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Stochastic differential equations of jump type

on manifolds and Lévy flows
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§ 1 .  Introduction

In the previous paper Fujiwara-Kunita [3], we have clarified the structure of
C (le, le)-Lévy flows, i.e., stochastic processes w ith v a lu e s  in  th e  semigroup
C(Rd , Rd ) o f  con tinuous m app ings o n  le  w ith  s ta tio n a ry  in d e p e n d e n t
increm ents. M ore  concretely, we constructed those stochastic flows by some
stochastic differential equations of jum p type, and conversely when the stochastic
flow was given, we represented it as the system of solutions of the same type of
stochastic differential equation. I n  t h is  w a y , w e estab lished  a  one-to-one
correspondence between a  general class o f C(le, 1V)-Lévy flows a n d  a  class of
stochastic differential equations which govern the flows.

The main purpose of this paper is to study a  similar problem of constructing
and characterizing C(M, M)-Lévy flows when M  is a manifold. In particular, we
would like to discuss geometrical aspects of the problem treated in  [3 ]: w e are
interested in  t h e  problem  o f , first, giving th e  characteristic quantities which
determine a flow , or equivalently giving a  stochastic differential equation which
governs the flow  and, secondly, the  problem o f solving this class o f  stochastic
differential equations. In section 2, as the characteristic quantities we introduce
the notion of 'characteristic systems' for C(M, M)-Lévy flows which is an analogue
o f  th e  o n e  fo r  finite dim ensional Levy processes. It is also considered a s  a
generalization o f  th e  o n e  introduced in  L e  Jan-W atanabe [7 ]  to characterize
Diffeo(M)-Brownian flows. W e will get more delicate properties of characteristic
systems which were unnecessary when M  is a n  Euclidean space.

In  sec tion  3 , w e w ill discuss the construction problem , that is , given a
characteristic system  satisfying som e regularity conditions, w e  c o n stru c t a
C(M, M)-Lévy flow by solving a  stochastic differential equation corresponding to
the characteristic system. It is our new idea to introduce the equation. See (3.1)
in section 3. The main claim in the section is Theorem 3.1. Let us note that this
construction problem  is closely related to th e  problem how we can construct
stochastic  p rocesses w ith  jum ps o n  a  m a n if o ld  by stochastic differential
equa tion . T o  study  th e  problem  is one  of m ajor purposes o f  th is  pape r. In
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Marcus [8 ] and  [9 ], he studied it about some special c a se s . W e will show in
section 5 that our results in section 3 essentially contain his results. We would
like to emphasize that the  results of this paper give a  unified approach to the
p rob lem . In section 4, we will discuss the converse problem of showing that all
C(M, M)-Lévy flows satisfying some regularity conditions can be actually obtained
by the method of section 3. That is, for a given C(M, M)-Lévy flow of a general
class, there corresponds a characteristic system and the flow can be represented as
the sysem of solutions of the stochastic differential equation corresponding to the
characteristic system. The m ain claim in the section is Theorem 4.1.

The author would like to thank Professor Hiroshi Kunita for his suggestions
for improvement.

§ 2 . Preliminaries

In this section, we explain some notions and terminology which we will use in
the following sections. In particular, we will introduce the notion of 'characteristic
system' for C(M, M)-Lévy f lo w . Although it is a  reformulation of characteristics
for C(le, le)-Lévy flow introduced in Fujiwara-Kunita [3], we give some relation
between th e  components o f  th e  characteristic system which induces important
geom etrical properties. Using i t ,  w e  w ill be  ab le  to  c la rify  the structure of
C(M, M)-Lévy flows.

Let M be a d-dimensional compact smooth manifold without boundary. W e
denote by C(M, M) the space of all continuous mappings from M to itself. I t  c a n
be considered a s  a  P o lish  space  w ith  respect t o  t h e  uniform  convergence
topology. W e also denote by Cr(M) (r = 0 ,...,  co) be the space of Cr-functions
on M.

O ur m ain  ob jec tive  i s  th e  following C(M, M)-valued stochastic process
; s t} defined o n  a  probability space (Q, F ,  P),

Definition of C(M, M)-Lévy flow s. (i) e C(M , M ) for each s and t. It is
continuous in probability, right continuous and has lefthand limits in t with respect
to  the topology of C(M , M).
(ii) = P-a.s. for all s t < u.

(o denotes the composition of mappings.)
(iii) F o r a ll n e N = :11, 2, ... 1 and t1t 2 < • • • < t,„

; i = 1, n} are independent random variables.
(iv) is tim e hom ogeneous. That is , fo r a ll u > 0 th e  law  o f  .,s+u,t+u is

equal to  that of

Further, i f  {c } is continuous in  probability, right continuous a n d  has
lefthand lim its also in  s, then we call it a  C(M , M)-Lévy flow in strong sense.

In the case of M  = Rd , we discussed in detail about C(M , M)-and Cr(M, M)-
Lévy flows in  [3].

The characteristic system consists of three quantities, <  , > , /.4, and .29. In
the following, we give the definition of them and a relation between them.
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Definition of characteristic system (< , >, tt, Y ) .  1 )  <  ,  >  is a  bilinear
m ap on C (M )  x  C ( M )  w ith values in C °(M  x M), and  it  h a s  the  following
properties.

a) <f, g> (p , q ) =  < g, f> (q , p ) for all f ,  g  e  C ( M )  and p, q  E M

b) < fif2 , g> (P , .7 ) =  fi(P )< f2 , g> (P , q) +  f2 (P )< fi, g> (P , q)

for all f , ,  f 2 , g  e C°3 (M ) and p, q e M.

c)
 E <fi, P )  0 ,ij=1

for a ll m e N, f i e C ( M ) ,  and pi eM .

2 )  pi is  a Borel measure o n  C(M , M) satisfying the following properties.

a) p({e}) = 0, where e =  the  identity map o n  M .

b) there exists a  sequence of Borel measurable sets { Un ;  n e NI satisfying
u l u 2 Î  (c ( w, m )\ { e} ) and ti(Un) < cc: for each n e N.

c)
 

fom ,m ) 
I f — f(P)1 2  tt(dv) <  09 for each f  e  C ( M )  and p e M.

3) Cc(M)+ C °(M ) is  a  linear map.

