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Triple coverings o f algebraic surfaces according
to the Cardano formula

By

Hiro -o TOKUNAGA

§ O . Introduction

In this article, we consider a triple covering o f  a n  algebraic surface. In  case of
a  cyclic covering, that is , its rational function field is obtained by a  cyclic extension
of degree 3 , its structure is well-known. B ut in  case  o f a  non-G alo is covering the
structure is not well-known. In  [6 ] , R. Miranda obtained some results about a non-
Galois triple covering by using a  rank 2  vector bundle (called t h e  "Tschirnhausen
m odule"). T . Fujita  and R. Lazarsfeld proved a  beautiful theorem about a non-Galois
triple covering over P r'  (n _ 4 )  (see [3], [5]). I n  th is paper, w e study a non-Galois
triple covering by using the Cardano form ula. A n outline of our method is as follows :

Let p :  X—+Y be a  finite normal triple covering of a norm al variety Y . F irst, we
define the discriminant variety D(X /Y ) and the minimal splitting variety .g  associated
to the triple covering p :  X—>Y. For these varieties, we have a commutative diagram :

( ; :z 2

X p , D(X /Y )

\f\ s, "s, v 1,4
Y

For details, see § 1 below. To study the triple covering p :  x-4Y , we study structures
of the morphisms : D(X/Y )-->Y , 8 2 :  J'Y'—q)(X, Y), and a:

Our main results are  as follows :

Proposition 3 . 1 .  L e t p : b e  a  f inite totally  ram if ied trip le  covering o f  a
smooth projective v arie ty  Y . A ssume that

(i) X  is smooth,
(ii) Y  is simply connected.

Then, p  is cyclic, and the branch locus of  p is smooth.

Proposition 3 . 4 .  L et p : S--*E be a f inite triple covering where S  and X  are smooth
surfaces. A ssum e that AS / I )  (the branch locus of  p) is an irreducible div isor and has
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singularities whose local euations are

x  2 +  y  3 k 0

where k is a natural num ber. (For two dif ferent singularities, corresponding k  may be
dif f erent.) T hen the structures of j3 : D(S/X)-X, p 2 : -S--+D(S1 X ) and a: g-> S are as
follows:

(i) D(S/E) is a normal double covering branched at 4(S/X).
(ii) g  is a nom al cyclic triple covering o f D(S/27) branched only  at Sing (D(S/E))

and singularities of are of Ak_i type.
(iii) T here ex ists an involution c  on  g ,  and we obtain S  as quotient surface o f  -S

by  c.

T he  above result is a  slight generalization of the result o f  R. Miranda [6], Lemma
5.9.

Theorem 3 .9 .  Let p :b e  a f inite triple covering where S  and I  are smooth
surfaces. Assume

(i) the surface g  is smooth,
(ii) X  is either a minimal rational surface or an abelian surface,
(iii) the K odaira  dimension K(S) o f S  is 2.
Then, the structures of p, p, : D(SIE)--> f, an d  /92 : :Ss  ->D(S/E) are one of the fol-

lowing:
(i) p : s ,X  is a cyclic covering.

(ii) p: S - * I  is non-Galois and one of the following occurs:
ii-a) X  is an abelian  surface, P 2 o r  P'><P'.
4(S/ 2') is an irreducible divisor with ordinary cusps  (i. e. (2, 3)-cusp) and the structure

of  a triple covering at a small neighborhood of each cusp is isomorphic to Example 3, in  § 2.
ii-b) X  is Fn  (n 2).
I f  4 (S / I) is irreducible, the structure of p is  the sa in e as case ii-a).
I f  4(S/ X) is reducible, then, il(S/X)=s 0 + D  where D,  as. for som e a N and D is

irreducible with some ordinary cusps.
( a )  n=2k (k N ) , p i : D(SIX) -± X  is  a double covering branched at 4(S/ X) and

p i : g->D(S/T) is a cyclic triple covering branched at Sing (D(S/ X)).
(p) iv =3k  (k N ), p i : D(S/X)-›X is a double covering branched at D and p i : -S-*

D(SIX) is  a cyclic triple covering branched at PTI (so) and Sing (D(S/E)).

Notations and Conventions. N , Z  a n d  C  mean natural numbers, integers, and
th e  complex number field, respectively.

k (X ) :  th e  rational function field of X  (k : th e  ground field).
Sing (X ) :  the  singular locus of X.
k (X ) : the Kodaira dimension of X.

Let f :  X->Y be a  morphism between X an d  Y  where both X  and  Y  a re  no rm al
varieties.

For xEX, we say that " f  is ramified at x". if  f  is not étale at x.
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For y  Y ,  we say that " f  is branched at y " , if  f  is not étale over y.
Therefore a ram ification div isor is th e  divisor on X , and  a  branch divisor is a

divisor on Y.
For a  divisor D  on Y , f - 1 (D) denotes a  se t theoretic inverse of D , and f*(D) de-

notes the ordinary pull back of the divisor D.

