Triple coverings of algebraic surfaces according to the Cardano formula

By
Hiro-o Tokunaga

§ 0. Introduction

In this article, we consider a triple covering of an algebraic surface. In case of a cyclic covering, that is, its rational function field is obtained by a cyclic extension of degree 3, its structure is well-known. But in case of a non-Galois covering the structure is not well-known. In [6], R. Miranda obtained some results about a nonGalois triple covering by using a rank 2 vector bundle (called the "Tschirnhausen module"). T. Fujita and R. Lazarsfeld proved a beautiful theorem about a non-Galois triple covering over $\boldsymbol{P}^{n}(n \geqq 4)$ (see [3], [5]). In this paper, we study a non-Galois triple covering by using the Cardano formula. An outline of our method is as follows:

Let $p: X \rightarrow Y$ be a finite normal triple covering of a normal variety Y. First, we define the discriminant variety $D(X / Y)$ and the minimal splitting variety \hat{X} associated to the triple covering $p: X \rightarrow Y$. For these varieties, we have a commutative diagram:

For details, see $\S 1$ below. To study the triple covering $p: X \rightarrow Y$, we study structures of the morphisms $\beta_{1}: D(X / Y) \rightarrow Y, \beta_{2}: \hat{X} \rightarrow D(X, Y)$, and $\alpha: \hat{X} \rightarrow X$.

Our main results are as follows:

Proposition 3.1. Let $p: X \rightarrow Y$ be a finite totally ramified triple covering of a smooth projective variety Y. Assume that
(i) X is smooth,
(ii) Y is simply connected.

Then, p is cyclic, and the branch locus of p is smooth.
Proposition 3.4. Let $p: S \rightarrow \Sigma$ be a finite triple covering where S and Σ are smooth surfaces. Assume that $\Delta(S / \Sigma)$ (the branch locus of p) is an irreducible divisor and has

[^0]singularities whose local euations are
$$
x^{2}+y^{3 k}=0 \text {, }
$$
where k is a natural number. (For two different singularities, corresponding k may be different.) Then the structures of $\beta_{1}: D(S / \Sigma) \rightarrow \Sigma, \beta_{2}: \hat{S} \rightarrow D(S / \Sigma)$ and $\alpha: \hat{S} \rightarrow S$ are as follows:
(i) $D(S / \Sigma)$ is a normal double covering branched at $\Delta(S / \Sigma)$.
(ii) \hat{S} is a nomal cyclic triple covering of $D(S / \Sigma)$ branched only at $\operatorname{Sing}(D(S / \Sigma))$ and singularities of \hat{S} are of A_{k-1} type.
(iii) There exists an involution c on \hat{S}, and we obtain S as quotient surface of \hat{S} by c.

The above result is a slight generalization of the result of R. Miranda [6], Lemma 5.9.

Theorem 3.9. Let $p: S \rightarrow \Sigma$ be a finite triple covering where S and Σ are smooth surfaces. Assume
(i) the surface \hat{S} is smooth,
(ii) Σ is either a minimal rational surface or an abelian surface,
(iii) the Kodaira dimension $\kappa(S)$ of S is 2.

Then, the structures of $p, \beta_{1}: D(S / \Sigma) \rightarrow \Sigma$, and $\beta_{2}: \widehat{S} \rightarrow D(S / \Sigma)$ are one of the following :
(i) $p: S \rightarrow \Sigma$ is a cyclic covering.
(ii) $p: S \rightarrow \Sigma$ is non-Galois and one of the following occurs:
ii-a) $\quad \Sigma$ is an abelian surface, \boldsymbol{P}^{2} or $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
$\Delta(S / \Sigma)$ is an irreducible divisor with ordinary cusps (i.e. (2, 3)-cusp) and the structure of a triple covering at a small neighborhood of each cusp is isomorphic to Example 3, in § 2.
ii-b) $\quad \Sigma$ is $F_{n}(n \geqq 2)$.
If $\Delta(S / \Sigma)$ is irreducible, the structure of p is the same as case ii-a).
If $\Delta(S / \Sigma)$ is reducible, then, $\Delta(S / \Sigma)=s_{0}+D$ where $D \sim a s_{\infty}$ for some $a \in \boldsymbol{N}$ and D is irreducible with some ordinary cusps.
(α) $n=2 k(k \in \boldsymbol{N}), \beta_{1}: D(S / \Sigma) \rightarrow \Sigma$ is a double covering branched at $\Delta(S / \Sigma)$ and $\beta_{2}: \hat{S} \rightarrow D(S / \Sigma)$ is a cyclic triple covering branched at $\operatorname{Sing}(D(S / \Sigma))$.
(β) $n=3 k(k \in \boldsymbol{N}), \beta_{j}: D(S / \Sigma) \rightarrow \Sigma$ is a double covering branched at D and $\beta_{2}: \hat{S} \rightarrow$ $D(S / \Sigma)$ is a cyclic triple covering branched at $\beta_{1}^{-1}\left(s_{0}\right)$ and $\operatorname{Sing}(D(S / \Sigma))$.

Notations and Conventions. N, Z and \boldsymbol{C} mean natural numbers, integers, and the complex number field, respectively.
$k(X)$: the rational function field of $X(k$: the ground field).
Sing (X) : the singular locus of X.
$k(X)$: the Kodaira dimension of X.
Let $f: X \rightarrow Y$ be a morphism between X and Y where both X and Y are normal varieties.

For $x \in X$, we say that " f is ramified at x ", if f is not étale at x.

For $y \in Y$, we say that " f is branched at y ", if f is not étale over y.
Therefore a ramification divisor is the divisor on X, and a branch divisor is a divisor on Y.

For a divisor D on $Y, f^{-1}(D)$ denotes a set theoretic inverse of D, and $f^{*}(D)$ denotes the ordinary pull back of the divisor D.

§ 1. The Cardano formula and preliminaries

In this section, we assume that the ground fields k is algebraically closed and its characteristic is neither equal to 2 nor 3 . We review the classical "Cardano formula". Consider an equation

$$
\begin{equation*}
x^{3}+a x+b=0 \tag{1.1}
\end{equation*}
$$

where a, b are elements of a field $K(\supset k)$.
As is well-known, we can obtain solutions of the above equation as follows:
Put $x=u+v$. Then, $\left(u^{3}+v^{3}+b\right)+(u+v)(3 u v+a)=0$. Therefore, to obtain solutions of (1.1), it is sufficient to solve the equations

$$
\begin{gathered}
u^{3}+v^{3}=-b \\
u v=-\frac{a}{3}
\end{gathered}
$$

So, we obtain solutions of (1.1) as follows:

$$
\begin{aligned}
& x_{1}=\sqrt[3]{-\frac{b}{2}+\sqrt{R}}+\sqrt[3]{-\frac{b}{2}-\sqrt{\bar{R}}} \\
& x_{2}=\omega_{\sqrt[3]{ }}^{-\frac{b}{2}+\sqrt{\bar{R}}}+\omega^{2^{3}} \sqrt{-\frac{b}{2}-\sqrt{R}} \\
& x_{3}=\omega^{2} \sqrt[3]{-\frac{b}{2}+\sqrt{R}}+\omega_{\sqrt[3]{ }}^{-\frac{b}{2}-\sqrt{R}}
\end{aligned}
$$

where $\omega^{3}=1, \omega \neq 1$ and $R=b^{2} / 4+a^{3} / 27$.
Assume $R \notin K$. The above process consists of three parts.
Step 1. We have a quadratic extension $K_{1}=K(\theta)$ with $\theta^{2}=R$.
Step 2. We have a cyclic cubic extension $K_{2}=K_{1}(\tilde{\theta})$ with $\tilde{\theta}^{3}=-b / 2+R . \quad K_{2}$ is the minimal splitting field for the equation (1.1). By the assumption on the characteristic of the ground field k, it is a Galois extension of K and its Galois group is isomorphic to \mathfrak{S}_{3} (the symmetric group of degree 3).