4 )  ( <  ,  > , . . r )  satisfies the  relation : for all f ,  g  e  C ' (M )  and p E M

(fg)(p) —  f(p)2 'g(p) —  g(p)2 2f ( p )

= <f, g>(p, p) + {f (v(p)) — f (p)}{g(v(p)) — g(p)Ig(dv).
c(M,m)

In particular, if  ji = 0, then the characteristic system is nothing but the local
characteristic system (L. C . -system) introduced in  L e Jan-W atanabe [7].

To clarify the geometrical properties of characteristic system, we assume the
following regularity condition.

(A, I): <f, g> e C 2 (M x M ) for each f ,  g  C " (M ) .

Let U be a Borel set such that kt(Uc) < co. U` denotes the complement of U.

(A, IL)(U) (r 2): for some embedding map 1 :  M  RN , there exists a constant
K  >  0  such that

sup f  z(v(p)) — i(p)1 2  kt(dv) K  < ,
PEm u

li(v(p)) — i(p) — {i(v(q)) — i(q)} 1,1(dV) i(P) — 1(0

for all r' E [2, r] and p, q e M ,

( j )

fu
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(A, III)(U):

Tsukasa Fujiwara

f  G O M )  for fEC"(M ),

where Y u f (P) =  f(P) f  If (v(P)) — f (P)} P(dv).L
In  the case of U = C(M , M), we omit (U).

Remark 2.1. The condition (A, II,.)(U) does not depend o n  th e  choice of
embeddings because M  is compact.

Furthermore, we introduce a  system o f  smooth functions
 1 I k

 a n d  smooth
vector fields Z k ; k = 1,..., m} for some m, which satisfies the relation :

(2.1)
k=1 

X( Wk )Z k =  X

for all X e X(M) = : the  space of all smooth vector fields on M.
W e also denote by r ( M )  the  space of a ll Cr-vector fields on M  w ith the

topology of uniform convergence upto the r-th derivatives.
In the case of M = S d - 1 (the unit sphere at the origin in Rd), for example, we

can take

= d, Wk(X) = Xka n d  Z k  = E (6, —
d

axz'
a

where (x 1 , ,  x d )  is  the standard coordinate of Rd and  i5 Kronecker's
delta.

W e will see in  th e  later that there exists such system for sufficiently large
m .  Associated with th e  system  {V, Zk l ,  we can define a n  operator L b y  the
relation:

(2 .2 ) -VI (P) = Lf(P) + If (v(P)) — f (P) — (v(P)) — wk(P)} Z kf (P)} it(dv)
k=1

± {f(v(p))— f(P)Itt(dv).L
In fact, the second part of right hand side is well-defined by the integrability

condition for ft and the relation (2.1). See the proof of Lemma 3.2 below. By
noting the derivation property of 12',J, it is easy to see that ( <  ,  > ,  L) is an L. C-
system in the sense of [7]. Hence, by Collorary [7] (p. 310), L can be decomposed
into L o + B , where Lo  is  a second order differential operator on M defined by the
Collorary in  [7] and B  is  a  continuous vector field on M  satisfying

11,(B)(x)— 1 (B)(y)i< Kx —  yl for all x ,  y  t(M).

(* denotes the differential of m aps.)  This Lipschitz continuity of B  follows from
the assumptions for the  characteristic system. If we assume stronger regularity
condition, we can get the smoothness of B.
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By the above discussion, we can see that or is an  integro-differential opertor
on M which is represented by (2.2), where Lf(p) = L o f(p ) +  B f(p ). This concrete
representation will be applied in the next section to construct C(M, M)-Lévy flows.

Remark 2.2. W e should note that the representation of 2  is  no t un iquely
determ ined. In fact, for any other system satisfying (2.1), it is seen by the same
reason a s  above that 2  is represented  a s  th e  same form of integro-differential
operator as (2.2).

Remark 2.3. Conversely speaking, the relation (2.2) indicates the existence of
characteristic systems. Indeed, for any L. C.-system (< , >, L) and it satisfying
(i) of (A, II 2 )(U), define 2 2  by (2.2). Then, (<  , > ,  t ,  2) becomes a characteristic
system.

In  order to express stochastic differential equations in  the following sections,
we prepare Brownian motions with values in the space of vector fields on M and
stochastic integrals based o n  th e m . S e e  [7 ] fo r  m o re  general a n d  rigorous
discussion.

Let M ( ,  t )  be an  X
°
(M)-valued Brownian motion with mean 0 defined on

(0, P). That is, it is a  stationary continuous stochastic process with values in
X
°
(M), having independent increments, a n d  satisfying E[M f(p, t)] = 0 for each

f  C ( M ) ,  p  M ,  w h e re  M f(p, t) =  M (p, t)f. W e  d e n o te s  b y  <  ,  >  the
covariance. T ha t is , E[Mf(p, t)Mg(q, s)] = t A  s<f, g>(p, q) fo r all f , g E C (M )
and s, t [0, co). Then it is easy to see that <  ,  >  satisfies the conditions a) — c)
in  1). Here, we give the definition of stochastic integrals based on M ( , t), which
we will use in  the following sections.

Assume th a t <  ,  >  satisfies (A, Let 4  a n d  Om b e  M-valued
adapted simple processes, where {. ; s < t} is an additive class of a-fields such
that c o n t a i n s  a [M (  , v) — M( , u); s < u < v < t]. T h a t  is, f o r  some
partition .61: s = to < t, < • • • co, =  c t , s ,„ if t E[t e, t e+ ,). For this process C,„
define

jt
Mf(4) du) — E {mf(o s , , „  ti +  1  A  t) — ti A  t)} .

' s i = 1

Using the relation :

(2.3) ( f  M f(0,„, du), f t Mf(tli s ,,,„ du)) = f t <f, f>(4),,„, K u) du,

we can extend (2.3) to processes { }  which are left continuous in  t.

N . B . In the following sections, we will often use K  as an  arbitrary positive
constant, whose value could change from  line to line.

§ 3. Construction of C(M, M) - Levy flows

In  this section, we will show main results for the construction problem of
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C(M, M )-Lévy flow s. A lthough w e w ill construct them  by som e stochastic
integral equations of jum p type as w e did in Fujiwara-K unita [3], we have to
devise the relation between the quantities which determine the stochastic integral
equation so that the solutions can never leave the m anifold M . For the purpose,
we introduce the stochastic integral equation (cf. (3.1) below) associated with the
characteristic system defined in  th e  previous sec tion . Such a  device was not
necessary in the case of Rd . Also, we should note that the characteristic system is
a set of intrinsic quantities of C(M, M)-Lévy flows which will be constructed. See
Theorem 3.1 and Theorem 4.1 in the next sec tion . We will use the same notations
as in §2.

