J. Math. Kyoto Univ. (JMKYAZ)
31-2 (1991) 487-493

Note on KO-theory of BO#n) and BUx)

By
Shin-ichiro HARA

§0. Introduction

Atiyah and Segal determined the KO-theory of BG, the classifying space of a
group G, by its representation rings [3]. In this paper, we describe KO*(X) for X=
BO(n) and BU(n) in words of groups derived from maps 1+7 on K(X), where ¢ is

the conjugation map.
I would like to thank A. Kono for his helpful advices.

§1. Bott exact sequence

Let KO*(X) and K*(X) be the real and complex K-theories. The coefficient rings
are known as

KO*:ZI:”, a, By ﬁ_lj/(zv’ 1]3y a2—4ﬁ))
K*=7Z[t, t7'],
deg p=—1, dega=—4, deg B=—8, degt=—2.

Let ¢y : KO¥(X)—»K*(X) and r4: K¥(X)»KO*(X) be the complexification and the
real restriction. It is well known that

rici=2: KOi(X) —_—> KO‘(X),
K{(X)— K{(X)

ciri=14()t: ;l =~
K(X) — K(X),

where 7 is the conjugation map.
Consider the Bott exact sequence [2]:

Ci i
(L1) > KOYX) —5 KH(X) -5 ko) T2 KO X) —> ..
where 744, : KO**(X)—KO**'(X) is multiplication by & KO!, and pi: K{X)»KO*¥(X)

is the composite : Ki(X)'> K*(X) 3 K0+ X).
Let Di=KO%X), Fi=K%X), then we get the exact triangle:

K

DY ——— Dx

(1.2),
ANIVZ.
EY

Received August 24, 1989




488 Shin-ichiro Hara

From this, we have a spectral sequence [6] such that:

D¥

(L.2), N/

E*

Dz

is the derived exact triangle, where
Di=Im[9™': KO*"{(X) —> KO'X)],
and the degree of differential is given by
(1.3) di: Ei —s Ei"7+3,
Especially when »=1 and /=2j, the next diagram is commutative:

d,
Efi > E%j-{»z

K”(X) - S K”“(X)

= | Ly =

KX) —— KX

Thus, let H**(K(X))=Ker(1l—z)/Im(1+7) and H***(K(X))=Ker(1+7)/Im(1—7), then
I { Ho(K(X)) (if j even)

Ho'Y(K(X))  (f j odd).

(1.4)

As 9°=0, we have D¥=0 and the spectral sequence collapses. This implies

ds . d3 ) ds 3
(1.5) <e—> Fi"*—» FEi——» Eit* —> ... (exact).

For many spaces X we can easily check K°?¢(X)=0, for example when X=BG, the
classifying space of group or X is a CW complex with cells only in even dimensions.
We suppose the assumption through this paper.

Then by Bott sequence, we have

) Na2j+1 Caj P25 N2j+e
(1.6); 0—> KO¥*Y(X)—> KO¥(X)—> K¥(X) —> KO¥Y*(X) — KOY*'(X) —> 0

is exact.
From this, we have many exact sequences.

Lemma 1. Suppose K°?¢(X)=0, then

2 2

o —> KOY+Y(X) —1}—> KO¥ Y(X) — HY(K(X)) —> KO¥+(X) L KO¥+Y(X) —> -+
is exact.
Proof. By (1.6), we have
DY =9 KO¥+*(X)=KO¥*'(X),
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and . )
DY '=9KO¥(X)=KO0* (X).

Consider (1.2),, The next is commutative:

— D¥ —> D¥ ' — EY

A
e —> KOY+(X) — KO* ¥ X) — H/(K(X))

—> D¥v _—» D¥ ..

7° 7=
—> KO"#(X) —> KOY*+{(X) —> ---

The upper line is exact, so is the lower one.

Again by (1.6), we get
KO¥+{(X)=Ker [KO¥(X) —ﬁ; K*(X)].
Moreover, if K¢¢"(X) is 2-torsion free, we have
KO¥+{(X)=7Z/2 part of KO¥(X),

(see Lemma 2.1 [5]), but here we consider different assumptions, and investigate the
kernel and the cokernel of the maps ¢, » and 7.