Step 3. There exists a K-automorphism $\sigma \in \operatorname{Gal}\left(K_{2} / K\right)$ and the solution of (1.1) is contained in its invariant subfield K_{2}^{d}.

In the case that R is contained in K, we put $K_{1}=K$ in the Step 1 , and omit the Step 3.

Let $p: X \rightarrow Y$ be a finite triple covering where X and Y are normal projective varieties. Let $k(X)$ and $k(Y)$ be their rational function fields, respectively. We apply the above argument to the fields $k(X), k(Y)$. First, if R is not contained in $k(Y)$, take a quadratic extension of $k(Y)$ corresponding to K_{1} in Step 1, and we also denote it K_{1}.

If R is contained in $k(Y)$, put $K_{1}=k(Y)$. Take the K_{1}-normalization of Y. (For the definition of the K_{1}-normalization, and its properties, see Iitaka [4], § 2.14.).

Definition 1.1. Let $p: X \rightarrow Y$ be a finite triple covering where X and Y are normal projective varieties. By the discriminant variety $D(X / Y)$ of Y, we mean the K_{1} normalization of Y.

Remark. If p is a cyclic covering, $D(X / Y)$ is equal to Y.
Next, we consider a cubic cyclic extension of $k(D(X / Y))$ corresponding to K_{2} in Step 3, and also denote it by K_{2}. Take the K_{2}-normalization of $D(X / Y)$, and denote it \hat{X}.

Definition 1.2. Let $p: X \rightarrow Y$ be the same as above. We call \hat{X} obtained as above "the minimal splitting variety of X ".

Remark. If p is a cyclic covering, \hat{X} is isomorphic to X.
The following proposition is easy to prove, but important in our theory.
Proposition 1.3. Let $p: X \rightarrow Y$ and \hat{X} be the same as above, and $p_{1}: \hat{X} \rightarrow Y$ be the induced morphism. Then, the birational map over Y induced by an element of $\operatorname{Gal}(k(\hat{X}) / k(Y))$ is an automorphism of \hat{X}.

Proof. Let σ be an element of $\operatorname{Gal}(k(\hat{X}) / k(Y))$. Then σ induces a birational map. $\bar{\sigma}: \hat{X} \cdots \rightarrow \hat{X}$. Consider a commutative diagram

Since \hat{X}, Y are projective and p_{1} is finite, $\tilde{\sigma}$ is a morphism by litaka [4], Theorem 2.21, 2.22. Therefore, $\tilde{\sigma}$ is an isomorphism by Zariski's Main Theorem. Q.E.D.

By Proposition 1.3, if $p: X \rightarrow Y$ is not cyclic, we obtain X as a quotient variety of \hat{X} for an automorphism $\tilde{\sigma}$ of order 2 where $\tilde{\sigma}$ is an isomorphism of \hat{X} induced by an element $\sigma \in \operatorname{Gal}(k(\hat{X}) / k(Y))$ of order 2. This corresponds to Step 3.

By the argument above, to study a triple dovering $p: X \rightarrow Y$, it is important to study $p_{1}: \hat{X} \rightarrow Y, D(X / Y)$, and the automorphism group induced by the Galois group $\operatorname{Gal}(k(\hat{X}) / k(Y))$. Moreover, in case Y is smooth, the following lemma plays an important role.

Lemma 1.4. Let $\Delta(X / Y)$ and $\Delta(\hat{X} / Y)$ be the branch loci of p and p_{1}, respectively. (Both of them are divisors by the purity of the branch locus, Zariski [9].) Then, we have

$$
\Delta(X / Y)=\Delta(\hat{X} / Y) .
$$

Proof. Case I. $p: X \rightarrow Y$ is cyclic. In this case, \hat{X} is equal to X. Therefore, our statement is obvious.

Case II. $p: X \rightarrow Y$ is non-Galois. Consider a commutative diagram

where $\alpha: \hat{X} \rightarrow X$ is a double covering, $\beta_{1}: D(X / Y) \rightarrow Y$ is a double covering, and $\beta_{2}: X \rightarrow$ $D(X / Y)$ is a cyclic triple covering. Assume $\Delta(\hat{X} / Y) \supseteqq \Delta(X / Y)$. (Note that $\Delta(\hat{X} / Y) \supset$ $\Delta(X / Y)$.) Let D be an irreducible component of $\Delta(\hat{X} / Y) \backslash \Delta(X / Y)$. Since $p_{1}: \hat{X} \rightarrow Y$ is a Galois covering, $p^{*} D$ is a part of the branch divisors of α. (Notice that $p^{*} D$ is a reduced divisor.) Consider the action of automorphism group induced by $\mathrm{Gal}(k(\hat{X}) / k(Y))$ on a neighborhood of smooth parts of $p_{1}^{*} D$. Then, we know that the components of $p_{1}^{*} D$ is fixed by the automorphism $\tilde{\sigma}$ of order 2 by which we have $X=\hat{X} /\langle\tilde{\sigma}\rangle$ (See Figure 1.) This means that $\sigma \in \operatorname{Gal}(k(\hat{X}) / k(Y))$ inducing $\tilde{\sigma}$ commutes with an element of order 3 of $\operatorname{Gal}(k(\hat{X}) / k(Y))$. This contradicts to the assumption that $\operatorname{Gal}(k(\hat{X}) / k(Y))$ is the third symmetric group.
Q.E.D.

(Figure 1)

§ 2. Typical examples

In this section, we consider typical examples of triple coverings.
Examples 1. Put $Y=\boldsymbol{P}^{1}$. Let X be obtained by $\boldsymbol{C}\left(\boldsymbol{P}^{1}\right)(\theta)$-normalization of Y, where θ satisfies an equation $X^{3}+X+t=0$, and t is an inhomogeneous coordinate of \boldsymbol{P}^{1}. We will consider the structure of $\hat{X}, D\left(X / \boldsymbol{P}^{1}\right)$ and the action of an automorphism group induced by $\operatorname{Gal}\left(\boldsymbol{C}(\hat{X}) / \boldsymbol{C}\left(\boldsymbol{P}^{1}\right)\right.$) for X and \boldsymbol{P}^{1}. Note that $\operatorname{Gal}\left(\boldsymbol{C}(\hat{X}) / \boldsymbol{C}\left(\boldsymbol{P}^{1}\right)\right)$ is isomorphic to the symmetric group \mathbb{S}_{3} of degree 3. Note that we have $R=27 t^{2}+4$.

