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Embeddings o f discrete series into induced
representations of semisimple Lie groups, II

Generalized Whittaker models fo r SU(2, 2)

By

Hiroshi YAMASHITA

Introduction

T h is  is  the second part of our w ork  on embeddings o f discrete series into various,
im portant induced m odules for semisimple Lie g roups. A pp ly ing  th e  general method
established in  the  first p a r t  [10] (referred a s  [ I ]  la ter o n ) , w e  describe  in  this paper
(generalized) Whittaker models for the sim ple L ie group SU (2, 2) in  a n  explicit way.

To be precise, we consider representations smoothly induced from characters of the
unipotent r a d ic a l  o f  a  cuspidal parabolic subgroup. T h e  infinitesimal embeddings of
discrete series a re  determined almost completely f o r  su ch  in d u ced  m o d u le s . Among
o th e r  th in g s , th ro u g h  th is  se r ie s  o f  w orks w e find all the  embeddings into Gelfand-
Graev representations, and also the zero-th n-cohomologies f o r  t h e  d isc re te  se ries of
SU(2, 2). N o te  th a t  o u r  g ro u p  is  o f  rea l rank  tw o, and  that it is locally isomorphic
to  th e  (restricted) conformal group on the M inkowski space.

N ow , let G  be  a  connected semisimple Lie group w ith finite center, and K a maxi-
mal compact subgroup of G . W e alw ays assum e the rank condition : rank(G)=rank(K),
which is necessary and sufficient fo r  G  to  have a  non-empty discrete series [2 ]. Each
discrete series 7A o f  G  has a  unique lowest K-type r2 w ith  h ighest w eigh t 2(see 1.1).
F urther, th e  representation  7rA can  b e  rea lized  o n  th e  L 2 -kernel of gradient-type, G -
invariant differential operator D,i(see [7], c f . [ I , T h . 1.5]). T h is  DA  is defined on the
G-vector bundle over K\G attached to  the  K-module

From  this realization o f  rh, w e can deduce that th e  L 2 -kernel o f  DA  characterizes
the  embeddings o f :rn, the  contragredient of It A, in to  th e  left regular representation of
G  o n  LAG ). In  fac t, the  exterior tensor product 7r1a7rA occurs in  t h e  bi-regular re-
presentation o f  G xG ju s t  once, and the functions in  L 2 -Ker(D 2 ) give rise to low est
K-type vectors in  L 2 (G) of type  rt c7rIIK w ith  respect to  th e  le ft K-action.

Suggested by this fac t, w e form ulated in  the  first half of [ I ]  a  general method for
describing infinitesimal embeddings of discrete series into C- -induced G -m odules. This
is  d o n e  b y  le t t in g  t h e  opera to r D A  a c t  on the r'-com ponent o f  th e  induced module
3r(n)=C - -Ina7 (77) mentioned above, in  a  natural w ay (see 1.3 fo r the  the  precise defini-
t io n ) . W e  h av e  sh o w n  tha t, a s  in  th e  regular representation case, solutions yo of the
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resulting differential equation D2, v w=-0 characterize the embeddings of 27.1  in to  7,707) as
(gc , K)-modules :

Hom,c,_N(7r*A', r(72)) Ker(D 2 ,,),

under certain assumptions on A  and  )7 (see Theorem  1.3). H e re  g c  denotes t h e  com-
plexified Lie algebra o f  G.

Although D  vW =0 is a  single  equation fo r a  vector valued function w o n  K \G/N ,
it can  be  rew ritten  in to  a  system  of differential difference equations for the coefficients
o f  w .  By solving such a  system  of differential equations, we determined in [ I ]  a ll the
embeddings o f discrete series into (generalized) principal series fo r  SU(2, 2).

In  the  present artic le , w e  continue to  study  th e  case  G=S U(2, 2 ) in  m o re  detail.
U p  to  conjugacy, our group G has two proper cuspidal parabolic subgroups Pm  a n d  P',
w h e re  Pm  i s  m in im a l an d  P '  Pm  m a x im a l .  L e t  N m ,  N ' denote the  corresponding
unipotent radicals respectively. H ere , in  P art II o f o u r  w o rk s , w e  d e a l w ith  th e  G-
modules T e ,N =C - -Inci(e) induced from any character e  of the  unipotent subgroup N =
N ,  o r N ',  and we explicitly determine the  embeddings o f discrete series ;-,1  into r,.N
b y  th e  method explained above.

O ur m ain results are given in Theorems 6.1 and 6.5, which describe the multiplicities
of embeddings. One can construct the embeddings concretely through the  corresponding
lowest K-type vectors for T ' . N w h ich  w e  gain  by solving th e  equation DÀ, Ew=0.

O ur results cover, as extrem e cases, embeddings in to  th e  fo llow ing  tw o types of
im portan t representations. O n  o n e  h a n d , th e  representation F,,, N w i th  the trivial
character e=1 N  g iv e s  r ise  to  th e  (generalized) principal series, studied in  [ I ] . O n  th e
other hand, one gets (generalized) Gelfand-Graev representations (c f . [4], [6], [8], [9])
w hen e  is generic.

T o  catch the m ain flow  of o u r s tu d y , w e  n o w  s ta te  th ree  co n seq u en ces  o f  our
results which allow us to classify the whole discrete series into three subclasses through
generalized W hittaker m odels. F ix a  regular integral infinitesimal character X. Then
G  has exactly s ix  m utually inequivalent discrete series representations w ith th e  same
infinitesimal character X. T w o  o f them  a re  holomorphic and anti-holomorphic discrete
series, and  the  others a re  non-holomorphic o n e s . Assume th a t X is sufficiently regular
Then w e obtain th e  following.

(1) Holomorphic a n d  anti-holomorphic d isc re te  se rie s  a r e  charac terized  by  the
property that they never occur in  r e ,N w ith  generic  e  and  N =N m  o r  N'.

(2) T here  ex ist p recise ly  tw o d iscre te  series that appear in  a ll F $  N 's ,  and so  in
particular they have ordinary W hittaker models in  the  sense o f  [1], [5].

( 3 )  T h e  rem aining tw o discrete series can be em bedded, w ith finite m ultiplicity,
in to  generalized Gelfand-Graev representations P , N, w i t h  certain generic C's. T h i s
property m arks off these tw o discrete series from  the  o ther four.

In  th is  w ay , the  discrete series is classified into three subcategories. T h is  idea of
classifying representations goes way back to a  pioneering w ork o f  Gelfand and Graev
fo r  S L , early  in  th e  1960's.

T h is  paper is organized a s  fo llow s. In  § 1, we review after [I, Part A ] our general
th e o ry  th a t  te lls  h o w  to  d e sc r ib e  th e  embeddings o f discrete series into induced G-
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modules r(72) through the gradient-type differential operators D 2,7.
O n and a fte r  § 2, we concentrate on the case G=SU(2, 2). L et G = K A ,N , be an

Iwasawa decomposition o f  G , and  72 a  continuous Fréchet space representation of the
maximal unipotent subgroup N . .  Since K \ G IN .-- A„, a n y  solution ço o f  DÀ, r ço=O is
uniquely determined by its restriction to  th e  vector subgroup Ap R z . W e describe in
§2 th e  rad ia l A r -part o f  D2 0 7 ,  a n d  g iv e  a  sy s te m  C[2, 7)] o f  differential difference
equations on  Rz, which characterizes the  embeddings eic_,7(7))=T r ,N77,=C - -Inar.(0.

T h e  succeeding  three  sections, §§ 3-5, a re  devoted to solving th e  system  C[2, 27]
fo r each A an d  fo r th e  following two types of N,,-representations 7 ) .  F ir s t  i n  §§ 3-4
we study the case where .7)=e is a character o f N . ,  and  then  in  § 5 the  case  of infinite-
dimensional representation r2=C - -In47"(e) induced from a  character e of the unipotent
radical N ' o f  P ' .  O ur results a re  perfect fo r alm ost all p a ir s  (2, a n d  they enable
us to describe in § 6 (generalized) Whittaker models o f discrete series 7r.'  fo r the  induced
G-modules r e ,N  w ith  N = N . o r  N ' .  In Tables 6.2 and 6.6, w e give  a  lis t o f  multipli-
c itie s  o f  embeddings o f  e l  i n t o  r , , N ,  w hich  seem  to  be  very  important invariants
attached to th e  discrete series.

In  a  certain  case with infinite-dimensional n, ,  w e construc t a  fam ily  o f  infinitely
many, mutually linearly independent solutions of C[2, 77e ]  through form al power series
(see 5.4 f o r  d e ta ils ) . This technique of construction is  sim ila r to  th e  ones employed
in  [1], [3] a n d  [6], although our object of study, i. e., th e  discrete series, is different
from theirs.

T he  author expresses h is  gratitude to Professor Takeshi Hirai for valuable advices
and kind discussions in this presentation.

§ 1 . Gradient-type differential operators and embeddings of discrete series

L et G  be a  connected semisimple Lie group w ith  fin ite  center, a n d  K  a maximal
com pact subgroup o f  G .  A s in  In troduction , w e assume th a t  G  and  K  a re  o f equal
r a n k .  In  th is section w e review  a  general theory for describing embeddings of discrete
series into various induced G-modules, given in the first p a r t  [ I ]  o f  th is series of works.

T o  be  more precise, each discrete series representation is characterized by its lowest
K-type. Therefore the embeddings o f discrete series may be described by determining
the  corresponding lowest K-type vectors in  the  induced m odules in  question. In  order
to specify such K-type vectors, we utilize the gradient-type differential operator D2 on
K \ G  introduced in  [7 ] fo r  a  geometric realization of discrete series, and give (a system
of) differential equations characterizing the  embeddings o f discrete series.

1.1. The discrete series for G .  A t th e  beginning, le t u s  f ix  no ta tion  and  recall
briefly  som e fundam ental facts fo r discrete series representations. For m ore detailed
accounts, see [I, § 1] and  the  papers cited there.

