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Introduction

Let M  be a  smooth manifold. A Poisson structure on M  is defined as a Lie
algebra structure {., •} on C (M )  satisfying Leibniz identity. Let x 1 , x 2 . . . . .  x, be
local coordinates o n  M .  T h e n  a s  is  u s u a l [ 6 ] ,  th is  is  e q u a l to  g iv in g  an
antisymmetric contravariant 2-tensor P  on  M  which satisfies Jacobi identity. In
the local coordinates expression, P  satisfies:

0 0
(0.1) P = —

1 

E  p. ;  n  A  , w ith P —
2 OXi OXi

(0.2) v  ( p  aP jk p .  aP 
 '

k i  j _  

" 
aPii)

"  OX, ax, 1 a x ,
f o r  1 j ,  k n .

T h e  corresponding L ie  algebra structure on  C ( M )  i s  c a l le d  a Poisson
structure on M.

Next we shall define here a  linear Poisson manifold, which is one of the most
important examples of Poisson manifolds. Let G be a connected Lie group whose
Lie algebra is g. Let g* be the dual space of g. If x 1 , x 2 , . . . ,  x y, is a  basis of g
satisfying

(0.3) [xi, xi ]  — E  CiikXk,
k=1

then from  this bracket operation, we can define the Poisson bracket f• , on
C (g * )  as follows:

(0.4)
Og

{f, g} =  E  c i .o ck — •— ,
j O X  •

where C (g * )  denotes a n  algebra of C r -function o n  g * . N o te  that each x ,  is
considered as a linear function o n  g * . By this Poisson bracket, C '(g * ) becomes a
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Lie algebra because (ciik ) are structure constants of a Lie algebra g. Thus in this
case, a Poisson tensor P  on g*  is given by

1 0 0(0.5) P = CiikXk A .
z 1 i , jk n ()Xi OX i

Using this tensor P, (0.4) is also written as

(0.6) {f, g }== <df A dg1P>.

A linear Poisson manifold is a pair (g*, P ) .  We may often simply write g* for
(g*, P ) .  By the rank of P at it e g*, we shall mean the rank of the skew-symmetric
matrix (P (p ) ) .  In an article [2], A. Lichnerowicz studied a Poisson manifold with
the constant rank.

I n  t h e  present paper, w e  sh a ll tre a t th e  c a se  G = SL(2, R), a n d  study
infinitesimal automorphisms of sl(2, R)* with a  natural Poisson structure. By the
theorem  of Kirillov-Kostant-Souriau (see A braham  and  M arsden [1]), each
coadjoint orbit has the canonical symplectic structure . In  our case, each coadjoint
orbit is noncompact, except for the origin, and therefore, we are able to obtain
interesting results for infinitesimal automorphisms.
A  part of this paper was announced in [5].

1. Casimir functions and infinitesimal automorphisms

From this point, we would like to confine ourselves to the case G = SL (2, R),
with all the elements considered here as C .  W e will identify g* with R ' .  Let x,
y  and  z be a  basis of g = sl(2, R), satisfying the following relations :

(1.1) [x, y] = — z, [y, z] = x, [z, x] = y.

(If we regard x, y, z as linear functions on g*, we should write: Ix, yl = — z, {y, z}
=  x , lz , x l =  y .1  T hen  the corresponding linear Poisson tensor P  is given by

0 0 00 0 0
(1.2) P = —  z x  A —ay  + x ay  A  az  +  y az  A  a x .

As is easily seen, the rank  of P  is two, except for the orgin.
G iven f e  C "(g*), {f, .} defines a  derivation o f  C " ( 9 * ) .  Hence there

corresponds a vector field which we call the Hamiltonian vector field.
A Casimir function on g* is a  function C such that {C,f} = 0 for all function

f. In order words, C is an element of the center of the Lie algebra C"(9 4 )̀. W e
denote by (6 the set of Casimir functions. By simple consideration, we know that
for each element C  o f  ce there exists a  function 4) of one variable such that
C(x, y, z) = 4)(x2 + y 2 z 2 ) .