Since $\boldsymbol{C}\left(D\left(X / \boldsymbol{P}^{1}\right)\right)=\boldsymbol{C}\left(\boldsymbol{P}^{1}\right)(\sqrt{R})$, the double covering $D\left(X / \boldsymbol{P}^{1}\right) \rightarrow \boldsymbol{P}^{1}$ is illustrated os follows:

(Figure 2)
Therefore, $D\left(X / \boldsymbol{P}^{1}\right) \cong \boldsymbol{P}^{1}$, and $\beta_{1}: D\left(X / \boldsymbol{P}^{1}\right) \rightarrow \boldsymbol{P}^{1}$ is given by

$$
\beta_{1}: z \longmapsto-\frac{2 \sqrt{-1}}{3 \sqrt{3}} \frac{z^{2}+1}{z^{2}-1} \quad(=t) .
$$

where z is a suitable inhomogeneous coordinate of $D\left(X / \boldsymbol{P}^{1}\right)$. Using the above coordinate z, we obtain

$$
\left\{\begin{aligned}
\sqrt{\beta_{1}^{*} R} & =\frac{2 \sqrt{-1}}{3 \sqrt{3}} \frac{z}{z^{2}-1} \\
\beta_{1}^{*} t & =\frac{2 \sqrt{-1}}{3 \sqrt{3}} \frac{z^{2}+1}{z^{2}-1}
\end{aligned}\right.
$$

and

$$
-\frac{1}{2} \beta_{1}^{*} t+\beta_{1}^{*} R=\frac{\sqrt{-1}}{3 \sqrt{3}} \frac{z+1}{z-1} .
$$

Since

$$
\begin{aligned}
\boldsymbol{C}(X) & =\boldsymbol{C}\left(D\left(X / \boldsymbol{P}^{1}\right)\right)\left(\sqrt[2]{-\frac{1}{2} \beta_{1}^{*} t+\sqrt{\beta_{j}^{*} R}}\right) \\
& =\boldsymbol{C}\left(D\left(X / \boldsymbol{P}^{1}\right)\right)\left(\sqrt[2]{\sqrt{-1} / 3 \sqrt{3} \frac{z+1}{z+1}}\right),
\end{aligned}
$$

The cyclic triple convering $\hat{X} \rightarrow D\left(X / \boldsymbol{P}^{1}\right)$ is illustrated as follows:

(Figure 3)
Therefore, $\hat{X} \cong \boldsymbol{P}^{1}$, and the morphism $\beta_{2}: \hat{X} \rightarrow D\left(X / \boldsymbol{P}^{\mathbf{1}}\right)$ is given by

$$
\beta_{2}: w \longmapsto-\frac{w^{3}+1}{w^{3}-1} \quad(=z),
$$

where w is a suitable inhomogeneous coordinate of \hat{X}. Next, let us consider the action of an automorphism group induced by $\operatorname{Gal}\left(\boldsymbol{C}(\hat{X}) / \boldsymbol{C}\left(\boldsymbol{P}^{1}\right)\right)$. On $D\left(X / \boldsymbol{P}^{1}\right)$, there is an in-
volution σ which is induced by the non-trivial element of $\operatorname{Gal}\left(\boldsymbol{C}\left(D\left(X / \boldsymbol{P}^{1}\right) / \boldsymbol{C}\left(\boldsymbol{P}^{1}\right)\right)\right.$. By using the above coordinate z, this is represented by

$$
\sigma: z \longmapsto-z .
$$

This involution induces an involution $\tilde{\sigma}$ on \hat{X}. By using the above coordinate $w, \tilde{\sigma}$ is represented by

$$
\tilde{\sigma}: w \longmapsto \frac{1}{w} .
$$

Finally, let us consider the action of an automorphism τ of order 3 induced by an element of order 3 in $\operatorname{Gal}\left(\boldsymbol{C}(X) / \boldsymbol{C}\left(\boldsymbol{P}^{1}\right)\right)$. Then, τ is represented by

$$
\tau: w \longmapsto \varepsilon w,
$$

where $\varepsilon=\exp \left(\frac{2 \pi \sqrt{-1}}{3}\right)$.
By the above argument, we obtain the structure of $D\left(X / \boldsymbol{P}^{1}\right), \hat{X}$ and the action of the automorphism group induced by $\operatorname{Gal}\left(\boldsymbol{C}(\hat{X}) / \boldsymbol{C}\left(\boldsymbol{P}^{1}\right)\right)$. The following figure explains relations between $\boldsymbol{P}^{\mathbf{1}}, D\left(X / \boldsymbol{P}^{\mathbf{1}}\right), \hat{X}$ and X.

(Figure 4)

Example 2 (Corollary to Example 1). Put $Y=\boldsymbol{P}^{2}$ and let $\left[z_{0}: z_{1}: z_{2}\right]$ be homogeneous coordinates of \boldsymbol{P}^{2}. Let X be a finite triple covering defined by the $\boldsymbol{C}\left(\boldsymbol{P}^{2}\right)(\theta)$ normalization of \boldsymbol{P}^{2}, where θ satisfies an equation $x^{3}+x+\left(z_{1} / z_{0}\right)=0$. Then, the minimal resolution of X is a rational ruled surface of degree 3 , that is $\boldsymbol{P}\left(\mathcal{O}_{P_{1}} \oplus_{\mathcal{O}_{P^{1}}}(3)\right)$. And X is obtained by contracting its negative section.

This fact is easily proved by blowing up at $[0: 0: 1]$ and we reducing the problem to Example 1.

Example 3. Put $X=\boldsymbol{C}^{2}, Y=\boldsymbol{C}^{2}$ and consider a covering

$$
\begin{aligned}
& \pi: X \longrightarrow Y \\
& \quad(x, y) \longmapsto(u, v)=\left(x y, x^{3}+y^{3}\right) .
\end{aligned}
$$

Clearly, X is a Galois covering of Y with $\operatorname{Gal}(X / Y)$ isomorphic to Ξ_{3}. The Galois group \mathfrak{S}_{3} aəts on X by

$$
\begin{aligned}
& \sigma:(x, y) \longmapsto(y, x) \\
& \tau:(x, y) \longmapsto\left(\varepsilon x, \varepsilon^{2} y\right)
\end{aligned}
$$

where $\varepsilon=\exp \left(\frac{2 \pi \sqrt{-1}}{3}\right), \Im_{3}=\langle\sigma, \tau\rangle, \sigma^{2}=\tau^{3}=(\sigma \tau)^{2}=1$. Consider a diagram