§  1 .  The Cardano formula and preliminaries

In this section, we assume that the ground fields k is algebraically closed and  its
characteristic is neither equal to 2 nor 3. We review the classical "Cardano formula".
Consider an  equation

.1:3 +a x+b=0 (1.1)

where a, b are elements of a field K (Dk).
A s is well-known, we can obtain solutions of the above equation as follows :
Put x-- -- u ± v . Then, (u3 -1-v3 +b)+(u+v)(3uv+a)=0. Therefore, to obtain solutions

of (1.1), it is sufficient to solve the  equations

u3 ±v 3 =—b
a—3

So, we obtain solutions of (1.1) as follows :

x2=0 4 I + 0 1 4 — ,  g

x3=0 81 - -2b-±Ark +41 - -b-2- - V.T?

where 0=1, co#1 and R=b 2 /4-1-0/27.
Assume REEK. The above process consists of three parts.
Step 1. We have a quadratic extension K I =K(0) with 02 =R.
Step 2. We have a cyclic cubic extension K2 =K 1(g) w ith  .62 = —b/2±R. lf, is  the

minimal splitting field for the equation (1.1). By the assumption on  the  characteristic
of the ground field k, it is  a Galois extension of K and its Galois group is isomorphic
to S ,  (the symmetric group of degree 3).

Step 3. There exists a  K-automorphism EGal (K2 /K) and the solution of (1.1) is
contained in  its invariant subfield

In  th e  ca se  that R is contained in  K, we put Ki = K  in  the Step 1, and omit the
Step 3.

Let p : X—>Y be a  finite tr ip le  covering where X  and Y  are norm al projective
varieties. Let k(X) and k(Y) be their rational function fields, respectively. We apply
the above argument to the fields k(X), k(Y). First, if R is not contained in  k(Y), take
a  quadratic extension of k(Y) corresponding to K, in  Step 1, and we also denote it IC.
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If  R is contained in k(Y), put K i = k (Y ).  Take the K i -normalization of Y .  (For the de-
finition of the K i -normalization, and its properties, see Iitaka [4], § 2.14.).

Definition 1 . 1 .  Let p :  X—>I7  be a finite triple covering where X and Y are normal
projective varieties. B y  the discrim inant variety D(X/Y) o f  Y ,  we mean the K,-
normalization of Y.

Remark. If  p  is  a  cyclic covering, D (X IY ) is equal to Y.

Next, we consider a  cubic cyclic extension of k(D(X/Y)) corresponding to K , in
Step 3, and also denote it by K y .  Take th e  K2-normalization of D(X/Y), and denote
it s .

Definition 1 .2 .  Let p :  X-->Y be the same as above. W e call .g obtained as above
"the minimal splitting variety of X".

Rem ark. If  p  is a  cyclic covering, X.  is isomorphic to X.

The following proposition is easy to prove, but important in our theory.

Proposition 1 . 3 .  L e t p :  X—>Y and it' be  the same as above, and p , :  S-->Y  be the
induced morPhism. Then, the birational m ap ov er Y  induced  by  a n  elem ent of
Gal (k(X')/k(Y)) is an automorphism o f X- .

P ro o f . Let a be an  element of Gal (k( )/k(Y )). Then a induces a birational map.
a: i • • •  —>.g. Consider a commutative diagram

Since .j.(‘, Y  are  p ro jec tive  and  p ,  is finite, a is a morphism by Iitaka [4], Theorem
2.21, 2.22. Therefore, a is an  isomorphism by Zariski's Main Theorem. Q . E . D .

By Proposition 1.3, if p : X --> Y  is not cyclic, we obtain X  as a quotient variety of
21? for an automorphism a of order 2 where a is  an isomorphism of .X‘ induced by an
element jE G a l (k(X')/k(Y)) of order 2. This corresponds to Step 3.

B y  the  argum ent above, to study a triple dovering p :  X-->Y, it is important to
study p i  : D(X/Y), and the automorphism group induced by the Galois group
Gal (k(X. )/k(Y )). Moreover, in case Y  is smooth, the following lemma plays an  import-
ant role.

Lemma 1 . 4 .  L e t 4(X/Y) and LI(g lY ) be the branch loci of p  and p , ,  respectively.
(Both of them  are divisors by the purity  of the branch locus, Zariski [ 9 ] . )  Then, we have
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4(X /Y )=J(X /Y ).

P ro o f . Case I. p :  X -4Y  is  cyc lic . I n  th is c a se , X  is equal to X. Therefore,
our statement is obvious.

Case II. p :  X—>Y is non-G alois. Consider a commutative diagram

2

X  P , D(X /Y )

I:\  Y  41
Y

where a: .g-->X is a double covering, p i : D(X/Y )--*Y  is a double covering, and  p,:x-->
D(X IY ) i s  a  cyclic triple covering. Assume 4( X/Y)R4(X/Y). (N ote that 4(X/Y)D
A (X /Y ).) L et D  be a n  irreducible component o f  4(X/Y)\4(X/Y). Since p 1 : X- ->Y  is
a G alois covering, p*D  is  a  p a r t  o f  th e  branch divisors o f  a .  (Notice that p*D i s  a
reduced divisor.) Consider the action of automorphism group induced by Gal (k(X)/k(Y ))
o n  a  neighborhood o f smooth p a rts  o f  yrD. Then, we know that th e  components of
pt.D  is  f ixed  b y  t h e  automorphism a  o f order 2 by which we have X =  /<a> (See
F igure  1 .) T h is  means that a EGal (k(X )/k(Y )) inducing a commutes with a n  element
o f  order 3 o f Gal (k (X )/k (Y )). T h is  contradicts to th e  assumption that Gal (k(X)/k(Y ))
is th e  third symmetric group. Q. E. D.

