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Stochastic differential equations of jump type

on manifolds and Levy flows

By

Tsukasa FUJIWARA

§1. Introduction

In the previous paper Fujiwara-Kunita [3], we have clarified the structure of
C(R% RY)-Lévy flows, ie., stochastic processes with values in the semigroup
C(R% R% of continuous mappings on R? with stationary independent
increments. More concretely, we constructed those stochastic flows by some
stochastic differential equations of jump type, and conversely when the stochastic
flow was given, we represented it as the system of solutions of the same type of
stochastic differential equation. In this way, we established a one-to-one
correspondence between a general class of C(RY RY-Lévy flows and a class of
stochastic differential equations which govern the flows.

The main purpose of this paper is to study a similar problem of constructing
and characterizing C(M, M)-Lévy flows when M is a manifold. In particular, we
would like to discuss geometrical aspects of the problem treated in [3]: we are
interested in the problem of, first, giving the characteristic quantities which
determine a flow, or equivalently giving a stochastic differential equation which
governs the flow and, secondly, the problem of solving this class of stochastic
differential equations. In section 2, as the characteristic quantities we introduce
the notion of ‘characteristic systems’ for C(M, M)-Lévy flows which is an analogue
of the one for finite dimensional Lévy processes. It is also considered as a
generalization of the one introduced in Le Jan-Watanabe [7] to characterize
Diffeo(M)-Brownian flows. We will get more delicate properties of characteristic
systems which were unnecessary when M is an Euclidean space.

In section 3, we will discuss the construction problem, that is, given a
characteristic system satisfying some regularity conditions, we construct a
C(M, M)-Lévy flow by solving a stochastic differential equation corresponding to
the characteristic system. It is our new idea to introduce the equation. See (3.1)
in section 3. The main claim in the section is Theorem 3.1. Let us note that this
construction problem is closely related to the problem how we can construct
stochastic processes with jumps on a manifold by stochastic differential
equation. To study the problem is one of major purposes of this paper. In
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Marcus [8] and [9], he studied it about some special cases. We will show in
section 5 that our results in section 3 essentially contain his results. We would
like to emphasize that the results of this paper give a unified approach to the
problem. In section 4, we will discuss the converse problem of showing that all
C(M, M)-Lévy flows satisfying some regularity conditions can be actually obtained
by the method of section 3. That is, for a given C(M, M)-Lévy flow of a general
class, there corresponds a characteristic system and the flow can be represented as
the sysem of solutions of the stochastic differential equation corresponding to the
characteristic system. The main claim in the section is Theorem 4.1.

The author would like to thank Professor Hiroshi Kunita for his suggestions
for improvement.

§2. Preliminaries

In this section, we explain some notions and terminology which we will use in
the following sections. In particular, we will introduce the notion of ‘characteristic
system’ for C(M, M)-Lévy flow. Although it is a reformulation of characteristics
for C(R?, R9)-Lévy flow introduced in Fujiwara-Kunita [3], we give some relation
between the components of the characteristic system which induces important
geometrical properties. Using it, we will be able to clarify the structure of
C(M, M)-Lévy flows.

Let M be a d-dimensional compact smooth manifold without boundary. We
denote by C(M, M) the space of all continuous mappings from M to itself. It can
be considered as a Polish space with respect to the uniform convergence
topology. We also denote by C"(M) (r =0,..., o0) be the space of C’-functions
on M.

Our main objective is the following C(M, M)-valued stochastic process
{&.; s <t} defined on a probability space (2, #, P).

Definition of C(M, M)-Lévy flows. (i) ¢,,€eC(M, M) for each s and ¢t. It is
continuous in probability, right continuous and has lefthand limits in ¢ with respect
to the topology of C(M, M).

() &u=¢&,°&, P-as forall s<t<u.
(o denotes the composition of mappings.)

(i) For all neN=:{1,2,...} and t; <t, < -+ <1,
{&.1..si=1,..., n} are independent random variables.

(iv) {&,} is time homogeneous. That is, for all u >0 the law of & 4,4, is
equal to that of &,,.

Further, if {&,} is continuous in probability, right continuous and has
lefthand limits also in s, then we call it a C(M, M)-Lévy flow in strong sense.

In the case of M = R? we discussed in detail about C(M, M)-and C"(M, M)-
Lévy flows in [3].

The characteristic system consists of three quantities, { , ), 4, and Z. In
the following, we give the definition of them and a relation between them.
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Definition of characteristic system ({ , >, u, &). 1) < , ) is a bilinear
map on C®(M) x C®(M) with values in C°(M x M), and it has the following
properties.

a) {f, 9>, 9) =<9, >, p) for all f,geC*M) and p, ge M
b) {fifa. . @ = f1(0)f2 9>(p. @) + f2(P) {S1s (P, @)
for all f,, f,, ge C®(M) and p, ge M.

9 Y Sufdnp) =0,

i,j=1

<

for all meN, f,e C*(M), and p;,e M.
2) u is a Borel measure on C(M, M) satisfying the following properties.
a) u({e}) =0, where e = the identity map on M.
b) there exists a sequence of Borel measurable sets {U"; ne N} satisfying

U'cU?c -1 (C(M, M)\{e}) and p(U") < oo for each neN.

c) j | f(v(p)) — f(p)|*u(dv) < oo for each fe C*(M) and pe M.
C(M,M)

3) Z:C®M)— C°M) is a linear map.
4) (< , >, u 2) satisfies the relation: for all f, ge C*(M) and pe M
ZL(f9)p) — f(p)ZLg(p) — 9(p)Zf(p)

=<{fig>p. p)+ f {f(v(p)) — f(0)} {g(v(p)) — g(p)} u(dv).

C(M,M)

In particular, if 4 = 0, then the characteristic system is nothing but the local
characteristic system (L. C. -system) introduced in Le Jan-Watanabe [7].

To clarify the geometrical properties of characteristic system, we assume the
following regularity condition.