Let us analyse $X /\langle\sigma\rangle, X /\langle\tau\rangle$ and their ramification loci. The morphism $\varphi_{\langle\sigma\rangle}, \varphi_{\langle<\rangle}, \pi_{\langle\sigma\rangle}$, and $\pi_{\langle\tau\rangle}$ are written explicitly as follows:

$$
\begin{aligned}
& \varphi_{\langle\sigma\rangle}: X \longrightarrow X /\langle\sigma\rangle \cong \boldsymbol{C}^{2} \\
&(x, y) \longmapsto(z, w)=(x+y, x y) \\
& \pi_{\langle\sigma\rangle}: X /\langle\sigma\rangle \longrightarrow Y \\
& \quad(z, w) \longmapsto(u, v)=\left(w, z^{3}-3 z w\right) \\
& \varphi_{\langle\overline{ }}: X \longrightarrow X /\langle\tau\rangle \cong \operatorname{Spec}\left(\boldsymbol{C}\left[t_{1}, t_{2}, t_{3}\right] /\left(t_{3}^{2}-t_{1} t_{2}\right)\right) \\
&(x, y) \longmapsto\left(\bar{t}_{1}, \bar{t}_{2}, \bar{t}_{3}\right)=\left(x^{3}, y^{3}, x y\right)
\end{aligned}
$$

Note that $X /\langle\sigma\rangle$ has a unique singularity and it is an A_{2} singularity. The morphism $\pi_{\langle<\rangle}$is given by

$$
\begin{aligned}
\pi_{\langle\tau\rangle}: X /\langle\tau\rangle & \longrightarrow Y \\
\quad\left(\bar{t}_{1}, \bar{t}_{2}, \bar{t}_{3}\right) & \longrightarrow(u, v)=\left(\bar{t}_{3}, \bar{t}_{1}+\bar{t}_{2}\right)
\end{aligned}
$$

The ramification locus R_{π} of π is a divisor defined by an equation $(y-x)(y-\varepsilon x)$. $\left(y-\varepsilon^{2} x\right)=0$ where $\varepsilon=\exp (2 \pi \sqrt{-1} / 3)$. The support $\pi\left(R_{\pi}\right)$ is a divisor B_{π} on Y defined by an equation $\left(v^{2} / 4\right)-u^{3}=0$. Let us consider the ramification loci of $\varphi_{\langle\sigma\rangle}$ and $\pi_{\langle\sigma\rangle}$. The ramification locus $\varphi_{\langle\sigma\rangle}$ is a divisor defined by an equation $y-x=0$. The support of its image of $\varphi_{\langle\sigma\rangle}$ is a divisor defined by an equation $w-(1 / 4) z^{2}=0$. Similary, we obtain the ramification locus of $\pi_{\langle\sigma\rangle}$, and it is a divisor on $X /\langle\sigma\rangle$ defined by an equation $w-z^{2}=0$. Note that images of $w-(1 / 4) z^{2}=0$ and $w-z^{2}=0$ are the same divisor on Y defined by an equation $\left(v^{2} / 4\right)-u^{3}=0$. Finally, let us consider the ramification loci of $\varphi_{\langle\tau\rangle}$ and $\pi_{\langle\tau\rangle}$. It is clear that the ramification locus of $\varphi_{\langle\tau\rangle}$ is one point (0,0). And its image of $\varphi_{\langle\tau\rangle}$ is the unique A_{2} singularity of $X /\langle\tau\rangle$. The ramification locus of $\pi_{\langle\tau\rangle}$ is $\left(\pi^{-1}\left(B_{-}\right)\right)_{\text {red }}$. The following figure explains the above results.

(Figure 5)
Remark. In the above example, $\pi_{\langle\sigma\rangle}: X /\langle\sigma\rangle \rightarrow Y$ is a non-Galois triple covering. This is a typical example for the case of dimension 2. Locally, it is the same triple covering as the "generic triple covering of a surface" in the sense of Miranda [6].

§ 3. Applications

In this section, the ground field is always the complex number field \boldsymbol{C}.
(I) A totally ramified triple covering. Let $p: X \rightarrow Y$ be a finite triple covering of a smooth projective variety Y. We call p totally ramified, if for any irreducible component of the ramification divisors of p, its ramification index is equal to 3 . For a totally ramified triple covering, we have the following:

Proposition 3.1. Let $p: X \rightarrow Y$ be a finite totally ramified triple covering of a smooth projective variety Y. Assume that
(i) X is smooth,
(ii) Y is simply connected.

Then, p is cyclic, and the branch locus of p is smooth.
Proof. Assume that p is not cyclic. Then, from the arguments in § 1, there exists varieties $D(X / Y)$ and \hat{X}. For these two varieties, there exists the commutative diagram

Since $\operatorname{Gal}(\boldsymbol{C}(\hat{X}) / \boldsymbol{C}(Y))$ is isomorphic to \mathscr{S}_{3}, there is no ramification point of p_{1} whose ramification index is equal to 6 . Hence, by lemma $1.4, \alpha$ is étale. But this fact indicates that β_{1} is étale. Since $D(X / Y)$ is irreducible and Y is simply connected, this is a contradiction. By Proposition 3.3, [8], it is easy to show that the branch locus of p is smooth.
Q.E.D.

As is well-known, a trigonal curve is a curve which has a rational function of degree 3. Hence, we can regard C as a triple covering of P^{1}. As an easy application of the above proposition, we have the following.

Corollary 3.2. Let $p: C \rightarrow \boldsymbol{P}^{1}$ be a triple covering. We denote the branch points of p by $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}(r \geq 2)$. Assume that $p^{-1}\left(\mathfrak{p}_{i}\right)(i=1, \cdots, r)$ consists of one point, that is, the ramification index of $p^{-1}\left(\mathfrak{p}_{i}\right)$ is 3 . Then, $p: C \rightarrow \boldsymbol{P}^{1}$ is a cyclic triple covering.

Remark 3.3. We can easily determine the cubic equation corresponding to the above triple covering $p: C \rightarrow \boldsymbol{P}^{1}$. There are three types.
(Type I) $\quad X^{3}+\frac{\left(t-\mathfrak{p}_{1}\right) \cdots\left(t-\mathfrak{p}_{r}\right)}{t^{r}}=0 \quad r \equiv 0(\bmod 3)$
(Type II) $\quad X^{3}+\frac{\left(t-\mathfrak{p}_{1}\right) \cdots\left(t-\mathfrak{p}_{r-2}\right)\left(t-\mathfrak{p}_{r-1}\right)^{2}\left(t-\mathfrak{p}_{r}\right)^{2}}{t^{r+1}}=0 \quad r \equiv 1(\bmod 3)$
(Type III) $\quad X^{3}+\frac{\left(t-\mathfrak{p}_{1}\right) \cdots\left(t-\mathfrak{p}_{r-1}\right)\left(t-\mathfrak{p}_{r}\right)^{2}}{t^{r+1}}=0 \quad r \equiv 2(\bmod 3)$
where t is an inhomogeneous coordinate of \boldsymbol{P}^{1}.
(II) Triple coverings of surfaces. In this part, we study a triple covering of a surface. Let $p: S \rightarrow \Sigma$ be a finite triple covering where both S and Σ are smooth surfaces. By \hat{S} and $D(S / \Sigma)$, we denote the minimal splitting surface and the discriminant surface, respectively.