 

p i

 

t/D  
(Figure 1)

§ 2 .  Typical examples

In  this section, we consider typical examples of trip le  coverings.

Examples 1 .  Put Y=-=P'. L e t  X  be obtained by C(P 1 )(0)-normalization o f Y ,
where 0  satisfies a n  equation X 3 + X+ t=0, and t  is a n  inhomogeneous coordinate of
P 1 . We will consider the  struc tu re  o f X, D(X /P 1 ) and the action of an automorphism
group induced by Gal (C(X )/C(P')) fo r  X  and  P ' .  N ote  that Gal (C ( ) /C (P 9 )  is iso-
morphic to the  symmetric group o f degree 3. Note that we have  R=270+4.
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Since C(D(X/P'))=C(P9(A/k), the double covering D(X/ P')—>P' is illustra ted  os
follows :

D(X/P') 

1P 1

P '
4 \I 4
27

(Figure 2)

Therefore, D(X/Pi):-L2 P', and p i : D(X/ P')-+P' is given by

2 V -1 z 2+1p i : z 3 v 8 --( = O .

w here z  is  a  suitable inhomogeneous coordinate of D(X/ P'). U sing the above coordi-
nate  z, we obtain

{  1

p t  =   2
-

+ 1

v  Pt  R = s23 A-,[3-1  z z

3 3  z ' — 1
and

1 A/—— 1 z-1-1 —
2

p tt+P R , --- 3 

Since

C(X)=C(D(X/ P9)(N
2 I —_,343±-vp1R)

=c(D(x /ps))( 2
AI v-1/3-V  3 zz +

+ 1) ,

The cyclic triple convering k—>D(X/P 1) is illustrated as follows :

D(X1P9
(Figure 3)

Therefore, V, and the morphism p2 : k'—>D(x/ P i)  is given by

p2: w w3 + 1  ( =z ) ,w' -1
w here w is  a  suitable inhomogeneous coordinate of k  Next, let us consider the action
of an automorphism group induced by Gal (C(g)/C(P 1)). On D(X/P9, th e re  is  an in-
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volution c which is induced by the non-trivial element of Gal (C(D(X/ P 1 )/ C(Pi)). By
using the  above coordinate z, this is represented by

:  2 1 - > - z .

This involution induces an involution d  o n  ;Y. B y  u s in g  th e  above coordinate w, à  is
represented by

1
: —  .

Finally, le t u s consider the action of an automorphism T  o f order 3 induced by an  ele-
ment o f order 3 in  Gal (C(X)/C(P 1 )). T hen, 7 is represented by

r: w - W ,

where e = e x p  27r -‘ / - 1 \
■ 3 l •

By the  above argum ent, we obtain the  structure  of D(X/ Pi), and  the action of
th e  automorphism group induced by Gal (C (R )/C (P9). T h e  following figure explains
relations between P i ,  D(XI Pi), an d  X.

\ 924
D(X1P9

P i

V- 247 —23-7 c°

(Figure 4)

Example 2 (Corollary to Example 1). Put Y =  P 2 a n d  l e t  [72 : z1: .72] be homo-
geneous coordinates o f  P 2 . L et X  be a  finite triple covering defined by th e  C(P 2 )(0)-
normalization of P 2, where 0 satisfies an equation x 2 ± x + (z 2/z2 )= 0 .  Then, the minimal
resolution o f X  is a  rational ruled surface of degree 3, that is P(Op1eOpi(3)). And X
is obtained by contracting its negative section.

T h is  fact is easily proved by blowing up at 10: 0:  1 ] and  we reducing th e  problem
to Example 1.

Example 3 .  P u t X=C 2 ,  Y = C 2 a n d  consider a  covering
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: X  - ->  y

(x, y)■— >(u, v)=(xy,

C learly , X  i s  a  G a lo is  covering o f  Y  with Gal (X/Y) isomorphic to The Galois
group apts o n  X  by

a : (x, y)I— >(y , x )

(x, y)1 > (ex , s'y )

w here s=exp
\

'‘7 - 1  S a=<a, a2=r3=(ar)2=1. Consider a  diagram 3

X
S o o / 4,0<r>

X/<0. > 7r X gr>

C.,\ 41- (r>
Y

Let us analyse X g a>, X g r> and their ramification loci. The morphism go<„, 77„,,
and r< , > a re  w ritten explicitly a s  follows :

ça< : X —> X go - >-:C 2

(x, Y)'— > (z , w )=(x+Y , X Y)

7 0> : X/<> - - >  Y

(z, w)1— > (u, v)=(w, z 3 -3z w )