A  coadjoint o rb it G.11 passing through ti 0 0  is  a lso  ca lled  a symplectic
leaf. T h e r e  are three kinds of symplectic leaves : circular conics, hyperboloids of 1 -
sheet and hyperboloids of 2-sheets. Each symplectic leaf is the  common level
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manifold of Casimir functions.
By an infinitesimal automorphism of g*, we mean a  smooth vector field X  on

g* such that

(1.3) L(X )P = 0,

where L(X ) denotes the L ie derivative along X.
Next we shall define some Lie a lgebras. Let Y  be the Lie algebra consisting

of all infinitesimal automorphisms. Suppose that for a  smooth vector field Y on
g *  there  ex ists  a  C a s im ir  function C y  d e p e n d in g  o n  Y , s u c h  th a t  L(Y)P
= C EP .  Then we denote by Y ` the Lie algebra consisting of such vector fields
Y. Let J r  b e  the Lie algebra obtained as the normalizer of Y  in  Y`, that is, ./1(
= {X e [X , Y i

 
Let be a L ie subalgebra of Y  consisting of vector

fields X  such that each X  is tangent to  symplectic leaves. And we denote by Ye
the Lie algebra of Hamiltonian vector fields. Then there is a  canonical inclusion
relation: sy c  D .A f Y e . Direct calculation shows that both Lie subal-
gebras i f  and ye are ideals of Y .  Let X = fO x  + ge y  + haz  b e  a  vector field of
Y . Then three functions f , g  and h  must satisfy :

f  = x g y  — ygx  + zh x  + xh z ,

(1.4) g = y f x  — xfy  + zh y  + yh z ,

h = z f x  + x f z  + zg y  + yg z .

P ut div X  = f  + g y  + h z . Then (1.4) is equivalent to the following :

x • div X  = ( x f  yg — zh)x ,

(1.5) y • div X = (xf + yg — zh)y ,

z • div X  = — (xf + yg — zh)z •

N ext w e shall investigate that under w hat conditions a  vector field X  is
contained in  5 .  P u t X  = fax + g ay + hOz . Since X  is  tangent to each orbit, it
satisfies : X(x 2 + 3,2 — z 2 ) = O. H e n c e  w e  have

(1.6) xf + yg — zh = O.

Taking (1.6) into account, we have from (1.5), x • div X  = 0, y • div X  = 0 and
z • div X  = O. This means (x 2 + y 2 + z 2 )• div X  = 0 except for the o rg in . Since X
is sm ooth  on R 3 , w e  have div X  = 0  on R 3 . C onverse ly , i f  a  vector field X
satisfies (1.6) and div X  = 0, then it is clear that X  is contained in  J .  Thus we
have proved :

Proposition 1.1. For a smooth vector field X  = fa x  + gOy  + hä z  defined on R 3 ,
X  is contained in 5  if  and only if

J f x  + g y  + h z  = O.
1 xf + yg — zh = O.

(1.7)
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Now we shall clarify the gap between Y  and i f .
Put f , = xm (x 2 + y 2  — 

z 2 ) / ( x 2  +  y 2 ) ,  g 1
 =  y o x 2  +  y 2

 z 2 ) / ( x 2  +  y
2
)  and  h1

0,
where m(u) is  a  smooth function of one variable which is defined by

u 0,(1.8) m(u) =
1 exp( — 1/u 2 ) u > 0.

Then f 1 , g , and h , satisfy the relation (1.4), and hence Y =f i ax  + g i ay belongs to
2 . In our case, three functions f 1 , a i  and  h, do not satisfy the relations (1.7). In
fact, it holds that

x f i + zh, = m(x 2 + y 2 — z 2 ),
+ (91)y + ( 111)z = 2m' (x 2  + y 2 — z 2 ).

Hence Y = f i a„ + g i ay does not belong to  .fir.
Next we shall clarify the  gap between ,S1  a n d  Y e . F o r  this purpose, it is

convenient to introduce the cylindrical coordinates (r, 0, z). Let G. y  be an  orbit
satisfying x2 ± y 2 z 2  c 0. W e shall w rite the Poisson tensor P  and the
symplectic form c o  on G • y in the cylindrical coordinates. Note that ax  =  cos O r

— sin oirao , ay = sin Oar +  cos O/ra, and  az = az .  Then w e have P = z /r 00 A a,.
+ a, A Oz .

