Note on $K O$-theory of $B O(n)$ and $B U(n)$

By
Shin-ichiro Hara

§ 0. Introduction

Atiyah and Segal determined the $K O$-theory of $B G$, the classifying space of a group G, by its representation rings [3]. In this paper, we describe $K O *(X)$ for $X=$ $B O(n)$ and $B U(n)$ in words of groups derived from maps $1 \pm \tau$ on $K(X)$, where τ is the conjugation map.

I would like to thank A. Kono for his helpful advices.

§ 1. Bott exact sequence

Let $K O^{*}(X)$ and $K^{*}(X)$ be the real and complex K-theories. The coefficient rings are known as

$$
\begin{aligned}
& K O^{*}=\mathbf{Z}\left[\eta, \alpha, \beta, \beta^{-1}\right] /\left(2 \eta, \eta^{3}, \alpha^{2}-4 \beta\right), \\
& K^{*}=\mathbf{Z}\left[t, t^{-1}\right],
\end{aligned}
$$

$\operatorname{deg} \eta=-1, \operatorname{deg} \alpha=-4, \operatorname{deg} \beta=-8, \operatorname{deg} t=-2$.
Let $c_{*}: K O^{*}(X) \rightarrow K^{*}(X)$ and $r_{*}: K^{*}(X) \rightarrow K O^{*}(X)$ be the complexification and the real restriction. It is well known that

$$
\begin{gathered}
r_{i} c_{i}=2: K O^{i}(X) \longrightarrow K O^{i}(X), \\
K^{i}(X) \longrightarrow K^{i}(X) \\
c_{i} r_{i}=1+(\tau)^{i}: \cong \downarrow \\
\cong \downarrow(X) \longrightarrow K(X),
\end{gathered}
$$

where τ is the conjugation map.
Consider the Bott exact sequence [2]:

$$
\begin{equation*}
\cdots \longrightarrow K O^{i}(X) \xrightarrow{c_{i}} K^{i}(X) \xrightarrow{\rho_{i}} K O^{i+2}(X) \xrightarrow{\eta_{i+2}} K O^{i+1}(X) \longrightarrow \cdots, \tag{1.1}
\end{equation*}
$$

where $\eta_{i+2}: K O^{i+2}(X) \rightarrow K O^{i+1}(X)$ is multiplication by $\eta \in K O^{-1}$, and $\rho_{i}: K^{i}(X) \rightarrow K O^{i+2}(X)$ is the composite : $K^{i}(X) \xrightarrow{t-1} K^{i+2}(X) \xrightarrow{r_{i+2}} K^{i+2}(X)$.

Let $D_{1}^{i}=K O^{i}(X), E_{1}^{i}=K^{i}(X)$, then we get the exact triangle :
(1.2)

From this, we have a spectral sequence [6] such that:

is the derived exact triangle, where

$$
D_{r}^{i}=\operatorname{Im}\left[\eta^{r-1}: K O^{i+r-1}(X) \longrightarrow K O^{i}(X)\right],
$$

and the degree of differential is given by

$$
\begin{equation*}
d_{r}^{i}: E_{r}^{i} \longrightarrow E_{r}^{i-r+3} . \tag{1.3}
\end{equation*}
$$

Especially when $r=1$ and $i=2 j$, the next diagram is commutative:

Thus, let $H^{\text {even }}(K(X))=\operatorname{Ker}(1-\tau) / \operatorname{Im}(1+\tau)$ and $H^{\text {od } d}(K(X))=\operatorname{Ker}(1+\tau) / \operatorname{Im}(1-\tau)$, then

$$
E_{2}^{2 j} \cong \begin{cases}H^{\text {even }}(K(X)) & \text { (if } j \text { even }) \tag{1.4}\\ H^{\text {od } d}(K(X)) & \text { (if } j \text { odd }) .\end{cases}
$$

As $\eta^{3}=0$, we have $D_{4}^{*}=0$ and the spectral sequence collapses. This implies

$$
\begin{equation*}
\cdots \xrightarrow{d_{3}} E_{3}^{i-4} \xrightarrow{d_{3}} E_{3}^{i} \xrightarrow{d_{3}} E_{3}^{i+4} \xrightarrow{d_{3}} \cdots \quad \text { (exact). } \tag{1.5}
\end{equation*}
$$

For many spaces X we can easily check $K^{o d d}(X)=0$, for example when $X=B G$, the classifying space of group or X is a $C W$ complex with cells only in even dimensions. We suppose the assumption through this paper.

