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Embeddings of discrete series into induced
representations of semisimple Lie groups, II

—Generalized Whittaker models for SU(2, 2)—

By

Hiroshi YAMASHITA

Introduction

This is the second part of our work on embeddings of discrete series into various,
important induced modules for semisimple Lie groups. Applying the general method
established in the first part [10] (referred as [I] later on), we describe in this paper
(generalized) Whittaker models for the simple Lie group SU(2, 2) in an explicit way.

To be precise, we consider representations smoothly induced from characters of the
unipotent radical of a cuspidal parabolic subgroup. The infinitesimal embeddings of
discrete series are determined almost completely for such induced modules. Among
other things, through this series of works we find all the embeddings into Gelfand-
Graev representations, and also the zero-th n-cohomologies for the discrete series of
SU(2, 2). Note that our group is of real rank two, and that it is locally isomorphic
to the (restricted) conformal group on the Minkowski space.

Now, let G be a connected semisimple Lie group with finite center, and K a maxi-
mal compact subgroup of G. We always assume the rank condition: rank(G)=rank(K),
which is necessary and sufficient for G to have a non-empty discrete series [2]. Each
discrete series w4 of G has a unique lowest K-type 7; with highest weight A(see 1.1).
Further, the representation z,4 can be realized on the L%*kernel of gradient-type, G-
invariant differential operator D;(see [7], cf. [I, Th. 1.5]). This D; is defined on the
G-vector bundle over K\G attached to the K-module t;.

From this realization of =4, we can deduce that the L2-kernel of D, characterizes
the embeddings of =%, the contragredient of m,, into the left regular representation of
G on L*G). In fact, the exterior tensor product zj‘@:u occurs in the bi-regular re-
presentation of G XG just once, and the functions in L%-Ker(D;) give rise to lowest
K-type vectors in L*(G) of type t¥Cx=%|K with respect to the left K-action.

Suggested by this fact, we formulated in the first half of [I] a general method for
describing infinitesimal embeddings of discrete series into C>-induced G-modules. This
is done by letting the operator D; act on the z¥-component of the induced module
n(7)=C=-Ind%(n) mentioned above, in a natural way (see 1.3 for the the precise defini-
tion). We have shown that, as in the regular representation case, solutions ¢ of the
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resulting differential equation D; ,¢=0 characterize the embeddings of z% into =(%) as
(8¢, K)-modules :

Homgc_x(ﬂ'ﬁ, 7'L'(7]))E Ker(D;, 7]) ’

under certain assumptions on A and 7 (see Theorem 1.3). Here gc denotes the com-
plexified Lie algebra of G.

Although D; ,¢=0 is a single equation for a vector valued function ¢ on K\G/N,
it can be rewritten into a system of differential difference equations for the coefficients
of ¢. By solving such a system of differential equations, we determined in [I] all the
embeddings of discrete series into (generalized) principal series for SU(2, 2).

In the present article, we continue to study the case G=SU(2, 2) in more detail.
Up to conjugacy, our group G has two proper cuspidal parabolic subgroups P, and P’,
where P, is minimal and P’'DP, maximal. Let N,, N’ denote the corresponding
unipotent radicals respectively. Here, in Part II of our works, we deal with the G-
modules [';, y=C*-Ind%(¢) induced from any character & of the unipotent subgroup N=
Nn or N’, and we explicitly determine the embeddings of discrete series =% into I »
by the method explained above.

Our main results are given in Theorems 6.1 and 6.5, which describe the multiplicities
of embeddings. One can construct the embeddings concretely through the corresponding
lowest K-type vectors for I'¢ y which we gain by solving the equation D; p=0.

Our results cover, as extreme cases, embeddings into the following two types of
important representations. On one hand, the representation Z"IN_ y Wwith the trivial
character £&=1y gives rise to the (generalized) principal series, studied in [I]. On the
other hand, one gets (generalized) Gelfand-Graev representations (cf. [4], [6], [8], [9])
when & is generic.

To catch the main flow of our study, we now state three consequences of our
results which allow us to classify the whole discrete series into three subclasses through
generalized Whittaker models. Fix a regular integral infinitesimal character X. Then
G has exactly six mutually inequivalent discrete series representations with the same
infinitesimal character X. Two of them are holomorphic and anti-holomorphic discrete
series, and the others are non-holomorphic ones. Assume that X is sufficiently regular
Then we obtain the following.

(1) Holomorphic and anti-holomorphic discrete series are characterized by the
property that they never occur in /' y with generic £ and N=N, or N'.

(2) There exist precisely two discrete series that appear in all ['¢ s, and so in
particular they have ordinary Whittaker models in the sense of [1], [5].

(3) The remaining two discrete series can be embedded, with finite multiplicity,
into generalized Gelfand-Graev representations [ ¢ y. with certain generic &s. This
property marks off these two discrete series from the other four.

In this way, the discrete series is classified into three subcategories. This idea of
classifying representations goes way back to a pioneering work of Gelfand and Graev
for SL, early in the 1960’s.

This paper is organized as follows. In §1, we review after [I, Part A] our general
theory that tells how to describe the embeddings of discrete series into induced G-
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modules n(n) through the gradient-type differential operators D;, .

On and after §2, we concentrate on the case G=SU(2, 2). Let G=KA,N, be an
Iwasawa decomposition of G, and 5 a continuous Fréchet space representation of the
maximal unipotent subgroup N,. Since K\G/Nn=A,, any solution ¢ of D; ,¢=0 is
uniquely determined by its restriction to the vector subgroup A,=R? We describe in
§2 the radial A,-part of D, ,, and give a system C[4, ] of differential difference
equations on R?, which characterizes the embeddings n%c.z(p)=I", y,=C>-Ind% (7).

The succeeding three sections, §§3-5, are devoted to solving the system C[4, 7]
for each 2 and for the following two types of Nn-representations 7. First in §§3-4
we study the case where p=¢ is a character of N,, and then in §5 the case of infinite-
dimensional representation ne:C“‘-Ind%i"(&) induced from a character & of the unipotent
radical N’ of P’. Our results are perfect for almost all pairs (4, £), and they enable
us to describe in § 6 (generalized) Whittaker models of discrete series n% for the induced
G-modules "¢ y with N=N, or N’. In Tables 6.2 and 6.6, we give a list of multipli-
cities of embeddings of #% into ¢y, which seem to be very important invariants
attached to the discrete series.

In a certain case with infinite-dimensional 7;, we construct a family of infinitely
many, mutually linearly independent solutions of C[4, 5¢] through formal power series
(see 5.4 for details). This technique of construction is similar to the ones employed
in [1], [3] and [6], although our object of study, i.e., the discrete series, is different
from theirs.

The author expresses his gratitude to Professor Takeshi Hirai for valuable advices
and kind discussions in this presentation.

§1. Gradient-type differential operators and embeddings of discrete series

Let G be a connected semisimple Lie group with finite center, and K a maximal
compact subgroup of G. As in Introduction, we assume that G and K are of equal
rank. In this section we review a general theory for describing embeddings of discrete
series into various induced G-modules, given in the first part [I] of this series of works.

To be more precise, each discrete series representation is characterized by its lowest
K-type. Therefore the embeddings of discrete series may be described by determining
the corresponding lowest K-type vectors in the induced modules in question. In order
to specify such K-type vectors, we utilize the gradient-type differential operator D; on
K\G introduced in [7] for a geometric realization of discrete series, and give (a system
of) differential equations characterizing the embeddings of discrete series.

1.1. The discrete series for G. At the beginning, let us fix notation and recall
briefly some fundamental facts for discrete series representations. For more detailed
accounts, see [I, § 1] and the papers cited there.

Let g and t be the Lie algebras of G and K respectively, and g=f+p a Cartan
decomposition of g. By the assumption rank(G)=rank(K), g has a compact Cartan
subalgebra t contained in f. Denote by 4 the root system of the complexification g¢=
CQrg of g with respect to tc=C®prt. The totality 4.C4 of compact roots forms a
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root subsystem of 4. We denote by W(resp. W.) the Weyl group of A(resp. 4.).
Once and for all we fix a positive system 4f of 4.. Let &7 be the set of linear
forms /A on {¢ satisfying the following three conditions:

(1.1) (4, a@)#0 for any a4, i.e., A is d-regular,
(1.2) (4, B)=0 for any 4}, i.e., A is 4df-dominant,

(1.3) the map expH—exp{A+p, H> (Ht) gives a unitary character of
T=expiCK, i.e., A+p is K-integral.

Here (, ) denotes the W-invariant, non-degenerate bilinear form on t¥ the dual space
of ¢, induced canonically from the Killing form of g¢, and p is half the sum of positive
roots in 4 with respect to any fixed positive system.