Theorem 2. [f K°?%(X)=0, then the conditions are equivalent :
(A) H°*4(K(X))=0,
(B) KO*3(X)=0  (for all k),

and if either of them is satisfied, then the followings are exact sequences for all k:

(1) Complexification ¢ :
Car D4k
(i) 0 —> KO**(X) — K**(X) —> KO****(X)—> 0.

4k - C4 -
() 0 KO (X) 45 Koms-2(x) 45 Kot X) —> Coker (1—7) —> 0.
(2) Realization r:

7 Can Vik+e

(iii) 0 —> KO**(X) — K***(X) — KO****(X)—0,

v
(V) 0> Ker(1ht) —> K*(X) 5 KO"™(X) 4 KO*~1(X) —> 0.
(3) The multiplication by 7 :

4k

(v) 0 —> KO“’"(X)”—;IKO""?(X) —>Ker(l47) —> 0.

W) 0> Im(ltt) —> KO*(X) s KO*-1(X) —> 0.
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(4) Other groups derived from 1+7:
(vii) 0 —> KO*~Y(X) — Coker(1+7) —> KO***(X) —> 0.
(viii) 00— KO**%X)-— Ker(1—7) —> KO*~(X) — 0.
(ix) 0 — KO* Y(X) —> H®"(K(X)) —> KO**+(X) — 0.

Proof. By Lemma 1, (A) implies
2 2

0 —> KO*3(X) -L KO* 4 X) — H®(K(X)) —> KO**~Y(X) L KO*3(X)—0

is exact.

As 5*=0, we have KO**3(X)=0. When (B) is sutisfied, (A) is obtained directly
from Lemma 1.

Suppose the either of them is sutisfied. By (1.6),,, we have (i) and (iii). Consider
(L.6)2r-1.  As p4;_4 is surjective and ¢, is injective, Im ¢, ,=Imd4* *=Im(1—1)=
Ker (14-7)=Ker d§**=Ker p,,_.=Kerr,,. Hence we have (iv) and (v). Besides, Im p,;_»
=Cokerc,,_,=Coker (1—7)=Coim(1+7)=Im(1+7). This leads (ii) and (vi). Take the
pushout of (i) by

P4k -2
K X)—> KO**(X),
then we get (vii). Take the pullback of (i) by

Cak+2
KO+ X) —> K***¥(X),

then we get (viii). (ix) follows from Lemma 1.

§2. KO*BO(n)

Theorem 3. If a space X satisfies the next conditions

) 2—tortion free (for i=even)
K’(X):{

0 (for i=o0dd),

¢: KO(X)— K(X) s surjective,

then the following isomorphisms hold:

@)  KOX)—> K'X),

(b) KO"(X)z_KO'z(X):—:ﬂKO“(X)EK°(X)®Z/2,
() KO *X) :—:— K*4X),

@ KOi(X)gO—— (#=-3, =5, —6, =7).

Proof. Surjectivity of ¢ implies 7=1 and 1+7=2 is monic, as K(X) is 2-torsion
free. Therefore Ker(147)= H°?4(K(X))=0, and the assumption (A) of Theorem 1 is
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satisfied. Thus by (B) we have KO ¥(X)= KO "(X)=0. Again from surjectivity of ¢,
we have KO~ X)=0 by (i), and KO 5(X)=0 by (ii). The others can be easily checked.

Corollary 4 . For X=pt or BO(n), (a), (b), (c) and (d) hold.

Proof. It is a well known fact for X=pt. For X=BO(n). The complexification :

RO(O(n))—c>R(0(n)) is an isomorphism [7]. After completion, the assumption of Theorem
3 is satisfied.

§3. Atiyah-Hirzebruch spectral sequence for KO*BU(n)

In this section we compute the spectral sequece for KO*(BU(n)) and see the condi-
tion (B) of Theorem 1 is satisfied.
In Atiyah-Hirzebruch spectral sequece for KO :

H*(X: KO*) = KO*X),
the first differential d, is given as following [4]:
Sq¢*m, (if p=0 (8)
(3.1 di*=y S¢* (if p=—1(8)
0 (otherwise),

where m,: H¥(X: Z)-»>H*(X: Z/2) is modulo 2 reduction.
Let X=BU(n), then

H*(BU(n): R)=R[ci, €3, =+, ¢a],  degecs=2i,
where ¢; is the 7-th Chern class, with any ring R. Thus for p(=—1 (8)), we have
E2*=H(H*(BU(n): Z/2), Sq*).