A D): {f, g>eC*M x M) for each f, ge C*(M).

Let U be a Borel set such that u(U¢) < co. U°® denotes the complement of U.

(A, IL)(U) (r = 2): for some embedding map 1: M — R¥, there exists a constant
K > 0 such that

(i) SUPJ l1(v(p)) — 1(p)I* u(dv) < K < oo,
pPeM v
(i) J l1(v(p)) — 1(p) — {1(v(q)) — 1q)}I" u(dv) < K 1(p) — 1(q)I"",
U

for all r'e[2,r] and p, geM,
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(A, TI)(U): LyfeCHM) for feC*(M),

where £yf(p) = Lf(p) —J {f((p)) — f(p)} u(dv).
UC
In the case of U = C(M, M), we omit (U).

Remark 2.1. The condition (A, II,)(U) does not depend on the choice of
embeddings because M is compact.

Furthermore, we introduce a system of smooth functions ¥* and smooth
vector fields Z, {¥* Z,; k=1,..., m} for some m, which satisfies the relation:

2.1) S X(#92Z, = X
k=1

for all X e X(M) =: the space of all smooth vector fields on M.

We also denote by X'(M) the space of all C"-vector fields on M with the
topology of uniform convergence upto the r-th derivatives.

In the case of M = 8% !(the unit sphere at the origin in RY), for example, we
can take

m=d, Y*x)=x*ga-1, and Z, = i (O — x‘x")i,
i=1 ox'
where (x!,..., x%) is the standard coordinate of R and J, denotes Kronecker’s
delta.
We will see in the later that there exists such system for sufficiently large
m. Associated with the system {¥* Z,}, we can define an operator L by the
relation:

22) Zfp=Lfp+ J {f(w(p) — f(p) — ki {PH(p)) — PXP)} ZSf (p)} 1(dv)
U =1

+ J {/(v(p) — f(p)} ().
Ue

In fact, the second part of right hand side is well-defined by the integrability
condition for p and the relation (2.1). See the proof of Lemma 3.2 below. By
noting the derivation property of {Z,}, it is easy to see that (¢ , ), L)isan L. C-
system in the sense of [7]. Hence, by Collorary [7] (p. 310), L can be decomposed
into L, + B, where L, is a second order differential operator on M defined by the
Collorary in [7] and B is a continuous vector field on M satisfying

l1,(B)(x) — 1,(B)(»)| < K|x —y|  for all x, yeuM).

(x denotes the differential of maps.) This Lipschitz continuity of B follows from
the assumptions for the characteristic system. If we assume stronger regularity
condition, we can get the smoothness of B.
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By the above discussion, we can see that % is an integro-differential opertor
on M which is represented by (2.2), where Lf(p) = Lof(p) + Bf(p). This concrete
representation will be applied in the next section to construct C(M, M)-Lévy flows.

Remark 2.2. We should note that the representation of % is not uniquely
determined. In fact, for any other system satisfying (2.1), it is seen by the same
reason as above that % is represented as the same form of integro-differential
operator as (2.2).

Remark 2.3. Conversely speaking, the relation (2.2) indicates the existence of
characteristic systems. Indeed, for any L. C.-system ({ , ), L) and u satisfying
(i) of (A, I1,)(U), define & by (2.2). Then, ({ , >, 4, &) becomes a characteristic
system.

In order to express stochastic differential equations in the following sections,
we prepare Brownian motions with values in the space of vector fields on M and
stochastic integrals based on them. See [7] for more general and rigorous
discussion.

Let M( ,t) be an X°(M)-valued Brownian motion with mean O defined on
(2, #, P). That is, it is a stationary continuous stochastic process with values in
X°(M), having independent increments, and satisfying E[Mf(p, t)] =0 for each
feC®(M), peM, where Mf(p,t)= M(p, t)f. We denotes by ( , ) the
covariance. That is, E[Mf(p, t)Mg(q, s)] =t A s{f, g>(p, q) for all f, geC*(M)
and s, te[0, o). Then it is easy to see that { , ) satisfies the conditions a) ~ c)
in 1). Here, we give the definition of stochastic integrals based on M( , t), which
we will use in the following sections.

Assume that ¢ , ) satisfies (A, I). Let ¢,, and y,, be M-valued {Z,,}-
adapted simple processes, where {Z,,; s <t} is an additive class of o-fields such
that #,, contains o[M( ,v)—M( ,u);s<u<v<t]. That is, for some
partition 4: s =ty <t <--- > ©, ¢, = ¢g,, if te[t;, t;+,). For this process ¢;,,
define

J\ Mf(d)s,u’ d“) = i {Mf((bs.rp ti+l A t) - Mf(¢s,l,~7 ti A t)}

i=1

Using the relation:

23) <j Mf($a du), J Mf Wy du)> _ J > By e dut,

we can extend (2.3) to processes {¢,,} which are left continuous in t.

N.B. In the following sections, we will often use K as an arbitrary positive
constant, whose value could change from line to line.

§3. Construction of C(M, M)-Leévy flows

In this section, we will show main results for the construction problem of
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C(M, M)-Lévy flows. Although we will construct them by some stochastic
integral equations of jump type as we did in Fujiwara-Kunita [3], we have to
devise the relation between the quantities which determine the stochastic integral
equation so that the solutions can never leave the manifold M. For the purpose,
we introduce the stochastic integral equation (cf. (3.1) below) associated with the
characteristic system defined in the previous section. Such a device was not
necessary in the case of R%. Also, we should note that the characteristic system is
a set of intrinsic quantities of C(M, M)-Lévy flows which will be constructed. See
Theorem 3.1 and Theorem 4.1 in the next section. We will use the same notations
as in §2.

Our main theorem in this section is as follows. We follow the notations of
Ikeda-Watanabe [5] Chapter II with respect to stochastic integrals based on
Poisson point processes.

