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1. Introduction

If a finite group G operates freely on a sphere S" and the operation is
piecewise linear, then its quotient space S”/G is a PL-manifold and K-ring K(5"/G)
is defined. The purpose of this paper is to give a complete description of K(5"/G)
by terms of the representation ring of G, R(G). This is obtained by showing that
Atiyah’s conjecture in [1] is true for the Artin-Tate groups (with periodic
cohomology). We may consider the Atiyah’s conjecture in two steps.

(A) EOL p-group G, universal cycles in the Atiyah’s spectral sequence
H*(G) = R(G) are generated by Chern classes of representations of G.

(B) If p-group G, satisfies (A), then for every group G which contains G, as a
p-Sylow subgroup,/@rimary component in universal cycles in the spectral
sequence H*(G) =& R(G) is generated by Chern classes of representations of G. 1
believe that (A) is still an unsolved problem. We prove that (B) is true for G,
which is isomorphic to a cyclic group or a generalized quaternion group but (B) is
not true in general.

2. Filtrations in K-theory

For any finite CW-complex X, there are two impotant filtrations in
K(X). One is called the ordinary filtration; the subgroup K, (X) is defined as the
kernel of the restriction homomorphism K(X)— K(X,_,) where X,_, is the
(g — 1)-skeleton of X. Another is called the y-filtration; K},(X) is defined as the
subgroup generated by the monomials,

YU (Ty) P (Ty) e Y™ (1), 1€ K(X)

and Y n; > q where y™ is the y-operation on K(X). Itis well known that the both
filtrations make K(X) filtered rings and satisfy the relation; K3 (X) < K,,(X).
We want to get a sufficient condition being K3,(X) = K,,(X). For this, we shall
proceed to describe the geometric meaning of y‘-operation. Let By, be the
classifying space of n-dimensional complex vector bundles and I be the universal
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bundle over By,. Let T" be the maximal torus in U(n). Let n;: By = Bgi X -
X Bgi = CP® x --- x CP® —» CP* be the projection on i-th factor and ¢&; = m}(¢)
where ¢ is the canonical line bundle over CP®. Let i: By — By, be the map
induced by the natural inclusion map T"—-U(n). Then (™)
={DED - @D L, and for the i-th Chern class ¢, (™) of I, i*c,(I'™) is the i-th
elementary symmetric function of ¢,(¢;). Put g, = ¢ — 1, then y°(6) = 1, y'(0)
=o0; and /() =0 for j> 1. Hence the sum formula of y-operation implies
VEPED - DE —n)=y(o, +0,+ - +0,) = i-th elementary symmetric
function of ¢;, j=1,2,--,n Since H?*'(Bp)=0, the Atiyah-Hirzebruch
spectral sequence H*(Bp.) =& K(By») is trivial, (Note that K(By.) is considerd as a
K-ring of a sufficient large skeleton of By.), and so we have an
isomorphism; ¢: H?(Br.) _).KZI(BT")/KZzWZ(BT")- Clearly  ¢(cy(¢)) =0; and
i*: H¥*(By,) = H*(By») is injective, we obtain o(c(I'™) = [yia™
— n)]e€ K,i(Byw)/Kai4+2(Bywy) by the naturality of the spectral sequence, Chern
classes and y'-operations. It follows that for a vector bundle 1 over X, ¢,() is an
universal cycle in the Atiyah-Hirzebruch spactral sequence and o¢(c;(n) = y:(n
—dim#n). This shows the following proposition.

Proposition 1. If H*"(X) = ) H*(X) is generated by Chern classes of vector
bundle over X, then K3, (X) = K,,(X).

Let G be a finite group. Let p: G — U(n) be a representation of G and M, be
its representation module. Let Bg be a classifying space of G and E; — B; be the
universal G-bundle. Then the associated vector bundle E; x ¢ M, — Bg is written
by a(p). Recall that the i-th Chern class of p, c;(p)e H*(G) is defined to be the i-
th Chern class of a(p) by identifying H*(Bg) = H*(G) where H*(G) is the
cohomology ring of G with the coefficient group Z on which G operates
trivially. In view of the Whitney’s sum formula, Chern class may be extended
naturally for elements of the representation ring R(G).