P ut co = adr A dz + fldr A dO + yd0 A dz. Then we obtain

(1.9)w  =  (y — (z/r)13)d0 A dz,

since rdr = zdz o n  G • y.
F or any smooth function F  on  G. y , we have

(1.10) X F= (z /r)F0 a, — ((z/r)F, + Fz)a, + Fo az .

In particular, X , = (z/r)ar + a, and X z  = — ae .  F or these two vector fields
X , and X z ,  we have

co(X,, X )  = y — (z/r)f3

= {0, z}  = 1.

Hence (1.9) can be rewritten o n  G. y  as

(1.11)w  = dO A dz.

Recall the function m(u) defined in (1.8). For r > 0, we define a smooth vector
field X  using the smooth function m(u) as follows:

(1.12) X = (z/r)m(r2 z z) a r o r 2 z 2)a
2

.

Let G • /.2 be a symplectic leaf defined by x 2 + y 2 — z 2 = c > 0, that is, G. y  is a
hyperboloid of 1-sheet. Since r > 0 on this symplectic leaf G. y , the smooth vector
field X  is well-defined. Then r

2 z 2  =  x 2  +  y 2  z 2  
=  c on G • y  so that we have

i(X)co = — m(r 2 — z 2 )c/0 = const. d O . N o te  t h a t  0  is n o t  a  globally defined
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function on G •i. H e n c e  X  is  no t a  Hamiltonian vector field on the symplectic
m anifo ld  G- II. S u c h  a  v e c to r  f ie ld  e x is ts  b e c a u se  G • 1.1 is n o t  s im p ly
connected. (G.1.2 is  homeomorphic to  a  cylinder.)

If we extend this vector field X  to  the whole space g*, we have the following
new vector field .)?:

pri (x 2 + y 2 z 2 ) m(x2 + y 2 ,2)
(1.13) 5C' = xz Ox + yz -   c y + m (x 2 + y 2 z 2 ) .

x 2 + y 2 X
2  

+  y
2

This vector field .fe is sm ooth on  g*  and  three coefficients of I  s a t is fy  the
relations (1.7). H ence  I is  an  element of I f  Î  i s  a  Hamiltonian vector field
on g*, then feIG .„ X must be also a Hamiltonian vector field on G • p. But X is
not Hamiltonian, as we have seen before. Hence k- is not contained in Y e . Thus
we have proved:

Theorem 1.2. The ideal .1" is strictly contained in 2  and the ideal lc' is strictly
contained in J .

Finally we shall characterize a  L ie  a lgebra  K . F irst w e prove :

Lem m a 1.3. L et X E 29 ` and put L(X )P = CE P , CE ece. Then X belongs to
.J1/- if  an d  only  i f  Y(Cx ) = 0 f o r all Y e 2 .

P ro o f . Let X e K .  Since [X , Y] e 29 , we have

0 = L ([X , Y])P = L(X)L(Y)P — L(Y)L(X)P

= — L(Y)L(X)P = { — Y(C x )} P

Thus Y(CE ) = 0 on M = R 3 — {0}. By the smoothness o f Y(CE ), we have Y (C )
= 0  o n  R3 . The converse is easily proved. q.e.d.

Recall the vector field Ye 2 defined in the proof of Theorem 1.2. Here we
define another vector field Z  by

y s ( x 2 + y 2 z 2 ) zs(x2 +y2 z2)
Z =  

2 2
a

y az2y  — z
+

y  — z2

where s(u) is  a  smooth function of one variable defined by

u > 0,
s(u) =  I

°
exp( 1/u 2 ) u O.

Then the vector field Z  is an element of 2 .  Using these two vector fields Y and Z,
we shall prove

Proposition 1.4. .K /2  is  iso m o rp h ic  to  R.