Theorem 3.1. Let M( ,t) be an X°(M)-valued Brownian motion defined on
(2, #, P) with mean 0 and the covariance { , ) satisfying (A,1). Let {q(t)} be a
stationary Poisson point process on C(M, M) defined on (2, #, P) with the intensity
measure u satisfying (A, 11,) for r > 3(2d + 1) + 4. Let £: C*(M)— C°(M) be a
linear map satisfying (A, II1). Suppose that the triple ({ , >, u, &) is a
characteristic system. Then, the system of solutions {&; (p);s<t, peM} of the
Sfollowing equation (3.1) constructs a C(M, M)-Lévy flow in strong sense.

(.1 JCsip) = f(p) + J Mf(Es,u-(p), du) + J ZLf (Csu-(p))du

t+
+J I {f(0(su-(P)) — f(&su- (P} N,y(dudv),
s Jom.m
for all feC®(M) and pe M.

Moreover, {&,} satisfies the following conditions:
(& D: for all f,geC®(M) and p, ge M, there exists the limit

1
lim

— E[{f(&.(p) — f(P)} {9(&:.(0) — 9(a)}].
us (E—)

In fact, it is equal to

{fr gy, q) + J {f(0(p) — f(p)} {9(v(q)) — f(q)} u(dv).

C(M,M)

(& IN): for all feC*(M) and pe M, there exists the limit

. 1
lim —— E[f(¢.(p)) — f(P)].
ts (L —5)

In fact, it is equal to Lf(p).
(& TI):  for some embedding 1: M — R¥, there exists a constant K > 0 such that for
all p, qgeM and r' €[2, r],
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(i) E[E.(p) — 1p) — {1&(@) — H9}'T < K(t — 9)la(p) — 1(q)l",
(i) E[l(.p) — )1 < K(t - 5),
(ii)) [E[1(.(p)) — 1p)) — {1(&s(@) — u@)}]] < K(t — $)|u(p) — 2(q)].

Remark 3.1. The meaning of the solution of (3.1) is that for each s >0 and
peM there exists {#,,}-adapted M-valued process which is right continuous, has
lefthand limits with respect to ¢t and satisfies (3.1) for all fe C*(M), where %,
=a[M( ,v)—M( ,u), N((u,v], A):s<u<v<t AeB(C(M, M))].

We first prove the following propositions which are weaker versions of
Theorem 3.1.

Proposition 3.2. Letr M( ,t), {q(t)}, and the characteristic system
K, O u &) be the same as those in Theorem 3.1 except for their regularity
conditions. Suppose that { , >, u and ¥ satisfy (A1), (A, 1l,)(U), and
(A, III)(U), respectively. Then, the solution {&;,(p); s < t} of (3.1) exists uniquely for
each initial data (s, p)e[0, 0) x M

Proposition 3.3. Ler M( ,t), {q(t)}, and the characteristic system
K , D, u &) be the same as in Proposition 3.2. Moreover, suppose that p
satisfies (A, I1)(U) for r>2d+ 1. Then, the system {&(p);s<t, peM} of
solutions of (3.1) constructs a C(M, M)-Lévy flow.

Before proceeding to the proof, we show the outline of it and give a few
preparation.

Since £ can be decomposed into the sum of differential opertor and integral
operator (2.2) as we saw in §2, the equation (3.1) is rewritten as follows:

(B2 fEu.p)=1fp) +J M (&s.u-(p). du) +J Lf (Ssu-(p)) du

j J {f(v ésu )) _f ésu Z {'{lk(voés,u—(p)) - l[’k(és,u—(p))}
X Zif (Esu-(p))} dup(dv)

+J f{f(v ou-(P) = f(Eeu ()} N y(dudv)

s

+f j {f(volsu-(P)) — f(&su-(P))} N,y(dudv),
s Ue

where {¥* Z,; k=1,..., m} is a system satisfying (2.1).

Since the embedding map : is a diffeomorphism from M onto (M), the
equation (3.2) on M is transfered to an equivalent equation on 1(M). We next
extend this equation defined on the submanifold (M) of R" (by Whitney’s theorem,
we can take N = 2d + 1) to that defined on the whole space RY. At the time, we
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should note that we have to extend the Brownian motion on the space of vector
fields on M and the Poisson point process on C(M, M) to the ones defined on R¥
and C(R¥, RY), respectively, in common and by the method which does not destroy
the measurability. We can carry out this program with the help of the tubular
neighborhood theorem. See e.g. Franks [2] or Hirsh [4]. Therefore we can get
the equation (3.3) on R", which will be denoted later on, and it has the unique
solution. Further, it will be shown that the solution can never leave (M) if the
initial position is on (M). See Lemma 3.4. It is a key part of the proof of the
above proposition. The pullback of this restricted solution on (M) to M by
gives the solution of (3.2) or equivalently (3.1), and we can see that the solutions
define a C(M, M)-Lévy flow by the argument similar to [3] and by noting the
submanifold structure.

We will use the following techniques of extension in the proof of Proposition
3.2.

Let us fix an embedding 1: M — R¥. Since (M) is a closed submanifold of
RY, by the tubular neighborhood theorem, there exist an open submanifold V,(M)
which contains (M) and a smooth map n,: V,(M) — (M) such that my|,,, = the
identity map on i(M). Moreover, since (M) is compact, there exists smaller

tubular neighborhood V(M) such that V(M) < V,(M). Let h' be a smooth

function on R¥ such that Supp[h'] = V5(M) and A =1 on V(M), and define a
smooth map #:R¥>RM by =n(x)=hXn,(x) if xeVyM), =0 if
xe(Supp[h']). Then ne CZRY RY) and n(x) = my(x) if xeV(M). Let h be a
smooth function such that 0<h<1, Supp[h]lc V(M), and h=1 near
1(M). Now for feC"(M) and veC'(M, M) (0 <r < ), put f(x) = h(x)fo1~on(x)
and  o(x) = h(x)pei"'on(x), xeRM Next, for XeX'(M), put X4x)
= h(x)X(x*°1)(t"'on(x)), where (x',...,x") is the standard coordinate of
R". Then, X = ki )?k;?ef’(R”) and we can see that X f(i(p)) = X f(p) for pe M
and fe CY(M).