Let f: G x §3"~' - §2"~1 be a free PL-action and S?"~!/G, f be the quotient
space defined by f. Let a,: R(G) - K(S*"~!/G, f) be a homomorphism obtained
by assigning to each representation module M, its associated vector bundle $*"~!
xgM—S"1G, f.

To state the following lemma, we recall the y-filtration in R(G) defined as in
the case of K(X). Let I(G) be the kernel of the augmentation homomorphism
R(G)—~ Z. Then R}Y,(G) is the ideal generated by monomials; y"'(g,) - y"(c})
with ¢,€I1(G) and ), = n.

Lemma 2. Let notations be as above and assumme that H**(G) is generated
by Chern classes of representations of G. Then a ring homomorphism o induces an
isomorphism; R(G)/R3,(G) = K(8*"1/G, f).

Proof. G is necessary a Artin-Tate group and so H*(G) = H**"(G). $?""!/G,
f may be seen as a (2n — 1)-skeleton of B and so H*(S*"~!/G, f) = H*(G) for i
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<n-—1. If c(p;) generate H*(G), then c,(a(p;)) generate Hee(S2"1/G, f). Tt
follows that using Atiyah-Hirzebruch spectral sequence, a(y'(p; — dim. p;))
generate K(S*"~!/G, f). Thus we have showed that o, is surjective. Since o,
induces an isomorphism R},(G)/R},+2(G) = K, (S*"™'/G, f)/K2,+2(8*"~ /G, f)
(= H*%(G)) for g <n— 1, we have Ker. a; = R},(G).

In the view of the lemma 2, we review the cohomology of finite
groups. H"(G) is annihilated by the order of G, |G|, for all n > 0. For each prime
p, we denote by H™(G, p) the p-primary component of H"(G). Then H"(G) admits

a primary decomposition; H(G) =Y H"(G, p) where p ranges over the prime

14
deviding |G|. Let G, be a p-Sylow subgroup of G and resgp: H"(G) = H"(G,) the
homomorphism induced by the restriction. It is well-known that res¢ maps
H"(G, p) isomorphically onto the set of G-invariant elements in H"(G,) and the
image is a direct summand of H"(G,). Recall that an element xe H"(G,) is called
G-invariant if for each ge G it satisfies the relation;

-1
resgﬁnngg‘ 1(X) = res%(,;,?lgngg‘l (f;(X)),

where f,: gG,g~' - G, is defined by f,(h) = g~ 'hg for hegG,g™".

In the following two sections, we shall show that H"(G, p) is generated by
Chern classes of representations of G if G, is isomorphic to either a cyclic group or
a generalized quaternion group.

3. Case for cyclic p-Sylow subgroups

Let C, the cyclic group of order g and a be a generator, ie. {a) = C,. Let
pqy: C,— U(1) be the representation defined by p,(a) = exp (2ni/q). Then the
irreducible unitary representation of C, is one of the i-time tensor product of p,,
ph, i=0,1,...,q9— 1 where pQ is the trivial representation written ordinarily by
1. If r divides g, C, has unique subgroup of order r. i.e. C, = (a?"). We denote
by resge: R(C,) —» R(C,) the restriction homomorphism. Clearly we have resgg(pq)
=p,. Put x=c¢(p)eH*C,) = Z/q, then x generates multiplicatively I-1*(Cq)
= Z/q(x). Note that for a finite group G, c,: Hom (G, U(1)) > H*G) is an
isomorphism being Hom (G, U(1)) the group defined by the tensor product. By
the naturality of the Chern class, cl(resgg(pq)) =c,(p,) = resgg(cl(pq)), and therefore
res¢e: H*(C,) » H*(C,) is the natural projection.