L et g  and I  b e  the L ie a lg eb ras  o f  G  a n d  K  respectively, and  g=f+p  a Cartan
decomposition o f  g .  B y th e  assum ption rank(G)=rank(K), g  h a s  a  com pact C artan
subalgebra t contained in  I. D e n o te  b y  4  the  root system  of the complexification gc-=
CO R g of g  w ith  respect to  tc=CO R t. T h e  totality  4 ,C 4  o f c o m p a c t ro o ts  fo rm s  a
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root subsystem o f 4 .  W e denote by W(resp. W c )  the W eyl group o f 4(resp. Cl e).
O nce and for a ll w e  fix  a positive system  ZI-cF• o f LI,. L et E l  b e  th e  s e t  o f  linear

form s A  on  tc  sa tisfy ing  th e  following three conditions :

(1 .1 ) (A , a)#0 fo r an y  aE4, i .  e ., A  is 4-regular,

(1 .2 ) (A , 15)::--_-0 fo r an y  pE4t, j. e ., A  is 4t-dominant,

(1 .3 ) th e  map expH—>exp<A +p, H > (HEt) gives a  unitary character of
T = exp  tcK , e ., A + p  is  K-integral.

Here ( , ) denotes th e  W-invariant, non-degenerate bilinear form on  t t , th e  dual space
of tc , induced canonically from the Killing form o f  gc, and  p  is  ha lf  the  sum  of positive
roots in 4  w ith  respect to  any fixed positive system.

B y Harish-Chandra, the set S  p a ra m e tr iz e s  the  discrete series o f  G a s  follows.

Proposition 1.1 (c f . [ I , P rop. 1 .1 ]). (1 ) For each A s E t ,  there ex ists a unique (up
to equivalence) discrete series representation  7rA o f G  w hose character eA=tr(rA) is ex-
pressed as

1 (1.4) 0A (expH ),(- 1 ) ( d i m p ) / 2

D ( H )
 1E.Ewcdet(W)e(wil'11)i

fo r  H E i fo r  which D(H)=4LE4+(eo,11>I2 c < a , 1 1 > 1 2 )  does not vanish, w here 4+= faELII
(A , a)>01.

(2) The map A ,-7rA gives a bijective correspondence from  S  onto the set of equi-
valence classes of discrete series representations o f G.

W e  c a ll  A E ,S l t h e  Harish-Chandra param eter o f  discrete series arA. Note that
ZI+DZIt b y  (1.2).

Now se t fo r  A EL-7 - ,

2=A — pc+pri=(A -2p,)+p=(A +2p.)— p,

1 1
p =Y ie z i+a, p c =  •LI.e,dta, pn=p—pc

w ith  the positive system  4 + c 4  in Proposition 1.1. T h e n  cl i s  4-dominant a n d  K-
integral. L e t  (ri, V 1) b e  a n  irreducible finite-dimensional representation of K  with
4 -h ig h e s t w e ig h t A . T h e n  th e  discrete series 7rA has low est K-type r2 :

Proposition 1.2. (c f. [I, Prop. 1.3]). The representation 7rA, looked upon as a K-
module, contains 72 with multiplicity  o n e . Furtherm ore, the highest weight o f any  K-
type in 7rA is of the f orm  2 + 1 I E j+n a a  with non-negative integers na.

We call A th e  Blattner parameter or the lowest highest weight of 7rA, A=Â+pc— p .

(1.5)

where

(1.6)

1.2. Gradient-type differential operators D 1.,7 actin g  on  induced modules. Let
N  b e  a  closed subgroup o f  G , and  72 a  continuous representation of N  on a Fréchet
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sp ace  F. C o n s id e r  th e  representation 7r(1))=(L, C"(G ; .)7)) o f  G  induced from  77 in
C°°-context:

c -
(1.7) C"(G ; .)7) , { ço: G 1-->  g lço (x n )= ign r igo (x ), (n , x )E N x  GI ,

(1.8) L g yo(x) , --- (p(g -  x ) f o r  gEG , Ç9EC"(G ; )7),

w here w e s e t  i)•-=- 6-,;
1/2 n  w ith  th e  m odular function SN  o n  N  re la tive  t o  a  left H aar

m easure. Through differentiation, C"(G ; 77) has a compatible (g c , K)-module structure.
Later on we often em ploy the notation C '° - In d ,( )  f o r  this induced module r(77).

For any finite-dimensional K-module (r, V), let CT(G ; )7) denote the space of (V e)g ) -
valued C"-functions F  on  G satisfying

(1.9) F(k xn).---=(r(k)0(n) - ')F(x),( k ,  x , n )E K x G x N .

W hen r is irreducible, the  assignment

(1.10) V*OC7(G ; 77)pv*OFI---> <v*, F(•)>EC"(G ;  '7)-

gives rise  to  a K-isomorphism from  the tensor product V*OCT(G ; 72) onto the r-isotypic
component C"(G ; .0, o f  C"(G ; )7). Here (r*, V*) is the contragredient of (r , V), < , >
th e  canonical dual pairing o n  V * X (V 0 g ) w ith  values in  F ,  a n d  w e  e q u ip  CT(G ; .)7)
w ith  the trivial K-module structure.

Now le t (r2, V 2) b e  t h e  low est K -type  o f  d isc re te  se rie s  r i b
and A d=- Ad c, the adjoint representation o f K  on pc . W e  are going to define a gradient-
type differential operator D 2 ,,2 : C72 (G ; 7 2 )  through w hich w e describe the
embeddings of discrete series 7c (2rA)* into th e  induced module 2r()2). T ake an ortho-
normal basis (Xi)1,,2n, 2n=dim p, o f  pc w ith  respect to the herm itian inner product on

Pc induced  from  t h e  K illing form  B  of gc : X2)=---6 ;  (Kronecker's 6 ), where the
bar means the conjugation of pc  w ith  respect to p. T hen  w e  h av e  a  canonical covariant
differential operator 17 2 ,2 f r o m  CT,z (G ;  n) to C72 ,0 A d (G ; n) by

(1.11) 172 ,F(x)=.E1 xF(x)® X i, FE C7 2 (G ; 72),

where

L x  ,F(x)=-(d / dt)F(exp(—t X P ) )• x)I t=o+ -V —1(d / dt)F(exp(—tXP ) )• x)I c-o

w ith X i =XV ) + A /-1X P ) ;  X V ) , X p )c p . Note that  V A . , 2  is  independen t o f  th e  choice
o f  a  basis (X e ).

L e t J„ = _ I\ J , b e  the set of non-com pact roots in  J .  Since p c  decomposes into a
direct sum  of the non-compact root subspaces, th e  h ig h e s t w e ig h t o f  any irreducible
component of V2Op c  i s  o f  th e  form  2+ p w ith  p e /I n . Let (rk, V I) be  the  sum  o f all
irreducicle constituents of V2(Dp c  w ith  h ig h est w e ig h ts  2 - 43, pE 4 = 4 - , nAn, and P2:
V  201)c - V ,T be any  surjective K-homomorphism. Composing F 2 ,,) w i th  P 2 , we define
a gradient-type differential operator D2 0 7  f ro m  C,̀.°2 (G ;  i2) to  C%(G ;  )7) by

(1.12) D2,,,,F=P2(172,,,F(.)).

Notice th a t the  kernel o f  D 2 ,2 ,  one of the  m ain  objects o f  th is  p ap e r, is independent
o f th e  choice o f  P2.
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In  the  special case w here  72 is  the  triv ia l character o f th e  u n it subgroup {1}, D 2,2

reduces to Schmid's D 2 in  [7], and  the  discrete series rA  can  b e  rea lized  on the  L 2 -
kernel o f  this differential operator D2 (c f . [I, T h . 1.5]).

1 .3 .  The kernel o f D2,,2 and the embeddings o f discrete series. F o r  a  AE17,-,',
le t (rA, HA) be  the  discrete series representation o f  G  w ith  Harish-Chandra parameter
A , a n d  (a l, MI) i t s  contragredient. O n e  se e s  e a s ily  f ro m  Proposition 1.1 th a t the
discrete series r 4,1 corresponds to  the  param eter —w o .AE E :  7 t 7 r _ „ , 0A , w h e re  wo i s
th e  longest element of the compact W eyl group W e . W ith  th is  f a c t  in mind , w e study
the  embeddings o f 7r4

A'  instead o f  those o f  r A.
O ne of our m ain results in  P a r t  A  o f  [I ] , ex p la in ed  b e lo w , say s th a t th e  kernel

o f  th e  differential operator D2 02 characterizes th e  infinitesimal embeddings o f  ;11 into
Tr(79) under very weak assumptions on 2 an d  77.

Now le t (M )° denote th e  (O c , K)-module o f  a l l  K-finite vectors in H .  Since 7r',11
contains its lowest K-type (rt V,f) w ith m ultiplicity one, w e identify  V'ï w ith  th e  z-I-
isotypic component o f  7r4j. B y th e  isomorphism (1.10), th e re  corresponds, to each em-
bedding e: (111)°c.C - (G; 77) a s  (gc , K)-modules, a  u n iq u e  e lem ent T E '2 i n  C7a (G ; 72)
satisfying

e(v *)=<v * , r'i(•)>E C - (G ; 77).e21<

fo r a ll v*E V,Tc(1-P.1)°. Clearly, this assignement

(1.13) :  I A, v -== HOITIn c -K (Z 1 1 , Z ( 7))) DC TE‘JE-- C72 (G ; 72)

is  injective.
T hen  w e have the  following

Theorem 1.3 [I, Prop. 2.1 and T h . 2 .4 ]. (1 ) The function 1 2 ' 3 lies  in  the kernel
o f  Da, v : D2, v r ` 1= 0 ,  f o r  each T h e r e f o r e  I  g i v e s  a n  injection from t o
Ker(DA,

(2 ) Furthermore this mapping is surjective: IA ,,2 Iier(1)2,,2) ,  if the lowest highest
w eight 2 =A ± p c — p 7, o f  7rA and the representation (r) , g )  of N  satisfy respectively the
following conditions (FFW) and (WC):

(FFW) 2—E,3 E 0  is Lit-dominant fo r  any subset Q  of A t ,  i . e . ,  2  is fa r from
the walls,

(W C )  there exists a continuous linear functional T  on g  such that, fo r  a
<T , 72(n)v >=0(ncN ) implies v =0 , i.e ., the representation ri is weakly cyclic.

Based o n  th is theorem , w e sha ll so lve  i n  la te r  sections, §§ 3-5, t h e  system s of
differential equations induced from D 2 , ,,F = 0 ,  explicitly for various types of representa-
tions o f  S U(2, 2) induced from  its unipotent su b g ro u ps. T hen  w e  can  d esc rib e  in  § 6
th e  corresponding embeddings o f discrete series.