Proposition 3.4. Let $p: S \rightarrow \Sigma$ be the same as above. Assume that $\Delta(S / \Sigma)$ (the branch locus of p) is an irreducible divisor and has singularities whose local equations are $x^{2}+y^{3 k}=0$ where k is a natural number. (For two different singularieties, corresponding k may be different.) Then, the structures of $\beta_{1}: D(S / \Sigma) \rightarrow \Sigma, \beta_{2}: \hat{S} \rightarrow D(S / \Sigma)$ and $\alpha: \hat{S} \rightarrow S$ are as follows:
(i) $D(S / \Sigma)$ is a normal double covering of Σ branched along $\Delta(S / \Sigma)$.
(ii) \hat{S} is a normal cyclic triple covering of $D(S / \Sigma)$ branched only at $\operatorname{Sing}(D(S / \Sigma))$ and slngularities of \hat{S} are of A_{k-1} type.
(iii) There exists an involution c on \hat{S} such that S is obtained the quotient surface of \hat{S} by c, and α is regarded as the quotient map.

Proof. By the argument in $\S 1$, the statement (iii) is clear. First we prove the following:

Claim 3.5. $\quad p: S \rightarrow \Sigma$ is not a cyclic covering.
Proof of Claim 3.5. Assume that p is cyclic. Then, since $\Delta(S / \Sigma)$ is an irreducible divisor and $\operatorname{deg} p=3, S$ is embedded in a total space of a line bundle over Σ. (See Tokunaga [8]. Proposition 3.3.) But in this case, S is singular. Therefore, p is not cyclic. When p is not cyclic, we have a diagram

where β_{1} is a double covering, β_{2} is a cyclic triple covering, and α is a double covering. Since $\Delta(S / \Sigma)$ is an irreducible divisor, there are three possibilities.

1) Both β_{1} and β_{2} are ramified at divisors, that is, β_{1} is ramified to $\Delta(S / \Sigma)$ and β_{2} is ramified at $\beta_{1}^{-1} \Delta(S / \Sigma)$.
2) β_{1} is branched at $\Delta(S / \Sigma)$, but β_{2} is not ramified at $\beta_{1}^{-1}(\Delta(S / \Sigma))$.
3) β_{2} is branched at $\beta_{1}^{-1}(\Delta(S / \Sigma))$ and β_{1} étale.

Case 1). In this case, the Galois covering $p_{1}: \hat{S} \rightarrow \Sigma$ is branched at $\Delta(S / \Sigma)$ and the ramification index of $p_{1}^{-1}(\Delta(S / \Sigma))$ is equal to 6 . Consider the action of the Galois group at a smooth point of $p_{1}^{-1}(\Delta(S / \Sigma))$. Then, $\operatorname{Gal}(\boldsymbol{C}(\hat{S}) / \boldsymbol{C}(\Sigma))$ have an element of order 6. This is a contradiction.

Case 2). In this case, $D(S / \Sigma)$ is a normal surface with A_{k-1} singularities. There are two possibilities

2-a) β_{2} is étable, $\left.2-\mathrm{b}\right) \beta_{2}$ is ramified.
Case 2-a). Let x be one of singularities on $D(S / \Sigma)$. Then, $\beta_{2}^{-1}(x)$ consists of 3 points which are $A_{3 k-1}$ singularities. Since S is smooth, the branch locus of α is a divisor on S by the purity of branch locus (see Zariski [9]). Moreover, $\alpha\left(\beta_{2}^{-1}(x)\right.$) is contained in this divisor. This means that at least one of 3 points of $\beta_{2}^{-1}(x)$ has the stabilizer group \mathfrak{S}_{3}. This is a contradiction.

Case 2-b). By case 1), β_{2} is branched at most some points. By the purity of a branch locus, they are singular points. Moreover, by the proof of $2-a$), they consist of all singularites of $D(S / \Sigma)$. Let x be one of singularities and let U be its small neighborhood. Since singularities are all of type $A_{3 k-1}$, we can take U in such a way that there is $V\left(\subset C^{2}\right)$ a small neighborhood $V\left(\subset C^{2}\right)$ of origin of \boldsymbol{C}^{2} and that $\pi: V \rightarrow U$ is the quotient map by the group action of $\boldsymbol{Z} / 3 k \boldsymbol{Z}$. Moreover, $\left.\pi\right|_{V \backslash(0,0)}: V \backslash(0,0) \rightarrow$ $U \backslash\{x\}$ is étale. Since the local fundamental group $\pi_{1}(U \backslash\{x\})$ is isomorphic to $\boldsymbol{Z} / 3 k \boldsymbol{Z}$ and $\left.\beta_{2}\right|_{\beta_{2}^{-1}(U \backslash(x))}$ is cyclic and étale. $\beta_{2}^{-1}(U) \backslash \beta_{2}^{-1}(x)$ is isomorphic to a quotient space
of $V \backslash(0,0)$ by a subgroup $\boldsymbol{Z} / k \boldsymbol{Z}$. Moreover, since \hat{S} is normal double covering of S, $\beta_{2}^{-1}(x)$ is an isolated hypersurface singularity. Therefore, $\beta_{2}^{-}(x)$ is an isolated hypersurface singularity. Therefore, $\beta_{2}^{-1}(x)$ is an A_{k-1} singularity.

Case 3). Clearly, $D(S / \Sigma)$ is smooth, and $\beta_{2}^{-1}(\Delta(S / \Sigma))$ has singularities. Therefore, \hat{S} must be singular by Tokunaga [8]. Proposition 1.1. Hence α is not étale. Let x be smooth point of $\Delta(S / \Sigma)$, and let U be its small neighborhood. Consider a ramification index of $\beta_{2}^{-1} \beta_{1}^{-1}(\Delta(S / \Sigma)) \cap p_{1}^{-1}(U)$ and $\alpha^{-1} p^{-1}(\Delta(S / \Sigma)) \cap p_{1}^{-1}(U)$. They are equal to each other. But the ramification index of $\beta_{2}^{-1} \beta_{1}^{-1}(U(S / \Sigma)) \cap p_{1}^{-1}(U)$ is equal to 3 and the ramification index of $\alpha^{-1} p^{-1}(\Delta(S / \Sigma)) \cap p_{1}^{-}(U)$ is even number because of α is a double cover. This is a contradiction.

By Cases 1), 2), and 3), only the possible case is Case 2-b). This proves proposition.
Q.E.D.

Next, we consider the case that \hat{S} is a smooth surface. In the following, $\alpha, \beta_{1}, \beta_{2}$ p_{0} mean the same morphisms which appear in the proof of Proposition 3.1, and \hat{S} is always smooth.

First, we analyse the ramification divisor of $p_{1}: \hat{S} \rightarrow \Sigma$. Let $\hat{R}, \Delta(\hat{S} / \Sigma)(=\Delta(S / \Sigma))$ be the ramification locus and the branch locus of p_{1}, respectively. Let x be a point of \hat{R}. Then, a stabilizer at x (we denote it G_{x}) is a non-trivial subgroup of $\operatorname{Gal}(\boldsymbol{C}(\hat{S}) / \boldsymbol{C}(\Sigma)$). In the case that p is cyclic, $G_{x} \cong \boldsymbol{Z} / 3 \boldsymbol{Z}$ by Catanese [1], Proposition 1.1. In the case that p is not cyclic, there are three cases

1) $\left|G_{x}\right|=2$, 2) $\left.\left|G_{x}\right|=3,3\right)\left|G_{x}\right|=6$, i.e., $G_{x} \cong \Im_{3}$ where $\left|G_{x}\right|$ is the order of the group G_{x}.