Our m ain theorem in  this section is as follows. W e follow the notations of
Ikeda-W atanabe [5] Chapter I I  w ith respect to stochastic integrals based on
Poisson point processes.

Theorem 3.1. L et M ( , t )  be an  r(M )-v alued Brownian motion defined on
(Q, 317 , P) with mean 0 and the covariance <  ,  >  satisfying (A, I). L et {q(t)} be a
stationary Poisson point process on C(M, M) defined on (Q, P )  with the intensity
measure p satisfying (A, II,) for r >  3(2d +  1) +  4 . Let : C°(M) be a
linear •m ap satisfy ing (A, III). S uppose th a t  th e  trip le  ( < ,  >, p ,  . .r)  is a
characteristic sy stem . Then, the system  of  solutions { ,(p); s t ,  p e M }  of  the
following equation (3.1) constructs a  C(M, M)-Lévy f low  in strong sense.

(3.1) f (s ,r(p ))= f (p ) + mf(s,u— (P), du) + --rf ( (P))du

+ f { f (vgs,u— (0)—  f(s,.— (1)))1 q (dudv),
om.m)

f o r all fE CN M ) and p e M.
Moreover, satisf ies the following conditions:

(, I): f or all f ,  g e C (M )  and p, qeM , there ex ists the limit

1
Ern ENf(s,,(P)) — f (p)}  Ig (s ,1 (0 ) — g(q)}]•
t s (t — s)

In f act, it is equal to

<f, g > ( p ,  q) + { f (v(p)) — f (p)} {g(v(q)) — f (q)} p(dv).
c(i ,m)

(, II): f o r all f  E CN M ) and peM , there ex ists the limit

1
Jim ECM s r(P)) f (p)] •
( i s —

In f act, it is equal to 2f(p).
( ,  III): f or some embedding : M  RN , there exists a constant K  > 0 such that for
all p, q e M and r' e [2, r],
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( i ) E[1 1(,,,(p)) — t(p) — 11(,,,(q)) — i(q)} K (t —  I i(p) — ,

(ii) ECII(s,t(P)) — 0)11 s),

E[i( (P)) ti(c (g)) — t(q)}]1 K (t — s)1 t(p) — t(q)1.

Remark 3 .1 .  The meaning of the solution of (3.1) is that for each s > 0 and
p e M there exists { ,}-adapted M-valued process which is right continuous, has
lefthand lim its w ith respect to  t and satisfies (3.1) for all fe C '(M ),  where F s ,,
= o f M (  , y) —  M ( , u), N a ((u, v], A ); s u t, Ae,l(C(M, M))].

W e first p rove  th e  following propositions which a r e  weaker versions of
Theorem 3.1.

Proposition 3.2. L e t  M ( ,  t ) ,  { q ( t ) } ,  a n d  t h e  characteristic system
(<  , > , p , Y ) b e  the sam e as  those in  Theorem 3.1 except f o r their regularity
conditions. S uppose t h a t  <  ,  > ,  p ,  an d  Y  satisf y  (A, I), (A, II2 )(U), and
(A, III)(U), respectively. Then, the solution { s,t(p); s t }  of (3.1) exists uniquely for
each initial data (s, p)e[0, cc) x  M.

Proposition 3.3. L e t  M ( ,  t ) ,  { q ( t ) } ,  a n d  t h e  characteristic system
(< , > , p , .r ) b e  the  sam e as in  Proposition 3.2. M oreover, suppose th at p
satisf ies (A, II,.)(U) f o r  r > 2d + 1. T hen , the  system  { (p); s t ,  p  e M } of
solutions of (3.1) constructs a  C(M, M)-Lévy flow.

Before proceeding to th e  proof, we show  the outline o f i t  and  give a  few
preparation.

Since Y  can be decomposed into the sum of differential opertor and integral
operator (2.2) as we saw in  §2, the equation (3.1) is rewritten a s  follows:

(3 .2 ) f(,,,(p))=  f(p) + Mf(5,u-(1)), du) + L.f(5,u-(1)))du

+ 1
u

(  {f(vos,u—(P))— {V(v V(p)) — (
s,u—(p))1

s k=1

X  Z k fgs,u-(13))1dup(dv )

r+

+  f  f  { f(v .s . .-0 4 )—
s u

f g s ,u _(p))} 7 q (dudv)

+ f,± uc {f ( v .  .s,„—(p)) — f( s ,u _(p))11\1,(dudv),

where {Wk, Z k ; k = 1 ,..., m l is a  system satisfying (2.1).
Since th e  embedding map / i s  a  diffeomorphism from  M  o n to  /(M ), the

equation (3.2) o n  M  is  transfered to  an  equivalent equation o n  /(M ) .  We next
extend this equation defined on the submanifold /(M ) of le (by Whitney's theorem,
we can take N = 2d + 1) to that defined on the whole space l e .  At the time, we
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should note that we have to extend the Brownian motion on the space of vector
fields on M  and the Poisson point process on C(M, M) to  the ones defined on R N

and C(RN , RN ), respectively, in common and by the method which does not destroy
the measurability. W e can carry out this program with the help of the tubular
neighborhood theorem. See e.g. Franks [2] o r Hirsh [4 ]. Therefore we can get
the equation (3.3) on R N ,  which will be denoted later on, and it has the unique
so lu tio n . Further, it will be shown that the solution can never leave t(M ) if the
initial position is on  t(M ) .  See Lemma 3.4. It is  a  key part of the proof of the
above proposition . The pullback of this restricted solution on t(M ) to  M  by
gives the solution of (3.2) or equivalently (3.1), and we can see that the solutions
define a  C(M, M)-Lévy flow by  the argument sim ilar to [3] and by noting the
submanifold structure.

We will use the following techniques of extension in the proof of Proposition
3.2.