By Harish-Chandra, the set &7 parametrizes the discrete series of G as follows.

Proposition 1.1 (cf. [I, Prop. 1.1]). (1) For each A= E}, there exists a unique (up
to equivalence) discrete series representation w4 of G whose character O, =tr(z,) is ex-
pressed as

1

(1.4) @A(epo):(__l)mimp)/zW {2 wew, det(w)ecw 4 1)

for Het for which D(H)=TIaeg+(e‘® 12 —g ¢ %) doos not vanish, where 4*={ac 4|
(A4, a)>0}.

(2) The map A—mx, gives a bijective correspondence from E} onto the set of equi-
valence classes of discrete series representations of G.

We call A=5¢ the Harish-Chandra parameter of discrete series w4 Note that
4*D4F by (1.2).
Now set for A&},

(1.5) A=A—pc+ 0, =(A=2p)+p=(A+2p,)—p,
where

1 1
(1.6) p= 5 Daesta, Pc=72medja, Pn=p—pc

with the positive system 4*cC4 in Proposition 1.1. Then A is 4f-dominant and K-
integral. Let (r;, V) be an irreducible finite-dimensional representation of K with
di-highest weight 4. Then the discrete series w4 has lowest K-type 7;:

Proposition 1.2. (cf. [I, Prop. 1.3]). The representation w4, looked upon as a K-
module, contains T, with multiplicity one. Furthermore, the highest weight of any K-
type in x4 is of the form A+ .estn. with non-negative integers n,.

We call 2 the Blattner parameter or the lowest highest weight of 74, A=2+p.—px.

1.2, Gradient-type differential operators D, , acting on induced modules. Let
N be a closed subgroup of G, and % a continuous representation of N on a Fréchet
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space 9. Consider the representation n(p)=(L, C(G; 7)) of G induced from 7 in
C>-context :

oo

(1.7 C(G; N={p: Gr— Floxn)=75(n)"'¢(x), (n, x)ENXG},
(L.8) Loyo(x)=0(g™'x) for g€G, eC=(G; 7),

where we set §=03"?y with the modular function 6y on N relative to a left Haar
measure. Through differentiation, C*(G ; ) has a compatible (g¢, K)-module structure.
Later on we often employ the notation C>-Ind%(%) for this induced module z(7).

For any finite-dimensional K-module (z, V), let C(G ; ) denote the space of (VQF)-
valued C=-functions F on G satisfying

(1.9) F(kxn)=((R)Q7(n) HF(x), (k, x, n) e KXGXN.
When 7 is irreducible, the assignment
(1.10) V*QCL(G ; p)Dv*QF — (v*, F(-)>eC(G; 7)-

gives rise to a K-isomorphism from the tensor product V*QC%(G ; 5) onto the r-isotypic
component C*(G; ). of C*(G; 5). Here (z*, V*) is the contragredient of (z, V), <, >
the canonical dual pairing on V*X(VQZF) with values in &, and we equip C3(G; %)
with the trivial K-module structure.

Now let (71, V;) be the lowest K-type of discrete series w4, A=24+p.—p.E5F,
and Ad=Ad,, the adjoint representation of K on pc. We are going to define a gradient-
type differential operator D, ,: C7(G; 7)— C3(G; n) through which we describe the
embeddings of discrete series x%=(z4)* into the induced module w(7n). Take an ortho-
normal basis (Xi)isisen, 2n=dimp, of pc with respect to the hermitian inner product on
pe induced from the Killing form B of gc: B(X, X,;)=08% (Kronecker’s ), where the
bar means the conjugation of pc with respect to . Then we have a canonical covariant
differential operator V,, , from C%,(G; 7)) to C%ead(G; 7)) by

(L1D) Vi yF(x)=Sigizn Ly, F)QX:,  FEC(G; 1),

where

Ly F(x)=(d/dt)F(exp(—tX{P) x)| -0+ v —1(d/d)F(exp(—1X{®)- x)| =0

with X;=X®+v/—1X®; X, X®ep. Note that V,, , is independent of the choice
of a basis (X;).

Let 4,=4~\4, be the set of non-compact roots in 4. Since pc decomposes into a
direct sum of the non-compact root subspaces, the highest weight of any irreducible
component of V,;®pc¢ is of the form A+8 with f=4d,. Let (z7, V1) be the sum of all
irreducicle constituents of V,R®pc with highest weights A—8, f=di=4*N4,, and P;:
V:®@pc— V7 be any surjective K-homomorphism. Composing V;, , with P,, we define
a gradient-type differential operator D; , from CZ,(G; %) to C3(G; n) by

(1.12) D; F=P,(V, ,F(-)).

Notice that the kernel of D, ,, one of the main objects of this paper, is independent
of the choice of P;.



548 Hiroshi Yamashita

In the special case where 7 is the trivial character of the unit subgroup {1}, D, ,
reduces to Schmid’s D; in [7], and the discrete series =, can be realized on the L2-
kernel of this differential operator D; (cf. [I, Th. 1.5]).

1.3. The kernel of D; , and the embeddings of discrete series. For a AcZF},
let (x4, Hy) be the discrete series representation of G with Harish-Chandra parameter
A, and (z%, H%) its contragredient. One sees easily from Proposition 1.1 that the
discrete series #% corresponds to the parameter —w,Ae&7: n¥=mx_, 4 where w, is
the longest element of the compact Weyl group W,. With this fact in mind, we study
the embeddings of n% instead of those of 4.

One of our main results in Part A of [I], explained below, says that the kernel
of the differential operator D, , characterizes the infinitesimal embeddings of =% into
n(n) under very weak assumptions on 4 and 7.

Now let (H¥)" denote the (g¢, K)-module of all K-finite vectors in H%. Since n%
contains its lowest K-type (z¥, V¥) with multiplicity one, we identify V¥ with the z¥-
isotypic component of n%. By the isomorphism (1.10), there corresponds, to each em-
bedding ¢: (H%)°S.C=(G; 7) as (8¢, K)-modules, a unique element 17t in C2(G; 7)
satisfying

(W)=, T )HEC(G; )k

for all v*eVic(H%)'. Clearly, this assignement
(1.13) Y: I ,=Homy,_k(z%, z(n)2c—> T CT(G; n)
is injective.

Then we have the following

Theorem 1.3 [I, Prop. 2.1 and Th. 2.4]. (1) The function Yt lies in the kernel
of Diy: Dy ,T0=0, for each ¢=1,.,. Therefore Y gives an injection from I, , to
Ker(Dy, 5.

(2) Furthermore this mapping is surjective: I, ,=Ker(D,, ,), if the lowest highest
weight A=A+p.—pn of w4 and the representation (y, F) of N satisfy respectively the
following conditions (FFW) and (WC):

(FFW) 21—3peqB is di-dominant for any subset Q of 43, i.e., 2 is far from

the walls,

(WC) there exists a continuous linear functional T on F such that, for a v=g,

(T, p(n)v>=0(neN) implies v=0, i.e., the representation 7 is weakly cyclic.

Based on this theorem, we shall solve in later sections, §§3-5, the systems of
differential equations induced from D, ,F=0, explicitly for various types of representa-
tions of SU(2, 2) induced from its unipotent subgroups. Then we can describe in §6
the corresponding embeddings of discrete series.

§2. Radial A,-parts of differential operators D; , for the unitary group SU(2, 2)

Let G=KA,N, be an Iwasawa decomposition of G, and 7 a continuous representa-
tion of the maximal unipotent subgroup N, on a Fréchet space &. Then the gradient-
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type differential operator D;, , defined by (1.12) is uniquely determined by its restriction
to the vector subgroup A, namely by its radial A,-part R(D;, ,).

In this section, we describe, after [I, §§4-5], this differential operator R(D;,,) on
A, explicitly for the special unitary group SU(2, 2) of real rank two, and write down
a system of differential difference equations on A4,=R? whose solutions characterize
the embeddings of discrete series into the induced module z(%)=C>-Ind% (7).

2.1. The group SU(2, 2) and its discrete series. From now on, let G be the
special unitary group SU(2, 2) realized as

2.1) G={geSLH, C)|g*l,.g=1,.}, I, ,=diag(l, 1, —1, —1),

where g*='g denotes the adjoint of a matrix g. We now fix our notation for this
group and its discrete series, used throughout this paper.

Take a maximal compact subgroup K=GNU@&)=SU@2)xU(2)) (U(k)=the unitary
group of degree k). We set

(2.2) a,=RH+RH, with H =X+ X5, H=X+Xu,

where X;;=(0,0%),., with Kronecker’s 7. Then a, is a maximally split abelian subal-
gebra of g. Let ¥ denote the root system of (g, a,). Then ¥ is of type C, and is
expressed as

(2.3) U={x(potd)/2, £¢1, 2o}, $i(H)=20} (i, j=1, 2).