Case 1) By taking a suitable system of local coordinates, (u, v), the action of G_{x} is one of the following:
a) $\sigma:(u, v) \rightarrow(-u,-v)$
b) $\sigma:(u, v) \rightarrow(-u, v)$
where $G_{x}=\langle\sigma\rangle, \sigma^{2}=i d$.
In case a), a quotient surface $\hat{S} /\langle\sigma\rangle$ has an A_{1} singularity. On the other hand, there is an isomorphism over $\boldsymbol{C}(\Sigma)$ between $\boldsymbol{C}(S)$ and $\boldsymbol{C}(\hat{S} /\langle\sigma\rangle)$. Since $\hat{S} /\langle\sigma\rangle$ is normal and finite over $\Sigma, \widehat{S}\langle\sigma\rangle$ is isomorphic to S by litaka [4], Theorem 2.21, 2.22. Since S is a contradiction. In case b), there exists a smooth divisor through x and for all points on it, the stabilizer group is isomorphic to $\boldsymbol{Z} / 2 \boldsymbol{Z}$.

Case 2) By taking a suitable system of local coordinate at x, the action of G_{x} is one of the following:
a) $\tau:(u, v) \mapsto\left(\varepsilon u, \varepsilon^{2} v\right)$
b) $\tau:(u, v) \mapsto(\varepsilon u, \varepsilon v)$
c) $\tau:(u, v) \mapsto(\varepsilon u, v)$

$$
G_{x}=\langle\tau\rangle, \quad \tau^{3}=i d, \quad \text { and } \quad \varepsilon=\exp \left(\frac{2 \pi \sqrt{-1}}{3}\right)
$$

Since \Im_{3} has a unique subgroup of order 3, the rational function field of the quotient surface \hat{S} / G_{x} coincides with $\boldsymbol{C}(D(S / \Sigma)$). By the uniquness of $\boldsymbol{C}(D(S / \Sigma)$)-normalition of Σ (see Iitaka [4], § 2.14), \hat{S} / G_{x} is equal to $D(S / \Sigma)$. Since $D(S / \Sigma)$ is a normal double covering, singularities of $D(S / \Sigma)$ must be hypersurface singularites. Therefore
case b) does not occur, because in case b), $\hat{S} /\langle\tau\rangle$ has a rational triple point which can not be a hypersurface singularity. In case a), $\hat{S} /\langle\tau\rangle(=D(S / \Sigma))$ has an A_{2} singularity. Since Σ is smooth, β_{1} is not étale. Therefore, by the purity of branch loci, there exists a divisor on Σ which passes through $p_{1}(x)$, and $\beta_{1}: D(S / \Sigma) \rightarrow \Sigma$ is branched over its divisor. This show that the order of G_{x} is equal to 6 . This is a contradiction. In case c), there exists a smooth divisor through x, and for all points on it, the stabilizer group is isomorphic to $Z / 3 Z$.

Case 3) By taking a suitable local coordinate system, the action of $G_{x}\left(\cong \Im_{3}\right)$ is represented as follows:

$$
\begin{aligned}
& \sigma:(u, v) \longmapsto(v, u) \\
& \tau:(u, v) \longrightarrow\left(\varepsilon u, \varepsilon^{2} v\right) \\
& G_{x}=\langle\sigma, \tau\rangle \quad \sigma^{2}=\tau^{3}=(\sigma \tau)^{2}=i d, \quad \text { and } \quad \varepsilon=\exp \left(\frac{2 \pi \sqrt{-1}}{3}\right) .
\end{aligned}
$$

Hence, in this case, the situation is the same as Example 3 in § 2 . Thus, we obtain the following result.

Lemma 3.6. Let $p: S \rightarrow \Sigma$ be a finite triple covering where both S and Σ are smooth surfaces. Assume that p is not étale and \hat{S} is smooth. Then, if p is cyclic, the branch locus is a smooth divisor, while if p is not cyclic, there are two cases
(a) the branch divisor is a smooth divisor.
(b) the branch divisor has singular points and its singularities are all ordinary cups. (i.e., (2, 3)-cusp)

Lemma 3.7. Let D be a divisor on $D(S / \Sigma)$ contained in the ramification locus of β_{1}. $D(S / \Sigma)$. Assume that D is smooth. Let D_{1} be an irreducible component of D. Then, $\beta_{2}^{-1}\left(D_{1}\right)$ consists of 3 components which are isomorphic to each other.

Proot. Since $p_{1}: \widehat{S} \rightarrow \Sigma$ is Galois, $\beta_{2}^{-1}(D)$ is either irreducible or reducible with 3 components which are isomorphic to each other. Assume that $\beta_{2}^{-1}\left(D_{1}\right)$ is irreducible. Clearly, $\beta_{2}^{-1}\left(D_{1}\right)$ is a component of the ramification divisor of p_{1}. Therefore, there exists an automorphism σ such that $\sigma(x)=x$ for $x \in \beta_{2}^{-1}\left(D_{1}\right)$ and $\sigma^{2}=i d$. Let τ be an automorphism with order 3. Then, by irreducibility of $\beta_{2}^{-1}\left(D_{1}\right), \tau^{*}\left(\beta_{2}^{-1}\left(D_{1}\right)\right)=\beta_{2}^{-1}\left(D_{1}\right)$. Let x be an arbitrary point of $\beta_{2}^{-1}\left(D_{1}\right)$. Consider a stabilizer at $\tau(x)$. Since $\tau(x) \subseteq$ $\beta_{2}^{-1}\left(D_{1}\right)$, we have $\sigma(\tau(x))=\tau(x)$. Moreover, we have $\tau \sigma \tau^{-1}(\tau(x))=\tau \sigma(x)=\tau(x)$. Therefore, $G_{\tau(x)}=\left\langle\sigma, \tau \sigma \tau^{-1}\right\rangle \cong \Im_{3}$. Hence, $\tau(x)=x$. Since x is an arbitrary point on $\beta_{2}^{-1}\left(D_{1}\right)$, this is a contradiction.
Q.E.D.

Now we consider the case that Σ is a minimal rational surface or an abelian surface. We need the following lemma on connectedness of a divisor on a minimal rational surface and an abelian surface.