Let us fix an  embedding 1 :  M  RN . Since t(M ) is  a  closed submanifold of
RN , by the tubular neighborhood theorem, there exist an open submanifold Vo (M)
which contains t(M ) an d  a  smooth map n o : Vo (M )  i(M ) such that n o I,(m ) = the
identity  m ap o n  t(M ) .  Moreover, since t(M ) i s  compact, there exists smaller
tubular neighborhood V (M ) s u c h  th a t  V(M) Vo (M ). L e t  h ' b e  a  smooth
function on R N  su c h  th a t Supp[hl Vo (M) a n d  h'

 
1 o n  V(M), and define a

s m o o t h  m a p  7E : R N —■ RN  b y  it(x ) =  If(x )rc,(x )
 

if x e Vo (M ) ,  =  0  if
x e(Supp[hl)'. Then rce Ccf(R N  , RN )  a n d  n(x) = no (x ) if  x e V (M ). L et h  b e  a
s m o o th  fu n c t io n  s u c h  th a t  0  h < 1, S u p p [h ] V (M ), a n d  h = 1 near
t(M ) .  Now for f  e  Cr(M) and v e Cr(M, M) (0 r co), put f (x) =  h(x)f°1' °rc(x)
and e(x) = h(x)v 1 - 1  n (x ) , X E RN . Next, for X E X r (M ), put gk(x )
= h(x)X(x k  0 0 - 1 . n(x)), w h e re  (x 1 , ,  x N ) is th e  s ta n d a r d  coord inate  of

RN. Then, fe= ..evk k  E (RN) and w e can see that f(c(p)) = X f(p) for p e M
k = 1 OX

and f  e C l (M).
Next, we extend the covariance <  ,  >  and L = L, + B .  Recall the results in

§2 about the decomposition of L .  Put

Au(x, y) = h(x)h(y) 01, x i  c> n(x), c -  n ( y ) )
and

a2
L = (1/2) E Aii(x) a x , a x +  h (x ) E L o (xi. t) rc(x))

= i= 1

for x, y e RN,

where we set il -'(x) = x).
L e t M ( , t )  b e  a n  X(M)-valued Brownian m otion w ith m ean 0 and the

covariance <  ,  >  a n d  a( , t) b e  the  ex tension  of i t  t o  RN, i.e. Mk (x, t)
h (x )M (xk  o  ) ( t n(x), t) (k = 1, 2, ... , N).

T h e n  it  h o ld s  th a t <Mi (x, t), M (y, t)>  =  tA ii(x , y). M oreover, it can be
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verified that Lf(t(p)) = Lf(p) for fe C")(M) and pe M.
H ere, w e answ er the  question  of the  ex istence  of the  system  {P k , Z k ; k

= 1 , ..., m l satisfying th e  re la tio n  (2.1). L e t  i  a n d  f  f o r  f e C ( M )  b e  as
a f

a b o v e .  T a k e  m = N  a n d  define P k (p) = xk (, 0))), Zkf (p) = (i(p)) for
Oxk

pe M .  Then, 14 ; k  = 1, 2, ... , N I is  a  system of smooth vector fields on M and
{P k , 4 ; k  = 1 ,.. . ,  NI satisfies (2.1).

W e now proceed into the  proof of Proposition 3.2 and  3.3 with the above
preparation. Associated with th e  stochastic integral equation (3.2) o n  M, we
consider the following one (3.3) on RN :

(3.3) ils,t(x) = X ±  t  M ( ,- ( x ) ,  du)

+ f t L o (x ° (11s,u- 0 0 ) +  1 3 1t1s,u-(x))1 du

+ le(q (x)) — -6(qs ,u _(x))—  V (v)(q,_(x))} ,u(dv)du
s u
t++ f {t7(ris ,„ (x)) — é(ns ,u _ (x))A (dudv )
s u

+ f {50 s ,u  (x)) — _(x))1 I V q (dudv),
s

where we se t W(v)(p) = I V(v(p)) — W k (p)1Z k (p)ET„M
k= 1

Lemma 3.1. The condition (A, II,)(U) f o r r > 2 yields the followings.

su 110) — e(x)r !IW O  K  f o r all x e IV  and r' E [2, r].

(ii) L 113(x) — j(x) — 113(y) — j(y)} Iv ii(dv) Klx —

f o r all x , y  e ll" and r' e [2, r].

P ro o f . We only show the proof of (ii) because (i) can be easily shown in the
similar w a y . I f  x, y e  Supp [h ] V(M), then it holds :

su I v(x) — e(x) — {i(y ) — Ir" too

f j3(X) j(X) POI j(Y)} r I h (X )  10 0

+ f  Ih(x) — è(Y)Ir'12(dv)}
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(where we set 5(x)— le v . C I- 07(x))

< KIlic(x) —  7E(Y)Ir " + x — Klx —

If x e Supp [h] and y e (Supp [11])̀ , then there exists a  po in t ze(Supp[h])c n
V(M) such that z e  x y  (= the straight line from x to y in R N ). Noting that e(y) =
ê(y) = e(z) = é(z) and the  result for the first case, we see that

fu I 13(x) — j(x) — {5(y) — é( .)11 Ir' ki (do

= 15 (x) — e(x) — le(z) — j(z)}l r ' (A ) — ZIP/—
u

If x, y e (Supp [h])c, the  left hand side of (ii) is 0. 0

Lemma 3.2. W e have the follow ing representation:for xe RN

e(x) —  5(x) — W(v)(x) = Oii(x, v)(ø(x) — é i (x))(5i(y) — P(y))
i4=1

and  0,; (x, y) satisfies sup s u p  101j(x, v)1 < oo fo r i, j = 1 ,...,  N .
xeV (M) veC(M,M)

P ro o f . N oting that w e can put off the  first order term  of (e(x) — 5(x)) in
Taylor's expansion by  the condition (2.1), it is easy to see that we can take

1 { 52 n

y) = h(x) . (5(x) + t(i)(x)— 5(x)))
J o ax axi

m  0 2  Tr*
E (J(x) + t(e(x)—  5(x))) x Z k ( x  i)(i - 1  0 n(x))} (1 — t)dt.

k= 1 a Xi a Xi

Then it is easy to see that it is uniformly bounded with respect to (x, y).

Lemma 3.3. Under the condition (A, 112 )(U ), the function

fu {e(x)— 5(x) — (x)}p(dv)

is globally Lipschitz  continuous on R N .