P ro o f  Let X  be any element of X ,  and  Cx  b e  the corresponding Casimir
func tion . Put CE (x, y , z)= 4)(x 2 + y 2  — z 2 ). Let Y and Z  two vector fields of
stated above. Then by Lem m a 1.3, we have
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O
xm(x2 + y 2 ___ z 2) acp y r n ( x 2 + y 2 z 2 ) a o

=  Y(C x ) = Y (4) =
x2 + y 2O x x2 4 _ y 2

In the region z  = 0 and x 2 + y 2 > 0, m(u) is positive . Hence d4/du = 0 if u > O.
O n the  other hand, we also have

ys(x2 + y 2 _ z2) zs(x2 + y 2  — z 2 ) 04)0 = Z(C x ) = Z (0) = y2 ___ z 2 ay y2 z2 az '

I n  t h e  region x  =  0  a n d  y2 — z 2 <O, s ( u )  i s  positive . Hence d4/du  =  0  if
u < O . B y  the  smoothness of 0(u), w e obtain that 4(u) is  constant on R 3 ,  and
Cx (x, y, z) is co n stan t. P u t W = — (x0x +  yOy  z a z ). Then W satisfies L(W )P =
P  s o  th a t  W is  a n  element of 2 ' .  By Lem m a 1.3, W is  a lso  a n  element of
A". T h u s  the linear mapping T: R  defined by X  —> C x  is  surjective. Since
Ker(T) = 2 2 ,  we get A rlY  = R . q.e.d.

2. Derivations — A formal version

(  1 /2 0 0  1 /2 )
1/2 0

(  0  —  1 /2 )
— 1/2 ,  y  =  1 /2  0Let x = and z  = be a  basis of

0 
sl(2, R). Then th is basis satisfies the re la tions (1.1). Let F ,,  b e  a  space of

homogeneous polynomials f (x , y, z) with deg ( f )  = p  + 1, and put F  = E Fp . We
p o

can also define a Poisson bracket { •  }  o n  F, using a  linear Poisson tensor P
defined by (1.2). Since it is clear that {F,,, F q }  c  F p+q (p, g 0), F  becomes a
graded Lie algebra.

A space h = { x}  is a Cartan subalgebra of sl(2, R) and a  root decomposition
of sl(2, R) with respect to  h  is given by:

(2.1) sl(2, R) g _ 1 + g o  + g i

= {y + z} + {x} + {y z } .

The first result is :

Proposition 2.1. Each space F p  (p 2) is generated by  F 1 . N am ely  it holds
that F2 = {F,, F 1},  F3 = {F1, F 2 }, ,  F p  = 1F 1 , Fp _ 11.

To prove the above proposition, we need the following lemma. This lemma is
easily proved and we om it the proof.

Lemma 2.2. L et A , be akxk  m atrix  w ith (A k)i,b+1 = —  2 (k — (), (Ak)i+1,i=
— 2i and other elements (A ,) a ,, O .  T h e n  the rank A , = k  if  k  is an even number,
and the rank Ak = k  —  1 if  k  is an  odd number.

Proof  of  Proposition 2.1. W e prove IF 1 , F p _ 1 1 = Fp  (p 2). First decom-
p o s e  Fp  in to  tw o  s u b s p a c e s  a s  follows: Fp  = V , + V 2 ,  w h e re  V, = {xP + 1 ,
xP y, x z P }  a n d  V2 = ly P', y Pz ,..., z P ." 1 .  Since { x 2 ,  Fp _,}  V , ,  we can
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represent {x2 , Fp _ 1 } as a  matrix with respect to the basis of V ,. Then we have the
following matrix Q.

A2

A3

If p  is even, by Lemma 2.2, rank Q = dim V, — (p/2 + 1). To m ake up for
deficiencies of {x 2 , F _  I, w e need

{x y , x P 'z } =  xP+ 1  — x p- l y 2 1)xP 1 z2

{xy, xP - 3 y
2

z }  =  x P -
Iy2 x p - 3 y 4  (p 5)xp - 3 y 2z 2 ,

p/2
{xy, xyP - 2 z} = x 3 yP - 2  — x y p _ (p 3 )x y p -2 z 2 ,

‘ { x z , xP "y } =  —  x p+ (p  1 )x "  y2 x p - l z 2 .

It is easy to see that all these brackets span the  subspace V,. (If p = 2, we
should use {y 2 , yz } instead o f {xz, xy}.)