Then by Bott sequence, we have

$$
\begin{equation*}
0 \longrightarrow K O^{2 j+1}(X) \xrightarrow{\eta_{2 j+1}} K O^{2 j}(X) \xrightarrow{c_{2 j}} K^{2 j}(X) \xrightarrow{\rho_{2 j}} K O^{2 j+2}(X) \xrightarrow{\eta_{2 j+2}} K O^{2 j+1}(X) \longrightarrow 0 \tag{1.6}
\end{equation*}
$$

is exact.
From this, we have many exact sequences.
Lemma 1. Suppose $K^{o d d}(X)=0$, then

$$
\cdots \longrightarrow K O^{2 j+1}(X) \xrightarrow{\eta^{2}} K O^{2 j-1}(X) \longrightarrow H^{j}(K(X)) \longrightarrow K O^{2 j+3}(X) \xrightarrow{\eta^{2}} K O^{2 j+1}(X) \longrightarrow \cdots
$$

is exact.
Proof. By (1.6), we have

$$
D_{2}^{2 j}=\eta K O^{2 j+1}(X) \cong K O^{2 j+1}(X),
$$

and

$$
D_{2}^{2 j-1}=\eta K O^{2 j}(X)=K O^{2 j-1}(X) .
$$

Consider (1.2) $)_{2}$ The next is commutative:

$$
\begin{aligned}
& \begin{array}{l}
\longrightarrow D_{2}^{2 j+2} \longrightarrow D_{2}^{2 j} \longrightarrow \cdots \\
\\
\longrightarrow K O^{2 j+3}(X) \longrightarrow \eta^{\eta^{2}} \cong
\end{array}
\end{aligned}
$$

The upper line is exact, so is the lower one.
Again by (1.6), we get

$$
K O^{2 j+1}(X) \cong \operatorname{Ker}\left[K O^{2 j}(X) \xrightarrow{c_{2 j}} K^{2 j}(X)\right] .
$$

Moreover, if $K^{\text {even }}(X)$ is 2-torsion free, we have

$$
K O^{2 j+1}(X) \cong \mathbf{Z} / 2 \text { part of } K O^{2 j}(X) \text {, }
$$

(see Lemma 2.1 [5]), but here we consider different assumptions, and investigate the kernel and the cokernel of the maps c, r and η.

Theorem 2. If $K^{o d d}(X)=0$, then the conditions are equivalent:
(A)

$$
H^{o d d}(K(X))=0,
$$

(B)

$$
K O^{4 k-3}(X)=0 \quad(\text { for all } k),
$$

and if either of them is satisfied, then the followings are exact sequences for all k :
(1) Complexification c :

$$
\begin{array}{ll}
\text { (i) } & 0 \longrightarrow K O^{4 k}(X) \xrightarrow{C_{4 k}} K^{4 k}(X) \xrightarrow{\rho_{4 k}} K O^{4 k+2}(X) \longrightarrow 0 . \tag{i}\\
\text { (ii) } & 0 \longrightarrow K O^{4 k-1}(X) \xrightarrow{\eta_{4 k-1}} K O^{4 k-2}(X) \xrightarrow{c_{4 k-2}} K^{4 k-2}(X) \longrightarrow \operatorname{Coker}(1-\tau) \longrightarrow 0 .
\end{array}
$$

(2) Realization r :
(iii) $\quad 0 \longrightarrow K O^{4 k}(X) \xrightarrow{t^{-1} c_{4 k}} K^{4 k+2}(X) \xrightarrow{\gamma_{4 k+2}} K O^{4 k+2}(X) \longrightarrow 0$,
(iv) $\quad 0 \longrightarrow \operatorname{Ker}(1+\tau) \longrightarrow K^{4 k}(X) \xrightarrow{r_{4 k}} K O^{4 k}(X) \xrightarrow{\eta_{4 k}} K O^{4 k-1}(X) \longrightarrow 0$.
(3) The multiplication by η :
(v) $\quad 0 \longrightarrow K O^{4 k-1}(X) \xrightarrow{\eta_{4 k-1}} K O^{4 k-2}(X) \longrightarrow \operatorname{Ker}(1+\tau) \longrightarrow 0$.
(vi) $\quad 0 \longrightarrow \operatorname{Im}(1+\tau) \longrightarrow K O^{4 k}(X) \xrightarrow{\eta_{4 k}} K O^{4 k-1}(X) \longrightarrow 0$.
(4) Other groups derived from $1 \pm \tau$:
(vii) $\quad 0 \longrightarrow K^{4 k-1}(X) \longrightarrow \operatorname{Coker}(1+\tau) \longrightarrow \mathrm{KO}^{4 k+2}(X) \longrightarrow 0$.
(viii) $\quad 0 \longrightarrow K O^{4 k-4}(X) \longrightarrow \operatorname{Ker}(1-\tau) \longrightarrow K O^{4 k-1}(X) \longrightarrow 0$.
(ix) $\quad 0 \longrightarrow K O^{4 k-1}(X) \longrightarrow H^{\text {even }}(K(X)) \longrightarrow K O^{4 k+3}(X) \longrightarrow 0$.