P ro o f .  F o r  x, y e  V (M), we have

le(x) — 5(x) — W(v)(x)}p(dv) — f le(y) — 5(y)— W(v)(y)}p(dv)

< 2 t f — 011151(x) — j i (x))(P(x) — P(41 2 /1(dy)
ij= 1u

+  f  I y))II(ei(x) — 5i (x))(0(x) ji(x))
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— — MY))((Y) MY))11 ,1(dv)}

Here, note the inequality :

I O i i (x, y) — y)1

< K Ih(x)nig(x) + t(f5(x) — 4x)) — h(Y )ng(j(Y ) + t( 13(Y) j(Y )))Id t

+ fI( j ( x )  +  t(13(x) — j(x))) Vj g(j(Y) + t(13(x) — j(Y)))Idt
o

Z(x) — Z(Y )i}

< K{1ø(x) — é(x) — {E(y) — J(y)11+ x  —

where n i i (x) and V i i (x) denote the second order partial derivatives of it an d  V' with
respect to  x i a n d  x j at x, respectively. Hence, under (A, II 2 )(U), it holds that

Oij(Y, V)11(ei (X) j L (X ))(i5j (X) j i (X))1[1(dV) K  X  —

O n the  other hand, by  the  uniform boundedness of O i i ,  we easily obtain

L 10 i i (y, v)i (î5(x) — é i (x))(ei(x)— éj(x))

— 031 (Y) — MOONY ) —  j i (Y))1lt(dv)

K ix  — for i, j =  I, N.

Thus, we get the conclusion for x, y e V (M ). Secondly, we consider the case
where x e V(M) and y e  V (M )`. However, it can be reduced to the first case using
the same idea as in the proof of Lem m a 3.1. If x, ye  V ( M ) c ,  then the statement of
this lem m a is trivially  v a lid . W e  have thus com pleted th e  proof o f  Lemma
3.3. 0

From Lemma 3.1, 3.2, and 3.3, we obtain the  following result by standard
argument.

Under (A, I), (A, II2 )(U), and (A, III), the solution i(x) of (3.3) exists uniquely
for each initial data (s, x )e[0, co) x  RN .

Next lemma plays an im portant role in  the proof of Theorem 3.1. W e will
show it by  an approximation.

Lemma 3.4. If  xe t(M ), then the solution n(x ) of  (3.3) belongs to i(M )for all
t > s a.s., f o r each s > 0.

P ro o f . F o r  each n e  N , take  V" c  U  su c h  th a t V "  U  a s  n i co and ,i(V )

<  co. F o r  simplicity, we set D(x ) = L o (x  1) (x ) + B (x ). W e now consider the
following stochastic integral equation without jumps o n  RN,
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s,t(x)  ' t *t= x  + j M (tIt s ,u (x), du) + j ,(x )) du

— f  { V (v )(0 s ,u (x))} 1.1(dv) du .
s

It can be easily seen that it has a unique solution. Since it is an extension of
stochastic integral equation based on the Brownian motion with the L. C.-system

(<  ,  > ,  B — f  W (v)p(dv)), w e see that tiis ,t (x)e t(M )  if x E /(M )  if x  i(M ) .  See
Vn

Elworthy [1] Chapter VII for the detailed discussion.
Secondly, we consider the next equation with jumps,

= x + f M (C,_(x), du) + f D(C,: , u _(x))du
.Js J5

+ f tP ( 's' (x)) — J(Cs', (x)) — Vi(v) (C's' _ (x))1 p(dv) du
J

t+
+ le( (x)) — oc,„_00)A(dudo

s v.

= x +  m ( .- ( x ) ,  du)

+ {D(Cs',„ _ (x)) — (v) (Cs'  _(x)) p(dv)} du
Js v.

t +

+ { ,u_(x)) — J(C.:,u _(x))1 s q (dudv).
s

Since p ( V )  <  oo , if x e t(M )  t h e n  th e  s o lu t io n  q i (x) is g iv e n  b y
tiise ,t o q(s,). • • • . q(s i ) . (x), where s < s, < • • • < se t  <  s , , ,  and  s,e D g  n (i
= 1, 2, ...). (D g  d en o te s  th e  dom ain o f  th e  p o in t process { q ( t )} . )  Hence, the
solution C (x ) can not leave t(M ) if the initial point belongs to z(M).

Next, le t C,(x) be the unique solution of the following equation:

Cs,t(x)  ‘ t= x + j Alg5,.-0), du) + D(Cs,u - (x)) du

+ {e(Cs,„_(x)) — _(x)) — wo)Gs,._(0 11.1(dodu
s

LteGs,„_(x),_ ws,._(x), A (dudv).

Then it holds that

lim  E[ sup I C.: .(x) — C5 „ (x)I 2 ] = 0 for each x  RN .
nt on s u t
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S ince  l(M )  is a  c lo sed  s e t  i n  RN  a n d  t h e  approximating processes
{Csn,,(x);fl e NI have its values in /(M) if x e /(M), so does the limiting process C s .t (x).

Finally, it is easily seen that the solution of (3.3) can not leave i(M ) if the
initial po in t belongs to  i(M ) .  T hus w e have completed th e  proof o f  Lemma
3.4.

Associated with the solution rj, 1(x) of (3.3), put = 1 - 1 1 ( p )  for
p e M .  Then we have the following lemma.

L em m a 3.5.
(s, p)e [0, co) x M.

P ro o f . By Ito's formula for RN -valued semimartingales, it holds that for all
f e C (M)

(3.4) f (ns,,(x ))=f (x )+ f r,(1 1 .— (x ))m i (ns,.—(x), du)
s ux

+ f t( x ) ) D i ( r 1  , , , , ( x ) )  du
t= Ox i

+ f  f e i (r s,u-(x)) — s,u-(x))

Of
— W(v) i (ris ,u _(x))} (IL u _ (x))tt(dv) du

ex' '

+ (1/2) f  a 2 f . (pi (x))A ì (11 _ (x )) du
ax i Oxi

+ If(qs,.- (x)) + 13(n s,u — (X)) —  e(qs,u — (X))) —

s u

3f
— (0(11 _ (x)) — (x))) u_ (x))1 pi(dv) du

1=1
t+

f u

lf (ri s ,u _(x) + e(ri s ,u _(x)) — JO' (x))) — f(rl s ,u _(x)) A (dudu)

t
+ f  If (ri (x) + _ (x)) — é(qs ,u _ (x))) — f (q (x ))}  u (dudv).

uc
Since ri (x )e  i(M ) for x = i(p), we have the following relations as seen before :

A fOls,t(x), =  M  f  ° t)  M  f t),

(1/2) A 3(t/(x)) a:i 2
a
f
x i  (n.,,,(x)) + D i (i/s,i(x)) a

a
x
f
; (r/s,t(x))

= L f(n ,t(x )) = Lf(1 s,t(P)) = 1- f (s,t(P)),

i s  the unique solution o f  (3.1) w ith  the initial data

i = 1 s  u
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f  (n,,,(x) + 17( ,,,(x)) — j(ri ,,,(x))) f (v(,,,(p))).