Next put W =  { y", yP - 1 z, ,  e l .  Then we can conclude that lxz, W I, {xy,
y P 'z }  and  {xy, yP - 2 z 2 }  span the subspace V2.

If p is odd, the result is obtained by a  similar method as a b o v e . In fact, {x 2 ,
Fp _ 1} , {xy, xP - 1 z }, {xy , xP - 3 y2 z}, {xy, x 2 yP - 3 z }  a n d  {xz, xP -  1 y}  span the
subspace V1 . M o re o v e r , {xz, W I and {xy, yP - 1 z }  span the  subspace V 2 . q.e.d.

A  linear mapping c: F F  is called a  derivation if it satisfies

(2.2) c{ f  g}  = { c(f ), g } + { f, c(g)} for any f, g e F.

We shall determine all derivations of F .  We adopt the same method as that
of T . Morimoto [4].

I f  a  derivation c: F F  satisfies : c (F) c  F p ,  fo r any  p , w e say  tha t the
degree of c  is r, and write as deg c = r.

F o r any derivation c , w e denote by c(
p
k ) t h e  Horn (Fp ,  Fp + ,)-component of

c. Define a new derivation c c( k ) 1F p  = c p
( k ) . Then c a derivation of degree

k , and c  is written a s  c  =E c ( k ) .

For determining derivations of each degree, it is useful to obtain derect sum
decomposition of Fp  w ith  respect to  the action of ad(x) o n  Fp.
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Proposition 2.3. A ll eigen v alues of  a linear mapping ad(x): Fp —*Fp a re  0,
+  1 , + +  (p  +1 ) . L e t  F (k )  be  an eigen space corresponding to an eigen

p+ 1
v alu e  k . Then we obtain F p = E Fp (k), where each F p (k) is given by:

k = - (1) +1)

( 0  I f  p  is even, say  p = 2m,

F(0) = <x2m+1, x 2m- 1(y 2 z 2 ) , x(y2 z 2 r > ,

F p (1) = <x 2 m(y — z), x 2 ( "1 -  1 ) (y — z ) ( y 2 _ (y z)(y2

F p ( — 1) = <x 2 m(y + z), _ern -  1 ) (y + z)(y 2  —

F(2) = <x 2 m- 1 (y — 2)2, x 2m - 3 (y z)2 (y2 z 2) ,x ( y z)2 (y2 z2)m 1>,

F(—  2) = <x 2 m- 1 (y + z) 2 , x 2 "I - - 3 (y + z) 2 (y2 — z 2 ),..., x(y + z) 2 (y 2 —

F p (2m + 1) = <(y — z) 2 m+ 1 >,

Fp ( — (2m + 1)) = <(y + z) 2 m+ 1 >.

(ii) If  p is odd, say  p = 2m — 1,

F (0)= x 2 m ,  x 2 ( m -  l ) (
y 2 -  z

2 x2(y2 Z 2) m _ 1 2 2
Z  )

m
>,

F p (1) = <x 2 "1- 1 (y — z), x 2 m- 3 (y — z)(y 2 — z 2 ),..., x(y — z)(y 2 — z 2 )m- l >,

Fp ( - 1 ) = <x 2 m- 1 (y  + z), x 2 "' 3 (y + z)(y 2  — z 2 ),... , x(y  + z)(y 2  — z 2 )'"" > ,

F p ( 2 ) =  < x
2m-2 ( y  z ) 2,  x 2.-4 ( y  z ) 2( y 2 z 2) , x ( y  _  z ) 2 ( y 2 _ z 2 )m - 1>

F p ( —  2 )  =  < x
2m-2 ( y  z ) 2,  x 2m-4 ( y  z .) 2

( y
2 z2 ),..., x(y + z) 2 (y2 — z2 )m- 1 >,

F(2m) = <(y — z)2 m>,

F(—  2m) = <(y + z)2 m>.

The above proposition can be easily proved by direct calculations. (Taking
an  equation (2.1) into consideration, the proposition is almost obvious.)