Proof. By Lemma 1, (A) implies

$$
0 \longrightarrow K O^{4 k-3}(X) \xrightarrow{\eta^{2}} K O^{4 k-4}(X) \longrightarrow H^{\text {even }}(K(X)) \longrightarrow K O^{4 k-1}(X) \xrightarrow{\eta^{2}} K O^{4 k-3}(X) \longrightarrow 0
$$

is exact.
As $\eta^{4}=0$, we have $K O^{4 k-3}(X)=0$. When (B) is sutisfied, (A) is obtained directly from Lemma 1.

Suppose the either of them is sutisfied. By (1.6) $)_{2 k}$, we have (i) and (iii). Consider $(1.6)_{2 k-1}$. As $\rho_{4 j-4}$ is surjective and $c_{4 k}$ is injective, $\operatorname{Im} c_{4 k-2}=\operatorname{Im} d_{2}^{4 k-4}=\operatorname{Im}(1-\tau)=$ $\operatorname{Ker}(1+\tau)=\operatorname{Ker} d_{2}^{4 k-2}=\operatorname{Ker} \rho_{4 k-2} \cong \operatorname{Ker} r_{4 k}$. Hence we have (iv) and (v). Besides, $\operatorname{Im} \rho_{4 j-2}$ $\cong \operatorname{Coker} c_{4 k-2}=\operatorname{Coker}(1-\tau) \cong \operatorname{Coim}(1+\tau) \cong \operatorname{Im}(1+\tau)$. This leads (ii) and (vi). Take the pushout of (i) by

$$
K^{4 k-2}(X) \xrightarrow{\rho_{4 k-2}} K O^{4 k}(X),
$$

then we get (vii). Take the pullback of (i) by

$$
K O^{4 k+2}(X) \xrightarrow{c_{4 k+2}} K^{4 k+2}(X),
$$

then we get (viii). (ix) follows from Lemma 1.

§2. $K O^{*} B O(n)$

Theorem 3. If a space X satisfies the next conditions

$$
\begin{aligned}
& K^{i}(X)= \begin{cases}2-\text { tortion free } & (\text { for } i=\text { even }) \\
0 & (\text { for } i=\text { odd }),\end{cases} \\
& c: K O(X) \longrightarrow K(X) \quad \text { is surjective, }
\end{aligned}
$$

then the following isomorphisms hold:
(a) $K O^{0}(X) \xrightarrow[\cong]{c_{0}} K^{0}(X)$,
(b) $\quad K O^{-1}(X) \cong K O^{-2}(X) \cong \eta K O^{\circ}(X) \cong K^{0}(X) \otimes Z / 2$,
(c) $K O^{-4}(X) \underset{r_{-4}}{\cong} K^{-4}(X)$,
(d) $K O^{i}(X) \cong 0 \quad(i=-3,-5,-6,-7)$.

Proof. Surjectivity of c implies $\tau=1$ and $1+\tau=2$ is monic, as $K(X)$ is 2-torsion free. Therefore $\operatorname{Ker}(1+\tau) \cong H^{o d d}(K(X)) \cong 0$, and the assumption (A) of Theorem 1 is
satisfied. Thus by (B) we have $K O^{-3}(X) \cong K O^{-7}(X) \cong 0$. Again from surjectivity of c_{0}, we have $K O^{-6}(X) \cong 0$ by (i), and $K O^{-5}(X) \cong 0$ by (ii). The others can be easily checked.

Corollary 4 . For $X=p t$ or $B O(n)$, (a), (b), (c) and (d) hold.
Proof. It is a well known fact for $X=p t$. For $X=B O(n)$. The complexification : $R O(O(n)) \xrightarrow{c} R(O(n))$ is an isomorphism [7]. After completion, the assumption of Theorem 3 is satisfied.

§ 3. Atiyah-Hirzebruch spectral sequence for $K O^{*} B U(n)$

In this section we compute the spectral sequece for $K O *(B U(n))$ and see the condition (B) of Theorem 1 is satisfied.