ço(r> : X  --> X /<r>'S pec (CPI, t2, t31/(a-t1t2))

(x, 12, i3)=(x 3 , y ', x y )

Note th a t  X g a> has a unique singularity and  it  is  a n  A , s in g u la r ity . The m orphism
7r<,..> is  g iven  by

7 0-> : X I <T>  -->  Y

(11, 12, 13) (u, v)=(13, 11+12)

The ramification locus R , of 7r is  a  divisor defined by a n  equation (y—x)(y—ex) •
(y —e2 x )=0  where s =exp (27r-V —1/3). The support 7r(R 3) is  a  divisor B , o n  Y  defined
by  a n  equation (v 2 /4)— u 2 = 0 .  L e t  u s  consider the ram ification loci of ço<, ›  a n d  7  > .
The ramification locus ço <„> i s  a  divisor defined by an  equation y —x = O .  The support
o f  i t s  im a g e  o f  w<c> i s  a  divisor defined by a n  equation w—(1/4)z 2 = 0 . S im ila ry , w e
obtain the ramification locus of r <„,, and i t  is  a  divisor o n  X go . > defined by a n  equa-
tion w—z 2 = 0 .  N ote th a t  images of w—(1/4)z 2 =0 and w— z 2 = 0  a r e  th e  same divisor
o n  Y  defined by a n  equation (v 2 /4 )—  u s= 0 . F in a lly , l e t  u s  consider the ramification
loci of ço<,  and r <r>. I t  is  c le a r  th a t  the ramification locus of ço,,, is  one point (0, 0).
A nd its  im age of yam  i s  the unique A , singularity o f  X g r> .  The ram ification locus
of is (7r - 1 (B-)),ed. T h e  fo llo w in g  figure explains the above results.
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—cox = 0

y r_0)2x ,0

W(0 >

w—z 2 =0

z2 =04

X<r>
7r

ir<o>

Xl<a>

(Figure 5)

Rem ark. In  the  above example, Ito > : Xgo - >—>Y is  a  n o n -G a lo is  tr ip le  covering.
T h is  is a  typical example for the case of dim ension 2 .  Locally, it is t h e  same triple
covering a s  th e  "generic trip le  covering of a  su rface" in  the  sense of M iranda [6].

§ 3 .  Applications

In  this section, the ground field is always th e  complex number field C.

( I )  A  totally ramified tr ip le  covering. Let p :  X—>Y b e a  finite trip le  covering
o f  a  smooth projective variety Y . W e call p  totally ramified, i f  f o r  any irreducible
component of the ram ification divisors o f  p , its ram ification index is equal to 3. For
a  totally ramified trip le  covering, we have the following :

Proposition 3.1. Let p : X—>Y be a finite totally ramified triple covering of a smooth
projective v arie ty  Y . Assume that

(i) X  is smooth,
(ii) Y  is simply connected.

Then, p is cyclic, and the branch locus of p is smooth.

Pro o f . Assume th at p  is  n o t cyc lic . Then, from the arguments in § 1, there
exists varieties D(X/Y) and F o r  these two varieties, there exists the commutative
diagram
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Xa 11 3 1  132D(X/Y)

41
Y

Since Gal (C(k)/C(Y)) is isomorphic to S s, there is no ramification point of p ,  whose
ramification index is equal to 6. Hence, by lemma 1.4, a  is étale. But this fact indi-
cates that 131 is  étale. Since D(XIY) is irreducible and Y is simply connected, this is
a contradiction. By Proposition 3.3, [ 8 ] ,  it is  easy  to  show that the branch locus of
p  is smooth. Q .  E .  D .

A s is well-known, a  trigonal curve is a  curve which has a  rational function of
degree 3. Hence, we can regard C as a triple covering of P '.  A s an  easy applica-
tion of the above proposition, we have the following.

Corollary 3.2. Let p  c - * P ' be a triple covering. W e denote the branch points of
p  by  p,, ••• , Pr (rL>2). Assume th at p - 1 (P i) (i= 1, ••• , r )  consists of one point, that is,
the ramification index of p - '(p ) is  3. Then, p :  c - * P '  is a cyclic triple covering.

Remark 3.3. W e can easily determine the cubic equation corresponding to the
above triple covering p :  C--d:". There are three types.

( t - p i ) • • • ( t - p r )(Type I) r + =0 r-=0 (mod 3)
t r

( T y p e  I I )  X 3 +
(t —p1) • • •  ( t - p , , ) ( t - p r _ i ) 2 ( t - p r ) 2

= 0 r _ = . 1  ( m o d  3 )t r+ 1

( T y p e  I I I )  X ' +  
(t — P O  (t—P,--1)(t—Pr)2

r 2  ( m o d  3 )t r+ 1

where t  is an inhomogeneous coordinate of I ' .

(II) Trip le coverings of surfaces. In this part, we study a triple covering of a
surface. Let p :  S--42' be a  finite triple covering where both S  and I  are smooth sur-
faces. B y g  and D(S/ I ) ,  we denote the minimal splitting surface and the discriminant
surface, respectively.

