemma 3.3. Induction on s = v2 (n + 1) O. W h e n  s = O. Consider
the following Adem relation;

s e s q o  = (  d n  -  1  -  j )  s q dn +d - j sq j

= 0 d —  2j

Since s = 0, thus since n is even, we have

s q d(n + 1 )  =  s q d s q d n  mod / + 1).

Assume that Lemma 3.3 is true for n such that v 2 (n  + 1 ) < s . Consider the Adem
relation, then we have
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2 s -  ( 2 s +  1  md — id — 1)
Sq 2 ' S q 2 " n d  =  i o (2' — 2i)dE sq(2"im+ S g id  m od / d 0 + 1 )

= 
( r s +  1 2s-, z m  —  1 ) d  +  d  —  1  

s t i o+ 1 )d  +  E s q (2s+ in,+ 2.), _
1)d

 A ( i d )2s d 1=1
m od / d (n +  i )

s q ( n  + 1 ) d  ±  E  
s q ( 2 . + , m +  

-  i ) d  A (id) m od I d(n 1 )
i= 1

Since k i = v 2 (2s + m + 2S — i) s  —  1  for 1 i 2s - 1 , by inductive assumption, we
have

sq (n +1)d = s e s d  W s +  irnd

V - k i
+  E  (E  Sq 2  r d A ((2' 1 m  + 2' — i — 2r)d)) A(id) m od I

d (n+  1 )i=1 r  =

Therefore, Sq ( n+ 1 1 d  =  S e s d S e s "n d  +  E  Sg 2 'd  A(d(n + 1 — 2g)) m od I  + 1)*
i = 0

This completes the proof o f Lemma 3.3.

Proof  of  Lemma 3.4. F i r s t ,  note /
d ( n + 1 )

(f3„
+ 1

) =  0 .  Because li d (n+ j) (Cf ; Z/2)
H d ( n+ i) (EQF; Z/2) for 1 j  n  +  1 .  W e shall prove by induction on i(0  i
s).

F or i = 0, Se(#2.+ i) = S eS q d (#2.) by Lemma 3.2

(Sq 7  Sq l  + S q 6 Sq 2 )(fl2.) if  F = H

Sq 3  Sq l  (62n)
by Adem relation

if F = C

= 0  by dimensional reason.

N (BNow Sq 2 i d  2 n +  2 - 2 ,)

=  S e d (Sq 2 V 2 n +  2  - from Lemma 3.2 and
(2n + 1 — 2 g + 1 )

= 1
21

=  E  S e .
 2 i ) d  Sqvd (i(3

2 n+  2 -  2
,

*  , )
j=  0

i - 1j= E (E sera A((2 i + 1  — 2i — 2r)d) 5q 2 'd  (82n+ 2 -
j 0  = 0

i -1  j

= E E sq2 0432,.+2-20
j 0 r = 0

= 0

This completes the proof o f Lemma 3.4.

Proof  o f  Lemma 3.5.

by Adem relation

from Lemma 3.3

by inductive assumption.
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Sq d ( n  + " ( f i n + i )  = E S e ' d  Ag f3n + 1 — 2 i )d )(n+i)i 

E q,2q1
"H V " P 2 n + 2 -2 ,)

i= 0

by Lemma 3.3

= 0 by Lemma 3.4.

This completes the proof of Lemma 3.5.

§ 5 .  Proof of theorems

Proof  of  Theorem  2.1. W e shall applly Lemma 3.1 for th is proof. Note that
th e  necessary cond itions a re  sa tisfied  by  T heorem  1 .1 . Let fe[m 2a0+1)-1,

E Q F ].  Consider the cofiber sequence;

n s,r2d(n+ 1) .m2d(n+ 1) -  1 _,14 zQF c f

According to Boardman-Steer[BS], the following diagram commutes;

C f  3- )  C f  A  C f

f i n i

Al2,d (n+ 1) 1 1 1 ( f ) EQFA EQF,

where A  stands for the reduced d iagonal. Thus, since in  our case H (f ) can be
detected by the induced homomorphism of H (f) on H 2 d ( n+ 1 ) (EQF A )JQF;
Z I2 , H (f)=  0  if and  only if fin

2
+ 1 =  0  in  H 2 d ( n+ 1 ) (C1  ; Z/2). From Lemma 3.5,

s q d(n+ 1) fi n + n t 2 +p =  0  fo r all f  E m 2 d (n +  1 )-  1 5 , E Q —
i .P Therefore th e  proof of

Theorem 2.1 follows from Lemma 3.1.