Lemma 3. For every group G which contains C,. as a normal p-Sylow
subgroup, H*(G, p) is generated by the Chern class of the representation of G.

Proof. H*(G, p) is isomrophic to the subring H*(C,.)» in H*(C,)
generated by G-invariant elements. Let C be the centralizer of C,. in G, then
obviously H*(C,.)%» = H*(C,.)%“. Since the automorphism group of C,. is
isomorphic to the cyclic group of order (p — 1)p" for odd prime and has an order
of 2-power for p = 2, G/C is a cyclic group of the order s dividing (p — 1). Let g
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be a generator of G/C and g~ 'ag = @’. Then we have (r, p) = 1, r' # 1 mod (p) for

i<s and r*=1 mod(p). Put x=c(p,), then f¥(x) = f¥*(c,(p,m) = ci(fi(p,m)
=c,(pp) =r-cy(pp) =r-x. It follows that x™ is stable if and only if r™ =
mod (p) and so m = k-s for some k. At all, H*(C,.)% is the subring generated by
x°.  We see from the theorem of Burnside that there exists a normal subgroup H
of C such that C is isomorphc to C,. x H. Let u be the representation of C
defined by u(a, h) = exp (2ni/,.) and consider the induced representation x of y i.e.
x = indg(u). Then resg (k) = p,n D py @ -+ @ p ' and its Chern class is given
by

rs—1

c(resg,, () = c(pp) c(phn) -+ c(pip )
=14+ x)(1+rx)---- (1+r"'x)
=1 4767 W2x = | 4 x5,
Thus, cs(resgp"(;c)) generates H*(C,,)%¢ and therefore c (k) generates H*(G, p).

We proceed to the general case. Let C,. be a p-Sylow subgroup of G and N,
C denote the normalizer and centralizer of C ., respectively. By the lemma 3, we
have a representation k¥ of N which satisfies c(resﬁp"(rc)) =1+x% s=[N;C].
Consider the induced representation of x, ind§(k). Then Mackey’s decomposition
theorem implies;

res¢,, ind§(x) = G—% indEzgng-1- €SNI ang -1 (f5(K)).
ge
where E is a set of representatives for the double cosets C,n-g-N. Let E; be the
subset of E which satisfies C,.ngNg™' = C

pi*

L_emma 4. res%’;"j;;Ng-x (f5(x)) doesn’t de{)end to geE; for a fixed i. That is,
resf:’!ggNg‘l(f:](K)) = resgpl'(x) = Ppi @ (‘B p’;' .

Proof. Let D be the centralizer of C,.NngC,.g~"' in G. Since C,, gCpng "
c D and C,. is a p-Sylow subgroup of G, these are also p-Sylow subgroups of
D. Therefore there is a heD such that h(gC,.g ' )h"'=C, and so
hgeN. Now, for yeC,ngNg~', we have resfs . _.(f}(x)(y) =x(g™ 'yg)
= k(g™ "h™'ygh) = k((hg) ™ y(hg)) = K(y) = resg ,(K) (¥).

Theorem 1. For every G which contains C,. as a p-Sylow subgroup, H*(G, p)
is generated by Chern classes of representations of G.

Proof. Since res¢  (H*(G)) < res¢, (H*(N)), in order to prove our theorem, it
is enough to show that resgpn(H *(N)) is generated by Chern classes of
representations of N which are the restriction of representations of G. We put ¢
= ind§(x), ¢’ =ind§(s), and we shall show that res¢ (co — o)) generates
resgp"(H *(N)). For this, we must to see that resgp"(cs(a — ¢')) is a generator of
H?*(C,.). Cleraly for above, it is sufficient to see that resf (c(oc —0') is a
generator of H?Y(C,. We make a computation by using the Mackey’s
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decomposition theorem.

resé (o — ') = res¢, ind§(x — s)

. -1
= ®E lndgﬂngNg“ res%):!r’lgNg" 1 (f;(K - S))
ge

where E is a set of representatives for the double cosets C,gN. Putting E,
={geE|C,ngNg ' = {e}}, E; = {g— E|C,ngNg~! = C,}, we have resé (6 — o’)