Using the above relations, it is easy to see that the equation (3.4) is nothing
but (3.2) o r equivalently (3.1).

O n the other hand, the uniqueness follows from the one for (3.3). Thus, we
have completed the proof of Lemma 3.5 and Proposition 3.2. El

We next give a  proof of Proposition 3.3. But it can be shown as a simple
application of the result of [3 ] Theorem 2.2. In fact, Lemma 3.1 says that we can
apply the theorem  to the  system of solutions of (3.3), and  w e can see that the
system defines a  C(RN , RN )-Lévy flow. Moreover, since qs ,,1,( , ) is  an t(M)-valued
process and i(M ) is  a  closed submanifold of RN , w e can say that {th,,I,(m ) ; s < t}
defines a  C(/(M), /(M))-Lévy f lo w . Therefore, ; s t }  defines a  C(M , M)-Lévy
flow.

Finally, we give a  proof of Theorem 3.1. What we have to do is to show the
property of C(M , M)-Lévy flow in strong se n se . However, it is shown by a  result
of Kunita [6] Theorem 4.2. Further, as regard to I) and I I ) ,  they can be
shown by the discussion similar to the one below Theorem 3.1 of [3]. I I I , . )  can
be also obtained by the same calculation as in Lemma 2.1 of [ 3 ] .  Thus, we have
completed the proof of Theorem 3.1. E

Remark 3.2. Through the equation (3.1) under stronger regularity condition
for the characteristic system, we can construct Levy flow on the space of smooth
mappings from M  to itself by the similar discussion given in section 2.4 of [3 ] and
by the methods in  this paper.

Remark 3.3. W e  h a v e  re s tr ic ted  o u r attension t o  pathwise discussion.
However, from the point of view of martingale problem for jump-diffusion process
( = strong Markov process with jumps) on  M , we can say that the characteristic
system satisfying (A, I), (A, II 2 ), a n d  (A , III) determ ines the d istribution of
go,t(P); 0 1 .

§ 4 .  Representation of C(M, M)-Lévy flows

In the previous section, we have constructed the C(M , M)-Lévy flow through
the  stochastic integral equation (3.1). In  this section, we consider the converse
problem . That is, for a given C(M , M)-Lévy flow, our problem is to represent it
as the  system of solutions o f  a  stochastic integral equation of the same type as
(3.1). In other words, our problem is to find the stochastic infinitesimal generator
of the Levy flow . M ost of ideas for finding it are contained in section 3 of [3], but
we need more consideration about the geometrical properties of the infinitesimal
generator.

L e t  g s ,, ; s t 1  b e  a  C(M , M)-Lévy f lo w  in  strong sense defined o n  a
probability space (Q, P ) .  S ee  § 2  f o r  th e  de fin ition . W e  now  g ive  the
statement of the m ain theorem in  this section.
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Theorem 4.1. A ssume that a  given C(M, M)-Lévy f low  { ; s t }  satisfies
( ,  I), (, II), and g,11I 2 ). Then, there ex ist an  X° (M)-valued Brownian motion
M ( , t )  w ith m ean 0  and the cov ariance <  ,  > ,  a  linear operator 2  : C (M )

C° (M ), an d  a  stationary  Poisson point process {q(t)} o n  C(M, M ) w ith the
intensity  m easure y , such  that the  Lévy f low  is represented as  th e  solutions of
(3.1). Moreover, the triple (<  ,  > ,  y , 2 )  becomes a  characteristic system and y
satisfies (A, 112 ).

W e deno te  th e lim its  i n  ( ,  I)  a n d  ( , II) b y  «f , g » (p , q ) an d  2 f(p),
respectively. (cf. Theorem 3.1) Since the proof is long, we will give it by deviding
several parts.

For the given Lévy flow, define a stationary Poisson point process {q(t)} on
C(M, M) by

q(t) = for t e  ; 0 the identity map e on M } .

We denote the counting measure and the intensity measure by I ■1,(dudv) and
y(dv), respectively.

Remark 4.1. The definition of point process {q(t)} is somewhat different from
that in [3].

First we study the properties of the intensity measure of the  point process
defined above.

Lemma 4.1. Under the condition g, (A, 112 )  holds. Further, under the
condition g, (r 2), (A, It.) holds.

P ro o f . Put ri (x) = t o  os,,.1 - 1 (x) for x e t(M ) .  Then, it can be considered as
a Lévy flow on t(M ) and therefore ti (x) takes the values in R " . Hence, we can
follow the same discussion as in the proof of Lemma 3.1, 3.2, and 3.3 of [3]. At
th e  tim e , w e  s h o u ld  n o te  t h a t  aii(x, y) an d  b (x ) in  [3 ] co rre sp o n d  to
« x i . (1- (x), 1 - 1 (y )) a n d  2 (x l 1)(t - 1 (x )) for x , y e t(M ), respectively.
Furthermore, by Theorem 1.2 of [3], we can see that this lem m a holds. El

B y  th e  f ir s t  p a r t  o f  L em m a 4 .1  th e  following is well-defined: for all
f, g e C (M), and p, qeM,

<f, g>(p, q ) =  « f, g » (p, q) — { f (v(p)) — f (p)} { f (v(q)) — f (q)} it(dv)
c(M ,m)

T h e n e x t  proposition w as unnecessary in  th e  c a se  o f C (ft d , le)-Lévy
flow. But in this manifold case it is necessary for characterizing the infinitesimal
generator which we want to find.

Proposition 4.2. The triple (<  ,  > ,  t ,  2 )  is a  characteristic system.

P ro o f . We first note that under the conditions (, I), (, II), and (, 111 2 ) we
can see that <f, g> and 2 f  are continuous for each f, g E C ( M ) .  Hence, we can
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consider <  , >  a n d  Y  a s  th e  operations <  , > : C (M) x C (M ) -+  C ° (M
x M) and 2 ' :  C ( M )  C ° (M ), respectively. From the definitions, it is obvious
that <  , >  is bilinear and 2 '  is linear. A lso, it is obvious that the condition 1)-
a) of characteristic system is satisfied. See §2 about the condition. To see b), we
consider the process

M  f  ( P )  f( s ,f(p ))  —  f (p )  —  f r f (P)) du

By the  same discussion as in Lemma 3.1 in  [3], it can be easily seen that
Ms ,,f (p) is an L2 -martingale with mean 0 for each s, p, and f E C (M). W e denote
the discontinuous martingale part of it  b y  M s

d,, f(p ) . Then, it holds:

t+
m f (P )=  f If(v(s—(p»)—  f (s,u  — (p))}g q (dudv).

