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The geometry of bicharacteristics and
the global existence of holomorphic solutions

of systems o f linear differential equations

By

Yoshitsugu TAKEO

O. Introduction

In the previous paper [4] of Kawai and the author we studied the relationship
between th e  geometry of b icharacteristics and the (semi-) global existence of
holomorphic solutions of single linear differential equations. The main result of
[4] is that, in order to discuss the (semi-) global existence of holomorphic solutions,
we have to take into account not only the convexity of the domain in question
w ith respect to bicharacteristic curves, b u t  a lso  th e  pseudo-convexity o f  some
manifold g iven through the foliation structure determined by bicharacteristic
cu rves. In  th is article we generalize this result to the  case  o f over-determined
systems of linear differential equations with one unknown function ; of course, we
have to  replace bicharacteristic strips by bicharacteristic manifolds.

W e proceed in  a  similar way a s  in  [ 4 ] .  W hen w e study the existence of
holom orphic solutions, w e  sh o u ld  co n sid e r the C auchy-R iem ann equations
together with the linear differential equations under consideration. Then, due to
the Cauchy-Riemann equations, w e can apply  th e  theory  o f  boundary value
problems for elliptic systems developed by Kashiwara-Kawai [1]. In fact, making
use of this theory with a  result of Sato-Kawai-Kashiwara [7], Kawai has presented
in  [2 ]  a n d  [3 ]  some theorems o n  finite-dimensionality of cohomology groups
attached to elliptic systems. In the situation we are considering, his results give
sufficient conditions which guarantee the (semi-) global existence of holomorphic
solutions. (See Theorem 2.1 below). We will investigate the geometric meaning
o f h is conditions, supposing the second order tangency of the bicharacteristics
and the boundary of the domain in question (Theorem  2.4). A s a result we can
obtain  our m ain  theorems (Theorem 1.5 a n d  Theorem 1.8) which describe the
relationship between th e  geometry o f b icharac teristics and  the  (semi-) global
existence of holomorphic solutions.

Here we should mention tha t the geometric conditions discussed here have its
origin in  the  w ork of S u z u k i [8 ] . H e  has given a  complete description of the
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conditions which guarantee the global existence of holomorphic solutions of single
linear differential equations of first order. Besides the work of Suzuki, for single
linear differential equations there are several works closely related to our problem
of the global existence of holomorphic solutions : For example, Pallu de la Barrière
[6], Trépreau [9], [10], and so o n .  Compared with the case of single equations,
almost no global existence theorems are known for general systems, as far as the
present author knows.

Now let us describe briefly the plan of this p a p e r . In  § 1 , we prepare some
notions and notations, and state our main results. In  §2  we give the outline of
th e  proof o f  o u r  m ain  re su lts . T h e  proof consists o f  two theorems : O ne  is
Kawai's theorem, which is explained in  th is section, and the other is Theorem
2.4, which will be proved in  th e  subsequent three sec tions. F irst w e study in
§3 the geometric situations of bicharacteristics under a  non-degeneracy condition.
T hen  w e  p rove  th e  decomposition theorem o f  som e H erm itian form  in §4,
assuming one proposition (Proposition 4.4). The m ain part of this paper is in
a sense this decomposition theorem, from which Theorem 2.4 easily follows. And
finally in  §5, we give the proof of Proposition 4.4.

The author would like to express his heartiest thanks to Professor T. Kawai
for many valuable discussions and encouragement. This paper was written up
during th e  au thor's  stay  a t th e  Mathematical Sciences Research Institute as a
postdoctoral fellow. T he  author expresses his heartiest thanks to m em bers of
MSRI, especially to Professor A. Weinstein, for their warm hospitality and many
kindnesses.

1. Notations and main results

L et us first prepare some n o ta tio n s . F o r an  o p en  subset U  o f C ", T* U
denotes th e  cotangent bundle o f  U  and denotes th e  sheaf of holomorphic
functions o n  U .  W e denote by z  the standard coordinate of C " and  by the
corresponding cotangential coordinate o f  T * C " . W e also denote by x and y the
real part and  the  imaginary pa rt o f z  respectively. L et P y (z, Oz ) (1 < y d )  be
linear differential operators with holomorphic coefficients defined o n  U .  Let us
denote by py (z, the principal symbol o f  th e  operator P y (z, ez ). Throughout
th is article we suppose that 1 d < n — 1  and  th a t P y (z, Oz ) (1 < y < d ) satisfy
the following conditions :

(1.1) [Pp  P s ] ,  the commutator of Py and 13 6,

identically vanishes for y, (5 = d .

(1.2) g r a d 4  p i  (z, C),..., gradc pd (z, C) are  linearly
independent over C on { (z, e T* U; 0  0,
P tz, = • • • = Pa(z, = 0 1.

We denote by 9JI the coherent left 2-module determined by P y (z, az ) (1 < y < d),
i.e.
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9J11 = g l( g  P i  + •••  + g P d ),

where g  denotes th e  sheaf o f  linear differential operators (with real analytic
coefficients) on U.