Proposition 3.4. L e t p: S--->E b e  the sa in e  as abov e. Assume th at 4(S/E) (the
branch locus of p )  is an irreducible divisor and has singularities w hose local equations
are x 2 + y 3 k = 0  w here k  i s  a natural num ber. (For two different sin gu la rieties , corre-
sponding k  m ay  be dif ferent.) Then, the structures of 13, : P,: g—>D(S/E)
and a: g—>S are as follows:

(i) D(S/E) is a norm al double covering o f E  branched along J(SIE).
(ii) g  is a normal cyclic triple covering o f D(S/E) branched only at Sing (D(S/E))

and singularities of are of Ak_i type.
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(iii) There exists an involution c on g  such that S is obtained the quotient surface
o f g  by e, and a is regarded as the quotient map.

P ro o f . B y  the  a rgum en t in  § 1, the statement (iii) is  c le a r . First we prove the
following :

CLAIM 3.5. p: S--*X is not a  cyclic covering.

Proof  of Claim 3.5. Assume that p  is cyclic. T h en , since 4(S/X ) i s  a n  irre-
ducible divisor and deg p .3 ,  S is embedded in  a  total space o f a  line bundle over X.
(See Tokunaga [8]. Proposition 3.3.) B u t in  this case, S is s in g u la r . Therefore, p
is not cyclic. When p  is not cyclic, we have a diagram

g
7  \ ! :

S  p i D(SIX)1

IX ,  4 3 1
X

where is a double covering, is  a  cyclic triple covering, and a  is  a double cover-
ing. Since  4 (SIX ) is an  irreducible divisor, there are three possibilities.

1) Both P i  a n d  2  are ramified at divisors, that is , g, is ramified to 4 (S / I ) and
/32 is ramified at 13-i l 4(S/E).

2) A, is branched at 4(S/X), but p, is not ramified at 4371 (4(S/E)).
3 )  de  2  is branched at i3T1 (4(S/E)) and /3, étale.
Case 1). In this case, the Galois covering p i : is branched at ZI(S/X) and the

ram ification index of pTi(zI(S/X)) is  equal to  6. Consider the action of the Galois
group at a  smooth po in t o f kil(4(S/E)). T hen , Gal(C(g)/C(E)) h a v e  a n  element of
order 6. This is a contradiction.

Case 2). In this case, D(S/ X ) is a normal surface with A i, s ingu larities. T here
are two possibilities

2—a) p ,  is étable, 2—b) 13, is ramified.
Case 2—a). Let x be one of singularities on D(S/E). T hen , ISV (x) consists of 3

points which a r e  243 1,_1 singularities. S ince S is smooth, the branch locus of a is a
divisor on S by the  purity of branch locus (see Zariski [9]). Moreover, a (/ 9 (x )) is
contained in this divisor. This means that at least one  o f 3 points of 13i 1(x) has the
stabilizer group S 3 . This is a contradiction.

Case 2--b). By case 1), p, is branched at most some p o in ts . B y th e  purity of a
branch locus, they are singular points. Moreover, by the  proof of 2—a), they consist
o f  a l l  singularites o f  D(S/E). L e t  x  be one of singularities and let U be its small
neighborhood. Since singularities are all of type _1, we can take U in  such a  way
that there is V (c C ) a  small neighborhood V (c C ) of origin of C 2 a n d  that 2r : V-4.1
i s  the  quotient m ap by th e  group action of Z/3kZ. Moreover, 7C \  ( 0 ,  :  V  \  ( 0 ,

II\ IX } is étale. Since the local fundamental group r i (U\{x}) is isomorphic to Z/3kZ
and 192 1,Eqi ( u \  ( x ) )  is cyclic and étale. )3V(U)\/3i 1 (x )  is isomorphic to a quotient space
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o f  V\(0, 0) by a  subgroup Z/kZ . Moreover, since S" is  normal double covering o f  S,
p (x )  is  a n  isolated hypersurface s in g u la r ity . T h e re fo re , i ( x )  i s  a n  isolated hyper-
surface  singularity . T herefore , Ail(x) is  a n  A k  _1 singularity.

Case 3). Clearly, D (S/I) is smooth, and AV(ZI(S/I)) has singularities. Therefore,
S" m ust be singular by T o kun aga [8 ]. Proposition 1.1. H ence a  is  n o t  é ta le . L e t x
be sm ooth point of J(S/E), and  le t U  be its sm all neighborhood. Consider a  ramifica-
t io n  in d e x  o f  A 1 I9T1 (4(S/f))npV(U) and a ' p - 1 (41(S/E))(- ,p -i i (U ) .  They a re  equal to
e a c h  o th e r . But the ramification index of pV AV(4(S/E))npV(U) is equal to  3 and the
ramification index of a - 1 p- '(4(S/Z))np7(U) is even num ber because o f  a  i s  a double
c o v e r . T h is  is  a contradiction.

By Cases 1), 2), and  3), only the possible case is  Case 2 -b ) . T h is  proves proposi-
tion. Q. E. D.

N ext, w e consider the  case that S' is  a smooth su r fa c e . In  th e  following, a , Pi, 432
PO mean t h e  same morphisms w hich appear in  th e  proof of Proposition 3.1, and  g is
always smooth.