In the rest of this section, we shall determine an explicit form of a derivation
of each degree. First w e prove:

Proposition 2.4. Fo r a derivation c, if  deg c — 1, then c = O.

P ro o f  If  deg c — 2 , c  satisfies c(F0) = c (F,)= O. C om bining  th is w ith
Proposition 2.1, we easily have c = 0  o n  F .  N ext le t deg c = —  I. N o t e  that
c(F„)= O. S in c e  c(F 1) F , ,  we can write each element of c(F 1) as follows: c(x 2 )
=  a,x  +  b,y  +  c i z , c(xy)= a 2x + b 2y + c2z , c(x z )= a3x + b 3 y + c ,z , c(y 2 ) = a 4 x
+ b 4 y + c4 z, c(y z )—  a 5x + b s y + c5z, c(z2 ) = a 6 x + b 6 y + C 6 Z .  Then by equ-
ations 0 = c{x, x 2 } = {x, c(x 2 )}, 0 = c{ y , y 2} c(y2S') 1  and 0 = c{z, z 2 } = {z,
c(z 2 )}, we easily have b 1 = c, = a 4 = c 4 = a 6 = b 6 = O. O n  th e  other hand, by
equations c{x , y 2 }  =  { x , c(y 2 )}  = — 2c(y z ), w e  h a v e  a 5 =  b 5 =  0  a n d  2 c 5

z 2),( y z)(y2 z2)m>
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= b4 . Similarly by equations cly, z 2 1 = {y, c(z 2 )} = 2c(xz), we have b3 =  c, =
and c6 = 2a 3 . Equations c{x, Z2

}  =  { x, C(Z 2 )}  =  —  2c(yz) mean c, = c 6  = 0  and
hence b4  = a 3 =  O. E q u a tio n s  c {x, xy} = {x, c(xy)} = — c(xz) = 0  mean b2 = c 2

= O. E q u a tio n s  c(y, xy} = {y, c(xy)} = c(yz)= 0 mean a2 =  O. Finally equations
c {y, x 2 }  =  {y, c(x 2 )}  = 2c(xz)= 0  m ean  a, = O. T h u s  a l l  coefficients of c (F 1 )
vanish and hence by Proposition 2.1, we get c = 0  on  F. q.e.d.

By the above proposition, we know that any derivation c can be written as c

= E coo. Next we shall determine a  derivation c with deg c = p O. C onside r

the adjoint action of F o =  sl(2, R) over F,,. S in c e  F o  i s  a simple Lie algebra, it
holds I/ 1 (F°, F,,) = O. This means that for a derivation c, there exists an f  of Fp

such that c F o  =  a d ( f ) .  Thus (c — ad(f))(F 0 ) = O. By this reason, hereafter, we
always assum e th a t  a  derivation c  with non-negative degree satisfies c(F0 )
= O. ( W e  are interested in  only "outer" derivations.)

Proposition 2.5. L e t deg c = p O. S in c e  c (F 1) F + 1 , accord ing  to  the
p+2 p+2

direct sum decomposition of  F + 1 , we can put: c(x 2 ) =  E  ai , c(y 2 ) =  E  bi ,
i = - p - 2 1 = - p - 2

p+2 p+2
C(Z 2 ) = E  ci ,  c(yz)= E  ri . Then c(x 2 ) =a 0 , c(y 2 ) = r 2  +  b o  — r2 , c(z 2 )

i = - p - 2
= r_ 2 — b, — r2 and c(yz)= r_ 2  ±  r2 . M oreover a, + 2b 0 eW , where (6 is a space
of Casimir functions in F.

P ro o f . N ote tha t c(F 0 ) = O. B y  the eqution O =  c {x , x 2 } = {x, c(x2 )} = E
iai ,  w e have ai = 0  i f  i O. O th e r  e q u a tio n s  c{x, y 2 } = {x, c(y 2 )}  = — 2c(yz)
im ply that {x, Eb,} = Eib i =  — 2Er 1. Thus w e get ro =  0  a n d  bi = —(210r1 i f
i O. S im ila r ly , the  following equations c Ix , Z2 1  =  { x, C(Z 2 )}  =  —  2c(yz) mean
that c, = — (210r1 if  i O. U s in g  c {x, yz} = {x, c(yz)} = — c(y 2 ) — c(z 2 ), we have

5 — bi — c i = ir i = (4 /0 r , (i 0),

1 —  b, —  c, = O.