Next, we extend the covariance { , > and L= Ly + B. Recall the results in
§2 about the decomposition of L. Put

ii(x, y) = h(x)h(y) Cxiot, %P0 1y (1 on(x), 171 o m(y))
and
2

N
L=(1/2) ¥ Al(x)

§ 0
o — 2
2, AT g T B Lol 7 en() 5

N o_ 0
i(x) — f , R,
+,~;B(x)6x‘ or x, ye

where we set A(x) = AY(x, x).

Let M( ,t) be an X(M)-valued Brownian motion with mean O and the
covariance < , > and M( ,t) be the extension of it to RY, ie. MXx,1)
— he)M(x*< )G~ on(x), 1) (k=1,2,..., N).

Then it holds that (Mi(x, t), Mi(y, t)> =tA¥x, y). Moreover, it can be
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verified that Lf(:(p)) = Lf(p) for fe C*(M) and pe M.

Here, we answer the question of the existence of the system (Y5 Z,; k
=1,...,m} satisfying the relation (2.1). Let : and f for feC*(M) be as
above. Take m=N and define Y*(p) = x*(p), Z.f(p)= ;—xfk(t(p)) for
peM. Then, {Z,;k=1,2,..., N} is a system of smooth vector fields on M and
{P*, Z,; k=1,..., N} satisfies (2.1).

We now proceed into the proof of Proposition 3.2 and 3.3 with the above
preparation. Associated with the stochastic integral equation (3.2) on M, we
consider the following one (3.3) on RM:

(3 ml)=x+ J M1, (%), du)

+ J { Lo(x°1) (N5~ (x) + B(1,,-(x))} du

s

+ J' {ﬁ(ns,u—(x)) - é(ns,u—(x)) - Wv) (rls,u—(x))}lu(dv) du
sJu

ft+

+ J {B(1s - (%)) = &1~ (x))} N y(dudv)
U

JS

+ f {5(”s,u - (x)) - e_(ns,u - (x))} Nq(dudv)7
s Ue

where we set ¥(v)(p) = kil {P*(v(p)) — PX)} Z(p) e T, M.

Lemma 3.1. The condition (A, 11)(U) for r > 2 yields the followings.

(i) J |5(x) — é(x)|” u(dv) < K for all xeR™ and r'€[2, r].
U

(i) J |5(x) — &(x) — {8(y) — EW}I" nldv) < K|x — yI"
U

for all x, yeR" and r'e[2,r].

Proof. We only show the proof of (ii) because (i) can be easily shown in the
similar way. If x, yeSupp[h] = V(M), then it holds:

j [5(x) — &(x) — {#(y) — e(y)} " u(dv)
U
<2 { f [5(x) — &(x) — {B(y) — e)}I" [h(x)" u(dv)
U

+ f |h(x) — h(Y)I"15(y) — é(y)l"u(dv)}
U
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(where we set §(x) =1°vo1” ! on(x))
< K{lnx) — 2" + |x — yI"} < K|x — y|".

If xeSupp[h] and ye(Supp[Ah]), then there exists a point ze(Supp [h])N
V(M) such that ze xy (= the straight line from x to y in RY). Noting that i(y) =
é(y) = 9(z) = e(z) and the result for the first case, we see that

J |5(x) — é(x) — {(y) — &(y)}I" u(dv)

= f l5(x) — é(x) — {#(z) — e(z)}|" u(dv) < K|x — z|” < K[x — yI.
U
If x, ye(Supp[h]), the left hand side of (ii) is 0. O
Lemma 3.2. We have the following representation: for xeR"

N
3(x) — &(x) — P(v) (x) = Zzl i (%, V)(E(x) = ECN@(y) — &)

and @;i(x, v) satisfies sup sup [D;(x,v)| < oo for i, j=1,...,N.
xeV (M) veC(M,M)

Proof. Noting that we can put off the first order term of (#(x) — é(x)) in
Taylor’s expansion by the condition (2.1), it is easy to see that we can take

v 9%n
D;i(x, v) = h(x)J {6 E (é(x) + t(D(x) — é(x)))

& az Wk Z o -1, 1 d
= X A (000 + 1000 — &) X Zue )7 o n() (1= )

Then it is easy to see that it is uniformly bounded with respect to (x, v). O

Lemma 3.3. Under the condition (A, 11,)(U), the function

f (50 — 2(x) — P0) ()} ldv)
U

is globally Lipschitz continuous on R".

Proof. For x, ye V(M), we have

f {B(x) — &(x) — P(v)(x)} uldv) — J {B(y) — &(y) — P() ()} u(dv)
U U

<2 il { j |®35(x, V) — Dyy(y, V)II(F(x) — &(x)) (F(x) — &(x))|* p(dv)
b= U

A
+
— 5

|®(y, DI(F(x) — &) ([F(x) — &(x))
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— (@) — W F(y) - 5j(y))lu(dv)} :
Here, note the inequality:

|¢ij(x’ v) — (pij(y’ v)|

<K {J [h(x)7;(8(x) + t((x) — &(x)) — h(y)m(@(y) + t(B(y) — &(y))|dt
0

1
+ j | P35(8(x) + tB(x) — &(x))) — Pi;(E(y) + t(B(x) — &(y)))lde
0
+1Z(x) - Z(y)l}

< K{li(x) — &(x) — {8(y) — éW)} + |x — yl},

where ;;(x) and 'f’,.j(x) denote the second order partial derivatives of © and ¥ with
respect to x' and x’/ at x, respectively. Hence, under (A, II,)(U), it holds that

J |Dijx, V) — Pyi(y, V)I1(F'(x) — &(x)) (F'(x) — &(x))| u(dv) < K|x — y|.
2

On the other hand, by the uniform boundedness of @,;, we easily obtain

J [Py, VIF(x) — &)@ (x) — &(x))
U

= (#(y) — EWN@ () — E(y))| pu(dv)
<K|x—y|, fori j=1,..., N.