§ 2. Radial A r -parts o f differential operators Da, v f o r  the unitary group SU(2, 2)

L et G = K A ,N ,  b e  a n  Iwasawa decomposition o f  G, and 77 a continuous representa-
tion of the m axim al unipotent subgroup N .  o n  a  Fréchet space g .  Then the gradient-
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type differential operator D 2,,2 defined by (1.12) is uniquely determined by its restriction
to the  vector subgroup An ,  namely by its radial A r -part R(D 2 ,,).

In  this section, we describe, after [I , §§ 4-5], this differential operator R(D 2 ,,) on
A , explicitly fo r the  special unitary group SU(2, 2) o f real rank two, and  write down
a  system o f differential difference equations o n  A, w h o s e  solutions characterize
the  embeddings o f discrete series into th e  induced module r ( )= C - I n d ( ) .

2 .1 .  T he group SU(2, 2 )  a n d  its  d isc re te  se ries . F ro m  n o w  o n ,  le t  G  be the
special unitary group SU(2, 2) realized as

(2.1) G=igESL(4, C)1g*1 2 ,2 g-=I 2 ,2 1, 12 ,2=diag(1, 1, —1, —1),

where g*-=',g- denotes the  ad jo in t o f a  matrix g .  W e n o w  fix  o u r no ta tion  fo r this
group and its discrete series, used throughout this paper.

Take a maximal compact subgroup K=GnU(4)=S(U(2)xU(2)) (U (k)= the unitary
group o f degree k). We set

(2.2) an=-RI-11-FR H2 w ith H i=  X23+X32, 1/2=X14+ X41 ,

where x 1 2 ,(602,),,, with Kronecker's al,. T h e n  ar  is  a  maximally split abelian subal-
gebra o f  g . L e t  P  denote th e  root system of (g, a r ). T hen P  is o f  t y p e  C 2 . a n d  is
expressed as

(2.3) W ={:r(02±01)/2, ±01, ±02} , çMll2)=26; (1, j=1, 2).

Choose a positive system W± ={(02 -±01)/2, 0,, 0 2} having 0 1 and (02 -00/2  as its simple
roots, an d  le t  11 r ,= T +g(0) be th e  corresponding maximal nilpotent Lie subalgebra
o f  g .  Here g(0) is  th e  root subspace o f g  corresponding to çtr Y. . T h e n  one  obtains
Iwasawa decompositions o f  g  an d  G:

g=f+a p + n„„ G=KA p Arn , w ith  A r =exp an , N r ,=exp

Now we set

(2.4) Ei— (HZ,— X23+ X32)/ 2 , E2=. A71 (H1'4 X144-X41)/2,

(2.5) —(X13+ X43"1" X12 + X42)/ 2 , = (X24 X2I ± X24 + X34)/2

where X i = X k  k  -x„ for 1 k, /1 4. Then it is easily seen that

(2.6) Et E  g (0 ) , E;ECG)Rg((02±00/2)

for 2, j=3, 4 , and  that these s ix  elements form a  basis o f  t h e  complexification

(nm)c of nn,.
L e t  u s  now parametrize th e  discrete series o f  SU(2, 2). Take a compact Cartan

subalgebra t o f g  consisting o f  a ll diagonal m atrices in f. T hen  th e  root system  4  of
(gc, lc), of type  A s, is expressed a s  4={ 131 11 i, j.<4, i * j} ,  where

hg , h g , 114 )) h —h2

fo r diag(h i , hg, hg, h4)E tc. Further one gets 4,= { ±)312, ±- ■g24}. We identify the Weyl
group W  of 4  w ith  th e  symmetric group S 4  o f degree 4  ac ting  on  tc  b y  permutation
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of diagonal en tries. T hen  the compact Weyl group W e is identified with the subgroup
e 2 X e 2  in  the canonical way.

A s in  § 1, we fix a positive system 4t=fp12, p34} of 4 .  Then 4 adm its precisely
six positive systems ztt, 4 j1 j, ••., 4 ,  containing dt :

(2.7) wJZIP w ith  Jj'=- {iSi i  I i< j} ,

where the elements wJ E 1/V are given as

w1=1, n= S 2S 3W il
=

 S2 , wi
(2.8)

wiv=s2s1, W v=S2S3S ]:=S2SIS3, w v i= s 2 s1s 3s2

in  terms of the transpositions s i  o f  i  and i+1 (i=1, 2, 3). Correspondingly, the space
E tc lt  of Harish-Chandra parameters are divided into six  parts :

4=74 =1.11,Jgvi
(2.9)

= A E E 4 HA is 4-dom inant}.

We note th a t  E t  (resp. E -Q  corresponds t o  th e  holomorphic (resp. anti-holomorphic)
discrete series.

2.2. Radial A r -part R(D2,0 of D 2 ,7. i n  t h e  beginning o f  th is  section, let
(7, g )  be a  continuous Fréchet space representation of N n t ,  and denote by g" the space
o f  C"-vectors f o r  17 endow ed w ith th e  usual Fréchet space topology for which the
representation n o n  g "  is  sm ooth . C onsider the gradient-type differential operator
D  : C ;(G  ; 77 ) — > C%(G ; )7). Noting that G=KA,N,„, i s  diffeomorphic to  the direct
product KxA,><N,„ a s  a  C"-manifold, one obtains linear isomorphisms :

r :  C;(G ; 77) C`°(A,, V 2 ®90),

r' : ; 77) 2  C - (A,, V ,Teg - ),

through restriction of functions on G  to  th e  subgroup A .  H ere  C- (A ,, E ) denotes
the space o f  C"-functions on A , w ith values in a Fréchet space E .  We set

(2.10) R(D D : C - (A,, V 10 g - ) —> C - (A,,

and call this differential operator R(D2,,) o n  An , eq u iv a len t to  D2 , ,7. r a d ia l  A,-
part o f D  72.

In order to write down R(D2, 72) explicitly, we give a concrete realization of (r i , V 2 ).
For a  non-negative integer d ,  denote by (r d , V a ) the unique (up to equivalence) irre-
ducible representation of t(2, C ) of dimension d + 1 . Taking a basis (A d ) ) 0 L n d  o f Vd
consisting of w eight vectors, one can describe the  ac tion  o f 1(2, C)=CX +CHH-CX
on V a  as

d(X)f n= f n+i, d(11').f .=(2n — d)f
(2.11)

d(X)f n=n(d—n-Fl)f

w h e r e  X = (  
0 1 0 0 0 0 \

H 0  — 1 ) '  X = (0 0 ' 1 0 a n d  th e  vectors f d+i, f ,  should  be
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understood as zero.
For the lowest highest weight /left of a  discrete series, we put

(2.12) r=-1(111/2), s=2(113'4), u= 2(12,2).

Then r ,  s , u  and  in  add ition  (r+ s + u )I2  a r e  integers by the K-integrability of A.
Further one has r, s O because A  is Zlt-dominant. N ote  th at th e  complexified Lie
algebra fc  o f  K  is isomorphic to f(2, C)eg(2, C)(DC through

(2.13) f(2, C)EDK(2, C)EBCD(Yi, Y2, diag(Y  1 7
2)+z/2 ,2 Ef c .

Then we can (and do) realize the irreducible te-module (r2, V2) by means of the exterior
tensor product r r err s as

(2.14) r2(diag(Y1, Y2))=7,(Y00/v s +iv r Ors(Y2),

T2(z/2,2)=zu/v 2 .

Here Iv  denotes the  identity operator on a  vector space V.

2 .3 . System of differential equations for the coefficients (c k /). Expand a function
w eC - (A p , V 20g - )  in  terms of the basis .ifi rs) = f 1V )Ofis) (0:s- le r, 0 /..<s) of V  2 as

(2.15) gqa)=Ek.i./Ts'Ocki(a) (aE

with ck / EC - (A p, g - ). A s carried out in [I, § 5], we can rewrite the differential equa-
tion R(D2 72)T=O for SiD to a  system of difference equations for the coefficients (c/a ),
which we are going to describe.

Define (differential) operators Lt (i=1, 2), SI (j=3, 4) acting on C - (A p , 9— )  by

(2.16) L v 2 = ( ,± 2 v  - 1  coirb)h, S;11 , ---(e - (0 2+1) 1 2 )71-±-e- ( 0 2- 0 1) 1 2 727)h

fo r hEC - (A p, g - ), where az 12(a)=(d/dt)h(exp(—t111)•a)l t =0 ; i2 -)2(E), 72.-1,=)2(E;) with
the basis E v , E l of (n .)e  in  (2.4), (2.5). Further we set

(2.17) b0=(r-I-s+u)/2, b 1 =(— r-l-s+u)/2, b 2 =(r— s+u)/2, b 3 =(r+s—u)/2.

Using these operators and constants, let us introduce 8 systems C5 j 4, e= +)
of differential difference equations for (c k i ) as follows.