In Atiyah-Hirzebruch spectral sequece for $K O$:

$$
H^{*}(X: K O *) \Rightarrow K O *(X),
$$

the first differential d_{2} is given as following [4]:

$$
d_{2}^{p, *}= \begin{cases}S q^{2} \pi_{2} & (\text { if } p \equiv 0(8)) \tag{3.1}\\ S q^{2} & \text { (if } p \equiv-1(8)) \\ 0 & \text { (otherwise) }\end{cases}
$$

where $\pi_{2}: H^{*}(X: \mathbf{Z}) \rightarrow H^{*}(X: \mathbf{Z} / 2)$ is modulo 2 reduction.
Let $X=B U(n)$, then

$$
H^{*}(B U(n): R)=R\left[c_{1}, c_{2}, \cdots, c_{n}\right], \quad \operatorname{deg} c_{i}=2 i
$$

where c_{i} is the i-th Chern class, with any ring R. Thus for $p(\equiv-1$ (8)), we have

$$
E_{3}^{p, *}=H\left(H^{*}(B U(n): \mathbf{Z} / 2), S q^{2}\right) .
$$

By Wu formula, we know that

$$
S q^{2} c_{i}= \begin{cases}c_{1} c_{i} & (\text { if } i=\text { odd }) \tag{3.2}\\ c_{i+1}+c_{1} c_{i} & \text { (if } i=\text { even }) .\end{cases}
$$

(Remark $c_{i+1}=0$ for $i+1>n$.)

Lemma 5.

$$
H\left(H^{*}(B U(n): \mathbf{Z} / 2), S q^{2}\right) \cong \mathbf{Z} / 2\left[c_{2}^{2}, c_{4}^{2}, \cdots, c_{2[n / 2]}^{2}\right] .
$$

Proof. Let $A=H^{*}(B O(n): \mathbf{Z} / 2) \cong \mathbf{Z} / 2\left[c_{1}, c_{2}, \cdots, c_{n}\right]$ and $d=S q^{2}$. Then (A, d) is a differential algebra. Define $\bar{c}_{o d d}$ by

$$
\begin{align*}
& \bar{c}_{2 n+1}=c_{2 n+1}+c_{1} c_{2 n}, \tag{3.3}\\
& \bar{c}_{1}=c_{1} .
\end{align*}
$$

and subalgebras $M_{k}(2 k+1 \leqq n)$ and N by

$$
\begin{aligned}
M_{k} & =\mathbf{Z} / 2\left[c_{2 k}, \bar{c}_{2 k+1}\right], \\
N & = \begin{cases}\mathbf{Z} / 2\left[c_{1}, c_{n}\right] & \text { (if } n=\text { even) }, \\
\mathbf{Z} / 2\left[c_{1}\right] & \text { (if } n=\text { odd) } .\end{cases}
\end{aligned}
$$

Then by (3.3), we get

$$
\begin{aligned}
& d c_{2 n}=\bar{c}_{2 n+1}, \\
& d \bar{c}_{2 n+1}=0,
\end{aligned}
$$

and M_{k} and N are the sub differential algebra of $M . A$ is split as

$$
A \cong M_{1} \otimes M_{2} \otimes \cdots \otimes M_{[n / 2]-1} \otimes N
$$

and it is easy to check that

$$
\begin{aligned}
& H\left(M_{k}\right)=\mathbf{Z} / 2\left[c_{2 k}^{2}\right], \\
& H(N)= \begin{cases}\mathbf{Z} / 2\left[c_{n}^{2}\right] & \text { (if } n=\text { even }) \\
\mathbf{Z} / 2 & \text { (if } n=\text { odd }) .\end{cases}
\end{aligned}
$$

Therefore, by Künneth formula, we have

$$
\begin{aligned}
H(A) & \cong H\left(M_{1}\right) \otimes H\left(M_{2}\right) \otimes \cdots \otimes H\left(M_{[n / 2]-1}\right) \otimes H(N) \\
& \cong \mathbf{Z} / 2\left[c_{2}^{2}, c_{4}^{2}, \cdots, c_{2[n / 2]}^{2}\right] .
\end{aligned}
$$

Consider the maps derived from inclusions.

$$
\begin{aligned}
& q: B U(n) \longrightarrow B S p(n) \\
& c^{\prime}: B S p(n) \longrightarrow B S U(2 n) \longrightarrow B U(2 n)
\end{aligned}
$$

We know that

$$
H^{*}(B S p(n): \mathbf{Z} / 2)=\mathbf{Z} / 2\left[q_{1}, q_{2}, \cdots, q_{n}\right], \quad \operatorname{deg} q_{i}=4 i
$$

and

$$
\begin{align*}
& q^{*} q_{i}=c_{i}^{2}, \\
& c^{\prime *} c_{i}= \begin{cases}q_{i / 2} & \text { (if } i=\text { even }) \\
0 & \text { (if } i=\text { odd }) .\end{cases} \tag{3.4}
\end{align*}
$$

Proposition 6. The Atiyah-Hirzebruch spectral sequence $E_{r}^{*, *}$ for $K O *(B U(n))$ collapses for $r \geqq 3$ and is strongly covergent.