Thus, we get the conclusion for x, ye V(M). Secondly, we consider the case
where xe V(M) and ye V(M). However, it can be reduced to the first case using
the same idea as in the proof of Lemma 3.1. If x, ye V(M) then the statement of
this lemma is trivially valid. We have thus completed the proof of Lemma
33. O

From Lemma 3.1, 3.2, and 3.3, we obtain the following result by standard
argument.

Under (A, 1), (A, I1,)(U), and (A, III), the solution 7, ,(x) of (3.3) exists uniquely
for each initial data (s, x)e[0, o0) x R¥.

Next lemma plays an important role in the proof of Theorem 3.1. We will
show it by an approximation.

Lemma 34. If xeiuM), then the solution n (x) of (3.3) belongs to (M) for all
t>s as., for each s > 0.

Proof. For each neN, take V"< U such that V"1U as nfoo and u(V")
< 0. For simplicity, we set D(x) = Lo(xe1) (x) + B(x). We now consider the
following stochastic integral equation without jumps on RY,
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t

'//s.x(x) =x+ J

s

M5 (x), du) + j D(,(x)) du

t
- J f {P(0) (Ysu(x))} pldv) du -
s Jyn
It can be easily seen that it has a unique solution. Since it is an extension of
stochastic integral equation based on the Brownian motion with the L.C.-system
« , >B —J Y(v)u(dv)), we see that Y, (x)ei(M) if xei(M) if xei(M). See
V'l

Elworthy [1] Chapter VII for the detailed discussion.
Secondly, we consider the next equation with jumps,

sl =x+ J M2, - (x), du) + j DL}~ (%) du
+ J J . {00, - (x)) — &2, - (x) — P(0) (- (x))} u(dv) du
- f + J {52 - (x)) — (L2, (x))} N, (dudv)
=x+ J M (L (x), du)

+ j {D(Ci‘,u-(X)) —f P)( L'...-(X))/l(dv)} du
yn

s

+J J (B¢, — (x)) — (L%, - (X))} N (dudv).
S Vn

Since u(V") < oo, if xeiM) then the solution (§,(x) is given by
Vs, 0q(s,)° 2 q(sy) oY, (%), where s <s; < -+ <s,<t<s,4; and s;eD,NV" (i
=1,2,...). (D, denotes the domain of the point process {q(t)}.) Hence, the
solution {?,(x) can not leave (M) if the initial point belongs to 1(M).

Next, let {,,(x) be the unique solution of the following equation:

LX) = x + J M(Csu-)(x). du) + j D(L;.,-(x)) du

s s

+j j (8- (%)) — 8- (%) = P0) (L0 (X))} p(dv)du
s Ju

+ J\ J‘ {5(Cs,u—(x)) - é(C;_u_(X))}Nq(dudu).
U

s

Then it holds that
lim E[ sup |{",(x) — {su(x)|2] = O for each xeR".

ntoo ssust
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Since (M) is a closed set in R¥ and the approximating processes
{¢z.(x); neN} have its values in (M) if xe1(M), so does the limiting process {; (x).

Finally, it is easily seen that the solution of (3.3) can not leave (M) if the
initial point belongs to :(M). Thus we have completed the proof of Lemma
34. O

Associated with the solution #,,(x) of (3.3), put & ,(p) = 17" (s, luar) ° 1(p) for
peM. Then we have the following lemma.

Lemma 3.5. & (p) is the unique solution of (3.1) with the initial data
(s, p)e[0, ) x M.

Proof. By Ito’s formula for R¥-valued semimartingales, it holds that for all
feC*(M)

B4 fn.x) =f1x) + ZI (nsu ()M (1, - (x), du)

N

N
=Z JI {U (nsu—(x _e(nsu (x))

— P(0) (- (x))} (nsu—(X))ﬂ(dv)

N t p2f .
20 3 [ 35D e D F 1

+ J J {f_ (M5 (X)) + 01, - (%)) — (5, - (x))) — f(ﬂs.u—(x))
sJu
N f_
o '=Zl (ﬁl(ns'“ )) —e (’73 u— (X))) "s u— (x )}/,t(dl)) du
+ J J {f g~ (%) + 00— (X)) — &1~ (X)) — f(15,0— (X))} N (dudv)
s Ju

t+
+ f J {f (10— (X) + D54 — (X)) — €50~ (%)) = f (1.0 (x))} N (dudy).
s Ue
Since n, (x)e1(M) for x = i(p), we have the following relations as seen before:

M f(1(x), 1) = Mf(o &, (p), 1) = MS (Eoulp) 1),
e

I : of
(112) 3 A0, 5725 1) + 3 D) 22 1,5

ihj=1 la"

= Lf(1,(x)) = LfG° &.(p) = Lf (£.(p)),
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F015,00 + 5(15,(x)) — e(n,,(x))) = £, (P)).

Using the above relations, it is easy to see that the equation (3.4) is nothing
but (3.2) or equivalently (3.1).

On the other hand, the uniqueness follows from the one for (3.3). Thus, we
have completed the proof of Lemma 3.5 and Proposition 3.2. O

We next give a proof of Proposition 3.3. But it can be shown as a simple
application of the result of [3] Theorem 2.2. In fact, Lemma 3.1 says that we can
apply the theorem to the system of solutions of (3.3), and we can see that the
system defines a C(R", R")-Lévy flow. Moreover, since |, is an (M)-valued
process and (M) is a closed submanifold of R", we can say that {n,|u;: s <t}
defines a C(i(M), «(M))-Lévy flow. Therefore, {,,; s < t} defines a C(M, M)-Lévy
flow.