SYSTEM CT

(C i) (k+1)(1+1)(LI±k+1— bo— r — s- 2)ch+1.1+1 - 2(k+1)Stck+1,1

+2(1+1)Stck.i+1 — (Ltd-k+1 — bo)cki=0 (0<k:r —1, 0._.<1 s —1),

SYSTEM C i

( C i :  1 )  2 (k + 1 )(/ ± 1 )(S - 1)Ck+i,t+1+2(k+1)S -2b Ck+1,/

– F(L t± k ± / — bo)cki=0

(C. : 2 )  (k +1)(LI-Ek —1—r - - b2- 1)ck+i,z+2Stc k i =0 (O.< k_<_r —1, 015s),



552 Hiroshi Yamashita

SYSTEM

1 )  2(k+1)(14 - 1)(r — k)Ck+i,c+i - 2(1+1) ,S=1. Ck./+1

± (L td — k+1 — bo)Ckt=0 (O k < r ,  0 < 1 s -1 ) ,

(C -i :  2 )  (l+1)(1, 4
2 — k+l— s— lh-1)ek ,i+i - 2S tck i=0 (0 <k <r, 0 <1 <s —1),

SYSTEM C71

(C T : 1 )  (L t±k +1— bo)ck i=0 (0 <k  <r, 0 <l<s) ,

(C i : 2 )  (k+1)(r— k)ck + L i— Stck i=0 (0 < k < r ,  0 1 < s ),

(CT, :  3 )  (14-1)(s-1)ck./+1-1-SIck/=-0 (0 k r, 0<1<s),

(C i: 4 )  (14 — k —l+b 3 )ck i =0 (0 <k <r,

SYSTEM Ct

( C t )  (k +1)(l+1)(LT—  k — l+b0-2)ck +13+1 - 2(k +1)Sick +1,

(0< k <r — 1, 0<1s —1),

SYSTEM CH,-

(C I :  1 )  (k +1)(LT — k —l±b 0 -1)c k +1,1+2ck ,1-1+2STick1=0 (0< k <r — 1, 0<l<-  s),

(C t : 2 )  (1, — k+l— b 3 -2)ck i-i-2(k +1)S -
3"ck + 1,1=0 ( 0 < k <r — 1 , 0 ls ) ,

SYSTEM CI

(C I: 1 )  (1+1)(LT — k ,i+1+2ck _ 1 ,1 -2 S ic k i=0 (0 <k <r, 0 <l< s -1 )  ,

(C I: 2 )  (1,--kk— l— b 3 -2 )c k i-2(1+1)STi ck,i + 1=0 (0_< k ,  0 <l<s - 1 ) ,

SYSTEM Cl"

(C t :  1 )  (LT — k —l+b o )c k i =0 ( 0 <k <r,  0 <1 s ) ,

(C t : 2 ) c k _i ,i —Si•cki=0 (0 < k _ r ,

(C -
4' :  3) ch.c-i+STcki-=0

(C I : 4 )  (Lid-k-E1— b 3 )c k i =0 ( 0 <k <r,0 <l<s ) .

Here, undefined terms, for instance ck+1,3+1 i n  (C i :  1 ) ,  should be understood as
z e r o .  W e  n o te  th a t e ach  sy s tem  C5 fo r  (c k t )  is obtained by rew riting  a  differential
equation Psi(172 so)=-0 fo r  yo, where P5 is  a  K-homomorphism o n  17,10pc such that

(ImP5 the  im age of Pj).

See  [I , 5.2] fo r the  precise definition o f P5.

T heorem  2.1 [ I ,  T h . 5 .5 ].  Let 2=A —  pc - - p i, be the Blattner parameter o f  discrete
series 7rh. Then a function sp-=Ek,tP,1 . 8 ) O ck tEC - (A p, V  20g - ) lie s  in  th e  kernel of
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R(D 2 ) :  R(D 2 )ço= 0, i f  and only if  the coef f icients c k i  (0 k - r , O l S s )  satisfy the
system of  differential equations C[2, 72] specified below:

C7, for A S ;  C t  f o r  A 1 7
1 ,

CIA, n i ct, C , c i  f o r  A S ;  C T ,  C t, C I  f o r  A EEi'r,

C l  f o r A E E PH ; C  f or A E ,E 71,-,

where 7-2;(I J VI) are the sets of Harish-Chandra parameters defined in  (2.9).

By Theorem 1.3 we can determine the embeddings of discrete series ILl
i j into the

induced module 7r(72)=C- -Ind%(72) by solving the above system C[2, 77].

§ 3 . Solutions of the system CIA, n i  fo r a  character 72: Cases I  and III

Let )2 be a  one-dimensional representation (=a character) o f  N n i . I n  these two
sections, §§ 3 a n d  4, we solve explicitly the system of differential equations C[2, )2]
in  Theorem 2.1 for each lowest highest weight A o f  discrete series. A m ong other
things, our results for non-degenerate )2's give a  complete description of (ordinary, or
non-generalized) Whittaker models for the discrete series.

As is readily seen from the expression of C[2, n i  in 2.3, one can solve the systems
C[À, 77] for A =2± p c — p ,E 7, 4,- J _ < V I )  quite analogously to those fo r A EE,1., J*-=
VI— J ± I .  So we concentrate on three cases AEE -, w ith  J=I, II, III. We study the
cases J=I, III in this section, and the most difficult but the most interesting case J=II
in  the next section.

3 . 1 .  Coordinates and parameters. In what follows, we identify the vector group
A n w ith  R 2 :

(3.1) R2D(t1, t 2 ) :=-> exp(—t1li1 — t2H2)EAp

using the basis (H1)1 1,2 of a , in  (2.2). Then the differential operator a, and the func-
tion e- çb in (2.16) turn out to be a/at, and e"i respectively. Noting that any character
of N„, is trivial on the commutator subgroup [N,„ one finds

(3.2) 722,n(E2)_=o, (j=3 , 4)

for E 2 ,  E -
 E i(n M )C  ( 1177) Cl• This implies that

(3.3) L i,a/at2, s :,-=—S.7=et2-̀ 1.7) .

which we denote respectively by L 2 a n d  S i  from now on.

3 .2 .  C ase  I : A E,E,p. Let us begin with the case where the  papameter A  is ZIP-
dominant, and solve the system C[2, 0={(C; : j)115/S4} for (c k i ) , c k / EC 0 (R 2 ), with
O < k r  a n d  1:)- /- s. Now suppose n*O. Then the condition (Cr : 3), applied for
/= s ,  implies ck 2 =0 for O k r. Again by (C : 3), we find

z
S ! ( S — l ) !  (  1  ) 8 - 1

1!
C k 8 = 0

S_ 3
f o r  0 5 / s .



554 Hiroshi Yamashita

Hence the system  C P , n i  does not have non-zero solutions if 723=0. Analogously,
one obtains the same conclusion for 727=0.

So we consider the remaining case 72i=72,7=0. Then ( C :  2 )  and (C i : 3 )  are
equivalent to

(3.4) c k i= 0  unless (k ,1)=(0, 0).

Further (C i:  1 )  and (C i : 4 )  for (k , l)-=(0, 0) imply that

(3.5) cok=tc•exp(— V-1 e2 t 1 ni+boti— b 3t2) for som e , EC ,

where 77, , n(E 1 ) , and bi  (i= 1 , 2 , 3 ) are the integers defined in (2.17).
Summarizing the above discussion, one gets a complete result for A EEP as follows.

Proposition 3.1. T h e  system o f  differential equation CIA, 72] with AE2_7 1  has a
non-zero soution (c k i )  i f  and only i f y/ =.02z=o, o r  equivalently ni,(<02 _,,,),2)—o. In  this
ca se, th e so lu tion s a re un iqu e up to scalar multiples, and are given by (3.4) and (3.5).

Note. This case of holomorphic discrete series has been studied by Hashizume for
any simple Lie group of hermitian type.

3 .3 .  Case III : A  E E L . We now proceed to the cases of non-holomorphic discrete
series. For A in EL, the system CIA, 771 in question consists of four equations (Ca: 1),
(C i: 2 ).

Lemma 3 .2 .  S et y k i=k !  e- ( " 2 ) t 2 ck/ fo r  O lz. r  and Then (c k t )  is a solu-
tion o f th e system C[A , n i if and only i f  (y k i )  satisfies th e  following system o f  differential
equations:

(3.6) 2S3yk+1./.=-(L2—k+/+b2)Yki,

(3.7) 2S4yh1=—(L2-1-k+1—/—b2)Yk+13,

(3.8) 2(1+1)(s—l)yk-1-1,2+1—(Lt+L2+21—s)yki

f o r  0 -5.-1 k r - 1 ,  0 l s ,  and

(3.9) 2y ki= — (LT+1,2 - 2(14- 1)±s)Yk+1,i+1

f o r  0 k < r- 1 ,

P ro o f .  It is easy to  see that the equations ( C t : 2 )  and (C i : 2 )  fo r (c k i )  are
rewritten respectively as (3.6) and (3.7) for (y k i).  With S S -}= —S:i ( j=3 , 4) in mind,
add the both hand sides of (C I: 2) and (C i : 1 ) (resp . (C t : 1 ) and ( C :  2 ) ) ,  and then
transfer the resulting equation for (c/a) into that for ( y k i ) .  We thus get (3.8) (resp.
(3.9)). Thus the system CIA, 72] is equivalent to (3.6)-(3.9). Q. E. D.

We now note that the integers r ,  s  and u  in (2.12) fulfill the inequality

(3.10) r— s-2 >  u
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by the  Ziti r dominancy o f A=2±p c —  pn .
In  order to solve (3.6)-(3.9), le t  u s  study two cases: 7) 1 = 0 a n d  )2i = 0, separately.

3 .3 .1 . Case of 7) 1 # 0 .  L e t k be a n  in teger satisfy ing 1_. k r — s -1 .  (Such a  k
actually exists by (3.10).) Using (3.8) repeatedly, one deduces

(3.11) ifI(L-IH-L2+s-2/)}yko=0.i=0

Furthermore (3.9) with 1= - 1  implies

(3.12) (L1+L2-1-s)yko=0.

Lem m a 3.3. One has an equality

(3.13) fI (Ltd- 1 , 2 — 21)}37 = .- (4 —  1  e 2 t 1 711) ' - 1 Y1=0

fo r  any  yEC - (R 2 )  satisfy ing (LT-F4 2)y=0.

Pro o f . We show  (3.13) by the induction on s. If  s= 0 , o n e  gets

(Lt-FL2)Y=-- (LT-1- L2+4V - 1 e2 t 1 )71)Y=(4V-1 e2 `1 7)1)3/ •

Now le t  s>0 and suppose that the form ula holds fo r  s - 1 .  Then t h e  left hand side
o f  (3.13) is calculated as

s_1
II (L i- - L2-21)}y=(Lt-1- L2 — 2 s )i  (LT+ L2-21)}y1=0 1=0

= (L -H- L 2 -2s)(4V —1 e 2 1 1 7)08( b y  t h e  hypothesis)

= (4 V -1  e2 1 1 7)1)5(Lt-FL2)Y (by [L t, 2se2sto

=(4A/ 4  e 2 1 1 7)0 3 + 1 3,

Thus we have proved the  desired formula. Q. E. D.

The conditions (3.11) and (3.12) combined with t h e  above proposition tell us the
following fact that im poses a severe restriction on the solutions of (3.6)-(3.9).

Proposition 3 .4 .  If 7) 1 = 0 , then the coefficients y k i  w ith 17‹ k —1 -_-‹-r— s -1  are identi-
cally  zero for any  ( Y u )  satisf y ing the differential equations (3.6)-(3.9).