Hence ri = 0  is  i + 2 , a n d  we obtain: c(y2 ) = r 2 +  bo  —  r2 , c(z 2 ) = r _ 2

— /30 — r2 a n d  c(yz)= r 2 + r 2 . It generally  holds that c(W) c W . T hus c(x2

+ y 2 — z2 )e ce and finally we have a, + 2b 0 eW. q.e.d.

The above proposition m akes it easy  to  determ ine derivatins of positive
degree. In fact, using Proposition 2.5, we prove

Proposition 2.6. (i) If  deg c = 2m —  1 (m 1), then c is an  inner derivation.
(ii) If  deg c = 2m  (m  0), then c is an outer deriv ation. More precisely, c is

essentially defined as follows:
For any  p 0, c(up ) =  pup (x 2  + 3, 2  — z 2 )" f o r any u p  e F p .

P ro o f  (i) Notes that c(F 1) F 2 „„ and that there are no Casimir functions
in F 2 ,„ except for O. S o  b y  Proposition 2.5, it holds that ho = — a0 I2. According
to  the direct sum decomposition of F 2 ,,,, a 0 ,  r2 a n d  r_ 2 a r e  written as follows:
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=  a ix
2m  + 1  

a2x2m-1
( y 2  z 2 ) +  a m +  i x ( y 2  z 2 r

= c i x 2 m- 1 (y — 
z ) 2 c 2 x 2 m -  3 ( y  z ) 2 ( y 2 z 2 )

+ • • • + c x(y — z) 2 (y 2  —

= dix2m - 1(y z ) 2 d2 x 2m- 3( y  z ) 2( y 2 z 2)

+ ••• +  d„,x(y
z ) 2 ( y 2 z 2 ) m -  1

Again recall that c(F0 ) =  0 .  Substituting (2.3) into {y, e(Y 2 )} = c{Y, y 2 }  =
and equating coefficients of zk  (k  =1 , 2, ... , 2m + 1) to  zero, we have ai = c ;  = d ;

=  0  ( 1  m  +  1 ,  1  j  m ) .  Thus c(x 2 ) =  c(y 2 ) = c(z 2 ) = O. S in c e  c(Fo ) = 0,
we also have c(x y )= c(x z )= c(y z )= 0. For example, c(xy)= (112)c {z, y 2 }  =  (1/2)
{z, c(y 2 )}  = 0. By Proposition 2.1, c(Fp ) = 0 (p 1), and hence c = 0  on F .  This
means that c  is  an  inner derivation of F  by the previous remark.
(ii) In  this case, c(F 1 ) = F2 n, + 1. And the space F 2m+  1

 contains one dimensional
subspace of Casimir functions whose basis is (x2 +  y 2 — z 2 )m± 1 . Hence we need
p u t  bo  = (K (x 2 +  y 2  — z 2 )m+ 1  — a0 )/2. According to the  d irec t sum decompo-
sition of F 2 „, + 1 , a 0 ,  r2 a n d  r_ ,  are written as follows :

a, = aix2m+2 + a 2 x 2m( y 2 z 2) + ... + a m +  2 ( y 2 _ z 2) m + 1{
r2  =  c l x 2. ( y  _  z)2 c 2 x 2m-2 ( y  z ) 2( y 2 z 2)

+  .. .  +  c m  1 ( y z)2(y2 z2),P1 ,

+ • •• + d„, + 1 (y + z) 2 (y 2  — z 2 )m.

Substituting (2 .4 )  i n t o  {y, c(y 2 ) }  =  0 , a n d  equa ting  coefficients of z k

(k  =1, 2 ,...,  2m  + 2) to  zero, we have

c(x 2 ) =  a x 2( x 2 + y 2 z 2 ) r n  f ,

(2.5) c(y2) = a y 2( x 2 + y2 z2)m

C ( y 2 )  =  * 2 )  a z 2( x 2 + y2 z2
) ' "

1w h e r e  a = (m + 1)a 1 — a2 , f =  (ma i — a2)(x2 + y2 z2 )m + ,  g  = (1/2)(a 1 — k)
(x 2 ± y2 z2)m +1.