Choose a positive system ¥*={(¢»*+1)/2, ¢1, ¢} having ¢, and (¢.—¢,)/2 as its simple
roots, and let nn,=2l,ey+g(¢) be the corresponding maximal nilpotent Lie subalgebra
of g. Here g(¢) is the root subspace of g corresponding to ¢=¥. Then one obtains
Iwasawa decompositions of g and G:

g=t+a,+1., G=KA,N, with A,=expa, Np=expin.
Now we set ‘
(2.4) E\=~v—1(Hfs— Xos+ X12)/2, E,=v—1(H{,— X+ Xu1)/2,
(2.5) Ei=(X13+ X7 Xio 7 X12)/2, Ef=(Xou— Xo1 + Xou 7 Xa1)/2,
where H,,=X,,— X, for 1<k, [<4. Then it is easily seen that
(2.6) Eieg¢),  E;€CQra(¢2+¢1)/2)

for 7=1, 2, =3, 4, and that these six elements form a basis of the complexification
(l‘lm)c of M.

Let us now parametrize the discrete series of SU(2, 2). Take a compact Cartan
subalgebra t of g consisting of all diagonal matrices in f. Then the root system 4 of
(8¢, te), of type A, is expressed as 4={B:;|1<s, j=<4, i#j}, where

‘Bij(diag(hlr hg, I, ha)):hi'—hj

for diag(hi, he, hs, h)=tc. Further one gets d.={+f;, +B.}. We identify the Weyl
group W of 4 with the symmetric group &, of degree 4 acting on t¢ by permutation
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of diagonal entries. Then the compact Weyl group W, is identified with the subgroup
&,X&, in the canonical way.

As in §1, we fix a positive system 4f={Bi;, Ba} of 4. Then 4 admits precisely
six positive systems 4f, 4%, ---, 4%;, containing 47 :
2.7 A5=w,4f with di={B;li<j},
where the elements w,W are given as

wi=1, W= Sa, W= S2S3,

(2.8)

Wiv=3S8281, Wy=2S825351=—825:83, Wy1=— 82818382

in terms of the transpositions s; of 7 and /+1 (7=1, 2, 3). Correspondingly, the space
Ftct¥ of Harish-Chandra parameters are divided into six parts:

154

F=TThsvssv1 Ej )
2.9) ~ ~ . .
Ei={AeE}{| A is d%-dominant}.
We note that 5+ (resp. &%) corresponds to the holomorphic (resp. anti-holomorphic)
discrete series.

2.2. Radial Ap-part R(D;,,) of D, ,. As in the beginning of this section, let
(n, ) be a continuous Fréchet space representation of N,, and denote by F> the space
of C=-vectors for 7 endowed with the usual Fréchet space topology for which the
representation » on > is smooth. Consider the gradient-type differential operator
Dy, C3(Gs p)— C?E(G; 7). Noting that G=KA,N,, is diffeomorphic to the direct
product K XA,XN, as a C~-manifold, one obtains linear isomorphisms:

v C?](G ; 1}) = Cw(Ap’ Vi®g°°)r
r': CD;I(G 5 77) :—P Cw(Ap: Vf®g°°),

through restriction of functions on G to the subgroup A,. Here C=(A,, E) denotes
the space of C=-functions on A, with values in a Fréchet space E. We set

(2.10) R(Dya,)=r"eDy yor~': C™(Ap, V2QF*) —> C=(A,, VIRQIF™),

and call this differential operator R(D,,,) on A4, equivalent to D; , the radial A,-
part of D; .

In order to write down R(D,,,) explicitly, we give a concrete realization of (z;, V ;).
For a non-negative integer d, denote by (z4, V) the unique (up to equivalence) irre-
ducible representation of 81(2, C) of dimension d-+1. Taking a basis (f{)osnca Of Vg4
consisting of weight vectors, one can describe the action of 8l(2, C)=CX+CH'+CX
on V, as

T X)fa=Ffns1,  Ta(H')f2=@2n—d)fx,

(2.11) _
Te(X)fn=n(d—n+1)fa_1,

where X:(g (1)) H’:(g _(1) ) X:((l) g) and the vectors fa.i, f-: should be
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understood as zero.
For the lowest highest weight A=t of a discrete series, we put

(2.12) r=AHpE),  s=AHi), u=2al.).

Then 7, s, u and in addition (r+s+u)/2 are integers by the K-integrability of A.
Further one has 7, s=0 because A is 4}-dominant. Note that the complexified Lie
algebra ¢ of K is isomorphic to 8[(2, C)P8l(2, C)PC through

(2.13) 812, C)YPal2, C)YPC=(Y 4, Y,, 2)—>diag(Y,, YViy)+z2l:.€1c.

Then we can (and do) realize the irreducible fc-module (z;, V ;) by means of the exterior
tensor product 7.7, as

V) :Vr®Vx y
(2.14) ta(diag(Yy, Yo))=7,. (VY )Ry +1v Q1Y)

(2l 0)=zuly,.

Here I, denotes the identity operator on a vector space V.

2.3. System of differential equations for the coefficients (¢,;). Expand a function
0EC=(Ap, V2QF>) in terms of the basis f{¥=f{"Qf > (0=k=r, 0<I<s) of V; as

(2.15) (@)= 1 fPQcria) (a€Ap)

with ¢, €C*(A,, F=). As carried out in [I, §5], we can rewrite the differential equa-
tion R(D;, ,)e=0 for ¢ to a system of difference equations for the coefficients (c:),
which we are going to describe.

Define (differential) operators L% (=1, 2), S5 (=3, 4) acting on C=(A4,, F~) by

(2.16) Lih=(0,+2v—1 e %ip)h, Sth=(e"Wr+é0/tp}+ o~ Wr-¥itpT)h

for heC=(A,, F=), where 0;h(a)=(d/dt)h(exp(—tH;)-a)|;=0; Ni=7(Es), p3=7(E%) with
the basis E;, E% of (in)c in (2.4), (2.5). Further we set

2.17) bo=(r+s+u)/2, bi=(—r+s+u)/2, b,=@r—s+u)/2, by=(r+s—u)/2.

Using these operators and constants, let us introduce 8 systems C5 (1<;<4, e==)
of differential difference equations for (c:;) as follows.

SYSTEM C7y
(€D (R+DU+D(LE+hH—by—r=5=2Chsr. =2k +DSHCh .
+2041D)Stcr 1a1—(LT+E+1—bo)cs =0 O=rksr—1, 05I<s—1),
SYSTEM C3
(C3: D) 2(k+DU+D(s—Dcks1,141+2(- +1)Stcr 41,0
+(Li+k+I—bo)cri=0 (0=k=r—1, 0=I<s),
(C3:2) (B+I)LEt+k—l—r—by—1)crs11+2Sfcu=0 (0=k=<r—1, 0<I<s),
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SYSTEM C3;
(C3: 1) 20k +DU+D(r—FR)crsrim—20+1)STer. 1
+(Li+k+I—bo)cri=0 (0=k=sr, 0SISs—-1),
(C3:2) (I+1)(Li—k+l—s—bi—1)ci,141—2S%cr=0 0=k=sr, 0=lss—-1),
SYSTEM C7
(Ci: 1) (Li+lk+1—bo)cr,=0 0Osksr, 0SIL5),
(Cy:2) (B+1)(r—Fk)crs1.1—Sicri =0 0Lk, 05ILs),
(C7:3) (U+D(s—Deck, 10+ Stern=0 0=k
(C7:4) (Li—k—I14by)cr=0 0=k=sr, 0£[<5),
SYSTEM CT
(CD (+DU+INL1—k—l+by—2)Cks1,141—2(k+1)S5¢Ch 41,
+204+1)Sick 14— (Ly—k—l—b;—4)cr, =0  (0=k=Zr—1,0=5[<s-1),
SysTEM C3}
(Ci: 1) (B+ILT—k—l+bo—1)Chi1r.i+2¢.114+2S7ci=0  (0<Zk<r—1, 0<ILs),
(Ct:2) (Lz—k+1—=b—2)cr+2(k+1)S5¢k41.:=0 (0=k=r—1, 0<I<5s),
SYSTEM C3
(Cy: 1) (U+D)(Li—k—I14+be—1D)ch 151+2¢1,1—2S35¢,=0 O=k=r, 0ZIs—1),
(Cy:2) (Ly+hk—l—=bs—2)cr;—20+1)Sicr,im=0 (0=Zk=Zr, 0ZI<s-1),
SYsTEM CF
(CH: 1) (Li—k—l4+bocri=0 (O0=k=r, 0=(£5),
(CF:2) c¢po11—S5¢=0 (0Zk<sr, 02[LZs),
(C+:3) cr.io1+Sicri=0 O=kLr, 0£15),
(CH:4) (Ly+k+i—=bycr,=0 (0=k=<r, 0Z(S5).