Finally, we give a proof of Theorem 3.1. What we have to do is to show the
property of C(M, M)-Lévy flow in strong sense. However, it is shown by a result
of Kunita [6] Theorem 4.2. Further, as regard to (£, I) and (¢, II), they can be
shown by the discussion similar to the one below Theorem 3.1 of [3]. (¢, III,) can
be also obtained by the same calculation as in Lemma 2.1 of [3]. Thus, we have
completed the proof of Theorem 3.1. O

Remark 3.2. Through the equation (3.1) under stronger regularity condition
for the characteristic system, we can construct Lévy flow on the space of smooth
mappings from M to itself by the similar discussion given in section 2.4 of [3] and
by the methods in this paper.

Remark 3.3. We have restricted our attension to pathwise discussion.
However, from the point of view of martingale problem for jump-diffusion process
(= strong Markov process with jumps) on M, we can say that the characteristic
system satisfying (A, I), (A, II,), and (A, III) determines the distribution of

{&o.(p); t = 0}.

§4. Representation of C(M, M)-Lévy flows

In the previous section, we have constructed the C(M, M)-Lévy flow through
the stochastic integral equation (3.1). In this section, we consider the converse
problem. That is, for a given C(M, M)-Lévy flow, our problem is to represent it
as the system of solutions of a stochastic integral equation of the same type as
(3.1). In other words, our problem is to find the stochastic infinitesimal generator
of the Lévy flow. Most of ideas for finding it are contained in section 3 of [3], but
we need more consideration about the geometrical properties of the infinitesimal
generator.

Let {{,;s<t} be a C(M, M)-Lévy flow in strong sense defined on a
probability space (2, #, P). See §2 for the definition. We now give the
statement of the main theorem in this section.
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Theorem 4.1. Assume that a given C(M, M)-Lévy flow {&,,; s <t} satisfies
(&, 1), (& 1N), and (& 111,). Then, there exist an X°(M)-valued Brownian motion
M( i) with mean O and the covariance { , ), a linear operator Z: C*(M)
— C°M), and a stationary Poisson point process {q()} on C(M, M) with the
intensity measure u, such that the Lévy flow is represented as the solutions of
(3.1). Moreover, the triple ({ , >, u, &) becomes a characteristic system and p
satisfies (A, 11,).

We denote the limits in (& I) and (& 1) by «f, g>»(p,q) and Zf(p),
respectively. (cf. Theorem 3.1) Since the proof is long, we will give it by deviding
several parts.

For the given Lévy flow, define a stationary Poisson point process {¢(t)} on
C(M, M) by

q(t) = &,_, for te{s; & , # the identity map e on M}.

We denote the counting measure and the intensity measure by N (dudv) and
u(dv), respectively.

Remark 4.1. The definition of point process {q(t)} is somewhat different from
that in [3].

First we study the properties of the intensity measure of the point process
defined above.

Lemma 4.1. Under the condition (¢, 111,), (A, I1,) holds. Further, under the
condition (&, 111,) (r > 2), (A, 11,) holds.

Proof. Put n,,(x) =1°& 217 (x) for xei(M). Then, it can be considered as
a Lévy flow on (M) and therefore 7,,(x) takes the values in RY. Hence, we can
follow the same discussion as in the proof of Lemma 3.1, 3.2, and 3.3 of [3]. At
the time, we should note that a“(x,y) and bi(x) in [3] correspond to
<xtor, xlor»> (17 Yx), 17 (y)) and L(x'°n)( '(x)) for x, yeiu(M), respectively.
Furthermore, by Theorem 1.2 of [3], we can see that this lemma holds. O

By the first part of Lemma 4.1 the following is well-defined: for all
f,9eC®(M), and p, gqe M,

Loy )= <f. 9> q) — j {f(w(P)) — f(P)}{f(v(q)) — f(q)} u(dv)

C(M,M)

The next proposition was unnecessary in the case of C(R? R?-Lévy
flow. But in this manifold case it is necessary for characterizing the infinitesimal
generator which we want to find.

Proposition 4.2. The triple ( , >, p, %) is a characteristic system.

Proof. We first note that under the conditions (&, I), (&, II), and (¢, 1I1,) we
can see that (f, g> and &£ f are continuous for each f, ge C®(M). Hence, we can
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consider ( , > and % as the operations { , >:C®(M)x C®(M)—C°M
x M) and &: C®(M)— C°(M), respectively. From the definitions, it is obvious
that ¢ , ) is bilinear and & is linear. Also, it is obvious that the condition 1)-
a) of characteristic system is satisfied. See §2 about the condition. To see b), we
consider the process

M, f(p) = f(&.P) — f(p) — j £ f(Cs.u(p)) du

By the same discussion as in Lemma 3.1 in [3], it can be easily seen that
M, f(p) is an L*-martingale with mean O for each s, p, and fe C*(M). We denote
the discontinuous martingale part of it by M¢ f(p). Then, it holds:

M f(p) = J j {0su-(p) = [Ceu(P)} N y(dudv).
s C(M,M)

Put M, f(p) = M,,f(p) — M?,f(p), which is the continuous part of
M, f(p). By the orthogonality on the space of L2-martingales, it holds:

(M5, f(p), M5,9(@)> = KM, f(p), Mi,g(a)> — <M f(p), MS,g(a)>

= | «f, 9> (&.up) &u(@)du

JSs

- J‘{f S,u p))) f(éx,u(p))} {f(v(ésu(q))) - f(és,u(q))} dul" (dl))

rt

= <f g> su(p ésu(q)

S

We should see the second part of the proof of Lemma 3.1 of [3] about the
equality:
t

(M, f(p). My,9(q)) = j < f, 9> (&.up), &s,u(q)du

Now, for f;e C*(M) (i =1, 2), by Ito’s formula, we have:
fl (és,!(p))fZ(gs,l(p))

= f1(p)f2(p) + J J1&up) dMS, f(p) + f f2(&.p)) M5, f1(p)

+ a bounded variation process + a discontinuous martingale.
On the other hand, we have
S1f2 & (p) = f1falp) + M (f,f5)(p) + a bounded variation process
+ a discontinuous martingale.