F irst, w e analyse the ramification divisor of p i : S"-- f .  L et P, 4(g/f)(=4(SIZ)) be
the ram ification locus and the branch locus of p „  respec tive ly . L e t x be a  p o in t o f  P.
T h e n , a  stabilizer at x  (w e denote  it Gr ) is  a non-trivial subgroup of Gal (C(g)/C(Z)).
In  the case th a t p is cyclic, Gr '-- -Z/3Z b y  C atanese [1 ], Proposition 1.1. In the case
th a t p is not cyclic , there a re  three cases

1) I G, I = 2 , 2 )  I Gr.1 = 3 , 3 )  I Gr I=6, e., where I G r I i s  th e  o rd e r  of
th e  group C .

Case 1 )  B y taking a  suitable system of local coordinates, (u, y ), the  action of Gr

is  one  of the  following :
a) a :(u, y)—>(—u, —y)

b) o. : (u, v)—> (—u, v)
w here Gr =(a>, a 2 —id.

In  c a se  a ) , a  q u o tie n t su rfa c e  SIg o . > has a n  A l s in g u la r ity . O n the o ther hand,
there  is  a n  isomorphism over C(E) between C(S) and C(S7<o- >). Since g/<a> is  normal
and finite over I ,  g <a> is  isom orph ic  to  S  b y  Iitaka [4 ], Theorem 2.21, 2 .22. Since
S  i s  a  co n trad ic tio n . In  ca se  b), there exists a  sm ooth divisor through x an d  fo r all
po in ts on  it, the  stabilizer group is isom orphic to ZI2Z.

Case 2 )  B y taking a  suitable system of local coordinate at x, the  action of Gr  i s
one  of the  following :

a) r :  (u, (eu, e'v)
b) : (u, v) ,---> (eu, sv)
c) : (u, (Eu, y)

Gr =<z>, 1-'=id, a n d  s = e x p  2n. V— 1
3

Since has a unique subgroup of order 3 , th e  rational function field of the quoti-
en t surface g/G r  coincides w ith C(D(S/E)). B y  th e  uniquness o f C(D(S/E))-normali-
tion o f I  (see Iitaka [4], § 2.14), g/Gr  is  eq ua l to  D(S/ I ) .  Since D(SIX) is  a normal
double covering, singularities o f  D(S/E) m ust be hypersurface singularites. Therefore
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case b) does not occur, because in  case b), ggz-> has a rational triple point which can
not be a  hypersurface s in gu larity . In  case a), S l<r>(=D(S /Z )) has a n  A 2 singularity.
S ince f  is sm ooth, p i  i s  n o t  étale. Therefore, by th e  purity o f  branch loci, there
exists a  divisor o n  I w h ich  passes through p i (x), and A i : D(S/Z)— >f is branched over
its  d iv iso r . T h is  s h o w  th a t th e  order o f G , is equal to 6. T h is  is  a contradiction.
In case c), there exists a smooth divisor through x , and for all points on it, the stabilizer
group is isomorphic to Z /3Z .

Case 3 )  B y tak in g  a  suitable loca l coordinate system, the  ac tion  of Gx ( )  is
represented a s  follows :

o : (u, v)i— >(u, u)

: (u, v) ---*(eu, s 2 v)

G,=<o - ,  r> a 2 =r 3 =(ar) 2 = i d ,  a n d  s =exp

Hence, in  this case , the  situation  is  th e  same a s  Example 3 in  § 2. Thus, we obtain
th e  following result.

Lemma 3.6. L et p :  S -÷ f  be a finite triple covering where both S and X  are smooth
surf aces. A ssume that p  is not étale and S  is sm ooth. T hen, i f  p  is cy clic, the branch
locus is a smooth divisor, while i f  p  is not cyclic, there are two cases

(a) the branch divisor is a smooth divisor.
(b) the branch divisor has singular points and its singularities are all ordinary cups.

(i. e., (2, 3)-cusp)

Lemma 3.7. L e t  D  b e  a  div isor on D(S /E) contained in the ramification locus of
Ai. D (S /  I ) . Assume that D  is smooth. L e t D i  b e  an  irreducible component o f  D.
Then, AV(D i ) consists o f  3 components which are isomorphic to each other.

P ro o f . Since p i : S—>f is  Galois, P ( D )  is either irreducible o r  reducible with 3
components which a r e  isomorphic to each other. Assume that AV(D 1) is irreducible.
C learly , 3V(D 2 )  i s  a  component of the  ram ifica tion  divisor o f  p i . Therefore, there
exists an  automorphism a  such that a(x )=x  fo r  x EAV(D i ) an d  a 2 = i d .  L e t r  be an
automorphism w ith  o rder 3. T h e n , by irreducibility o f  48V(D1), r*( (D i))=P (D i).
L et x  be an  arbitrary point of AV (D i). Consider a  stab ilizer a t r(x). Since r(x)
Ai l (Di), w e have a(r(x ))=r(x ) . M oreover, we h av e  rar - l(r(x ))=ro- (x )=r(x ) . There-
fore, Gr(s)=-<0', rar - 1 > S 3. Hence, r ( x ) = x .  Since x is an arbitrary point on
th is is a contradiction. Q. E. D.