Remark. If n 0 mod d, then Theorem 2.1 can be proved easily as follows;
Let J = 0  m od dI be  a  left ideal of the Steenrod algebra A .  If n 0
m od d, then there is a  following relation;

se n + 1 )  s e d  s q d(n  1 ) + s q dn sqd m od J.

Associated with th e  above  relation, w e  can  de fine  th e  (unstable) secondary
o p e r a t io n ,  s a y  0 .  I t  i s  n o t  d i f f ic u l t  t o  s e e  th a t  0  c a n  b e  d e f in e d  on
Œ 1

 e  H ( n  + 1 ) d

(QFU Eime 2 d ( n +  1 ) - 2  ;  Z I2 )=  Z /2  a n d  th a t  0  detects the Whitehead
p ro d u c t [ 0 ]. T h u s  i t  f o l l o w s  t h a t  [i, i] c a n n o t  b e  divisible b y  2  in
7C2d(n+ 1) -

Before we give th e  proof o f Theorem 2.2, we need some notation and a
lem m a. Let S

d ( n + 1 ) - 1  —0 GF(co)IGF(n) b e  th e  bottom  inclusion. N ote that

i  6  
T

 d ( n  + 1 )  -  i ( Q F )  corresponds t o  ie  e n„(„+ , ) _,(GF(Do)IGF(n)) under th e  natural

,(QF). (see Brown-Peterson [BP]).
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isom orphism . It is well known that

[ io, jo] =  ±  <an, an>,

where a: n 2d(n + 1) - 3 (GF(oo)IGF(n)) —)• 2 d ( n  +  1 )  - ,(GF(n)) is the connecting homomor-
phism associated with the fiber bundle;

GF(n) —> GF(oo) —> GF(oo)IGF(n).

So w hen F = H , th e  proof o f  Theorem  2.2  is obvious. N ow  le t  F = C .  Let

E  
7
C2k - 1 ( U )  Z  b e  a  generator. W e denote  th e  usual bundle projection U

U I U (n) by j". W e need the following lemma.

Lemma 5.1. If 3, then .4 ( ) 2 n + 1 )  is divisible by 2 in n 4 n + 1 ( U 1 U ( n ) ) .  H o w -
ever j 2

* (25) can not be divisible by  2.

P ro o f  The idea of the proof is originally due to C rabb and  K napp. F irst
observe th a t j(2 3) is divisible by 2 in  n5 (U1U(2)). Since there exists an  unstable
Adams m a p  A : S 1 2  U 2 e 1 3 S 4  U  2 e5 [0 2 ] , u s in g  th e  periodicity (See [C K ] or
T h e o re m  1 .9  in [ M 2 ] ) ,  w e  s e e  t h a t  j 2

* (24 k + 3 ) i s  divisible b y  2  in

n  8 k  +  5 ( U /  U ( 2 ) ) .  Therefore .4(4k +3) is divisble by 2 in 7 t 8 k + 5 (U IU(n)) fo r  k
O. N e x t  observe that j 3,(4 )  is  divisible by 2 in n9 (U IU (3)). Then by the same

a r g u m e n t  a s  above, w e  s e e  t h a t  iJ3*( 4k+ 5) is divisble b y  2 in
n „ + 9 (U IU (3)). Therefore i n

* (A4k+3) is divisible b y  2  in  7r8 k 4 .9 (U1U(n)) fo r  k
O. The assertion in case tha t n = 2 follows from Theorem 2.1 and the exact

sequence of Proposition 1.2. This completes the proof of Lemma 5.1.

Now we shall return to the proof of Theorem 2.2 in case of F = C .  When n
= 2, since n 8 (U(2)) Z / 2 ,  th e  proof follows from Theorem 2.1 and the exact
sequence (1) in Proposition 1.2. Let n 3. S u p p o se  that (a n , an > = 2x for some
x En4 „(U(n)). Take an  element Y E TC4n+ 1(U IU(n)) such that ey  =  x . T hen  from
the exact sequence (1) in Proposition 1.2 we see that [j 0 , io ] — 2y belongs to the
image of j .  From  the above lemma, it follows that [i o , i0 ]  is divisible by  2  in

n  4 n  +  1 ( U IU(n)) n a i ( E C P œ ' ). This contradicts Theorem 2.1.n+ n

Proof  o f  Theorem 2.4. The proof comes from the following observations.
1) n28 (Sp(3)) Z/2 (j) n 2 9 (S pIS p(3)). ((2) in Proposition 1.2.)
2) n2 9 (SpISp(3)) n2 9 (Q°43 ) (unstable). (By the connectivity of the pair (SpISp(n),