Lemma 3.8. Let D be a divisor on a minimal rational surface or an abelian surface. Then, the divishr D is one of the following types:
a) $\Sigma=a n$ abelian surface
a-1) D is connected
a-2) $D=E_{1}+\cdots+E_{n}$ E_{i} : an elliptic curve, $E_{i} E_{j}=0$, for all i, j.
b) $\Sigma=\boldsymbol{P}^{2}$
D is connected.
c) $\quad \Sigma=F_{n}$ (a rational ruled surface of degree $n, n \geqq 2$)
c-1) D : connected
c-2) $D=f_{1}+\cdots+f_{n}$
f_{i} is a fibre of the fibration $F_{n} \rightarrow \boldsymbol{P}^{1}$.
c-3) $D=s_{0}+D$
s_{0} is a negative section of F_{n}. (i.e., $s_{0} \cong \boldsymbol{P}^{1}, s_{0}^{2}=-n$)
D is a divisor linear equivalent to $k s_{\infty}$ where k is a integer and s_{∞} is a positive section of F_{n}. (i.e., $s_{\infty} \cong \boldsymbol{P}^{1}, s_{\infty}^{2}=n$)
d) $\Sigma=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$
d-1) D is connected
d-2) $D=f_{1}+\cdots+f_{n}$
$f_{i} \cong \boldsymbol{P}^{1}, f_{i} f_{j}=0$, for all i, j.
Proof. Case a), b) and d) is clear. We will prove case c). Let D be a divisor on F_{n}. Assume that $D=D_{1}+D_{2}, D_{1} D_{2}=0$, and $D_{1} \sim a_{1} s_{0}+b_{1} f, D_{2} \sim a_{2} s_{0}+b_{2} f$, where \sim denotes linear equivalence, and f denotes a fibre. If one of D_{i} contains a fibre, then both D_{1} and D_{2} must be a finite sum of fibers. This is case c-2). From now on, we assume that neither D_{1} nor D_{2} are contained in a fibre. From $D_{1} D_{2}=0$, we obtain

$$
-n a_{1} a_{2}+a_{1} b_{2}+a_{2} b_{1}=0, \quad a_{1} a_{2} \neq 0, \quad a_{i}>0, \quad i=1,2 .
$$

Put $e=$ g.c.d. $\left(a_{1}, a_{2}\right)$. Then,

$$
a_{1}^{\prime} b_{2}=a_{2}^{\prime}\left(n a_{1}-b_{1}\right), \quad a_{2}^{\prime} b_{1}=a_{1}^{\prime}\left(n a_{2}-b_{2}\right),
$$

where $a_{1}=a_{1}^{\prime} e, \quad a_{2}=a_{2}^{\prime} e$.
Therefore we obtain

$$
\left\{\begin{array}{l}
D_{1} \sim a_{1} s_{0}+a_{1}^{\prime} k f \\
D_{2} \sim a_{2} s_{0}+a_{2}^{\prime} l f
\end{array}\right.
$$

where k and l are intergers satisfying $k+l=n e$. Without loss of generality, we may assume $k \leqq l$, i.e., $k \leqq[n e / 2]$ ([] denotes Gaussian symbol). Then,

$$
D_{1}^{2}=-n a_{1}^{2}+2 a_{1} a_{1}^{\prime} k=a_{1} a_{1}^{\prime}(2 k-n e) \leqq 0 .
$$

Hence D_{1} contains at least one irreducible component whose self-intersection number $\leqq 0$. We denote it \tilde{D}_{1}.

Claim. $\tilde{D}_{1}=s_{0}$.
Proof of Claim. Assume $\widetilde{D}_{1} \sim a s_{0}+b f, a>0$. Then

$$
\left\{\begin{array}{l}
\tilde{D}_{1}^{2}=a(2 b-n a) \\
\tilde{D}_{1} K_{F_{n}}=n a-2 a-2 b, \quad\left(K_{F_{n}}: \text { a canonical divisor of } F\right)
\end{array}\right.
$$

Hence,

$$
\tilde{D}_{1}^{2}+\widetilde{D}_{1} K_{F_{n}}=(a-1)(2 b-n a)-2 a .
$$

Since \tilde{D}_{1} is irreducible, $\tilde{D}_{1}^{2}+\tilde{D}_{1} K_{F_{n}} \geqq-2$. So, from an inequality $\tilde{D}_{1}^{2}=a(2 b-n a) \leqq 0$, $a>0$, we conclude $a=1$. Moreover, $s_{0} \widetilde{D}_{1}=-n+b \leqq-n+2 b \leqq 0$, and equalities can not hold simultaneously. Therefore, $s_{0}=\tilde{D}_{1}$, and our claim is proved.

By the above claim, we obtain

$$
\left\{\begin{array}{l}
D=s_{0}+D^{\prime} \\
D^{\prime} \sim a s_{\infty}
\end{array}\right.
$$

This is the case c-3).
Q.E.D.

The rest of this section is devoted to prove the following.
Theorem 3.9. Let $p: S \rightarrow \Sigma$ be a finite triple covering where both S and Σ are smooth surfaces. Assume the following:

1) \hat{S} is smooth,
2) Σ is either a minimal rational surface or an abelian surface.
3) the Kodaira dimension $\kappa(S)$ of S is 2.

Then the structures of $p, \beta: D(S / \Sigma) \rightarrow \Sigma$, and $\beta_{2}: \hat{S} \rightarrow D(S / \Sigma)$ are one of the following :
(i) $p: S \rightarrow \Sigma$ is cyclic.
(ii) $p: S \rightarrow \Sigma$ is non-Galois and there are two possibilities
ii-a) $\quad \Sigma:=$ an abelian surface, \boldsymbol{P}^{2}, and $\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}}$.
$\Delta(S / \Sigma)$ is an irreducible divisor with ordinary cusps (e.e. $(2,3)$-cusp) and a structure of a triple covering of a small neighborhood of each cusp is isomorphic to Example 3, § 2.
ii-b) $\quad \Sigma=F_{n}(n \geqq 2)$
If $\Delta(S / \Sigma)$ is irreducible, the structure of p is the same as case ii-a).
If $\Delta(S / \Sigma)$ is reducible, then $\Delta(S / \Sigma)=s_{0}+D$ where $D \sim a s_{\infty}$ for some $a \in N$ and D is irreducible and has ordinary cups.
(α) $n=2 k(k \in N) \quad \beta_{1}: D(S / \Sigma) \rightarrow \Sigma$ is branched along $\Delta(S / \Sigma)$ and $\beta_{2}: \hat{S} \rightarrow D(S / \Sigma)$ is branched at $\operatorname{Sing}(D(S / \Sigma))$.
(β) $n=3 k(k \in \boldsymbol{N}) \quad \beta_{1}: D(S / \Sigma) \rightarrow \Sigma$ is branched along D and $\beta_{2}: \hat{S} \rightarrow D(S / \Sigma)$ is branched at $\beta_{1}^{-1}\left(s_{0}\right)$ and $\operatorname{Sing}(D(S / \Sigma))$.