L et cp b e  a  strictly plurisubharmonic real analytic function defined o n  U,
and Q  be a  relatively compact strongly pseudo-convex domain defined by

(1.3) Q = {ze U; cp(z) < 0}.

W e suppose that

(1.4) Ocp = gradz cp never vanishes on  the  boundary aQ
of Q.

H ere, and in what follows, ai  a n d  a;  denote

a
= —azi

=

_ a
2 (a

x i  
-F

N
/— 1 a

Y) '

j = 1, n,

j = 1, n,

respectively. L et us denote by C o th e  se t o f  characteristic boundary points,

Co  =  {z e U; q(z ) = 0  and py (z, yo(z)) = 0, y =  1 , ,  d 1 ,

and also denote by C  and  C _  the following sets :

C = lz e U; p y (z , O(z )) = 0, y = d 1,

C_ = lz e U ; cp(z) < O a n d  py (z, 8Q (z)) = 0, y = d 1 .

The purpose of this article is to find a  geometric condition which guarantees
the solvability o f an  over-determined system of linear differential equations

(1.5)P u  = f ,  y  = 1,...,d

in  th e  space o f  holomorphic functions o n  Q , when f =  ( f i  , f d )  satisfies the
obvious compatibility conditions :

(1.6) Py f , = P6 f y , y, 6 = 1,...,d.

In  studying this problem, bicharacteristic manifolds play an important role.
Here le t us recall the definition o f a  bicharacteristic manifold.

Definition 1.1. F or a  po in t (zo, C o) in  t(z ,  C)E T *  U  ; 0  0 , p 1 (z, = • •• =
p„(z, C) = 01, the bicharacteristic manifold of 991 through (zo , Co ) is, by definition,
the (complex) d-dimensional integral manifold through (zo , Co)  o f the  system of
Hamiltonian operators

H p ,E apy  a ally   a  ) , y = 1, , d.
< „ ac, oz. ;a z ;  ac;
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We denote by  b (ZO O) i t s  projection to  the base manifold U.

Rem ark 1.2. It follows from  (1.1) and  (1.2) th a t  {Hp , }y =1 ,..., d satisfies the
integrability condition . In  fac t, they commute each  o ther. H ence the bichara-
cteristic m anifold rea lly  ex ists  f o r  a n y  (zo , Co ) b y  Frobenius theo rem . In
particular, for a given point (zo , Co ) there exist a  neighborhood of (z0 , Co ) and d
complex parameters t = (t 1 ,..., td)e C I s u c h  th a t ,  fo r  a n y  p o in t (2, i n  that
neighborhood o f  (zo , Co), th e  bicharacteristic manifold through (2, "C) is given
locally by the imbedding

(t, , (z(t, , , td ; 2, "C), C(t 1 , ta ; 2, 0),

which satisfies the following equations:

azi (t ; 2,  _  aPY (z (t ; 2, 'C), ( t ;  2 , 0) ,
atya ç i

(1.7) aCt(t; 2'a P Y  ( z ( t ;  2 ,  0 ,  (t; 2 , c) ) ,
atya z ,

z (0, , 0 ; 2, ) =
...,0 ; =

Here we should notice that th is m ap (z(t; 2, ( t; 2 , "C )) is  holomorphic with
respect to both t and (2, 'C). Let us also remark that the assumption (1.2) entails
tha t b( z o 4 o ) i s  a  complex d-dimensional submanifold o f U  given by

(t 1 , . . . ,  td )i—qz (t, , td ; z 0 , Cop•

O n the other hand, according to Kawai's theorem (whose precise statement
will be found in  the  next section), the "boundary behavior" of TR, especially its
behavior o n  Co , should be essential in  order tha t the  solvability of the  system
(1.5) may hold in the above se n se . Hence it can be considered the most important
to study how the bicharacteristics of 9J  are situated against the boundary of Q.

F irs t w e  shou ld  notice  th a t, f o r  a  p o in t  zo  i n  Co ,  Euler's identity for
homogeneous functions implies

act) ap
(1.8) — (zo)il(zo , acp(z0 )) = O for y = 1,...,d,

az ; a C ;

which show tha t the bicharacteristic b ( z o p ( z o ) ) i s  tangent to  at2 a t  zo . N ow  let
us introduce the following convexity condition:

Definition 1.3. The domain Q is said to  be bicharacteristically convex with
respect to  93I a t  zo  i n  Co if

a2 9(z(r0 1 ,...,r4o,; z o , aço(zo ) ) )(1.9)
ar2

for j = 1, n, y =

for j = 1,...,n, y =

>
r = 0
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holds for any = (0, , , Od) e C d with 114)11 = 1.

Here z(t i ,..., t d ; z o , Ocp(zo )) is  the local expression of b (z . ,(z o ) ) explained in
R e m a rk  1 .2 . I t  is  o b v io u s  th a t  the bicharacteristical convexity guarantees
b(z o (z o )) does not intersect with the closure of Q except z o  in  a  sufficiently small
neighborhood of zo .