P ro o f . L et 1_-< k r — s -1 ,  an d  p u t y,=--es12yk o . T hen  w e have (LT-EL2)Y, ---=0 by
(3.12). So, applying the form ula (3.13) to 3, „  one obtains

(4 V -1 A (L t-F L 2 -2 0 } A

=es t 2{f1(L t-FL 2 d-s-20}y k o = 0 (by (3.11)).1=0

Since we conclude 34=0, o r  y k o = 0 .  T h is  together w ith (3.8) proves th e  pro-
position. Q. E. D.
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Now define m atrices of functions I'""=(Y k ?") and  Y ( " ) =(371. " )  w ith  y g 0 ' ,  A1. ° )

C°(R 2) 0 < l s )  given by

(3.14) .3q20)=6(31.exp(— e20Ir71±b2ti—bot2),

(3.15) =61;37.exp(V -1

By m aking use of Proposition 3.4, w e can solve th e  system  (3.6)-(3.9), equivalent
to  C[2, 72], under th e  assumption 72, 0.

Theorem 3 .5 .  L et 0 [2 , n ] be the space of solutions of differential equations (3.6)-
(3.9). I f  771 =7)(E i )  does not vanish, then 0 [2 , ni  is described as

 

(0)

CY (")

C Y ""

CY (")EDCY C")

i f  723*0, 7),T*0,

i f  rïi=0, 777, 4, 0,

i f  77 # 0 ,  Y ri =0 ,

i f  723—n‘ï=0 .

(3.16) 0[2, )9]=

 

In particular, the system (3.6)-(3.9) admits a non-zero solution if  and only i f  yfi•72 -
4
- =0.

P ro o f .  It follows immediately from (3.6), (3.7) and Proposition 3.4 th a t  O P , 6 =
(0) i f  79-,•r iT *0 . Now assume 27 .----() and  72 0. T hen one finds from (3.6) and  (3.7)

S o k t—  (k+1 — /— b2).Yk+1./ f o r  0-_<

Note th a t  1-__/)2 _r— s-1 b y  (3.10). I n  v ie w  of Proposition 3.4, o n e  deduces Y 1 = °
unless k = r,  and m ore strongly y 0 1 =0  fo r (k, 0) b y  (3.8). So th e  system  (3.6)-
(3.9) fo r (Yki) is reduced to th e  following one  fo r y , . :

(LTd-L2H-s)37,0=0, (L 2 +15,
3 )y , 0 =0 .

Solving these two differential equations, we get 0[2, 12]=CY ( r".
T h e  rem aining tw o cases can be treated analogously, and w e obtain (3.16).

Q. E. D.

3 .3 .2 . Case of In  th is case, LT an d  LT both reduce to the constant coeffi-
cient differential operator L,,a/ati, and  the  equations (3.8) and (3.9) a re  equivalent to

(3.17) (L H-L 2+s)Y k1=0 (0.‹k_<.r, 0/_<s),

(3.18) yh t= (1+1 )yh+ i,i+ i ((K k_.<r-1,

F irs t assume th a t  .7) -n T *0 . T hen , by  a  sim ple com putation, w e  c a n  show  the
following

Lemma 3.6. T he solutions (37 k t) e--- [ 2, n i  correspond bijectiv ely  to C0(R2)
satisfying

(L1+ L2+ s)57=0, ((L2) 2 +4)7 -0 2 e " 2 - 2 `1)9

through the mapping (Ykt)'—*51===h20.
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Exchange the  variab les (t 1 , t 2 ) f o r  (y 1 , y2 ) w ith  v1=t1-E-t2, v2=t1—t2, and  pu t .9=
e 2(vi +v2)9 = e 28t,y  Then the  above two equations fo r  5  a re  rewritten respectively as

= o -1( ,_;9 ) 2

a y ' V2
+1672-i72:Te-"215,=0.

O

T h is  means that the solution S, depends only on v 2 , and are characterized by an ordinary
differential equation of second order. Thus we find

Proposition 3.7. The solution space 0 [2 ,  i j  f o r  (3.6)-(3.9) is two-dimensional i f
n i =0  and 723. nr,- *O.

Secondly, consider the  case  ri -
s
- =0, 771i- # 0 .  Since S3 = 0  in  this case, the subsystems

(3.6), (3.7) turn out to be

(3.19) (L2-1z±l±h2).Y ki=0

S o k i= —(k +1— l —6 2 )y k + 1 , 1 ( 0 k _ < r - 2 ,  0 . 5 / s ) ,
(3.20)

2S4yr_13=—(L2d-b3-1)yrt (0 <1 <s).

We now solve th e  system (3.17)-(3.20) which is equivalent to (3.6)-(3.9). It follows
from t h e  first equation i n  (3.20) that Y 1, 1 =0  fo r  k — l<b 2 . By (3.17) and  (3.19), one
gets 312 2 2 . --ae - " I  fo r some tt C.

If az0 , then th e  functions y k i  a r e  uniquely determined by y22 0 through (3.18) and
should be o f th e  form y k 1 =ay a2 "  with

(3.21) yi(,720) =
1 (  S 4 ) k - l - b 2 e - S t 1

/(k— l— b2)! l! (k — lb2 ),

0 (k— l<b2).

Conversely, Y (b2°)=(A22") actually satisfies (3.17)-(3.20).
I f  a=0, Y (")=(34P ) )  defined in  (3.15) gives a unique (up to scalar multiples) solu-

tion o f (3.17)-(3.20) such that y i,20 =0.
Thus we have gained th e  following

Proposition 3 .8 . I f  771 =77 -
3
- =0  and 77,7=0, the matrices of functions (b2°) and Y (")

form  a fundamental system of solutions of differential equations (3.6)-(3.9). In particular
one has dim 0 [2 , 77]=2.

The case 7,2, =0  can be studied analogously, and  so we om it it here.
A t la s t, le t 77=1 N m  be the  triv ia l character o f  N . ,  i. e., 271=)2 =7) -4- = 0 .  In  the

first p a r t [I ]  w e  h a v e  solved th e  system (3.6)-(3.9) in  this case, and determined the
embeddings o f discrete series into the principal series.

Proposition 3.9 (c f . [I , Prop. 7.1]). The space 0[2 , J, 1 N . ]  o f  solutions is three
dimensional, and is described as

0 [2 ,1 N ,,,]=C Y "s ) G C Y 'ro eC Y 0 2°)

w here w e def ine r " ) , Y ( " )  and Y(b20 )  respectively as in (3.14), (3.15) and (3.21), with
S 4 =7) 1 =0  in mind.
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Now th e  system (3.6)-(3.9), o r  equivalently C [2, )2] w ith  A------2-1-p c — p „ E L  has
been solved perfectly f o r  any character )2 of the m axim al unipotent subgroup N n t .
F o r later reference, we summarize th e  results o f this subsection in the following table.

Table 3.10 (Case III).

) 9 1 )23 724 dim 0[2, ni

o
* * (resp. 0) 0 (resp. *) 1

* 0 0 2

0 2

0 * (resp. 0) 0 (resp. *) 2

0 0 0 3

Here *  stands for a non-zero complex number, and , fo r instance , the  first line should
be understood a s  "dim 0 [2 , n]=0 if  th e  numbers )2j , and7) -4-  a r e  all non-zero".

§ 4 .  Solutions o f  th e  system C[2, )2] f o r  a  character Case II

Now le t u s  proceed to the case of Harish-Chandra parameter A--=- 2+p c —p n  in
Contrary to t h e  previous two cases, we find that th e  system C[2, consisting of
three subsystems Ct, C ,  C (se e  2 .3 ) , has a non-zero solution for each character )2 of
N n i . In  view o f Theorems 1.3 and 2.1, this sh o w s th e  ex is tence  o f an  embedding of
discrete series r i  in to  th e  induced module 7r()2)=C - - In a r .(22) for any character n (at
least when A  satisfies th e  condition (FFW ) in  Theorem 1.3).

4 .1 .  A system  f o r  (h k i ). A t first, we transfer th e  system C[2, 72] for (cki), ek1
C- (1r) into a  m ore  convenient form to handle. Set for each ck i ,

(4.1) hk i=k  I l! exp{V --1  e2 t in1+(k +/— b 0 )t1+(b 3 — k— l-2)t 2 1.c k i ,

where )21 =)2(E 1)  a n d  r , s, I);  (0 _ 1 _ 3 )  a re  th e  integers in (2.12), (2.17).

P ro p o s itio n  4 .1 . The system of functions (c k l )  is a solution of C[2, ni if and only
i f  (h ki) satisfies the following differential equations:

(4.2) e2"2-t1)(L ,±2L 2-4V -1 e 2 t1) - 2 b  )//- k+1,1-1-1 (L 2 2b 3 -2 )/t h i =0

((K k r - 1 ,

(4.3) ez"2 L )\ -2 - 1--` 2117

(4.4) (L2-1-2(k+1—r))hk+1,/±2 hki=0 (05",

(4.5) (L2-1-2(/+1—s))hk,1+1-2)2'ihk/=0
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(4.6) 2e2(t2 t on -V2k+i,s-1-Lihks-0

(4.7) —2e2"2-'072:411,.z+I±Lzh,q=0

where L 1=5/at i  fo r  i =1, 2.

P ro o f .  By a n  elementary computation, we see that (C i:  2) (resp . (C i: 2 ): (C i : 1 )
w ith  /= s ;  a n d  ( C i :  1 )  w ith  k = r )  fo r (c h i )  is equivalent to (4.4) (resp. (4.5); (4.6);
and (4.7)) fo r (h k z ). B y using (4 .4 ) a n d  (4 .5 ) , (C i)  is rew ritten  a s  (4.2). Further,
(C i: 1 )  and (C i:  1 )  with k < r, 1 < s , both turn out to be th e  same equation (4.3).

Q. E. D.

In  the  succeeding subsections, we study separately three case s  according to the
degeneracy of and solve th e  system (4.2)-(4.7) explicitly fo r each case.

4 .2 .  Case of '9i•Y) = 0 .  In  this case, any solution (1131) o f  (4.2)-(4.7) is uniquely
determined by h = h „  through th e  re la tio n s  (4 .4 ) a n d  (4.5). B y  (4.5) and (4.7), h
should fulfill the  equation

(4.8) (L1L2-4S3S4)h=0.