Q,T+
3) Computation of the spectral sequence;

H,K(T t
° ; 2 70(S ° )) 27 0

* (Q °4° ),

shows that 2 7rs2 9 ( Q )  Z /2  g e n e r a te d  b y  th e  class y, tip , w here  y , is  a
generator of H 19 ( Q ; Z .  This follows from [M3]. Note that n„(EQT,)

1 02902ft° ).
4) Consider the following commutative diagram of the E H P sequences:



Z/8

Z/(128, 4(n — 3))

Z/2 + Z/4 + Z/8

  

if n 1 mod 4,

  

if n 3  mod 4,

   

if n 6  mod 8,

 

Z/2 + Z/32

Z/2 + Z/2 + Z/8

 

if n 2  mod 8,

   

if n 0  mod 8,

 

Z/2 + Z /2 + Z /4 + Z /(64, (n + 4)/2) if n a . 4 mod 8,

128 K aoru M orisugi

1r31(EQ : A  Q4c ) 7r29(12,i) 1r30(EQ) O.

ir3 1 (ES
1 5

S " ) 7r29(S15) n30(ES
1 5

) ---+ O.

5) According to Toda's book [T], P(i 3 1 ) = 2(4 5 . Since i , f o - ?, = 0, (This follows
from the above 3) or [M 3]), from the EHP-sequence it follows that i.cr?,e
Image of P .  The image of P  of this dimension is generated by i [/ 1 5 , 1 ] =

Therefore it follows that i , a 5 = O. Thus we get  2 n 2 9 (Q ) L ' 2 702 9  (Q ) .
Thus it follows from the EHP-sequence that there exists a  map f e n 3 I (E Q )  of
Hopf invariant L

Remark. W e don't know how to construct directly such a  map f .

§ 6 .  Corrections of my paper Metastable homotopy groups of Sp(n)

There were many careless mistakes and transcription errors. Som e of errors
were pointed by D. Davis and A. T. L undell. The author thanks them for their
in terests. T h e  statements in  M a in  Theorem  of [M l]  sh o u ld  b e  c h a n g e d  as
follow s. The statements corrected are  underlined.

3) If 3  (the case n  = 2  is excluded, since n = 2 is not contained in the meta-

stable range.), then

714. + 12(SP(n)) Z/2 C) Z/2

4) I f  n 3, then

n4.+131SP1nD

Here (a, b) m eans the greatest common divisor o f  a and b.
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§ 7 .  The Hopf invariant and the e-invariant (Appendix)

Throughout this complex Y is assumed to satisfy the following conditions.

1) Y is 2n-connected.
2) d im  Y  4n  +  1
3) H 2 1 (Y; Z) Z.
4) H*(EY; Z) is f ree and is generated by even dimensional elements. Choose

a  basis { 141 , u2 ,..., us }  o f  H *(EY ; Z ) w ith dim u i = 2m 1 an d m1+1
(m1= n  +  1 ).

Under these assumption, The reduced K-theory of EY, K(EY), is also free and we
can choose a  basis {x 1 , x 2 ,  . . . ,  xs} of K(EY) so that there exist rational numbers
c1,1 for 1 1 ,  j  s  such that

ch(x.)= with c 1 1  =  1 and c i  =  0  if  i < j,

where ch  is  the C hern character. W e denote th e  matrix (c i ,i )  b y  C .  For an
integer k, let A(k) be the diagonal matrix with diagonal entries, {km', km2 , ..., krns}.

Definition and Proposition A.1. Fo r an y  k e Z , all en tries o f  th e  matrix
C - 1  A(k)C are  integral. W e  d e n o te  the j-th  column vector of  the m atrix  k 'n 'E
— A ( k ) C  by ai(k), where E is the unit m atrix . Especially  we denote (11 (2) by  h
which we call the Hopf vector.

P ro o f . T he  ex istence  o f the  A dam s operation (p i' o n  K (E Y ) and the
commutativity of the following diagram imply the assertion.

K(EY) 111121(EY; Q)

k
Ink/

K(EY) F11121(EY; Q).

q.e.d.