Hence, by the uniqueness of the decomposition, we have:
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M, (f1f2)(p) = J J1(Es.up) dM5 , f2(p) + j J2(&sup))dM5, f1(p)-

Moreover, it holds:

J S iS2s OOEaup), Eau@) du = MG, (fLf2)p), Ms.9(a))
= j f1& p))d M5, f,(p), MS.9(9)>
+ J f2(&(p))d M5, f1(p). MS.9(9)>

= J {fl(:s,u(p))<f2’ g>(és.u(p)’ és,u(q))

+ £2EeuPD < S1s 9D Culp). &5u(9))} du

Deviding the expectation of both sides by (t — s) and then taking limit ¢ — s,
we obtain the property b).
The positive definiteness c) follows from the relation:

J S fj>(és,u(pi)* és.u(pj))du = <M§,¢fi(Pi)a Mg,tfj(pj)>'

With regard to the property 2), we have already seen in Lemma 4.1. We next
show the property 4). By using Ito’s formula, it holds:

E[(f9)(&..p)) — (f9)(P)]

= J E[<f, 92(€eulP), E5ulP) + fEsulP) L 9(Es,uP)) + 9(E.u)) L f(E5.P))

+ J {f(0(u(P) — fEsuPH9W(Es,ulP)) — 9(&s.u(P))} u(dv)] du.

By deviding both sides by (¢ — s) and taking limit ¢ — s as before, we get the
property 4). We have thus completed the proof of Proposition 4.2. [

What we have to show for completing the proof of Theorem 4.1 is only to
construct M( , t) with mean O and the covariance { , ) satisfying (3.1). For a
partition of [s, ) 4:s=1t,<t; -, put

Y40 = 3 Mo ni SO

Let {4,:n=1,2,...} be a sequence of partitions such that 4,,, is a fine
partition of 4, and |4,| = : max|t},, —t!| >0 as n—>oo. Then, by the similar

way in Lemma 3.2 of [3], we can see that {YZ; f(p); n =1, 2,... } defines a Cauchy
sequence in L2(P) for each s <t, pe M, and fe C*(M). We denote by Y;,f(p) the
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limit. Then, we have:

Y, fp), Ys,9(q)) = (t —5)f, 9>, q)

and
Y..f(p)=Y, f(D)+ Y..f(p) fors<i<u.

See also Lemma 3.2 in [3]. Now, put Mf(p,t)=Y,,f(p). By the above
properties, it can be easily seen that M({t, p) has independent increments and has a
continuous modification with respect to (p, t). (Recall the first notice about the
continuity of {f, g> in the proof of Proposition 4.2.) Moreover, by the derivation
property of ¢ , >, we get that of M( ,t). That, is, it holds:

M(fg)(p, t) = f(p)Mg(p, t) + g(p)Mf(p, ).

Therefore, M( , t) is an X°(M)-valued Brownian motion. It also holds:

M. f(p) = j MA(E;.up). du).

Thus we get the equation (3.1) which we want to show:

JEdp) — f(p) - f ZLf(&s.up)du

=J M (&s.u(p). du) + J f{f (O&su-P) = [Eou- (PN} N (dudv).

We have thus completed the proof of Theorem 4.1. O

In this section, we have discussed from a point of the theory of stochastic
differential equations and stochastic flows. In the remainder of this section, we
will mention the relation to the classical theory of Markov processes.

Since a C(M, M)-Lévy flow {&,,} has independent increments, n-point process
{(&s.(py)s ..., &.(py)} defines a Markov process on the product manifold M" =: M
x -+ x M (n-folds), for each neN. In particular, 1-point process {&, (p); pe M}
is a Markov provess with the infinitesimal generator &. Since we know that
(< , >, u &) is the characteristic system, the representation of £ as an integro-
differential operator is not unique as we saw in §2. Thus, we see that .& itself is
intrinsic to the Markov process {&,(p); pe M} but the representation of it is not
so. On the other hand, in [3], we saw that, in the case of M =R? % was
uniquely decomposed into the differential operator part and the integral operator
part. It seems like a contradiction, but it is not so. In the case of RY, we fixed
automatically the system as

0

m=d, ¥ =x* and Zk:ﬁ'

This is the reason why % is considered to be uniquely represented.
Now, & can be rewritten as the following classical representation:
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m

Zf(p) = Lf(p) + J @ —10) = X (¥@) — Y0} 2 0}k, (da),
M\ {p} -
where  p,(dg) = ulev, ' (dg)n{ve C(M, M); v(p) # p}) and  ev,(v) =uv(p) for
peM. On the other hand, we know the representation of the infinitesimal
generators of more general Markov processes on M. See [10] Chapter XII,
section 7. The Theorem in the section (p.408) clarifies properties of the generator
in local, but not on global. Our Theorem 4.1 says that in the case of 1-point
process of C(M, M)-Lévy flow, we can see the global property of the quantities
which determine the infinitesimal generator . We should note the delicate
difference between the representations of the above and (6) of [10] in section 7.

§5. Example

In this section, we will mention the relation between the result in Marcus [8],
[9] and that in §3. It is well-known that Stratonovich’s differential equation is
suited to construcing a diffusion process on a manifold. Then, it is natural that
the following question arises: what type of equation should we consider to
construct a discontinuous process on a manifold? In [8] and [9], he answer to
this question for a simple case, extending Stratonovich’s differential equation for
continuous case. We will show that his result including the extension which will
be given below provides us an example of Theorem 3.1. In order to concentrate
our attention on construcing a jump-diffusion on a manifold, we restrict his
statement as follows. However, we believe that we do not miss the essence of his
idea.