Further one gets from (4.2), (4.4) and (4.5),

(4.9) {( L2—  2h3—  2)/A 4S 3 S4(L + 2 L 2 — 4 A/-1 e"i 77 z -2 6 3)1h =0 .

Conversely, it is easily checked that any hEC - (R 2 )  satisfying (4 .8 ) a n d  (4 .9) can
be extended uniquely to a solution  (h hi) o f (4.2)-(4.7) through (4.4), (4.5). We thus
get the  following lemma.

Lemma 4.2. T he solutions (123 1 )  o f (4.2)-(4.7) correspond bijectively t o  hEC - (R 2 )
satisfy ing (4.8) and (4.9), through h = h , .

Now se t g3 = L U 1 h  fo r 0 <  j 3 ,  and consider th e  vector g= t (90, 91, 92, 9 3)  o f func-
tions qf  o n  IV .  Noting that h=(1/4S 3 S4 )L 2 q0 ,  we obtain from (4.9) a first order differ-
ential equation fo r q as

(4.10) L,,q= D( 2 ) q ,

where D <" = - (dn o --1, ) is a  matrix with elements d.g ) EC - (R 2 )  given by

d x ,d 1 v ,d g ) =1 ,

(4.11)
dR )=-16,S S L dg' =8{S3S4(2 -V —1 e2 t '91-Fh3+2)—(b3+2)} ,

d H) = —4(21)3 +5+2.3 3 S 4 ), dfl ) =2(6 3 +4),

c/ =0 otherwise.

Next we compute L i g. Differentiating the  both hand sides o f  (4 .8 ) : q1 =4S 3 S 4 h,
first by t , and then by t ,  repeatedly, one deduces

(4.12) Liqi=4S3S4(L1-2)h=4S3S4q0-291,



for 3 = 1, 2 , 3 , and

(4.16)

One thus obtains

14+2
dg ) =2(2 V -1  e " iv i ± b 3 -1-1), a —  2

14+3 1 
c4 d= =

2.33.34 4S3S4'

S3S4

*

D( 2 )—Do) ,

0 1 0 0

0 0 1 0

0 0 0 1

*  *  *

/*

— 2  0  0

*  — 2  0

■* —2
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(4.13) 1.12L1q4=L4(L.1294)-=4S3S4E0 j.v)2i-vp2'90-2Li2÷1q0

for each integer j. These equalities together with L243-=E020s3dgq0 yield

(4.14) E 053dN  qv ( 0 5 j - 5  ,

where dj1,)  is defined by

(4.15) c/j1,) , (  7
- -

,
1 )2i + i - vS3 S4 (v< i), —2, dN = 0  (v > j)

(4.17) L iq = D " )q  w ith  D ) =(d,51,00.;, 3.

Note that the matrices D " )  a n d  D ( 2 ) a re  o f the  form

where *  stands for a non-zero function on R 2 .
Summarizing the above discussion, we find

Proposition 4.3. The system (4.8), (4.9) of difterential equations fo r h E C - (R 2 )  is
equivalent to (4.10), (4.17) for q=t(q 0 , q 1 , q2 , q3 )  through the relation q,=1,1

2 L 1 h (0  j 3).

The next lemma shows the complete integrability of the system (4.10), (4.17).

Lemma 4 .4 .  One gets a bracket relation L 2 D ( ' ) — L i D " ) = [D " ) , D " ) ].

This equality is proved by elementary but very long calculations, and so we omit
the proof here.

T h e  above complete integrability condition allows us to solve the system (4.10),
(4.17), which is equivalent to C [ , 72], perfectly a s  follows.

Theorem 4 .5 .  For each vector yEC 4 ,  there exists a unique solution q of (4.10), (4.17)
w ith the initial value condition q(0, 0)=y at the origin (0 , 0 )eR 2 . This q is given by

(4.18) q(ti, t 2 )=  e x p So
l  D( ' ) (v i , t 2 )(114 e x p iyo

2  D(2 ) (0, v2)dv21.3'

for (t 1 , t 2 ) E I V .  Therefore, the space 0 [2 , v ] of solutions of C[2, 12] is four-dimensional.
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4 .3 .  C ase  o f 72-
3
- 0, 72 = 0 .  W e now  p u t  h '=h 0 3 . B y  the condition # 0 , any

solution (113 1 )  o f (4.2)-(4.7) is uniquely determined from h ' through (4.5) and (4.6). As
in  t h e  beginning o f  4 .2 , we can easily find differential equations fo r  h ' to  yield the
solutions (h31), a s  follows.

Lemma 4.6. The systems (h k 1 )  o f  functions satisfying (4.2)-(4.7) are in bijective
correspondence to h 'E C - (R 2 )  such that

(4.19) (L  4 V  — 1  e2 3 In 1 + 4 r -2 -2 6 3 )L1h' -F(L 2-263-2)L 36' ,

(4.20) (L 3 -2 r)L ih '= 0 ,

through h '=h 0 1 ,  where r  and b3 are the constants given before.

L et us solve (4.19) and (4.20). W e se t h"=(L 3 - 2 r ) h '.  T h en  h " satisfies

(4.21) L 1h"=0, (L 3 -2 6 3 -2).L 2 h 11 =0 .

Solving these differential equations fo r  h " , one im m ediately deduces that h ' is  of the
form

(4.22) h'=e2"20(ti)-Fpi+p2e"b3+'",

fo r  some p i , !AEC and OG C - (R ) .  H ere w e use  the  fact that the numbers 2r, 2(6 3 +1),
0  are distinct w ith  each other by the condition

r-Fs+2>— u> lr— sl +2

coming from th e  Lltr dominancy o f  Harish-Chandra param eter A.
Conversely, th e  function h ' in  (4.22) satisfies (4.19) a n d  (4 .20) i f  a n d  o n ly  i f  0

fulfills

(4.23) { (L ,-4 V -1  e 2 t172, + 4 r -2 -2 6 3 )L i +4r(r—b 3 -1)}0=-0 ,

w hich is a second order ordinary differential equation for 0 and so can be easily settled.
In  th is  w a y , th e  system  (4.2)-(4.7) fo r (hk,) has been completely settled for case

.)7 #0, 727, = 0 .  One can deal w ith  th e  case  72 =0, 72.#0 analogously. Thus w e obtain
th e  following

Proposition 4 .7 .  Assume that one and only o n e  o f  th e  numbers and equals
zero. Then the solution space 0 [2 , nj of  the system C[2, 771 is of dimension 4 f or A =
2+ pc— p,,G E PI . When n -i # 0 ,  solutions (h k 1 )  of  the system (4.2)-(4.7), which is equivalent
to  cp, ni, correspond bijectively  to triples (re,, 0 )  with p i , !AEC and 0(t i )EC - (R )
satisfying (4.23), through h o s = h ',  where h ' is as in (4.22).

4 .4 .  C ase  o f 72-i= = 0 .  In  th is  c a se , th e  sy stem  (4.2)-(4.7) sp lits  in to  r+ s+ 1
number o f  subsystems, fo r  (hkOk _/=1,, w hich have been already settled
in  t h e  f ir s t  p a r t  [ I , 7.1.21. T o  b e  more precise, in  th a t place w e  p u t an  additional
assumption 72,= 0 , and  studied not C ase  II  b u t C ase  V . Nevertheless th e  same discus-
sion goes through in  th e  present case even i f  77, does not vanish.
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Proposition 4.8 (c f . [I , Prop. 7.2]). One has dim 0[2 , 72] = 7  fo r  any character 27
o f N . w hich is trivial on the root subgroup expg((02-01)/2)CN ., or equivalently 77 =
yri •=0.

Now the  system C[2, 771 has been completely solved for each lowest highest weight
and each character 72 o f N ..

§ 5. S olu tions o f the  system C[2, 77$ ] fo r  a n  infinite-dimensional monomial
representation 77e .---C"-Ind''NT P ()

We now proceed to the  case where )2 is infinite-dimensional. L e t N'----exp it' be
the  analytic subgroup o f  G  with Lie algebra

(5.1) n'=g((02-0,)/2)EDg((02+01)/2)eg(02)cu..

Then N ' is th e  unipotent rad ica l o f a  un ique  (up  to  G-conjugacy) m axim al cuspidal
parabolic subgroup o f  G  (see [I , § 8]). F o r  a  character e o f N ',  consider th e  repre-
sentation )7$ = C - -IndZir'(e) o f N .  induced from e in  C- -context.

In  this section, we solve the system C[2, )2] o f differential equations in  Theorem
2.1, whose solutions give rise to embeddings o f discrete series into th e  induced module

C"-Ind%,(e).

Although our result here is not perfect fo r all the  cases of (2, e), we can specify and
study precisely the  most interesting case where the  solution space f o r  C[2, 72] turns
to be non-zero and finite-dimensional.

5.1. Operators L t a n d  S ; in coordinates (t 1 , t2, y ). Set AT =expRE i cArim .  Then
one gets a  semidirect product decomposition N .=N .x  N ',  so we can realize t h e  mo-
nomial representation n,  o n  g - --C "(N .)  as

(5.2) 77e(g)w(x)=e(n'(g, x)) - 'ço(72;„(g, x)) (x EN 70

fo r  g E N ,  and  q)E C " (N ) , where g 'x =n '.(g , x )n i(g , x )  w ith  n;„,(g, x)EN,;„ n'(g, x)
E N '.

L et us introduce coordinates of the  d irect product space A , x N .:

R 3 p (t 1 , t2, y) (exp(—t1l-h—t2H2), exp(— yEi))./I n x i \ T „

and  regard  an  element cE C "(A ,, g) a s  a  function i n  (t„ t2 , y )  i n  such a  way that
exp(—yEi)—>c(ti, t2, y) expresses the value of c (in  g ) a t the  point exp(—t1ii1—t2112)E
A .  Using (5.2), one finds easily that the  differential operators L (i=1, 2), S ; ( j=3 ,
4) o n  R 3 = M 1,12 ,5 , defined by (2.16), a re  expressed as

(5.3) Lt=a1-1-2v —1 etia,, 14= 32 (=L2(Put)),

(5.4) S=et2-t1(H-e-i-(e2t1± y)et),

where a,,alay a n d  e )  denotes th e  v a lu e  o f  differential o f  e at the  element E Ic
8((Çl'2±01)/2)cEne.
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In  the  succeeding subsections, we study separately three cases of parameter Ac
F.,' -‘; in  order of I I I ,  I I  (according to the  difficulty), a n d  solve th e  system CLI, )2A
o f differential equations fo r  c h i EC - (R 3 ). A s noted before, th e  results f o r  remaining
three case s  J=VI, IV  a n d  V can be derived from those fo r J*=VI—P-I-- 4. III, II by
certain substitution of parameters.