= @ indg rest* "' (x — 5) = @ res¢, (x — s), where the last equation follows from
geE, geE,
the lemma 4. Let «; be the number of elements in E; for i =0, 1. Since the

number of left cosets of C, in C,gN is [N: Nng~'C,g], we have |G| = [N|-p-a,
+[N:C,]-p-a, and so [G: N] =p-ay+ ;. It follows o, is prime to p. We
are now ready to compute the Chern class.

c(resg (0 — 0')) = c(a,(k — 5)) = c(k — )
=clpp+pp+ oy — I
=(1 4+ x% =1+ a,-x* + higher terms

where x = ¢ (p,). It follows that c(c — o) generates H*(G, p).

4. Case for generalized quaternion groups.
The generalized quaternion group of order 2™, m = 3, has a presentation;
Qym=<a,b;a* " =b% bad ' =a" ).

Q,~ has four one-dimensional irreducible representations, &, =1, &;, &,, &,

defined by &i(a)=1, £i(b)= —1:&(@) = —1, §(b)=1;85(a) = —1, &(b) =
— 1. Other irreducible representations have the dimension 2 and given by

_[exp@nrij2m1) 0 _|0 =
ﬁr(a) - |: 0 exp( — 21rri/2"'_1):|’ Cr(b) B I:l 0 ]

r=1,2,...,2"2 — 1. Put ¢;(&;)=x, ¢,({;) =y, ¢,((,)=2 Then ¢({)=1+z2
because ¢,;({;) = c¢;(det.{,) = ¢,(&,) =0. For simplicity we use the notation Q
instead of Q,.. The cohomology of Q is as follows; H*(Q) = Z/2 + Z/2, H*(Q)
=Z/2", H**'(Q)=0, and a generator of H*(Q) gives the periodicity, i.e.
H™**(Q). Since res?@ (&) = p3m-1s res?b)(fl) =pi res?@(éz) = pini, res?,,>({2)
=p% HXQ)=Z/2+ Z/2 is generated by x, y. res%(z) = resty,(c,((y))
= ¢,(res%,((4)) = c1(p2 + p2) = ¢1(p,)* is a generator of H*(C,) and hence z is a
generator of H*(Q). Making a similar cmputation, we obtain the relations x?
=y2=0, xy=2""1z

Theorem 2. If a 2-Sylow subgroup of G is isomorphic to the generalized
quaternion group, then H*(G, 2) is generated by Chern classes of representations of
G.
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Proof. H?*(G) is always generate by Chern classes of 1-dimensional
representations of G.  We consider H*(G) and prove that H*(G, 2) = Z/,m, and it
is generated by Chern classes. Now H*(G, 2) has the periodicity with the cup
product by the generator of H*(G, 2), and our theorem will be proved. In order
to prove above assertion, it is sufficient to costruct a representation 5 of G such
that resgc,(n) is a generator of H*(Q). Furthermore, for this, it is enough to show
that res?,,zm-x>c2(r1) is a non-zero element in H*(C,) because H*(G, 2) is a direct
summand of H*(Q). Let N be the normalizer of {a) in G. Then N contains Q
and there is a normal subgroup T of N such that Q = N/T, [2]. We define a
representation n’ of N by the composition {,°n: N > N/T = Q — U(2) where 7 is
the natural projection. We put = ind§(y' — 2). By the Mackey’s decomposition
theorem, we have

res¢, (1) = res¢, (ind§ (n' — 2)

= ('BE indginyNg“ resg’;’?,;,f,g_, (fi,(n' —2))
ge

= @ rest) " (fy(n' = 2))
geE,
where E is a set of representatives for the double cosets C,gN and E,
={geE|C,ngNg~"' = C,}. As in the proof of the theorem 1, the number a; of
elements in E, is prime to 2. Since an automorphism or C, is trivial, we have

c(resg, () = c(y, (resg,({; — 2)) = c(py + po — 2
=1+ o;c,(p,)? + higher terms.