Then taking account of c(F0 ) = 0  and f , gece , we also have

c(xy)= {c(y 2 ), z}12 =  a x y ( x 2 ± y2 z2)'",

(2.6) c(xz) = ly, c(z 2 )1/2 = cxxz(x2 ± y 2 z 2 r ,

,{c(y 2 ) x}/2 = ayz(x 2c(yz )= y2 z2
) ' "

.

Hence a derivation c can be essentially written as c(u 1) = u1(x2 ± y 2 z2sm) for
a n y  u, e F„ . Since F ,  generates Fp2 ) ,  w e  a lso  o b ta in  th a t c(up ) =  pu p

(x 2 +  y 2 z 2 ) n

(2.3)

(2.4)

r _ 2 =  x 2 m (y z)2 —2( y z ) 2 ( y 2 z2)

for any u p e Fp .
Now we shall prove that such a  derivation c defined in  this way is an  outer
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derivation. S ince c(ce) ce, a  derivation c: F F  induces a  derivation C: L
L .  More precisely, C is defined by e(x- = x o „), where X h e L is a  Hamiltonian

vector field corresponding to h e F .  By a n  easy calculation, we know that e is
given by

= ad((x2 
±  y 2  z 2 ) m ( z a x  

- I-. pay + Z a Z )).

A vector field (x2 ± y2 z2)m (z n x  +  yey + z0z) is not an element of L . S o  e is an
outer derivation of L  and thus c is also a n  outer derivation of F. q.e.d.

We have completely determined the derivation algebra of F .  We shall resume
it  in

Theorem 2.7. L e t c: F F  be any  deriv ation. T hen c mc
( 2 m )  

(mod
ad(F)), where c( 2 '") i s  a  derivation defined by

m O

(2 m )
(U ) = pu (x

2  

±  y
2  

— Z
2
)

m 
f o r all u e FP P P P '

and am  is some constant depending on c. In particular, all c( 2 m) are outer derivations,
hence I-11 (F, F ) is infinite dimensional.

3. Application

L e t  u s  consider th e  C '-v e rs io n  o f  th e  result obtained in  t h e  previous
sec tion . Recall the definition of Lie algebras Yc, Y ' and J r .  Put X = (x2 +  y2

— z2 )m(x0x + yey + z0z), (m 0). Then we have know n that ad(X ) is a n  outer
derivation of L .  If we regard X as a smooth vector field on R 3 , X is an element of
Y x .  (Note that L (X )P = —  (x2 +  y 2  — z 2 )m P). For such a smooth vector field X,
we shall prove

Proposition 3.1. ad(X) is a  derivation of  Y  if  and only  if  m = O.

P ro o f . By the definitin of 2 '` , a d (X ) is  a  derivation o f  Y  if  and  only if
X E X . H ence by  L em m a 1 .3 , X  must satisfy Y(Cx ) = 0  for a ll Y E  Y . In  this

, mcase, C, = — (x2 + y 2 z2 ) , ( m  0 ) .  L e t  Y  be  a  vector field appeared in the
p ro o f  o f  T h e o re m  1 .2 . T h e n  f ro m  t h e  e q u a tio n  Y(Cx ) = 0 ,  w e  have m
= O. Conversely ad(x0x + yOy + zez) is clearly a  derivation of Y . q.e.d.

A s the  first step o f  studies o f  a  linear Poisson manifold, w e have studied
infinitesimal automorphisms defined on s/(2, R ) * .  If we take sl(3, R ) as g, we shall
encounter some difficulties. For example the rank of the Poisson tensor takes the
values 4 and 6, except for the origin. A  linear Poisson manifold sl(3, R)* itself has
interesting structures [3].

F o r a  linear Poisson manifold with a compact Lie group, the circumstances
are entirely different from the case of noncompact Lie groups. W e shall treat
these problems elsewhere.

The author would like to express his gratitude to Profesor P. Molino for his
introduction of the geometry of Poisson manifolds.
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