S

P u t  M's ,, f(p) =  M  f (p) —  M  s
d f ( p ) ,  w h ic h  i s  t h e  con tinuous p a r t  o f

M  f  ( p ) .  By the orthogonality on  the  space of L2 -martingales, it holds :

<Ws,t f(P), 9(9)> = <M f (P), M s 4 9(9)> < W s,t  f(P ) , 1W,f9(q)>

= «  f ,  g »  ( (p), 5 (q)) du

ft Ilf(v(s,u(p)))— f ( , ,„ (0 1  { f ( v ( s ,u ( g ) ) )  —  f  ( s ,u ( g ) )}  du 11 (dv)

=  f t < f,  g > ( , 5 ) '  5,u(9)) du.

We should see the second part of the proof of Lemma 3.1 of [3] about the
equality :

< M  f (p ) , M  ,g (g ) )  =  f r
 « f ,  g  »  ( s ,u (p), , „ ( g ) )  du .

Now, for f i e  C  ( M ) (i =  1, 2), by Ito 's formula, we have :

f 1 ( , , , (p ) ) f2 (5 ,i (p ) )

=  f i(p )f 2 (p ) + t f i  (&(P)) d f  ( p )  +  f t f2 ( i t iu(P ))d cs,u i i(P )
J s

+  a  bounded variation process +  a  discontinuous martingale.

O n the  other hand, we have

f  f  2  ( s , t ( p ) )  =  f  f2 (p )  +  m c s , t ( f  f  2 ) (p )  +  a  bounded variation process

+  a  discontinuous martingale.

Hence, by the uniqueness of the decomposition, we have:
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w s,t( f 1 f 2 )(P)  = f  f 1 (5 ,.(A d m c s ,„f 2 (P)  + f 2 (5 ,.(P))d m c s ,u f 1 (P) .

Moreover, it holds:

<f 1 f 2 , g >(s ,.(P) , .,.(g ) )  du = <M cs,t(f  f  2)(P), M ,9(0>

= f i(s ,u (P)) d <M cs,uf2(P), M cs,ug(q)>

+  f t f2(5,u(P))d<M cs,uf t(P), Ws,n9(q)>

= f t If i( s ,.(P ) )<f 2 , g > ( ,(p ) , .s ,„(g ) )

+ f 2 (5 (P))<f 1 , g >(s ,u (P) , 5 ,u (g ))1  du.

Deviding the expectation of both sides by (t — s) and then taking limit t s ,
we obtain the property b).

The positive definiteness c) follows from the relation :

= <m cs,if i(Pi), M C,,t f i(P ;)>

With regard to  the property 2), we have already seen in Lemma 4.1. We next
show the property 4). By using Ito's formula, it holds:

ET(fg)(s,t(p )) —  (f g)(P)]

=  f t EE<f> g>( (P), 5 ,.(p )) + f (s ,u (P))-rg (s,u (P)) + g (s,u (P))-i°  f (s ,u (p ))

+ f  tf  (v g s ,n (p))) —  f g,(p))}  {g(v( ,(p ))) —  gg 5 (p))1 ,u(dv)] du.

By deviding both sides by (t — s) and taking limit t s  as before, we get the
property 4). W e have thus completed the proof of Proposition 4.2. D

W hat we have to  show for completing the proof of Theorem 4.1 is only to
construct M ( ,  t) with mean 0 and the covariance <  ,  >  satisfying (3.1). For a
partition of [s, cc) A : s = t o < t i  p u t

f ( p )  = f (P).

L et {z1n : n = 1, 2, ...} b e  a  sequence of partitions such that A 1 i s  a fine
partition of .61n  a n d  I An 1 =: max1t7+ 1  — 0  a s  n cc. T h e n ,  b y  the  similar

way in Lemma 3.2 of En w e can see that {1' f (p); n = 1, 2, ... } defines a Cauchy
sequence in L2 (P) for each s t ,  p  E  M, and f  C ( M ) .  We denote by 17,,, f (p) the
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lim it. T hen , we have :

as,/ f (P) , Ys,t9(q)> = —  s)< f, g> (p , q )

and

f (P )  =  17,4 f (P) + }Ç f ( p ) for s t  u.

See also Lemma 3.2 in  [3 ] . N o w , p u t  M  f(p , t) =  Y o f ( p ) .  By the  above
properties, it can be easily seen that M f(t, p ) has independent increments and has a
continuous modification with respect to  (p, t). (Recall the first notice about the
continuity of < f, g>  in the proof of Proposition 4.2.) Moreover, by the derivation
property o f  <  ,  > ,  w e get that o f  M (  ,  t). That, is, it holds:

M (fg ) (p , t )  =  f(p )M g(p , t )  +  g (p )M f(p , t ) .

Therefore, M ( , t )  is  an X
°
(M)-valued Brownian m o tio n . It also holds :

M cs,t f (P ) =  f t M f(s ,u (P ), du).

Thus we get the equation (3.1) which we want to show :

f s ,,03 )) —  f(p ) —  f t f  ( s , u ( P ) ) d u

= M f(s ,“ (P ) , du) + f  If (v( — (P))) — f s,u - (P))} S q (dudv).

W e have thus completed the proof of T heorem  4 .1 . 0

In  this section, w e have discussed from a  po in t o f the  theory of stochastic
differential equations and  stochastic flows. In  the  remainder of this section, we
will mention the relation to  the classical theory of M arkov processes.