From this c,(resg (n)) is a generator of H*(C,) and the theorem is proved.

5. Main theorem and examples

It is well-known that if a group G operates freely on a sphere, each p-Sylow
subgroup of G is either cyclic or is a generalized quoternion group. Then from
lemma 2, theorem 1 and theorem 2, we have

Theorem 3. Let f: G x S~ ' —» 82"~ ! be a free PL-action of a finite group G
ona S"'. Then a,: R(G)— K(S*"~'/G, f) induces an isomorphism; R(G)/R%,(G)
=~ K($*"7'/G, f).

If a sphere has an even dimension, then because of well-known fixed point
theorem, every element geG, g #e, must reverse the orientation of the
sphere. Therefore non-trivial such group G is only C,. For this case, the
methods proving theorem 3 is applicable, and we have K(S*"/C,) = R(C,)/R} 1)
(Cy) = R(C/I(Co)"* ! = K(RP?").

Proposition 5. For an Artin-Tate group G, we have an isomorphism; H*(G) =
R%(G)/R%i+1)(G).
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Proof. This is also a corollary of proposition 1, theorem 1 and 2.

As an application of the theorem 3, we compute some K-groups of orbit space
of sphere. Let Z,, be the metacyclic group defined by

Z,,=<a, bla®”=b"=e, bab™"' = a*)

where p, q are odd primes and (s — 1, p) = 1 and s is a primitive g-th root of 1
mod p. Z,, cannot operate linealy on a sphere without fixed point. But T.
Petrie proved in [4] that Z,, can operate on S??~! freely and differentiably. Let
f:Z,, x §*71 - 8271 be its operation. Then considering §?"~! as n-times join
of $%¢~!, an operation f,: Z,, x §2"7! - §2"~! is defined by

fn(g9 [y, @ 152,53 @ """ @ tnxn) = tlf(g’ xl) @ th(g’ xz) @ """ @ tnf(g’ X
where Y't;=1, geZ,,, x;,eS**" .

This operatin f, is free and piecewise linear. We want to determine the group
extension of K(S2"~1/Z, . f,). Clearly it is the direct sum of p and g-primary
component. The g-primary component is isomorphic to K(S2" ~1/C,) from the
fact that reséra: H*(Z,,) —» H*(C,) is an isomorphism for g-primary component
and its group extension was determined in [3]. Lets consider the p-primary
component. Put

T = resgze indéra(p,) — q.

Proposition 6. p-primary component of K(S*"1™1/Z, ) is generated by y(z)’, i
=1,2,...,t=(p— 1)/q and isomorphic to

(Z/p* 'y +(Z/p) "
where n—1=st+r, 0<r<t.

Proof. H*(Z,,, p) is generated by c,(t + g), and so p-primary component of
RY(Z, )Rl +1\(Z,,) = Z/p is genergted by y%t) and hence i), i=1,2,...
generate p-primary component of K(SZ"""I/ ) and ()" =0. Now in the

Atiyah-Hirzebruch spactral sequence, Cp-1 Z pL—p)=(—1)"2%(p—2)!
p=1
[;o Py — P1€R,,-1)(C,)/R,,(C,) and c,,_l(’z0 pL—p)= —cy(p,)’"". Tt follows

p-1
Py = —(p — 2)Y( Z pp —p) mod yit)'*'. Multiplying y%(z) on this equation,

we have i) *! = (p —2)! p y%z) mod yi(z)*2. It follows from the induction
augument that y%(z), i =1, 2,...,t generate additively p-primary component of
R(sma-1 /Z,,) which has the order p"~'. 1t is clear that the order of y%(t)' < the
order of 6% = (p, — 1)*.  The order of ¢? is from [3] p**! for i <r and p* for i
>r. Now it is easy to see that the order of y%(t)' must be just one of ¢% and the
extension is determined.
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6. A counterexample of odd primary component for Atiyah’s conjecture