Here, undefined terms, for instance c,4;.54; in (C3: 1), should be understood as
zero. We note that each system Cj for (cx;) is obtained by rewriting a differential
equation P3(V;,,0)=0 for ¢, where P; is a K-homomorphism on V;®p¢ such that

ImP;DImPs+ImPsDImP; (ImPj5 the image of P3).

See [I, 5.2] for the precise definition of P:.

Theorem 2.1 [I, Th. 5.5]. Let 2==A—p.+p. be the Blattner parameter of discrete
series my. Then a function ¢=3k 1 f{YRcniSC(Ap, ViQIF®) lies in the kernel of
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R(D2.7): R(D2,9)¢=0, if and only if the coefficients c., (0=k=r, 0Z/<s) satisfy the
system of differential equations C[A, 7] specified below :

Cy for A€&t; CH for A€E%,
C2, 7] Ct, Cz, Cs for A€E&f; Ci, C§, Ch for A€EY,
C: for AeB#y; C: for AeEf,

where B3 (1< J<VI) are the sets of Harish-Chandra parameters defined in (2.9).

By Theorem 1.3 we can determine the embeddings of discrete series =#% into the
induced module 7(7)=C>-Ind% (%) by solving the above system C[4, %].

§3. Solutions of the system C[Z, ] for a character 7: Cases I and III

Let » be a one-dimensional representation (=a character) of N,. In these two
sections, §§3 and 4, we solve explicitly the system of differential equations C[4, ]
in Theorem 2.1 for each lowest highest weight A4 of discrete series. Among other
things, our results for non-degenerate y’s give a complete description of (ordinary, or
non-generalized) Whittaker models for the discrete series.

As is readily seen from the expression of C[4, ] in 2.3, one can solve the systems
C[A4, 5] for A=2+p.—p5F (IS J=<VI) quite analogously to those for A=&%., J*=
VI—J+I1. So we concentrate on three cases A&} with J=I, II, Ill. We study the
cases J=I, III in this section, and the most difficult but the most interesting case J=II
in the next section.

3.1. Coordinates and parameters. In what follows, we identify the vector group
A, with R*:

3.1 R*>(ty, ta) > exp(—t Hi—t.H)EA,,

using the basis (H;)i—;,» of ap in (2.2). Then the differential operator 9; and the func-
tion e %i in (2.16) turn out to be 0/0¢; and e®*¢ respectively. Noting that any character
of N, is trivial on the commutator subgroup [Nn, N,], one finds

(3.2) 7:=9(E:)=0,  7j=n(E}))=0  (j=3,4)
for E,, Ef€[(ttn)c, (tn)e]. This implies that

3.3) 1=L7;=0/0t,, St=—S7=e'2""1y7,
which we denote respectively by L, and S; from now on.

3.2. Case I: A<EFf. Let us begin with the case where the papameter A is 4j-
dominant, and solve the system C[4, p]1={(C7: /)|1<7<4} for (cuy), cri s C(R?), with
0<k<r and 0=I<s. Now suppose %3+#0. Then the condition (C7: 3), applied for
l=s, implies c¢;;=0 for 0<k<r. Again by (C;: 3), we find

Hs—0)! /1 \e-t
c,,,z_s—%_)*(?a) =0  for 0<I<s.
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Hence the system C[4, »] does not have non-zero solutions if »3+#0. Analogously,
one obtains the same conclusion for 5;+0.

So we consider the remaining case %3=%3y=0. Then (C;: 2) and (C;: 3) are
equivalent to

3.4) ¢:=0 unless (&, )=(0,0).
Further (C7: 1) and (Cj;: 4) for (k, [)=(0, 0) imply that
(3.5) Coo=k-eXp(—~ —1 e*19,+bet,—bt,)  for some k=C,
where n,=%(E,), and b; (=1, 2, 3) are the integers defined in (2.17).

Summarizing the above discussion, one gets a complete result for A5+ as follows.

Proposition 3.1. The system of differential equation C[A, y] with A<E} has a
non-zero soution (cyy) if and only if n3=n07=0, or equivalently 7|y cp,-¢p>=0. In this
case, the solutions are unique up to scalar multiples, and are given by (3.4) and (3.5).

Note. This case of holomorphic discrete series has been studied by Hashizume for
any simple Lie group of hermitian type.

3.3. Case III: A<&f;. We now proceed to the cases of non-holomorphic discrete
series. For A in 5%, the system C[4, 7] in question consists of four equations (C3: 1),
(C5:2).

Lemma 3.2. Set y,,=k! e "Dty for 0Xk<r and 0=I[<s. Then (cx) is a solu-
tion of the system C[2, p]if and only if (y..) satisfies the following system of differential
equations :

(3.6 2S5y es10=(La—k+1+bo)y s,

3.7 2Syym=—(Lo+b+1=1=b)Y 1411,

(3.8 204+1)(s=Dyss1,00=(LT+ Le+2[—5)y 0
for 0=k<r—1, 0<I<s, and

3.9 2y =—(L1+ L:—2(+D+8)Y k1,141

for 0=k<r—1, —1<i<s—L

Proof. 1t is easy to see that the equations (C%: 2) and (C3: 2) for (cg;) are
rewritten respectively as (3.6) and (3.7) for (y:;). With S;=Si=—S7 (=3, 4) in mind,
add the both hand sides of (C%: 2) and (C3: 1) (resp. (C§: 1) and (C3: 2)), and then
transfer the resulting equation for (c;;) into that for (y:;). We thus get (3.8) (resp.
(3.9)). Thus the system C[2, 5] is equivalent to (3.6)-(3.9). Q.E.D.

We now note that the integers 7, s and u in (2.12) fulfill the inequality

(3.10) r—s—2>ul
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by the 4fy-dominancy of A=2A+pc—pa.
In order to solve (3.6)-(3.9), let us study two cases: %,#0 and 7,=0, separately.

3.3.1. Case of 7,#0. Let % be an integer satisfying 1<k<r—s—1. (Such a %
actually exists by (3.10).) Using (3.8) repeatedly, one deduces

@.11) {IL(L1+ Lot s—20}3,0=0.
Furthermore (3.9) with /=—1 implies
(3.12) (L4 Lao+5)yre=0.
Lemma 3.3. One has an equality
(3.13) {II(Lt+ =2}y =@v=T e+
for any yeC=(R?) satisfying (L7+ L3)y=0.
Proof. We show (3.13) by the induction on s. If s=0, one gets

(L1+L)y=(L7+ LoA-4v =1 e1)y=(4~—1 e*13,)y.

Now let s>0 and suppose that the formula holds for s—1. Then the left hand side
of (3.13) is calculated as

(T (Lt+ L2}y =(Li+Lo—29){ T (L1+ L.—2D} y

=0
=(L1+L,—2s)4v—1¢*19,)’y  (by the hypothesis)
=@~—=1 1) (LT1+ L)y  (by [L1, e**1]=2se*"1)
:(4\/_—1 ezclnl)sﬂy .

Thus we have proved the desired formula. Q.E.D.

The conditions (3.11) and (3.12) combined with the above proposition tell us the
following fact that imposes a severe restriction on the solutions of (3.6)-(3.9).

Proposition 3.4. If 7,#0, then the coefficients y., with 1=<k—I<r—s—1 are identi-
cally zero for any (¥:) satisfying the differential equations (3.6)-(3.9).

Proof. Let 1=k<r—s—1, and put y,=e**2y,,. Then we have (LT+L,)y;=0 by
(3.12). So, applying the formula (3.13) to y;, one obtains

V=T ety = T (Lt + Lo—20} v
:euz{l]i[‘)(Lﬂ;+L2+s—21)}yko=0 (by (3.11)).

Since %,#0, we conclude y;=0, or y,,=0. This together with (3.8) proves the pro-
position. Q. E. D.
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Now define matrices of functions Y ©®=(y{%) and Y O=(yJ?) with y{¥, y{i®e
C(R?*) (0£k<r, 0<I[<s) given by

(3.14) V899 =6305-exp(— v —1 e*"19,+bst,—bots),
(3.15) y,ﬁ{°)=5};5?'exp(\/—-_l eulﬂl_bltl—bgtg)-

By making use of Proposition 3.4, we can solve the system (3.6)-(3.9), equivalent
to C[4, ], under the assumption 7,#0.