By Wu formula, we know that

€1C; (if 7=o0dd)
3.2) Sq¢*c;=

Cimitcic;  (if i=even).

(Remark ¢;4,=0 for ;+1>n.)

Lemma 5.
H(H*(BU(n): Z/2), Sq*)=Z/2[c3, ¢}, -, C3tnrz1]-

Proof. Let A=H*(BO(n):Z/2)=2Z/2[c,, cs, -, ¢,] and d=Sq>. Then (A4, d) is a
differential algebra. Define ¢,q44 by

(3.3) Con+1=Cans1+CiCon,
61261 .

and subalgebras M, (2k+1<n) and N by
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Mk:Z/2[Czk; C-2k+1:| ,
{ Z/2[cy, ca] (if n=even),
Z/2[c,] (if n=odd).

Then by (3.3), we get
dcsn=Cens1,
d52n+1=0,
and M, and N are the sub differential algebra of M. A is split as
A=MQMQ -+ @Mtns21 QN
and it is easy to check that
HM)=2/2[c3:],
Z/2[ct] (if n=even)
H(N):{ .
Z/2 (if n=odd).

Therefore, by Kiinneth formula, we have
H(A)= HM)QH(M,)Q) -+ @ H(Mn121-)QH(N)
=Z/2[c3, ¢}, -+, Chtnrer]-
Consider the maps derived from inclusions.
g: BU(n)—> BSp(n)
¢’ BSp(n) — BSU(2n) — BU(2n)
We know that
H*(BSp(n):Z/2)=17/2[4q\, q», ---, q],  degq:=4i,
and
Q*Qizc?,
3.4) { qi;2 (if i=even)
Cl*Ci—_—
0 (if 7=o0dd).

Proposition 6. The Atiyah-Hirzebruch spectral sequence EF* for KO*(BU(n)) col-
lapses for r=3 and is strongly covergent.

Proof. The Atiyah-Hirzebruch spectral sequence for KO*(BSp(n)) collapses. To
see this it is enough to show the elements in E%° are permanent cycles and, by degree
reason, it can be easily checked.

Consider the maps between the Atiyah-Hirzebruch spectral sequences:

E¥%q): Ex(BSp(n)) —> E¥A(BU(n)),
E¥c’): E¥YBU(n)) —> E¥4BSp(n)).
If g=—1 (8), by (3.4), the elements of E¥%BU(n)) are in the image of FE%%g), and
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E*9(’) is an monomrphism. Hence the triviality of E¥%BSp(n)) implies EF%(BU(n))
=~ F*9BU(n)) (r=3). Therefore the nontrivial candidates of sources or targets of d.
are in E}9 with ¢=0, —2, —4 (8). They concentrate in even degrees, so we conclude
that d,=0 for »=3.

Consequently the Atiyah-Hirzebruch spectral sequence is finitely convergent, so it
is strongly convergent (Proposition 9, [1]).

§4. KO*BU(n)

Theorem 7. Let t be the conjugation map of K-theory. We have following isomor-
phisms:

@) KOYBU(n)=Ker(1—1),

() KO-'(BU(n)=Ker(1—z)/Im(1+7),
(¢) KO*BU(n))=Coker (1+1),

@) KO-*BU(n))=Coker(1—7)=Im(1+7),
) KO BUn)=Im(1—7)=Ker(l+7),
()  KOYBU(n)=0 (¢=-3, —5, —7).

Especially, KO(BU(n)) is isomorphic to the t-invariant elements of K(BU(n)).

Proof. From the results of the Atiyah-Hirzebruch spectral sequece (Lemma 5, Pro-
position 6), the elments which have odd degrees are in E¥ '=Z/2{n> [c3, 3, -, c3tnioal,
and the degrees are all —1 modulo (8). Thus we get (f) and the condition of Theorem
1 is satisfied. Moreover KO***3(BU(n))=0. Thus (viii), (ix), (vii), (vi) and (v) imply
(a), (b), (c), (d) and (e), respectively.
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