5.2. Case I :  A E E t. I n  th is c a se , discussing just a s  i n  3.2, we immediately
obtain th e  following complete result.

Proposition 5.1. (1) If  the  character e  is non-trivial, the system C [2 , 720  does not
admit any  non-zero solutions.

(2) Assume that e  be the triv ial character o f  N'. T hen the solutions (cki)k,1 of
C[2, ,70  are in bijective correspondence to çoEC - (R 3 )  satisfy ing ( Lt—b o )ço-=(L 2 +1) 3 )go=0
through ck1=5MT (Kronecker's 5' ) In particular, the solution space OP, 72e] is infinite-
dimensional.

5.3. C a s e  I I I :  A cEtn . We define functions e , ( j= 3 , 4) o n  R 3 by

(5.5) if S- 0, 01 = 0  if S-}-0 .

Note that ,S) is identically zero  if and  only i f  e!i---=&-7=0. Furthermore, 0 ;  is  a  func-
tion of two variables (t1, y) and  independent o f t2.

P u t dki(ti, t 2 ,  y )= k  e - 2 r+2 ) `2ck 1 (t i , t 2 , y) for 0 /z..<r and O l s. A s  i n  Lemma 3.2,
th e  system C[2, n,] fo r (cki)k,/, consisting of fou r equations : 1), (C• : 2) (see 2.3),
is transferred into th e  following system (5.6)-(5.9) fo r (d 1, 3 ) 3  1 :

(5.6) 2Sid3+1,3=—(L2—k±l±b2)d31,

(5.7) 2S-4' c —(L 2 + k +1— — b2)d h +1,1 ,

(5.8) 2(/+1)(s—Od3+1.1+1=—{(Lt+k+/—b 2) -0-3-i(L2—k+/+b2)ld33,

(5.9) 2d3,1_1=—{(L7—k-1-1-kb0)-04(L2±k+1—l—b2)Idk+1,1,

where 0 k:--1-:r-1  and 0</f1-:s.
To solve th e  above system fo r  (d31)3.3, we g o  into the case-by-case study depend-

ing on  the  vanishing o f th e  functions S .).
CASE 1. First assume that SI*0 o r equivalently I e7I l e -}I #0, fo r  j=3, 4. Let

Z1 denote th e  se t o f  zeros o f  functions S ):

(5.10) ZI=1(t1 , t 2 , y )E R 3 I(e 2 1 i-±

which is empty i f  - hRe(ei- e3)-0, and  otherwise it forms a  line vertica l to  th e  (t 1 , y )-
plane.

L et Q be any simply connected domain in  R ' contained in  Q - R 3 \ ( Z l , i Z t ) .  We
solve the  system (5.6)-(5.9) restricted o n  D . S et di=db,+/,/, 0 / s, with in  mind the
inequality 1 b2.<b3=b 2H-s r-1  (by (3.10)). Then (d 1 ) 1 satisfies fo r  0/ f---"s,

(5.11) LNI=4S3Std1 (by (5.6), (5.7)),
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(5.12) 2(/+ 1)(s —/)d z+i= — { (LT+ 2/ — s)— L 2 } d (by (5. 8)) ,

(5.13) 2d1_1=— { (1,T -2l+s)— e4L 2} d1 (by (5.9)),

Conversely, one sees easily  tha t any  (d 1 )1 , d i E C - (Q ) ,  satisfying (5.11)-(5.13) can
be extended uniquely to a solution of (5.6)-(5.9) through the relations (5.6), (5.7). Thus
we get

Lemma 5.2. The system o f differential equations (5.6)-(5.9) f o r  (dk i)k .1 on  Q  is
equivalent to (5.11)-(5.13) fo r  (d1) through cl1=- 4 2 + 1 , 0 - < l s .

Now put h1=L 2 d 1 a n d  introduce a  function p  with values in C2 1 ) by

(5.14) d1, ••• , d s , ho, h s , ••• , 110.

Then (5.11)-(5.13) is  rew ritten  in to  th e  following system o f  first order differential
equations for p:

(5.15) (Lt—Di)P=(LT—DT)P—(L2—D2)p=0.

Here Dt and D2 are the matrices of functions defined by

[  x ev•/ [ Y& 4 . I I [ 0 I
(5.16) Dt= , D i = , D2-=

4S1- S a  X 4,S S,TI Y 4S-s-S-a O _I

w ith I  (resp. 0) the identity (resp. zero) matrix of degree s+1, and

a 0 1 9 0  0 . . .0  0  0 —cro 0 • • • 0 0
0  a l  PI • 0  0 — 2 —r 10

, Y=0  — 2  •

o  o  -  •  •  0 a 3 i 9 8 1 6 • 6
o  o  •  ... 0  0  a, 0 0 . . .  —2 —a1

w ith a 1 =s-21, 1.9 1 =2 ( l+1 ) ( l— s ) . In  v iew  o f  (5.3), we immediately see that (5.15) is
equivalent to

(5.17)
( a1—B)p----(ay—IY )p=c52—D2)p , o
w it h  B =(D t+D T )12 , B '=—  V -1  e - 2 1 I(Dt— DT)14.

Lemma 5.3. One has the bracket relations of differential operators

(5.18) [L t— D ,  L2 - D2]=0, [L t— Dt, LT—DT]=2(LT—D7) - 2(Lt

which imply that the operators al— B , a u — B ' and a2— D2 in  (5.17) commute with one
another.

The relation (5.18) is proved by an  elementary but little lengthy calculation, so we
omit the proof.

This lemma shows tha t the system (5.17) is completely integrable on Q, and thus



Embeddings of discrete series 565

we get th e  following consequences.

Proposition 5 .4 .  I f  S O and S -,t 0, the system (5.17) has ex actly  2(s+1)-number
o f  linearly  independent solutions on any simply connected domain Q  contained in Q =
R 3 \ ( Z U

Theorem 5 .5 .  Let OP, .72]  be the space of solutions of the system G[À, r) e]  on W.
Then one has

(5.19) dim0[2, 7) ,]_.<2(s+1)

fo r  any character e  o f N' such that letl+le.71 -iL--0  (j= 3, 4). Furtherm ore, the equality
holds in  (5.19) i f  e  satisf ies in addition R e ( e e ) . - '5 -A  and Re(eTi -el) 0 (since D =R ' in
this case).

We do not discuss here o n  th e  behavior of solutions p  o f (5.17) at th e  se t ZV,JZ1
o f singular points of the system, and  we leave it open.

CASE 2. L e t  u s  consider t h e  remaining case We may assume
without loss o f generality . T h en , it is readily verified that, f o r  any yoE G"(W) such
that

(LTd-bi)yo,(L2d-b8)ço=0,

the  matrix o f functions (31k i)k,/ with y k i =462.5) satifies the  system (5.6)-(5.9) in ques-
tion. So one has

Proposition 5 .6 .  I f  either the f unc tion  S i o r  S t  on  R 3 is  iden tically  zero, the
solution space 0[2 , 77e ]  for the system C[2, 776 ]  is infinite-dimensional.

Remark 5 .7 .  We can solve th e  system (5.6)-(5.9) perfectly on any simply connected
domain in 113 o n  which both functions eV and  0 4 h a v e  n o  singular points (OV should
be understood as ze ro  if  S -2- - ()). T h is  is done through an argum ent similar to that in
3.3, so we do not carry  it here again.

5 .4 .  C ase II: A ESti . In  this case we obtain th e  following result which allows
u s  to say that th e  discrete series ;el with A  (FFW), occurs in  th e  induced G-module
7.070 with infinite multiplicity.

Theorem 5 .8 .  I f  A=À+ p c — p„  is 4h-dominant, th e  system of differential equations
C[2, 72$ ]  has infinitely many linearly independent solutions for any  character e  of N'.

The assertion  for the triv ial e=1 N , follows from [I, Prop. 9.5], w here w e have
solved th e  system C [2, 1N , ]  completely. In  general, we can construct infinitely many
solutions of cp, yie i  in  a n  explicit way.

I n  what follows, we assum e that $ is generic : I e7 I + I C I (j=3, 4), and  we
shall prove th e  above theorem by constructing solutions through p o w er series. W ith
the argum ent in  4.3 in  m ind, one can deal with th e  remaining case  in  a  similar way,
fo r  which th e  details are  omitted here.
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Note that th e  system C[2, 7 )6 ] consists o f five equations (C t), (C 2  i), (C 3  i) (i=
1, 2 ) i n  2.3, a n d  th a t  th e  function S t  (resp. S t)  in  (Ci : 2) (resp. in : 2)) is not
identically zero by th e  genericness of So any solution (Ckl)05k57 - ,0 s  o f  C[2, n e ]  is
uniquely determined by the  sing le  c „ through (C : 2 ) and  (C i : 2 ). We set

(5.20) q=exp(b3t1—(b0+2)t2)• cr3•

(Compare with (4.1) for (k , l) , ( r, s ) .)  T hen , just a s  in  Lemma 4.2, we can specify a
system o f differential equations fo r q, equivalent to CDR• )70, a s  follows.

Lemma 5.9. The function q satisfies

(5.21) (L t.L 2-4SIS t)q=0 ,

(5.22) {(L2-2b3-2)LN-4SISJ-(LT—(e3±e4)L2-2b3)}9=0

Conversely , any  qEC°'(R 3 ) satisf y ing (5.21)-(5.22) g iv e s  rise  to  a unique solution of
C[2, n e ]  through (5.20), (Ci : 2) and 2).

5 .4 .1 .  Construction of formal so lu tion s. L e t u s  c h a n g e  th e  v a ria b le s  (t i , t2, y)
into (z , w) as

(5.23) z =e21H-V -1 y, w=etz,

and consider th e  system (5.21)-(5.22) on the domain {(z, w) CxR 1R ez>0, w>0}. Then
one finds

Lt=2(z-F-2)•8/a2, LT=2(z+2)•a/az , L 2 =w •a/aw ,
(5.24)

St=w .