Theorem 3.5. Let @[, 7] be the space of solutions of differential equations (3.6)-
(3.9). If ni=x(E,) does not vanish, then ®[2, 5] is described as

0) if 73#0, 77+#0,
CcY o if 73=0, 77+0,
(3.16) OL2, pl= ? !
lcy‘«m if 73#0, 77=0,
CYOPCY ™ if y3=75r=0.

In particular, the system (3.6)-(3.9) admits a non-zero solution if and only if 335 -1n7=0.

Proof. It follows immediately from (3.6), (3.7) and Proposition 3.4 that @[1, p]=

(0) if 3-77#0. Now assume %3=0 and %;#0. Then one finds from (3.6) and (3.7)
S4ykl:—‘(/€+].—l—bg)yk+1_[ for 0§k§7’—2, 0__<__[§S.

Note that 1<b,<r—s—1 by (3.10). In view of Proposition 3.4, one deduces y: =0
unless k=r, and more strongly v, =0 for (k, {)#(r, 0) by (3.8). So the system (3.6)-
3.9) for (y,;) is reduced to the following one for y,,:

(L74+Ly+5)y =0, (Ls4+b3)y-0=0.

Solving these two differential equations, we get @[4, y]=CY "%,
The remaining two cases can be treated analogously, and we obtain (3.16).
Q.E.D.

3.3.2. Case of 7,=0. In this case, LT and L7 both reduce to the constant coeffi-
cient differential operator L,=d/0t,, and the equations (3.8) and (3.9) are equivalent to
3.17) (Li+Lo+9)yu=0 (0=£k=r, 0ZI[L5),

(3.18) Yau=U+DYire  O0=ZkZr—1, 0<[<s—1).
First assume that 73-77+#0. Then, by a simple computation, we can show the

following

Lemma 3.6. The solutions (y..)= @[2, y] correspond bijectively to 5<C=(R?)
satisfying
(Li+Lo+9)5=0,  ((Lo)*+4nsnie®e?1)5=0

through the mapping (V1) J= Yos0.
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Exchange the variables (¢,, t;) for (vi, v,) with v,=t,+t,, v.=t,—1,, and put j=
ettt F=p*15. Then the above two equations for j are rewritten respectively as

99 _ a_\: S P

a_v,—o’ {(a—vz> +167577e z}y—O.

This means that the solution $ depends only on v,, and are characterized by an ordinary
differential equation of second order. Thus we find

Proposition 3.7. The solution space @[A, p] for (3.6)-(3.9) is two-dimensional if
7, =0 and 7377 #0.

Secondly, consider the case 53=0, 7;#0. Since S;=0 in this case, the subsystems
(3.6), (3.7) turn out to be

(3.19) (La—Fk+14b5)y =0 O=k=sr—1,05[55),

Siyni=—(k+1—=1=02)y k1.1 0=k=sr—-2,0<I[L5),
(3.20)

254yr—l,l:_(L2+b3—l)yrl (Oélés)—

We now solve the system (3.17)-(3.20) which is equivalent to (3.6)-(3.9). It follows
from the first equation in (3.20) that y,,=0 for k—I[<b,. By (3.17) and (3.19), one
gets yyo=ae *1 for some acC.

If a#0, then the functions y,, are uniquely determined by y,,, through (3.18) and
should be of the form y,,=ay:® with

(=St /(k—1=b) 1L (k—1Zby),
yipo =

3.21)
0 (k—1<by).

Conversely, Y @29=(y{9) actually satisfies (3.17)-(3.20).

If a=0, Y2=(y{?) defined in (3.15) gives a unique (up to scalar multiples) solu-
tion of (3.17)-(3.20) such that y,,0=0.

Thus we have gained the following

Proposition 3.8. If 9,=%5=0 and n;+0, the matrices of functionsY ®2” qnd Y '®
form a fundamental system of solutions of differential equations (3.6)-(3.9). In particular
one has dim @[2, p]=2.

The case 73+#0, »7=0 can be studied analogously, and so we omit it here.

At last, let p=1y, be the trivial character of N, i.e., 9,=7%3=%7=0. In the
first part [I] we have solved the system (3.6)-(3.9) in this case, and determined the
embeddings of discrete series into the principal series.

Proposition 3.9 (cf. [I, Prop. 7.1]). The space D[2, ], Ix,] of solutions is three
dimensional, and is described as

¢[l, le] :CY(Ox)@C},r(TO)@CY(bzo) ,

where we define YO, Y and YO respectively as in (3.14), (3.15) and (3.21), with
Si=n=0 in mind.
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Now the system (3.6)-(3.9), or equivalently C[2, ] with A=2+p.—p.EE5f; has
been solved perfectly for any character 7 of the maximal unipotent subgroup Np.
For later reference, we summarize the results of this subsection in the following table.

Table 3.10 (Case III).

M ns N dim®[2, 7]
* * * 0
* % (resp. 0) 0 (resp. *) 1
* 0 0 2
0 * * 2
0 x (resp. 0) 0 (resp. =) 2
0 0 0 3

Here * stands for a non-zero complex number, and, for instance, the first line should
be understood as “dim @[4, ]=0 if the numbers %,, 73 and %; are all non-zero”.

§4. Solutions of the system C[4, ] for a character »: Case II

Now let us proceed to the case of Harish-Chandra parameter A=1+p.—p, in &f.
Contrary to the previous two cases, we find that the system C[4, n], consisting of
three subsystems C7, C3, C3(see 2.3), has a non-zero solution for each character % of
Nn. In view of Theorems 1.3 and 2.1, this shows the existence of an embedding of
discrete series #% into the induced module n(n)=C=-Ind%, () for any character 5 (at
least when / satisfies the condition (FFW) in Theorem 1.3).

4.1. A system for (h,;). At first, we transfer the system C[4, n] for (¢cz:), ¢r1 &
C>(R?) (0£k<r, 0<I<s), into a more convenient form to handle. Set for each ¢y,

@.1) hi=Fk1 1 exp{~v—1 19+ (k+1—bo)ti+(by—k—1—2)t,} - c11,
where 7,=%(E,) and r, s, b; (0=;<3) are the integers in (2.12), (2.17).

Proposition 4.1. The system of functions (cx1) is a solution of C[A, 5] if and only
if (hy) satisfies the following differential equations:
“4.2) ¢ (L2 L, —4v =1 e 19 —2b ) pir,1401— (Loa—2bs—2)h ;=0
Ok=sr—1, 0=iss—1),
4.3) (Lo 42,1+ Lih =0 O=sksr—1,0=1<s5—-1),
4.4) (Lo4-2(k+1—=Nhps1+2097hn=0 (0=k=r—1,0<IL5s),
(4.5) (Lo2004+1—=sNht 1412950, =0  (0=ZkZr, 0S[<s-—1),
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(4.6) 22T 0Ty o Lihes=0 0=k=r—1,
4.7 —2*“ " yrh, 1+ Liha=0 (0=I<s—-1),
where L;=0/dt; for i=1, 2.
Proof. By an elementary computation, we see that (C3: 2) (resp. (C3:2); (C3:1)
with [=s; and (C3: 1) with k=r) for (c:;) is equivalent to (4.4) (resp. (4.5); (4.6);
and (4.7)) for (k). By using (4.4) and (4.5), (C%) is rewritten as (4.2). Further,

(C3: 1) and (C3: 1) with k<7, [<s, both turn out to be the same equation (4.3).
Q.E. D.

In the succeeding subsections, we study separately three cases according to the
degeneracy of %, and solve the system (4.2)-(4.7) explicitly for each case.

4.2. Case of 73-7;+0. In this case, any solution (h,;) of (4.2)-(4.7) is uniquely
determined by h=h,, through the relations (4.4) and (4.5). By (4.5) and (4.7), h
should fulfill the equation

(4.8) (L,L,—45,S,)h=0.
Further one gets from (4.2), (4.4) and (4.5),
4.9) {(Ls—2b;—2)L3+4SsS«(L+2L,—4~v—1 e*19,—2by)} h=0.

Conversely, it is easily checked that any heC>(R?) satisfying (4.8) and (4.9) can
be extended uniquely to a solution (h,;) of (4.2)-(4.7) through (4.4), (4.5). We thus
get the following lemma.

Lemma 4.2. The solutions (h;) of (4.2)-(4.7) correspond bijectively to he C*(R?)
satisfying (4.8) and (4.9), through h=h,,.