Proof. The Atiyah-Hirzebruch spectral sequence for $K O *(B S p(n))$ collapses. To see this it is enough to show the elements in $E_{2}^{*, 0}$ are permanent cycles and, by degree reason, it can be easily checked.

Consider the maps between the Atiyah-Hirzebruch spectral sequences:

$$
\begin{aligned}
& E_{3}^{*, q}(q): E_{3}^{*, q}(B S p(n)) \longrightarrow E_{3}^{*, q}(B U(n)), \\
& E_{3}^{*, q}\left(c^{\prime}\right): E_{3}^{*, q}(B U(n)) \longrightarrow E_{3}^{*, q}(B S p(n)) .
\end{aligned}
$$

If $q \equiv-1$ (8), by (3.4), the elements of $E_{3}^{*, q}(B U(n))$ are in the image of $E_{3}^{*, q}(q)$, and
$E_{3}^{*, q}\left(c^{\prime}\right)$ is an monomrphism. Hence the triviality of $E_{3}^{*, q}(B S p(n))$ implies $E_{r}^{*, q}(B U(n))$ $\cong E_{3}^{*, q}(B U(n))(r \geqq 3)$. Therefore the nontrivial candidates of sources or targets of d_{r} are in $E_{r}^{*, q}$, with $q \equiv 0,-2,-4$ (8). They concentrate in even degrees, so we conclude that $d_{r}=0$ for $r \geqq 3$.

Consequently the Atiyah-Hirzebruch spectral sequence is finitely convergent, so it is strongly convergent (Proposition 9, [1]).

§4. $K O^{*} B U(n)$

Theorem 7. Let τ be the conjugation map of K-theory. We have following isomorphisms:
(a) $K O^{\circ}(B U(n)) \cong \operatorname{Ker}(1-\tau)$,
(b) $K O^{-1}(B U(n)) \cong \operatorname{Ker}(1-\tau) / \operatorname{Im}(1+\tau)$,
(c) $K O^{-2}(B U(n)) \cong \operatorname{Coker}(1+\tau)$,
(d) $K O^{-4}(B U(n)) \cong \operatorname{Coker}(1-\tau) \cong \operatorname{Im}(1+\tau)$,
(e) $K O^{-6}(B U(n)) \cong \operatorname{Im}(1-\tau) \cong \operatorname{Ker}(1+\tau)$,
(f) $\quad K O^{q}(B U(n)) \cong 0 \quad(q=-3,-5,-7)$.

Especially, $K O(B U(n))$ is isomorphic to the τ-invariant elements of $K(B U(n))$.
Proof. From the results of the Atiyah-Hirzebruch spectral sequece (Lemma 5, Proposition 6), the elments which have odd degrees are in $E_{3}^{*,-1} \cong \mathbf{Z} / 2\langle\eta\rangle\left[c_{2}^{2}, c_{4}^{2}, \cdots, c_{2[n / 22]}^{2}\right]$, and the degrees are all -1 modulo (8). Thus we get (f) and the condition of Theorem 1 is satisfied. Moreover $K O^{4 k+3}(B U(n)) \cong 0$. Thus (viii), (ix), (vii), (vi) and (v) imply (a), (b), (c), (d) and (e), respectively.

Department of Mathematics Kyoto University

References

[1] S. Araki and Z. Yosimura, A spectral sequence associated with a cohomology theory of infinite CW-complexes, Osaka J. Math., 9 (1972), 351-65.
[2] M.F. Atiyah, K-theory and reality, Quart. J. Math. Oxford (2), 17 (1966), 367-86.
[3] M.F. Atiyah and G.B. Segal, Equivariant K-theory and completion, J. Differential Geometry, 3 (1969), 1-18.
[4] M. Fujii, KO-groups of projective spaces, Osaka J. Math., 4 (1967), 141-49.
[5] S. G. Hogger, On KO theory of Grassmannians, Quart. J. Math. Oxford (2) 20 (1969), 447-63.
[6] W.S. Massey, Exact couples in algebraic topology, Ann. of Math., 56 (1952), 363-96.
[7] H. Minami, The representation rings of orthogonal groups, Osaka J. Math., 8 (1971), 243-50.