The Atiysh’s filtration conjecture in [1] is equivarent to the fact that in the
Atiyah’s spectral sequence H*(G)=> R(G), universal cycles are generated by Chern
classes of representations of G. Theorem 1 and 2 imply specially that his
conjecture consists for the Artin-Tate groups. In [6], E. weiss gave a
counterexample examining 2-Sylow subgroup of the alternating group 4,. C. B.
Thomas extended his augument for 2-Sylow subgroup of projective special linear
groups. In this section, we show that 2 is not special prime for the Atiyah’s
conjecture.

As seen in [1], for an odd prime p, H*(C, x C,) = p(x, y) ® E(z), deg.x
=deg.y =2,deg.z=3. We see easily x, y being first Chern classes of
representations of C, x C, and therefore H**"(C, x C,) is generated by Chern
classes of representations.

Proposition 7. There exists a group G which contains C3 x C; as 3-Sylow
subgroup and H*(G) has an element which is not expressible by Chern classes but an
universal cycle in the Atiyal’s spectral sequence.

Proof. We define a group G by the following presentation,
G=<a b, cla*=b>=c*=e, ab=ba, cac’' =ab, cac™' =ab™ ")

3-Sylow subgroup of G is normal and isomrophic to C; x C;. Let o, o, be
irreducible representations of C; x C5 defined by o,(a) = w, 0,(b) =1, g,(a) = 1,
o,(b) = w where w = exp(2ni/3). Then an irreducible representation of C3 x Cj is
one of ) ® 04, i, j =1, 2, 3. G has four 1-dimensional representation defined by
the composite of the natural projection G - G/C; x C3 = C, and one of C,. G
has two 4-dimensional irreducible representations indg,,c,(0,) = ky, indg,,¢,(0)
= k,. On the other hand, we have

H*(G) = H*(C; x C3) @ H*(C,)

where the first component implies the subring of H*(C; x C;) generated by
invariant elements for the action of C,. Put x =c¢,(6,) and y =c,(g,). Since
fio)(@) =o,(cac™!) = 0,(ab) = @, fi(o,)(b) =0,(ab”!)=w, we have fi(o))
=0,®o0, Similarly we have fi(o,) =0, ®0c;"'. It follows f*(x) = f*(c,(d,))
=c,(filoy) = ¢ (0, ® ;) =cy(0y) +¢y(0) + x+y and  similarly  f¥(y) = x
—y. Therefore, H*(Cy x C3)* consists of polynomials p(x, y) satisfing the
relation p(x, y) = p(x + y, x — y). As easily s=en,

‘w0 0 0 (10 0 0]
0 w 0 0 0 w O 0
K,(a) = K,(b) =
0 0 w'! 0 0 0 1 0
Lo 0 0 '] L0 0 0 ol
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Then we have resé,c(k;)=0,+0,®0,+0;' +0;'®0o;" Similarly,
resg ¢ (k) =0, + 0, ® ;' + 07" + ;' + 07! ®0,. Therefore 3-primary com-
ponent of the total Chern class of k,, k, are as follows;

k) =1 +x)1+x+ (1 —x)(t —x—y)
=142+ xy—y)+(x*—x3y+ x2y?)

ek =1+ y)1 +x =1 — 1 —x+y)
=1— (2 +xy—y) +(0* + xp° + x%y?)

Consider a polynomial x3y — xy* = xy(x + y)(x — y) in H¥(C; x C3)*. We can
see immediately that x3y — xy® is not gotten by the linear combination of (x* +
xy — pA)r =x* — x3y — x2p? + xy® + y4, x* — x3y + x2y? and y* + xp® + x?y7.
x3y — xy3 is an universal cycle in the Atiyah’s spectral sequence H*(C; x C3)=
Rm) because x, y are Chern classes. By the naturality of the spectral
sequence, x>y — xy* in H*(G) is also an universal cycle.
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