Now set ¢;=L%Lh for 0<;<3, and consider the vector ¢=%(qo, ¢1, g2, gs) of func-
tions ¢; on R® Noting that h=(1/4S;S:)L.q,, we obtain from (4.9) a first order differ-
ential equation for ¢ as

(4.10) Lyg=D%q,

where D®=(d{®)os;.vs5 1S @ matrix with elements d{ € C=(R?*) given by
dP=dP=d=1,

dP=—16S%S%, d$? =8{SsS:(2v—1 e*19,+bs+2)—(bs+2)},
1d;§>=—4<2b3+5+25354>, P=20b:+4),

d®=0  otherwise.

(4.11)

Next we compute L,q. Differentiating the both hand sides of (4.8): ¢,=4S,S.h,
first by ¢, and then by #, repeatedly, one deduces

4.12) L,g:=4S5;S(L,—2)h=45;5.90—2¢,,
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(4.13) L4Ligi=Li(Lg)=4S:S:Sososs( ] )2 " Ligo—2LHgs

for each integer j. These equalities together with L,g;=335v5:d$2q, yield

4.14) L1(]j=205usad}zlj)(]v (O§J'§3),
where d§3 is defined by
(4.15) dp=(" ;1 )2f+*-vsss4 w<j), dP=—2  d®=0 >
for j=1, 2, 3, and
A9 =20V =T g tbotl), dp=—2—2F2
S:S,
(4.16)
dp= bs+3 A9 — 1
’ 2S,:S,’ 4S,S,
One thus obtains
4.17) L,g=D%q with D®=(d{})es;,vss.
Note that the matrices D and D® are of the form
* * * % 0100
x —2 0 0 0010
DW= , D®—= ,
* * —2 0 00 01
* * x —2 * ok k%

where * stands for a non-zero function on RZ2
Summarizing the above discussion, we find

Proposition 4.3. The system (4.8), (4.9) of differential equations for heC>(R?) is
equivalent to (4.10), (4.17) for q="(qo, g1, g2, gs) through the relation q;=L%L h (0<7<3).

The next lemma shows the complete integrability of the system (4.10), (4.17).
Lemma 4.4. One gets a bracket relation L, DV — L, D®=[D® D®],

This equality is proved by elementary but very long calculations, and so we omit
the proof here.

The above complete integrability condition allows us to solve the system (4.10),
(4.17), which is equivalent to C[4, n], perfectly as follows.

Theorem 4.5. For each vector y=C*, there exists a unique solution q of (4.10), (4.17)
with the initial value condition ¢(0, 0)=y at the origin (0, 0)=R®: This q is given by

(4.18) ot t2)=exp{S:lD(”(ul, t)dv, bexp {Sfm”(o, va)dva}- 3

for (t., t.)R*. Therefore, the space P[2, n] of solutions of C[4, n] is four-dimensional.



Embeddings of discrete series 561

4.3. Case of 73#0, ;=0. We now put A’=h,. By the condition %3;+#0, any
solution (h;;) of (4.2)-(4.7) is uniquely determined from h’ through (4.5) and (4.6). As
in the beginning of 4.2, we can easily find differential equations for A’ to yield the
solutions (h;,;), as follows.

Lemma 4.6. The systems (hy;) of functions satisfying (4.2)-(4.7) are in bijective
correspondence to h'=C”(R?) such that

(4.19) (Ly—4~—1 e* 1y, +4r—2—2bs) L h' +(Ly—2bs—2)L,h'=0,
(4.20) (L,—2r)L,h'=0,

through h'=h,, where ., v and by are the constants given before.

Let us solve (4.19) and (4.20). We set h”=(L,—2r)h’. Then h” satisfies
4.21) L,h"=0, (Ly—2bs—2)L,h"=0.

Solving these differential equations for h”, one immediately deduces that i’ is of the
form

(4.22) h' =t + e o

for some p,;, #,C and ¢=C=(R). Here we use the fact that the numbers 2r, 2(b;+1),
0 are distinct with each other by the condition

r+s+2>—u>|r—s|+2

coming from the 4j-dominancy of Harish-Chandra parameter A.
Conversely, the function A’ in (4.22) satisfies (4.19) and (4.20) if and only if ¢
fulfills

(4.23) {(Li—4~=T 1y, +4r—2—2bg) L, +4r(r—by— 1)} =0,

which is a second order ordinary differential equation for ¢ and so can be easily settled.

In this way, the system (4.2)-(4.7) for (h,;) has been completely settled for case
73#0, 7=0. One can deal with the case 73=0, »;#0 analogously. Thus we obtain
the following

Proposition 4.7. Assume that one and only one of the numbers 73 and 37 equals
zero. Then the solution space @[2, ] of the system C[2, 7] is of dimension 4 for A=
A pc—p.€5% When 95+0, solutions (hy;) of the system (4.2)-(4.7), which is equivalent
to C[Z, n], correspond bijectively to triples (g, po, ¢) with py, p.€C and (t,)sC™(R)
satisfying (4.23), through hes=h', where h' is as in (4.22).

4.4. Case of n5;=7;=0. In this case, the system (4.2)-(4.7) splits into r+4s+1
number of subsystems, [, (—s<u=r), for (hzi)r-i-x, Which have been already settled
in the first part [I, 7.1.2]. To be more precise, in that place we put an additional
assumption %,=0, and studied not Case II but Case V. Nevertheless the same discus-
sion goes through in the present case even if 7, does not vanish.
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Proposition 4.8 (cf. [I, Prop. 7.2]). One has dim @[4, p]=7 for any character i
of Nw which is trivial on the root subgroup expg((e—¢1)/2)CNu, or equivalently n;=
7 =0.

Now the system C[4, ] has been completely solved for each lowest highest weight
4 and each character n of N,.

§5. Solutions of the system C[4, 7:] for an infinite-dimensional monomial
representation n;:C“-Indﬁf"(E)

We now proceed to the case where # is infinite-dimensional. Let N’=expn’ be
the analytic subgroup of G with Lie algebra

6.1 W' =g((¢—¢1)/2)Ds((¢+¢1)/2)D3(Pe) Tt -

Then N’ is the unipotent radical of a unique (up to G-conjugacy) maximal cuspidal
parabolic subgroup of G (see [I, §8]). For a character & of N’, consider the repre-
sentation 7;=C=-Indy¥/(&) of N, induced from & in C>-context.

In this section, we solve the system C[2Z, 5] of differential equations in Theorem
2.1, whose solutions give rise to embeddings of discrete series into the induced module

C>-Ind§,,(ns)= C=-Ind%.(&).

Although our result here is not perfect for all the cases of (4, &), we can specify and
study precisely the most interesting case where the solution space for C[4, n¢] turns
to be non-zero and finite-dimensional.

5.1. Operators L3 and S5 in coordinates (¢, t,, y). Set N,=expRE,CN,. Then
one gets a semidirect product decomposition N,=N,XN’, so we can realize the mo-
nomial representation 5 on F=C*(N,) as

(6.2) n@p(x)=E&(n'(g, x)'p(nn(g, x))  (xENn)

for geN, and ¢=C=(Ny), where g-'x=nn(g, x)n'(g, x) with nn(g, x)ENg, n'(g, x)
EN'.
Let us introduce coordinates of the direct product space A, XNg:

R*s(ty, ty, y)—> (exp(—t, Hi—t.H,), exp(—yE)EAp, XNy,

and regard an element ceC>(A,, F) as a function in (f;, f;, ¥) in such a way that
exp(—y E,)—c(t,. t,, y) expresses the value of ¢ (in &F) at the point exp(—t,H,—t.H,)E
A,. Using (5.2), one finds easily that the differential operators L% (=1, 2), S (j=3,
4) on R*=R} ., ,, defined by (2.16), are expressed as

(5.3) L$=0,+2v—1¢"13,,  L;=0, (=Ly(put)),
(5.4) s=etr (€54 = V=1 Y)EY),

where 0,=0/dy and &% denotes the value of differential of & at the element E3c

8¢+ ¢1)/2)cCue.
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In the succeeding subsections, we study separately three cases of parameter A&
5% in order of J=I, III, II (according to the difficulty), and solve the system C[4, 7:]
of differential equations for c¢,;C=(R?). As noted before, the results for remaining
three cases J=VI, IV and V can be derived from those for j*=VI—/+I=[ III, II by
certain substitution of parameters.

5.2. Case I: /A<Z¢. In this case, discussing just as in 3.2, we immediately
obtain the following complete result.

Proposition 5.1. (1) If the character & is non-trivial, the system C[2, 5:] does not
admit any non-zero solutions.

(2) Assume that & be the trivial character of N'’. Then the solutions (cpi)e.: 0f
C[A, 9¢] are in bijective correspondence to ¢ =C=(R?®) satisfying (LT—bo)p=(Ly+bs)p=0
through c,,=030%-¢ (Kronecker’s 03) In particular, the solution space @[2, 9¢] is injinite-
dimensional.