Now we consider the  case th a t  I  is  a m inim al rational surface  o r an  abelian sur-
face. We need the following lemma on connectedness of a divisor on a m inim al rational
surface and an abelian surface.

Lemma 3.8. L et D  be a divisor on a minimal rational surface or an abelian surface.
Then, the div ishr D is one of  the following types:

a )  f=an abelian surface
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a-1) D  is connected
a-2) D =E 1 + ••• +E .

E i : an elliptic curve, E i E 5=0 , fo r  all i, j.
b) E = P 2

D  is connected.
c) (a rational ruled surface of degree n , n -2 )
c-1) D : connected
c-2) D= f  i + • • • + f

f i  i s  a f ibre o f the f ibration F r7 -4P 1 .
c -3 )  D=s 0 -FD

so i s  a negative section of F .  ( i . e . , 4=— n)
D  is a divisor linear equivalent to k s .  where h  is a in teger and  s .  is a Positive section
of F .  ( i . e . , P i ,  so

2
o =n )

d )  E = Pl x  Pl
d-1) D  is connected
d-2) D= f 1+ ••• + f

f P i,  f  i f -
J =0 , fo r  all i, j.

P ro o f . C ase  a ), b )  and  d ) is  c le a r . W e w ill prove case c). Let D  be  a  divisor
on F .  Assume th a t D-- ----D i -F D2 , D 1 D 2 =0 , and D1--a1s0+b1f  D2--a2s0+b2f , where
denotes linear equivalence, and f  denotes a  f ib re . If  o n e  o f  D i  contains a fibre, then
both  D , and D , must be  a  finite sum of f ib e r s . This is  case c -2 ) .  From  now  on, we
assume tha t neither D , n o r D2 are contained in  a  f ib re . From  D1 D2 = 0, we obtain

— na 1 a 2 +a1b2+a2b1=0, a 1 a 2 0,a , > 0 ,  i = 1 ,  2 .

Put e =g .c .d .(a i , (22 ). Then,

alb2=a(na1 — b1), aY )1=a(na2-62),

w here a l = a e ,
Therefore we obtain

Jf

D 2 --, a 2 s 0 + a l f

w here h  and I  are intergers satisfying k + l = n e .  W ithout loss o f  generality, we may
assume i.e ., k _ <[n e 1 2 ] ([] denotes Gaussian symbol). Then,

— naf+2a 1 a;k = a i a;(2k

H ence D ,  co n ta in s  a t le a s t one irreducible component whose self-intersection number
0. W e denote it

C L A I M . b i -= S o •

Proof  of C laim . Assume 131 --as 0 +b f ,  a > 0 .  Then
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f
M=a(2b—na)

1 b i K F .= n a -2 a -2 b , (K F . :  a  canonical divisor o f  F)
Hence,

M +A K F 7,=(a-1)(2b—na)-2a .

Since Di  is irreducible, 13N-b i KF n . — 2. So, from a n  inequality .1:-A=a(2b—na).0,
a >0, we conclude a=1. Moreover, s o fi 1 = œ n+ b5 — n-F 2 b0 , a n d  equalities can not
hold simultaneously. Therefore, s o = r),, and our claim is proved.

By the  above claim, we obtain

f D=so+D'

1
T h is  is the case c-3). Q. E. D.

T he rest o f this section is devoted to prove th e  following.

Theorem 3 .9 . L e t p: S—>f b e  a  f in ite  triple covering w here both S and I  are
sm ooth surfaces. Assume the following:

1) g  is smooth,
2) I  is either a minimal rational surface or an abelian surface.
3 )  the Kodaira dimension ,c(S) o f S  is 2.
Then the structures o f P, :  D(S/E)--X, and 482 : g--+D(S/E) are  one of the fol-

lowing:
(i) p: S—>E is cyclic.

(ii) p: S—>f is non-Galois and there are two possibilities
ii-a) : =an abelian surface, P 2 ,  and P 1 ><Pi.
ZI(S/E) is an irreducible divisor with ordinary cusps (e. e.  (2, 3)-cusp) and a structure

of a triple covering of a small neighborhood of each cusp is isomorphic to Example 3, § 2.
ii-b) I=F,, (n _>_2)
I f  d(S/E) is irreducible, the structure of p  is the same as case ii-a).
I f  4(SIT ) is reducible, then 4(S/E)=s o -FD where D --as. fo r  some aEN and D is

irreducible and has ordinary cups.
( a )  n= 2k (kE N ) Pi : D(S/E)--÷E is branched along 4(S/Z) and 432 : g—>D(S/E)

is branched at Sing (D(SIE)).
(13) n-=3k (k E N )  P I : D(S/ I  is branched along D  a n d  P2 : —>D(SIX) is

branched at P71 (s o )  and Sing (D(S/E)).

R em ark . 1 ) I f  K (S )<2, t h e  above theorem dose not necesserally h o ld .  See Ex-
ample 2, in  § 2.