2   )
1/2

- (  - Eze:F/), 81= ( —e.7+2v)/(e+zel, ).
z+z

Now we look for the formal solutions q o f  th e  form

(5.25) q= E - q i (z )w 2 i with functions q1 i n  z.J-01!

Since L 2 W 2 1 = -21 .W 2 1  , (5.21) and (5.22) are transferred into the following differential difference
equations fo r (11 :

(5.26) (z+2)25q5la2-2s(z)q1_1=.0 ,

(5.27) jj' q ) +2s(z){a/az—(b3-1- (i - 1)(e3+e4))/(z - 1- 2)}q,_,=0,

where s(z) - -(e -3±zel)(6 -4- ±ze t) and j ' , 1—b3 -1.
Notice that b3 +1  is  a positive in teger. W ith  (5.27) in  mind we p u t a n  additional

assumption on  q) :

(5.28) q,=0 f o r  j<b 3 +1.

T hen, by (5.26), qb , ,  is  holomorphic in z, and by (5.27) each q, is determined recursively
from th e  first qb ,+1 . Conversely, we find that any holomorphic function q3 3 + 1  gives a
solution (q,) through (5.27). More exactly, one gets
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Proposition 5.10. The systems o f  functions q,EC - (R 3), j= 0 , 1, 2, ••• , satisfying
(5.26)-(5.28) correspond bijectively to holomorphic functions y9 in  th e  right half plane
D= {z EC IRez>0} through

(-2s(z))) 
(5.29) f o r  j . b 3 +1,

c h —  j !  j , !( z +2)2,_b,

where .1.,,,(z) is given by

(5.30) /3,9,(z)-= ((2+2) 2 . :33z  )
i

(z+ 2)+ 2 .s(z) - b3- * (z ) .

P ro o f. It rests only to show the expression (5 .29). Noting s- '(as/az)-- --- (03-Fe4+2)/
(z+2), one sees easily a relation of differential operators :

(

a b3 i - ( 1  i)(e3+e4)) 5 ( z ) ;_ 1 (z ± 2 )2 3 _ 2 ( ,-1 )
az z+2

a
= s ( z ) i - i ( z + . 2 ) b 3 - 2 ( i - 1 )

fo r each 1 > 0 .  Define a  function eh through q; =(-2s(z))i(z+2)b3 - 2 ig i / j! j' !. Then
(5.27) is rewritten as

(5.31) 4;=(z+2)2(aelf_daz),

and thus we obtain the desired expression (5 .29) w ith  ço(z)=(b3+1)!/(-2 )3 + 1 •923 ±,(z).
Q. E. D.

5 .4 .2 . Convergence of the formal power se r ie s . Let be a polynomial in z and
put w(z)=s(z)b3÷ 1 's3(z). We show that the formal power series (5.25) w ith  q ,  in  (5.29)
converges and gives a solution of (5.21)-(5.22).

In order to evaluate lq,(z)1 for zE D , we need the following

Lemma 5 .1 1 . For any non-negative integer k, the differential operator ((2+2) 2 .a/az) k

is expanded as

(5.32) ((2+2)2.a/a2)k=Ei,is k Ct(2 + i  /  a ZY ,

where the coefficients ct are given recursively by

(5.33) c r i= cL i+ (k  + i)d , c1=1,

and they are estimated as

(5.34) )k  !.2

The proof of this lemma is straightfoward by the induction on k, so we omit it here.
By means of (5.32), / , ( z )  is expanded as

in§;) (  i (1)3+2)!a k
( z  + V + t -  k +1( ) (z )

i=0 k =0 )  0 3 + 2 —  k)! a )
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where m(i)=min(b 8 +2, i) , and one finds from (5.34),

c ( ki ) ak

We thus obtain the  estimate

(5.35)I .so(z)1 .1"(/' !) 2 (z+i+ 1) 2 5 -1(63+2) ! • y
_,„(z)

fo r z E D , where th e  sum in  th e  right hand side is finite since "y) i s ,  by assumption, a
polynomial in z. T h is  together with (5.29) and (5.26)-(5.27) implies the  following

Proposition 5.12. The series q =E ; , 0 (1/ jpq i (z )w ", and also its term-by-term deriva-
tives converge absolutely and uniformly on any compact subset of the domain { (z , w )c
C x R 1R ez >0, w>0}, and q  gives a sotution of the system of differential equations (5.21)-
(5.22).

In  this way we have obtained a  system o f  infinite linearly independent solutions of
CIA, 72 1 , and our Theorem 5.8 is now completely proved.

§  6 . (Generalized) Whittaker models for th e  discrete series

L et 7rA be the  discrete series representation o f  G  with lowest highest weight A=
A— p c - I- ton a n d  7:',11 denotes its contragredient. Gathering our results in  th e  preceding
sections, we now determine (generalized) Whittaker models f o r  th e  discrete series n 'A`
(Theorems 6.1 and 6.5). We give our results on embeddings under a slight assumption
on  regularity o f  2: (FFW ) in  Theorem 1.3. Nevertheless, one would be able to show
that th e  results remain true fo r any A by using Zuckerman's translation functor [11].
See [I, § 3] fo r the  embeddings into the principal series.

O ur group G=S U(2, 2) has, up to G-conjugacy, two proper cuspidal parabolic sub-
groups. We describe th e  embeddings of 701 into G-modules r e ,N =C - -Inn (e )  smoothly
induced from characters e  o f  t h e  unipotent radical N  o f such a  parabolic subgroup.
These representations r E .  N include so-called Gelfand-Graev representations and some of
their generalizations (see [4 ], [5 ], [6 ], [9 ]).

6.1. Embeddings o f  discrete series into r  72,Arm . First consider the  case  N =N .,
the m axim al unipotent subgroup o f G in  2.1. By Theorem 1.3, embeddings o f  r',1 into

as (gc, K)-modules correspond bijectively to solutions of the system of differential
difference equations C[A, given in § 8 3 - 4 .  H e re  e=-.72 is a  character o f N m . We
thus establish our first m ain result on embeddings a s  follows.

Theorem 6 .1 .  Let 7) be a character o f N „„ and denote by 721 =7)(E 1)  and 72.7=72(Ey)
(1=3 , 4) the values of n a t the elements E 1 , E .7E(il.)c in 2.1. Assume that the Blattner
Parameter A o f  discrete series 7rA satisfies the condition (FFW ) in  Theorem 1.3. Then
the representation r',ki with AEz.7:; see (2.9)) occurs in v ,N m =C - -Ind% (7)) as
a (gc , K )-submodule with multiplicity m (J, n) given in Table 6.2 and m (J*, 72)--m(J , n)
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f o r J*=V1— J + I .  In the table, *  means any non-zero complex number, and, for example,
the f irst row should be understood as: i f  n i * 0  and 72-

i  *0 (j= 3 , 4) then m(J, 72)=0, 4 or
0 according as J= 1, II or III.

Table 6.2. Multiplicity m (J, 72)

ni 72-3- n,"T I ii ill

. , 0 4 0

* (resp. 0) 0 (resp. *) 0 4 1

0 0 1 7 2

0 * 0 4 2

0 * (resp. 0) 0 (resp. *) 0 4 2

0 0 0 1 7 3

Remark 6 .3 . (1 ) T h e  first row in  Table  6.2 describes th e  embeddings o f r',1 into
Gelfand-Graev representations, an d  th e  last one  show s the  number o f  embeddings of
2r'À  into the principal series induced from the minimal parabolic subgroup P . containing
INT,, (see [ I , § 6]).

(2 ) Note that th e  function A—Klim Homgc _K(7, r„,„)  is constan t as fa r as  A  in
the  above theorem lie s  in  a  fixed Weyl chamber.

Examining th e  columns of T ab le  6.2, we find th e  following fact.

Corollary 6.4. The discrete series 7C1
A' appears in the induced representation r,,,N n i =

C- -Ind%(72) f o r ev ery  character y  o f  N„, if  and only i f  A  is  4 ,-dom inan t w ith J=11
or V.

Although in  Theorem 6.1 we have written down t h e  multiplicities only, we can
describe th e  embeddings 2r .,1C> r,,,N m  explicitly using the lowest K-type vectors in c ( r )
which h a v e  been determined in  §§ 3-4 by solving th e  system o f differential equations

v].

6.2. Em beddings of discrete series into r  e , N , .  Secondly, l e t  N ' b e a s  i n  5.1,
t h e  unipotent ra d ic a l o f  m a x im a l cuspidal parabolic subgroup P/DP i n ,  a n d  e be a
character o f  N ' .  Since [ ',N , = C- -Inap()= C - -Indg,,,,(720 w ith  n--= C- -IndNN r (),  the
system o f differential equations C[2, 77e1, studied in  § 5, characterizes th e  embeddings
o f  r',1 into th e  induced module r  e .p p .  Summarizing th e  results in  § 5, we immediately
get th e  following

Theorem 6 .5 .  ( 1 )  For a character e  of  N', set eI= e(E I)( j= 3 , 4) as in 5.1. Under
the assumption (FFW ) on A, the multiplicity  m/(A, e)=dimHorno c - i c ( i r t  e ,N , ) o f  7r1 in
rE ,N , is given in Table 6.6. In  the table, r  and s  are the non-negative integers in  (2.12),
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and other conventions are the same as in  Table 6.2.
(2 ) Furthermore there holds the equality m'(A, e)=2(s+1) f or AEEti l (resp. 2(r+1)

f o r AEEPv ) i f  Re(e .e ) ( )  and Re(eZeT") 0 (resP. Re(e-3-et)?:-0  a n d  R e a 7 e -49 0), w here
the bar means the complex conjugation.

Table 6 . 6 .  Multiplicity m'(A, e)

Iev+im i zl.d-1,ti ' , l a II ,  V In (resp. IV)

* * 0 co bounded by 2(s+1)
(resp. 2(r+1))

* (resp. 0) 0 (resp. *) 0 00 co

0 0 co co co

This is  o u r second main result on embeddings of discre te  series. F rom  the above
table we find

Corollary 6 . 7 .  A  discrete series representation o f  G  occurs in  some induced module
r E ,N ,  w ith f inite (non-zero) multiplicity if  and only if  the  corresponding Harish-Chandra
param eter A  is in  SEPU1 ,7Pv .

This type of embeddings, w ith finite m ultiplicity, is o f  particu lar importance for
classifying irreducible representations of a semisimple group through generalized Whit-
taker models.
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