5.3. Case III: Ae5j;. We define functions 6; (j=3,4) on R*® by
(5.5) 0,=S3/S; if Sj#0,  6,=0 if Sj=0.

Note that S% is identically zero if and only if &;=&;=0. Furthermore, ©; is a func-
tion of two variables (¢,, ¥) and independent of #,.

Put dui(ty, ts, y)=Fk ! e ¥, (t, t,, ¥) for 0£k<r and 0</=<s. Asin Lemma 3.2,
the system C[A, %¢] for (ci:)e.:, consisting of four equations (C3: 1), (C5:2) (see 2.3),
is transferred into the following system (5.6)-(5.9) for (ds)e.::

(5.6) 253d piri=—(Lo—k+1+bs)d s,

5.7 2Stdp=—(Lotk+1—1—b)d k111,

(6.8 20+1)s—0d es1.00=—{(LT+k+1—=b0)— O3 (Lo—k+1+bs)} d i,
(5.9) 2dp o =—{(LT—h—1—14+b)—O(Lo+k+1—1—b)}d k41,1,

where 0<k<r—1 and 0.

To solve the above system for (d::)».;, we go into the case-by-case study depend-
ing on the vanishing of the functions S3.

CASE 1. First assume that S%=£0 or equivalently [&7|4(&5]#0, for j=3, 4. Let
Z% denote the set of zeros of functions S3%:

(5.10) Z5={t, to, YIER (1 =V -1 y)Ej=F&5},

which is empty if +Re(é;6%)=0, and otherwise it forms a line vertical to the (¢, y)-
plane.

Let 2 be any simply connected domain in R?® contained in 2,=R*\(Z35UZ}). We
solve the system (5.6)-(5.9) restricted on £. Set d;=ds,41.1, 0=(<s, with in mind the
inequality 1=<b,<by=b,+s<r—1 (by (3.10)). Then (d,), satisfies for 0=/<s,

(5.1D) L3d,=4S555%d, (by (5.6), (5.7)),
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(56.12) 20+1)(s—Ddip=—{(L14+21—5s)—0O3'L,}d,  (by (5.8)),
(5.13) 2d, ., =—{(L7—2l4s5)—0,L,}d,  (by (5.9)),

Conversely, one sees easily that any (d,), d,€C=(2), satisfying (5.11)-(5.13) can
be extended uniquely to a solution of (5.6)-(5.9) through the relations (5.6), (5.7). Thus
we get

Lemma 5.2. The system of differential equations (5.6)-(5.9) for (du)e.: on 2 is
equivalent to (5.11)-(5.13) for (d,) through di=ds,1,1, 0SI<s.

Now put h;=L,d, and introduce a function p with values in C?*¢*+V by
(5.14) p———L(do, dl; R ds» hOr hl) Tt hs)'

Then (5.11)-(5.13) is rewritten into the following system of first order differential
equations for p:

(6.15) (L1—DDp=(Li—D0)p=(L.—Dy)p=0.

Here D* and D, are the matrices of functions defined by

X 031 Y 6,1 0 I
(5.16) DT=[ ] DT:-[ ] Dz———'[ ,
451STI X 453871 Y 45351 0

with [ (resp. 0) the identity (resp. zero) matrix of degree s-+1, and

aoﬁo 0---0 0 O —a, 0 ---0 0
0@ B -0 0 —2 —q, 0
D S I I I A
00+« 0amifus 0 .0
00 -«---00 a, 0 0-.. =2 —aq,

with a;=s5—2/, 8;=2({+1)({—s). In view of (5.3), we immediately see that (5.15) is
equivalent to

0,— B)p=(3,— B')p=(3:— D;)p=0
517 { @:—B)p=( )p=( )P

with B=(D{+D7)/2, B'=—~/—1 ¢ *y(Dt—D7)/4.

Lemma 5.3. One has the bracket relations of differential operators
(5.18) [Li—D3, L,—D,]=0, [L1—Dt, Li—Dy]l=2(L1—D7)—2(L{— DY),
which imply that the operators 8,—B, d,—B’ and 0.—D, in (5.17) commute with one

another.

The relation (5.18) is proved by an elementary but little lengthy calculation, so we
omit the proof.
This lemma shows that the system (5.17) is completely integrable on £, and thus
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we get the following consequences.

Proposition 5.4. If S3=0 and S}=0, the system (5.17) has exactly 2(s41)-number
of linearly independent solutions on any simply connected domain 2 contained in Q¢=
R3N(Z3UZY).

Theorem 5.5. Let O[21, n¢] be the space of solutions of the system C[Z, ;] on R°.
Then one has

(5.19) dim®[2, 7:]1<2(s+1)

for any character € of N’ such that |&5|4+1&71%#0 (j=3, 4). Furthermore, the equality
holds in (5.19) if & satisfies in addition Re(§361)<0 and Re(6:6))=0 (since Q:=R® in
this case).

We do not discuss here on the behavior of solutions p of (5.17) at the set Z3\UZ}
of singular points of the system, and we leave it open.

CASE 2. Let us consider the remaining case S3-Sf=0. We may assume S;=0
without loss of generality. Then, it is readily verified that, for any ¢=C=(R?®) such
that

(L7+b1)§D=(L2+bs)§0:Oy

the matrix of functions (y::)r,: With v,,=0;07-¢ satifies the system (5.6)-(5.9) in ques-
tion. So one has

Proposition 5.6. If either the function S; or S} on R® is identically zero, the
solution space D[, p¢] for the system C[2, 3] is infinite-dimensional.

Remark 5.7. We can solve the system (5.6)-(5.9) perfectly on any simply connected
domain in R® on which both functions @3' and 6, have no singular points (@3' should
be understood as zero if S;=0). This is done through an argument similar to that in
3.3, so we do not carry it here again.

5.4. Case II: /A<&f. In this case we obtain the following result which allows
us to say that the discrete series n% with 4 (FFW), occurs in the induced G-module
n(ne) with infinite multiplicity.

Theorem 5.8. If A=2+p.—p. is dfi-dominant, the system of differential equations
CL4, 9¢] has infinitely many linearly independent solutions for any character & of N'.

The assertion for the trivial £&=1y. follows from [I, Prop. 9.5], where we have
solved the system C[2, 1y-] completely. In general, we can construct infinitely many
solutions of C[4, 5¢] in an explicit way.

In what follows, we assume that & is generic: |&7]+ &3]0 (=3, 4), and we
shall prove the above theorem by constructing solutions through power series. With
the argument in 4.3 in mind, one can deal with the remaining case in a similar way,
for which the details are omitted here.
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Note that the system C[4, 9] consists of five equations (C%), (C3: 1), (C3: @) (=
1,2) in 2.3, and that the function S} (resp. S%¥) in (C3: 2) (resp. in (C3: 2)) is not
identically zero by the genericness of & So any solution (¢xi)osesr,osiss 0f C[4, 5] is
uniquely determined by the single ¢, through (C3: 2) and (C3: 2). We set

(5.20) g=exp(bst;—(bo+2)t2) C;s.
(Compare with (4.1) for (k, [)=(r, s).) Then, just as in Lemma 4.2, we can specify a
system of differential equations for ¢, equivalent to C[4, 5¢], as follows.

Lemma 5.9. The function q satisfies
(5.21) (L1L,—4S%SHg=0,
(5.22) {(Le—2by—2)L3+4S$SH(LT—(03+6,) L, —2bs)} g=0.
Conversely, any q=C>(R®) satisfying (5.21)-(5.22) gives rise to a wunique solution of
C[A, ne] through (5.20), (C3: 2) and (C3: 2).

5.4.1. Construction of formal solutions. Let us change the variables (¢, t,, )
into (z, w) as
(5.23) z=etibv—1y, w=e',

and consider the system (5.21)-(5.22) on the domain {(z, w)eC X R|Rez>0, w>0}. Then
one finds

L1=2(z+2)-0/0z, Li=2(z+2)-0/0z, L,=w-d/0w,
(5.24)

Si=w-(c2 ) “E+aED,  O=(—EHEEN/ET+ED).

2
z+z
Now we look for the formal solutions ¢ of the form

(5.25) q= i%q,(z)w” with functions ¢; in z.
j= .

Since L,w*=2jw¥, (5.21) and (5.22) are transferred into the following differential difference

equations for g¢;:

(5.26) (z2+2)°0q;/02—25(2)g;-1=0,

(5.27) 71'q5425(2){0/0z—(bs+(F—1XOs+0.))/(2+2)}g;1=0,

where s(z)=(83+265)(&7+26)) and j'=j—bs—1.
Notice that b,+1 is a positive integer. With (5.27) in mind we put an additional
assumption on ¢;:

(5.28) q;=0 for j<b,+1.