2 )  If X  is  a  ruled surface whose base curve has a  genus greater than 1, then the
above theorem does not necessarily h o ld . F o r  example, p u t  I  =C X P '  where C  is  a
curve with g ( C ) 2 .  Take a  tr ip le  covering /3 : C'.-4.F" where g (C ')> 2 . Consider

p:S-=CXC' C x P l

(x, 15(y))



374 Hiro-o Tokunaga

T h is  is a  typical counter-example.

Proof  o f  Theorem 3.9. W e consider the case that p  is non-Galois covering.
Case i i - a )  I f  I =  P 2 , then J(S/E) is always connected. Therefore, D(S/E) is

either smooth or one of the types in  the statement in  case ii-a). If  J(S/f) is smooth,
t h e  fundamental group 7r i (P 2 \4(S\E)) i s  a n  abelian g r o u p . Therefore, p  is cyclic.
T h is  is a  contrad ic tion . If  =  X  P '  o r  a n  abelian surface, a disconnected divisor is
o n e  o f  th e  ty p e s  stated i n  Lemma 3.5. Therefore, if 4(S/ X) is disconnected, then
K(S)<2. T h is  is a  con trad ic tion . Hence ZI(S/E) i s  a n  irreducible divisor a n d  it  is
smooth or one of the  types in  our statement. Assume that 4(S/ X) is sm ooth. In case
I = P 'x P l ,  t h e  fundamental group 7c1(P 'x Pi\J(S/Z) is abelian by Catanese [1],
Theorem 1.6. Therefore, the situation is th e  same as  th e  in  ca se  X = P '. I n  c a s e  I
is an  abelian surface, possible situations are as follows

(1) p, : D(SIE)--->f is branched at ZI(S/f) and  Ps .--D (S12 ') is étale.
(2) p, : D(S/E)-*2' is étale and ps : g—>D(S/E) is branched at pT1 (4(S/2')).
Case (1). Since 4(S/ E) is an am ple divisor o n  I ,  13,i(4(S/ I ) )  is  a lso  an am ple

divisor o n  D(S/ X ) .  Hence p-z iPii(ZI(S/Z)) is am ple, and smooth. So, it is  a n  irreduci-
ble divisor. But by Lemma 3.7, this is a contradiction.

Case (2). By th e  same reason as in  case  (1), ptii(s/ 2') i s  a  smooth ample divisor
on  D(S/ I ) ,  and  D(S/E) is a n  abelian s u r fa c e . By Tokunaga [8], p t4 ( s/ z ) -3 L  for a
suitable L EPic (D(S/E), and  g is embedded in  th e  to ta l space o f  L .  Since deg p,=2.
4 (S/  X )'3 ' fo r  a  suitab le ' Pic (1'). (Cf. Catanese [2] Lemma 4) Therefore, L—/9i'î

Pic°(D(S//)). B u t since both D(S/ I )  a n d  I  a re  abelian surfaces and p ,  is étale,
Pic°(f)->Pic°(D(S/Z)) is surjective (see Mumford [7], p . 81). Therefore, L =pt(f, +7)
for a  unique z-EPic°(E). Consider a  diagram

Xx E D(S / D ( S /  I )

I P1

where X  i s  a  smooth cyclic triple convering branched at 4(S/E) and it is embedded
in  the  to ta l space o f  th e  line bundle r, -F r . Note that J  is th e  same a s  Ps . Therefore,
X x E D(S/ B u t  th is  is  contradiction, since C(g) is a Galois extension of C(E)
with Galois group S s . F ro m  th e  above argum ent ii-a) follows.

Case ii-b). Assume that ZI(S I 2') is a connected divisor. Then we obtain th e  same
rasult as in  the  case  ii-a). In  th e  following, we assume that 4(S/f) is a  disconnected
divisor. Then by Lemma 3.5, 4(S/E)=s 0 -1-D  where D  is  an effective divisor which is
linearly equivalent to asoo  f o r  some a E Z .  Possible cases are as follows :

Case ( 1 )  ai is  b ran ch ed  at so+ D , and  Ps is branched at Sing (D(S/ I ) ) .  In  this
case, Sing (D ) is oonsists o f (2, 3)-cusps.

Case (2 )  13, is branched at s o-FD and P, is étale.
Case ( 3 )  P ,  is b ranched  at D ,  a n d  Ps is branched at Pt(so)USing (D(S/I)),

(Sing (D (S II)) may be empty.)
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R em rrk . The case that 131 is branched at s o is  impossible, since th e  class o f  s o in

Pic (I) is not divisible by 2.

Case ( 1 )  Since th e  class o f  s o +D in  Pic (I) is divisible by 2, th e  integer n  o f  F .
is  even . This case is  ii-b-(a).

Case (2) )3(8V(D )) is a smooth irreducible divisor. By Lemma 3.4, this case does
not occur.

Case (3 )  We can show  that th e  integer n  o f Fn  is  divisible by 3. Moreover i f  D
is non-singular, g(13V(D)) is a  smooth irreducible divisor. Therefore, by Lemma 3.4,
D  m ust be s in g u la r . T h is  ca se  is Q .  E .  D .
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