Remark. 1) If $\kappa(S)<2$, the above theorem dose not necesserally hold. See Example 2 , in $\S 2$.
2) If Σ is a ruled surface whose base curve has a genus greater than 1 , then the above theorem does not necessarily hold. For example, put $\Sigma=C \times \boldsymbol{P}^{1}$ where C is a curve with $g(C) \geqq 2$. Take a triple covering $\tilde{p}: C^{\prime} \rightarrow \boldsymbol{P}^{1}$ where $g\left(C^{\prime}\right) \geqq 2$. Consider

$$
\begin{aligned}
p: S=C \times C^{\prime} & \longrightarrow C \times \boldsymbol{P}^{1} \\
(x, y) & \longrightarrow(x, \tilde{p}(y))
\end{aligned}
$$

This is a typical counter-example.
Proof of Theorem 3.9. We consider the case that p is non-Galois covering.
Case ii-a) If $\Sigma=\boldsymbol{P}^{2}$, then $\Delta(S / \Sigma)$ is always connected. Therefore, $D(S / \Sigma)$ is either smooth or one of the types in the statement in case ii-a). If $\Delta(S / \Sigma)$ is smooth, the fundamental group $\pi_{1}\left(\boldsymbol{P}^{2} \backslash \Delta(S \backslash \Sigma)\right)$ is an abelian group. Therefore, p is cyclic. This is a contradiction. If $\Sigma=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or an abelian surface, a disconnected divisor is one of the types stated in Lemma 3.5. Therefore, if $\Delta(S / \Sigma)$ is disconnected, then $\kappa(S)<2$. This is a contradiction. Hence $\Delta(S / \Sigma)$ is an irreducible divisor and it is smooth or one of the types in our statement. Assume that $\Delta(S / \Sigma)$ is smooth. In case $\Sigma=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, the fundamental group $\pi_{1}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \backslash \Delta(S / \Sigma)\right.$ is abelian by Catanese [1], Theorem 1.6. Therefore, the situation is the same as the in case $\Sigma=\boldsymbol{P}^{2}$. In case Σ is an abelian surface, possible situations are as follows:
(1) $\beta_{1}: D(S / \Sigma) \rightarrow \Sigma$ is branched at $\Delta(S / \Sigma)$ and $\beta_{2}: \hat{S} \rightarrow D(S / \Sigma)$ is étale.
(2) $\beta_{1}: D(S / \Sigma) \rightarrow \Sigma$ is étale and $\beta_{2}: \widehat{S} \rightarrow D(S / \Sigma)$ is branched at $\beta_{1}^{-1}(J(S / \Sigma)$).

Case (1). Since $\Delta(S / \Sigma)$ is an ample divisor on $\Sigma, \beta_{j}^{-1}(\Delta(S / \Sigma))$ is also an ample divisor on $D(S / \Sigma)$. Hence $\beta_{2}^{-1} \beta_{1}^{-1}(\Delta(S / \Sigma)$) is ample, and smooth. So, it is an irreducible divisor. But by Lemma 3.7, this is a contradiction.

Case (2). By the same reason as in case (1), $\beta_{1}^{*} \Delta(S / \Sigma)$ is a smooth ample divisor on $D(S / \Sigma)$, and $D(S / \Sigma)$ is an abelian surface. By Tokunaga [8], $\beta_{1}^{*} \Delta(S / \Sigma) \sim 3 L$ for a suitable $L \in \operatorname{Pic}\left(D(S / \Sigma)\right.$, and \hat{S} is embedded in the total space of L. Since $\operatorname{deg} \beta_{1}=2$. $\Delta(S / \Sigma) \sim 3 \tilde{L}$ for a suitable $\tilde{L} \in \operatorname{Pic}(\Sigma)$. (Cf. Catanese [2] Lemma 4) Therefore, $L-\beta_{1}^{*} \tilde{L}$ $\in \operatorname{Pic}^{\circ}(D(S / \Sigma))$. But since both $D(S / \Sigma)$ and Σ are abelian surfaces and β_{1} is étale, $\operatorname{Pic}^{0}(\Sigma) \rightarrow \operatorname{Pic}^{0}\left(D(S / \Sigma)\right.$) is surjective (see Mumford [7], p. 81). Therefore, $L=\beta_{1}^{*}(\widetilde{L}+\tau)$ for a unique $\tau \in \operatorname{Pic}^{0}(\Sigma)$. Consider a diagram

where X is a smooth cyclic triple convering branched at $\Delta(S / \Sigma)$ and it is embedded in the total space of the line bundle $\tilde{L}+\tau$. Note that \tilde{f} is the same as β_{2}. Therefore, $X \times{ }_{\Sigma} D(S / \Sigma) \cong \hat{S}$. But this is contradiction, since $\boldsymbol{C}(\hat{S})$ is a Galois extension of $\boldsymbol{C}(\Sigma)$ with Galois group \Im_{3}. From the above argument ii-a) follows.

Case ii-b). Assume that $\Delta(S / \Sigma)$ is a connected divisor. Then we obtain the same rasult as in the case ii-a). In the following, we assume that $\Delta(S / \Sigma)$ is a disconnected divisor. Then by Lemma 3.5, $\Delta(S / \Sigma)=s_{0}+D$ where D is an effective divisor which is linearly equivalent to $a s_{\infty}$ for some $a \in Z$. Possible cases are as follows:

Case (1) β_{1} is branched at $s_{0}+D$, and β_{2} is branched at $\operatorname{Sing}(D(S / \Sigma)$). In this case, $\operatorname{Sing}(D)$ is oonsists of (2,3)-cusps.

Case (2) β_{j} is branched at $s_{0}+D$ and β_{2} is étale.
Case (3) β_{1} is branched at D, and β_{2} is branched at $\beta_{1}^{*}\left(s_{0}\right) \cup \operatorname{Sing}(D(S / \Sigma))$, (Sing ($D(S / \Sigma)$) may be empty.)

Remrrk. The case that β_{1} is branched at s_{0} is impossible, since the class of s_{0} in $\operatorname{Pic}(\Sigma)$ is not divisible by 2 .

Case (1) Since the class of $s_{0}+D$ in $\operatorname{Pic}(\Sigma)$ is divisible by 2, the integer n of F_{n} is even. This case is ii-b- (α).

Case (2) $\beta_{2}^{*}\left(\beta_{1}^{-1}(D)\right)$ is a smooth irreducible divisor. By Lemma 3.4, this case does not occur.

Case (3) We can show that the integer n of F_{n} is divisible by 3. Moreover if D is non-singular, $\beta_{2}^{*}\left(\beta_{1}^{-1}(D)\right)$ is a smooth irreducible divisor. Therefore, by Lemma 3.4, D must be singular. This case is ii-b-(β).

Department of Mathematics

Faculty of Science
Kochi University

References

[1] F. Catanese, On the moduli spaces of surfaces of general type, J. Diff. Geom., 19 (1984), 483-515.
[2] F. Catanese, Connected components of moduli spaces, J. Diff. Geom., 24 (1986), 395-399.
[3] T. Fujita, Triple covers by smooth manifold, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 169-175.
[4] S. Iitaka, Algebraic Geometry, Graduate Text in Math. 76, Springer-Verlag, 1982.
[5] R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. ann., 249 (1980), 153-162.
[6] R. Miranda, Triple covers in algebraic geometry, Amer. J. of Math., 107 (1985), 1123-1158.
[7] D. Mumford, Abelian Varieties, Oxford.
[8] H. Tokunaga, On a cyclic covering of projective manifold, J. of Math. Kyoto Univ., 30 (1990), 109-121.
[9] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A., 44 (1958), 791-796.

[^0]: Communicated by Prof. Nagata. Received 16 December, 1988.