Then, by (5.26), ¢s,+: is holomorphic in 2z, and by (5.27) each g; is determined recursively
from the first ¢,,.;. Conversely, we find that any holomorphic function g, gives a
solution (g;) through (5.27). More exactly, one gets
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Proposition 5.10. The systems of functions g;=C*(R®), j=0, 1, 2, -, satisfying
(5.26)-(5.28) correspond bijectively to holomorphic functions ¢ in the right half plane
D={z=C|Rez>0} through

(—2s(2)y
7V Wz+2)0

(5.29) q;= dj.0(2)  for jZbst1,

where I; ,(2) is given by
s 0N -
(5.30) I.@)=((e+2P5-) @+2+s(a) 5 ().

Proof. It rests only to show the expression (5.29). Noting s™'(ds/02)=(0;+6,+2)/
(z1+2), one sees easily a relation of differential operators:

( 6 bs+(j_1)(@s+@4)

az 2_’_5 )'S(Z)j_!(z_'_év)bg—Z(j—l)

. 0
— -1 5\bg—-2¢ji-1)
=s(2) " N(z+2)* i

for each j>0. Define a function §; through g¢;=(—2s(2))(z+2)*"%§;/7!j'!. Then
(5.27) is rewritten as

(5.31) §;=(2+2)%0§;-./02),

and thus we obtain the desired expression (5.29) with @(z)=(bs+1)!/(—2)"%" gy, 4:(2).
Q.E.D.

5.4.2. Convergence of the formal power series. Let ¢ be a polynomial in z and
put ¢(z)=s(z)’**'¢(z). We show that the formal power series (5.25) with ¢, in (5.29)
converges and gives a solution of (5.21)-(5.22).

In order to evaluate |g;(z)| for z&D, we need the following

Lemma 5.11. For any non-negative integer k, the differential operator (z+3)-0/02)*
is expanded as

(5.32) ((z42)-0/02)* = 15158 c¥(2+2)"*1(0/02)",
where the coefficients ¢t are given recursively by

(5.33) cit=ch i+ (k+i)ct, =1,
and they are estimated as

(5.34) 0<c’2§2”(1;)k!.

The proof of this lemma is straightfoward by the induction on £, so we omit it here.
By means of (5.32), I, ,(2) is expanded as

gomd i (byt2)! T I
PP i( )'(b3+2_k)1‘(z+z)j” ! (—a;) #(2),
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where m(7)=min(b;+2, 7), and one finds from (5.34),
A 2 < jr o1 j/ d Gt 12 21
Sei( )= 2 (), )s2 Gy,
We thus obtain the estimate
) oo 0 \*
I TYIREY) s 2 . I YN
(5.35) |56 2757 e+ 3+ D) B | (52) 8|}

for ze D, where the sum in the right hand side is finite since ¢ is, by assumption, a
polynomial in z. This together with (5.29) and (5.26)-(5.27) implies the following

Proposition 5.12. The series ¢=33,:0(1/7 Ng;(2)w¥, and also its term-by-term deriva-
tives converge absolutely and uniformly on any compact subset of the domain {(z, w)E
CXR|Rez>0, w>0}, and g gives a sotution of the system of differential equations (5.21)-
(5.22).

In this way we have obtained a system of infinite linearly independent solutions of
C[4, n¢], and our Theorem 5.8 is now completely proved.

§6. (Generalized) Whittaker models for the discrete series

Let w4 be the discrete series representation of G with lowest highest weight A=
A—pc+pn and z¥% denotes its contragredient. Gathering our results in the preceding
sections, we now determine (generalized) Whittaker models for the discrete series %
(Theorems 6.1 and 6.5). We give our results on embeddings under a slight assumption
on regularity of A: (FFW) in Theorem 1.3. Nevertheless, one would be able to show
that the results remain true for any A by using Zuckerman’s translation functor [11].
See [I, §3] for the embeddings into the principal series.

Our group G=SU(2, 2) has, up to G-conjugacy, two proper cuspidal parabolic sub-
groups. We describe the embeddings of z% into G-modules I"¢, y=C>-Ind$(£) smoothly
induced from characters & of the unipotent radical N of such a parabolic subgroup.
These representations [, y include so-called Gelfand-Graev representations and some of
their generalizations (see [4], [5], [6], [9]).

6.1. Embeddings of discrete series into /', y_. First consider the case N=Np,
the maximal unipotent subgroup of G in 2.1. By Theorem 1.3, embeddings of z% into
', n, as (g¢, K)-modules correspond bijectively to solutions of the system of differential
difference equations C[4, »], given in §§3-4. Here £é=y is a character of N,. We
thus establish our first main result on embeddings as follows. '

Theorem 6.1. Let 7 be a character of Nn, and denote by 1n,=n(E,) and n3=2(E7)
(7=3, 4) the values of 7 at the elements E,, E;&n)c in 2.1. Assume that the Blattner
parameter A of discrete series w, satisfies the condition (FFW) in Theorem 1.3. Then
the representation n¥§ with A€5F (IS J<VI, see (2.9)) occurs in Iy y, =C=-Ind% (1) as
a (8¢, K)-submodule with multiplicity m(J, n) given in Table 6.2 and m(J*, n)=m(J, n)
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for J*=VI—J+1. In the table, * means any non-zero complex number, and, for example,
the first row should be understood as: if 7,#0 and 97#0 (§=3, 4) then m(J, 9)=0, 4 or
0 according as J=I, Il or IIL

Table 6.2. Multiplicity m(J, 5)

7 s o I it it
* * * 0 4 0
* * (resp. 0) 0 (resp. *) 0 4 1
* 0 0 1 7 2
0 * * 0 4 2
0 * (resp. 0) 0 (resp. =) 0 4 2
0 0 0 1 7 3

Remark 6.3. (1) The first row in Table 6.2 describes the embeddings of z% into
Gelfand-Graev representations, and the last one shows the number of embeddings of
7% into the principal series induced from the minimal parabolic subgroup P, containing
N, (see [I, §6]).

(2) Note that the function A—dim Homy,,_x(7%, I', x,) is constant as far as /4 in
the above theorem lies in a fixed Weyl chamber.

Examining the columns of Table 6.2, we find the following fact.

Corollary 6.4. The discrete series m¥ appears in the induced representation I, Np=
C=-Ind%,,(n) for every character n of N if and only if A is dj-dominant with J=II
or V.

Although in Theorem 6.1 we have written down the multiplicities only, we can
describe the embeddings n:jiél“ 7. N, €xplicitly using the lowest K-type vectors in «(z%)

which have been determined in §§3-4 by solving the system of differential equations
C[4 7l

6.2. Embeddings of discrete series into I"; y.. Secondly, let N’ be as in 5.1,
the unipotent radical of maximal cuspidal parabolic subgroup P’DP,, and & be a
character of N'. Since I'¢y =C>-Ind$.(§)=C=Ind§, () with 7;=C=Ind¥™(&), the
system of differential equations C[4, 5], studied in §5, characterizes the embeddings
of r% into the induced module /¢ x.. Summarizing the results in §5, we immediately
get the following

Theorem 6.5. (1) For a character & of N', set £5=E(E%) (=3, 4) asin5.1. Under
the assumption (FFW) on A, the multiplicity m'(A, &)=dim Homg,_x(n¥, I'e,n') of =% in
I’¢ n+ is given in Table 6.6. In the table, r and s are the non-negative integers in (2.12),
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and other conventions are the same as in Table 6.2.

(2) Furthermore there holds the equality m'(A, §)=2(s+1) for A€ Ef; (resp. 2(r+1)
for A€EY) if Re(€365)<0 and Re(t;ED=0 (resp. Re(£380)=0 and Re(7EDHZ0), where
the bar means the complex conjugation.

Table 6.6. Multiplicity m'(4, &)

1514163 1§51+ 1641 I,vi| O,V I (resp. IV)
bounded by 2(s+1)

* * 0 © | (resp. 2(r+1)
* (resp. 0) 0 (resp. *) 0 ) o
0 0 o o 0

This is our second main result on embeddings of discrete series. From the above
table we find

Corollary 6.7. A discrete series representation of G occurs in some induced module
Ie n with finite (non-zero) multiplicity if and only if the corresponding Harish-Chandra
parameter A is in i \JEL.

This type of embeddings, with finite multiplicity, is of particular importance for
classifying irreducible representations of a semisimple group through generalized Whit-
taker models.
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