Let f e n , 3 (E Y ). T he  e-invariant vector of f , e (f ), is defined by

/ ec1p(x1)

ec(f)(x2)
e (f )  =

e ( f ) ( x )  /

where ec  i s  the Adams-Toda e c -invariant, tha t is,

ec(i . ): Iran+ 3 (EY) Hom(K(EY), QIZ).
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The following theorem gives a relation between the Hopf invariant and the e-
invarian t. It is  a  slight generalization of Adams or Toda's observation in case Y

s2 n 
+ 1

Theorem A.2. Under the same assumption, let f  e n 4 . + 3 ( Z Y ) .  T h e n  f o r any
k e Z , the inner product of  the vector ai(k) and the e-invariant vector, (e(f ), ai(k )) is
alw ays integral. A nd the mod 2 Hopf invariant off , H ( 2 ) ( f ) , is equal to the mod 2
reduction of  the integer (e(f ), h).

P ro o f . Consider the cofiber, say C 1 of f : S 4 " 3 E  Y .  The same argument
as in  the  proof of Proposition A.1 implies that the matrix

(C OV1(il(k) (C
te(f ) 1 ) 0  k2 "  + 2 ) le(f ) 1 )

is  an  integral m atrix. N ote the above matrix product is

( A(k)C 0
te(f)(k 2 n+ 2 E — A (k )C ) k 2 2

Especially te(f)(k 2 "+  2  E  —  C  A (k )C ) is an integral row v e c to r . Therefore, for any
k e Z  a n d  1  j s, (e(f ), ai(k )) is always integral.

Now recall that 9 2 ( ) =  V  mod 2K(C 1 )  for K(C 1 ). T h i s  m eans that in
H**(C f ; Q),

(I121)(ch(x1)) = (ch(x 1 ))2m o d  2ch(K(C f )).

On the other hand, (ch(x i ))2 = t4  by our hypothesis 2). Let v e  H ''( C f  ; Z) Z
b e  th e  genera to r. T hen  under our conditions of Y , according to Boardman-
Steer [BS],

= H (f )v ,

where H ( f )  is  the Hopf invariant of f .
Therefore there exists integers l for 1 j s  +  1  such that

s+ 1
(1-121)(ch(x 1)) = H (f )v  + 2 /i ch(x f ),

w here x s+  1  i s  a n  elem ent o f  K(C f ) s u c h  th a t  ch(x 5 + i ) = t 1 .  T h is  implies

t h a t  t h e  f irs t  c o lu m n  o f  t h e  m a tr ix  
(A (k) 

k2n + 
0
2

) C 0 )
0 t e ( f ) is  e q u a l to

2  
( C 0 ,,

te(f ) 1 )  
t kii,•••, 1s+1)+ ( (0, ..., 0, H ( f ) ) .  Thus, m ultiplying from  th e  left

( C 0 ) - 1

we have the desired result.
te(f) 1 )

Note that all entries of the Hopf vector h are always even, since 9 2 (x 1) —= x?
mod 2K(EY) and x ? =  0  in  K (E Y ) . Therefore the mod 2 reduction of the inner
product (h, e (f ))  is independent of choice of lifts of .x,e K(ZY) to  K(C f ).
The following theorem gives a  necessary condition for existence of a map with
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Hopf invariant one.

Theorem  A .3. Under the same assumption, if  H :2) : 4n + 3(E Y) —> Z /2  is onto,
then, there ex ists a non-zero vector eE(QIZ )s which satisfies the following:
(1) f o r any  k e  Z  and f o r an y  1  j  s, (ai(k), e )e Z,
(2) (h, e) is odd.

Corollary A .4. Under the same assumption, if  H 2( : 7r) 4 n  +  3(E IT) —> Z /2  is onto,
then, f o r any  k e Z ,  there ex ist (2)-localized integers 11 (k), 1 2 (k ) ,. . . ,l s (k ) such that

E li (k)• det1 (k), a2 (k), „. , h, , as(k)1 = f l  (k2 n+ 2 — krni),
i=t i=t

where the symbol det II m eans the determinant of matrices.

P ro o f .  From  th e  assumption, there exists a  map f : S 4 n+ 3  —› EY such that
H ( 2 ) ( f )  = 1. By Theorem A.2, since (e(f), a i (k))c Z for 1 i s  and H (f ) (e(f),
h) 1 mod 2, there exist 2-localized integers l fo r  1 i s  such that (e(f), ri(k))
= 1 ((e(f ), h). Since e(f ) 0, this implies that

d e t1  (k) —  11 h, , as(k) —  15 h1 = O.

T he  rest o f th e  proof easily follows by linear algebra.

I believe that in  case  Y  E C P!" o r  Q1_+, 1 , the  severe restriction on n comes
from th e  Theorem A.3 a n d  Corollary A.4 if  one  can compute effectively.
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