Since a  C (M , M)-Lévy flow { } has independent increments, n-point process
{gs,t(Pi), .s ,t(P .))1  de fines  a Markov process on the product manifold M n = : M
x  ••• x  M  (n-folds), for each n E N. In particular, 1-point process g s ,t ( p ) ;  p e M I
is  a M arkov provess w ith the  infinitesimal generator Y .  Since we know that
( <  ,  > ,  j ,  ..r )  is  the characteristic system, the representation of ..  an integro-
differential operator is not unique as we saw in  § 2 . Thus, we see that Y  itself is
intrinsic to the Markov process g 5 ,1(p ); p  e M I but the representation of it is not
so. O n  t h e  other h an d , in  [3 ], w e saw  that, in  the  case  o f M  =  Rd , Y  was
uniquely decomposed into the differential operator part and the integral operator
p a r t .  It seems like a contradiction, but it is not so. In  th e  c a se  o f  Rd , we fixed
automatically the system as

0
m = d , Vik =  x k ,  and Z , =

O x '

This is  the reason why .99  is considered to be uniquely represented.
Now, .99  can be rew ritten as the following classical representation:

t +
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2 f ( p )  _ Lf(p) IN )  — f(p ) {Vik (q)

M \ p ) k 1

Tik (p)} Z k f(p)} p (d o ,
=

where itp (dq) = tt(ev; (dq)n Iv E M ); v(p) p l ) and evp (v) =  v(p) for
p e M .  O n  th e  o th e r  hand , w e  know  th e  representation o f  th e  infinitesimal
generators o f m ore  general Markov processes o n  M .  See [10] C hapter XII,
section 7. The Theorem in the section (p. 408) clarifies properties of the generator
in local, but n o t o n  g lo b a l. O u r Theorem 4.1 says that in the case of 1-point
process of C(M, M)-Lévy flow, we can see the global property of the quantities
which determine th e  infinitesimal generator 2 .  W e should  n o te  th e  delicate
difference between the representations of the above and (6) of [10] in section 7.

§ 5 .  Example

In this section, we will mention the relation between the result in Marcus [8],
[9 ] and that in  § 3 .  It is well-known that Stratonovich's differential equation is
suited to construcing a diffusion process on a m anifold. Then, it is natural that
th e  following question arises : what ty p e  o f  equation should w e consider to
construct a  discontinuous process on  a  m anifold ? In  [8 ] and  [9 ], he answer to
this question for a simple case, extending Stratonovich's differential equation for
continuous c a s e . We will show that his result including the extension which will
be given below provides us an example of Theorem  3.1. In  order to concentrate
o u r  attention on construcing a jump-diffusion on  a  m anifo ld , we restrict his
statement as follows. However, we believe that we do not miss the essence of his
idea.

Let z , be an 1-dimensional Levy process represented by

r+ r+
(5.1) z, =  B, +f z1S1 p(dudz)+ f I zNp(dudz)

0 0 izi >1
where B , is a  Brownian motion and we denote by N p (dudz) the Poisson random
measure associated with th e  p o in t process p  possesing th e  intensity measure
duv(dz), w h e r e  v  is  a  a-finite  m easure on 12. 1 \ {0} satisfying flz12 A lv(dz)
< co . We also set KT p (dudz) = N p (dudz) — duv (dz ). Though in  [9] z, is restricted
to  the case where z , has a  finite number of jumps on  each bounded interval, we
would like to em phasize that we can rem ove the restriction b y  the discussion
below. W e now consider the following stochastic differential equation associated
with the Lévy process Zr .

(5.2) 4,(x) =  x +  g(4 u _(x)). dB u

t+ t+
+ g(4u_(x))zNp(dudz) + g(4u_(x))zNp(dudz)Js izi >

+ 14)(,,u_(x), Az u ) —  s ,„_(x) — g( ,_(x ))A z ul,
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where g e Cl(R d , Rd) = : the space of all continuously differentiable mappings from
Rd  into itself posessing bounded derivatives, and 0(x, z) is the flow generated by g:

—
d  

(x, z) = g(0(x, z))
dz

(5.3)
6P(x, 0) = x e Rd .

In  the a b o v e , dB denotes the Stratonovich differential of B  and we set A z
= z u  — z u _ .

In [9], he calls this equation (5.2) the canonical extension of the equation:
= g ( ,_ )d z ,.  (cf. (9) in  [9].) Further, it is shown in  [9 ] tha t the solution is
invariant under the change of coordinate system which makes g a vector field on a
manifold embedded in Rd . See Theorem 6 in [9]. However, we will see that it is
a n  obvious consequence of our results.

In the sequel, we first give an intrinsic interpretation of (5.2). To this end, we
introduce a  stochastic differential equation on  a  com pac t sm ooth manifold M
associated with z , of (5.1): for all f  C '( M )  and p e M

(5 .4 ) f ( (P)) f ( P ) + Gf(s,u-(P))° dBu

+ { f (4 )(s ,„— (P), z i ,,,,,,,))—  f ( s ,„_(p))}  p (dUdZ)

+
t+ 

If (4) - (p), t I z I , i ) ) )  — f( (p))1N p (dudz)

+ f iiz i,11))—  f (s,u— (0)

— Gf (P))zi t iz i, }  duv (dz),

where G E X (M) and 0  is the flow generated by G with the initial condition (P(p, 0)
EM.
It is easy to see that (5.4) is equivalent to (5.2) in the case of M = Rd i f  we

d a
identify GeX (M ) w ith  E g' Since all quantities in  (5.4) are coordinate free,

i=iO x '
w e can say that (5.4) gives us an  intrinsic form of (5.2).

Here, we should note  tha t (5.4) is  a n  exmple of (3.1). In  fact, in  order to
deduce the expression (3.1) from (5.4), we define a  measure it(dv) on  C(M, M) by

(5.5) p(dv) = v  F - 1 (dv),

where we set F(z) = (P(•, z) for z e R i  \ 101. We also define a  po in t process q  on
C(M, M) by q(t) = 4)(. p(t)), Du = It ; q(t) el. Then, we can easily see that (5.4)
is equivalent to the equation :

=p



Stochastic differential equations 119

(5.6) f(s,t(p)) = f (p) + M f(s,u-(P), du) + -rf (s,u-(P))du

t+

+ f (v — f (  — (01 g q (dudv),

where Mf(p, t) = Gf (p)B, and

(5.7) f(p) = (1/2)G(Gf)(p) + f If(4)(p, z)) —  f(p) —  Gf(p)z1 f i z i , , i } v(dz).

T h is  is n o t h in g  b u t  (3 .1 ) correspond ing  to  t h e  characteristic system
<f, g>(p, q) = Gf(p)Gg(q), of (5.7), and y  of (5.5). Also, we can see that the
characterstic system  sa tisfies (A , I), (A, II,.)(U), a n d  (A , III)(U ) for U
= {0(•, z); z  <  1} and for any r 2. Therefore, according to Proposition 3.3,
the solution of (5.4) defines a jump-diffusion process on M and further a  C(M , M)-
Lévy flow.

B y  th e  above considera tion , w e can  c la im  that our resu lt g ives a  new
interpretation of the equation (9) in [9] and a generalization of [9 ] in the direction
of constructing jump-diffusion processes on a manifold.
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