Let z, be an 1-dimensional Lévy process represented by

t+ t+
(5.1) z, = B, +f J zN ,(dudz) + j J zN ,(dudz)
0 Jiz|st 0 Jiz|>1

where B, is a Brownian motion and we denote by N ,(dudz) the Poisson random
measure associated with the point process p possesing the intensity measure
duv(dz), where v is a o-finite measure on R'\{0} satisfying [|z|> A 1v(dz)
<. We also set N odudz) = N (dudz) — duv(dz). Though in [9] z, is restricted
to the case where z, has a finite number of jumps on each bounded interval, we
would like to emphasize that we can remove the restriction by the discussion
below. We now consider the following stochastic differential equation associated
with the Lévy process z,.

(52 &) =x+ J 9(&su-(x))dB,
+ j J 9(Eou—(x))2N (dudz) + J J 9(Cs.u-(x))zN y(dudz)
s lzls1 s lz|>1

+ z {{b(és,u—(x)’ AZ“) - és,u—(x) - g(és,u—(x))Azu}7

s<ust
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where ge C;(R?, R?) =: the space of all continuously differentiable mappings from
R? into itself posessing bounded derivatives, and ¢(x, z) is the flow generated by g:

d
59062 = g(lx. 2)

(5.3)
¢(x,0) = xeR4

In the above, °dB denotes the Stratonovich differential of B and we set 4z,
=2z,—Z,_.

In [9], he calls this equation (5.2) the canonical extension of the equation: d¢,
=g(§,_)dz,. (cf. 9) in [9]) Further, it is shown in [9] that the solution &, is
invariant under the change of coordinate system which makes g a vector field on a
manifold embedded in R%. See Theorem 6 in [9]. However, we will see that it is
an obvious consequence of our results.

In the sequel, we first give an intrinsic interpretation of (5.2). To this end, we
introduce a stochastic differential equation on a compact smooth manifold M
associated with z, of (5.1): for all feC*(M) and peM

54 fE.dp)=fp) +f Gf(&su-(p))°dB,

s

+ J\{f(¢(§s,u—(p)’ zl {lz]=1} )) - f(és,u—(p))}ﬁp (dudZ)

o

+ j{f((ﬁ(és.u—(P), 2l 15151))) = f(&su- (PN, (dudz)

+ J{f(¢(£s.u—(P)a Zl(lzlsl } )) _f(és,u—(p))

= Gf G- 0N2] (2151, } duv (d2),

where G e X(M) and ¢ is the flow generated by G with the initial condition ¢(p, 0)
=peM.
It is easy to see that (5.4) is equivalent to (5.2) in the case of M = R? if we

4 .0
identify Ge X(M) with Z g' e Since all quantities in (5.4) are coordinate free,
i=1

we can say that (5.4) gives us an intrinsic form of (5.2).
Here, we should note that (5.4) is an exmple of (3.1). In fact, in order to
deduce the expression (3.1) from (5.4), we define a measure u(dv) on C(M, M) by

(5.5) u(dv) = vo F~(dv),

where we set F(z) = ¢(-, z) for zeR'\{0}. We also define a point process g on
C(M, M) by q(t) = ¢(-, p(t)), D, = {t; q(t) # e}. Then, we can easily see that (5.4)
is equivalent to the equation:
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(5.6) fp) = fp) + j Mf(Csu-(p). du) + J ZLf(&s.u-(p) du

+ j J{f(vo Esu-(p) = S (&= ()} N (dudb),

where Mf(p, t) = Gf(p)B, and

57D Zfp)=1/29G(G)p) + J{f((ﬁ(p, 2)) = f(p) — Gf (P)z] (jzj<1) } v(d2).

This is nothing but (3.1) corresponding to the characteristic system
Sy 9>, q) = Gf(p)Gyglq), & of (5.7), and p of (5.5). Also, we can see that the
characterstic system satisfies (A, 1), (A, IL)(U), and (A, III)(U) for U
= {¢(-, 2); |z| < 1} and for any r > 2. Therefore, according to Proposition 3.3,
the solution of (5.4) defines a jump-diffusion process on M and further a C(M, M)-
Lévy flow.

By the above consideration, we can claim that our result gives a new
interpretation of the equation (9) in [9] and a generalization of [9] in the direction
of constructing jump-diffusion processes on a manifold.

DEPARTMENT OF APPLIED SCIENCE
FACULTY OF ENGINEERING
KyYUSHU UNIVERSITY

References

[1] K.D. Elworthy, Stochastic Differential Equations on Manifolds, LMS Lecture Note Series 70,
Cambridge Univ. Press, 1982.

[2] J. Franks, Manifolds of C'-mappings and Application to Differentiable Dynamical
Systems, Studies in Analysis, Advances in Math. Supplementary Series vol. 4, 1979.

[3] T.Fujiwara and H. Kunita, Stochastic differential equations of jump type and Lévy processes in
diffeomorphisms group, J. Math. Kyoto Univ., (1985), 71-106.

[4] M. Hirsh, Differential Topology, GTM 33, Springer, 1976.

[5] N.Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-
Holland/Kodansha, 1981.

[6] H.Kunita, Tightness of probability measures in D([0, T]; C) and D([0, T]; D), J. Math. Soc.
Japan, (1986), 309-334.

[7] Y. Le Jan and S. Watanabe, Stochastic flows of diffeomorphisms, Stochastic Analysis, Proc.
Taniguchi conference Kyoto 1982, 307-332, North-Holland/Kinokuniya, 1984.

[8] S. I. Marcus, Modeling and analysis of stochastic differential equations driven by point
processes, IEEE Tran. Inform. Theory IT-24, 1978, 164-172.

[9] S. 1. Marcus, Modeling and approximation of stochastic differential equations driven by
semimartingales, Stochastics, 4 (1981), 223-245.

[10] K. Yosida, Functional Analysis, sixth edition, Springer/Kinokuniya, 1980.