As stated in the introduction, w e have to  take account o f another condition
besides the bicharacteristical convexity. To formulate the condition, let us prepare
m ore notations. Let z o  be a point in Co and suppose that Q is bicharacteristically
c o n v e x  a t  z o . A s  w e  w il l  p r o v e  i n  § 3 ,  u n d e r  t h e  assum ption o f  th e
bicharacteristical c o n v e x ity  C  a n d  Co a r e  analytic  subm anifolds o f  real
codimension 2d and (2d + 1) respectively in  a  sufficiently small neighborhood of
zo . Furthermore, C  intersects transversally with b (z . ( , )) a t  z o  (Proposition 3.5
and Proposition 3.8). L et us consider all bicharacteristics of the form

b
(z, o(p (z))

 w ith  z  C .

A s  a  m atter of fact, these bicharacteristics define a n  analytic foliation of real
dimension 2d near z o  (P roposition  3 .9 ). W e denote this foliation b y  b. Now
let us define eo  and  C ,  the bicharacteristic hull of Co a n d  C _  respectively, as
follows
(1.10)C 0 —  U  b(z,e(p(z)) U  b(z,e(p(z)) ,

zeCo zeC
cp(z)= 0

—

(1 .11 ) C_ =  U  b (z,e (p (z )) U b(z,13,p(z))•
zeC - zeC

(p(z)<

Because C  intersects transversally at z o w ith  a  leaf b( z o ,e (p (z 0 )) of the  fo lia tion b,eo i s  a  non-singular real hypersurface and is  an  open  subset with C 0 a s
its boundary in  a  neighborhood of z o (Proposition 3.10).

Then our m ain theorem is

Theorem 1 .4 .  L et 931= g 1(g P, + ••• + g Pd)  b e  a  coherent lef t g-module
satisfying (1.1) and (1.2), and let Q  be a relatively  compact strongly pseudo-convex
domain defined by (1.3) and satisfying (1.4). Suppose that .0 satisf ies the following
condition, that is, suppose that (0 and (ii) below  hold at any  po in t z , in  Co .

(i) 0  is bicharacteristically  convex  at z , w ith respect to 931.
(ii) For a (complex) d-codimensional complex submanifold S pessing through

z , and being transversal to b (z . p( „))) , n S is strongly pseudo-convex at
z ,  in S.

Then Exti,(Q; 9111,  0 )  is  of  f inite dimension for ev ery  j > 1 . In particular,

{ ( P ,  . Pd14); u e  (Q )}

is of  f inite codim ension in

{ (f • • • fd) e (9(2)4 ; Py .f6 = Ph.f,„ y, li = 1, ..., d} .
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Rem ark 1.5. In the condition (ii), "the strong pseudo-convexity of n S
at z o  in S" means that there exist an open neighborhood w  of z o and a real valued
real analytic function 0 defined on snw such that

nSnw= tweSn(0;0(w)<01

holds and the Levi form L 0 (a) (o- E C" - d )  of tif a t  z o ,  restricted to {a EC ";Cn - d ;
<grad 0 (z0 ), a> = 01, is strictly positive-defin ite. N ote th a t  ' -

o nSn w ,  the
boundary of n S n co, i s  a  non-singular real hypersurface in  S n w  for a
sufficiently small neighborhood co, because S  intersects transversally with b( z . ( z o ) )

and C-
0 is  a  non-singular real hypersurface under the condition (i).

Remark 1.6. As a d-codimensional complex submanifold S  through z 0 ,  we
can take an arbitrary submanifold as far as i t  is  transversal to  b( z .,, q, ( z . ) ) . In
fact, if the condition (ii) holds for some S , it holds for any S provided that the
condition (i) is satisfied. (See Theorem 2.4 below.) However, it is very important
th a t S  must b e  a  "smooth" complex submanifold in  th e  complex-analytic
sense. Roughly speaking, the condition (ii) is concerned with the complex-analytic
structure of the domain Q in the transversal direction with respect to the foliation
b.

Further, if Q can be contracted to one point with the condition in Theorem
1.4 being satisfied in the course of contraction, then we can obtain the following
vanishing theorem:

Theorem 1.7. L et 9311 and Q  be the sam e as those in  Theorem 1.4. Suppose
that there ex ists a po in t z , in  Q  such that 9 satisf ies

(1.12) 9(z) y o ( z 1)  holds f o r any  z  in U,

(1.13) n  { z e  U; 9(z ) < t}  = ,} ,
t > t p ( z i )

(1.14) grad z cp(z) 0  o n  I z E U ;z 0 z 1 l.

Suppose further that Q  =  {z E U ; yo(z) < el satisfies the condition in Theorem 1.4
f o r any  e w ith 0 > e > 9(z 1). Then ExtL (Q; 991, 6) vanishes f o r ev ery  j > 1 . In
particular, the system (1.5) of  linear differential equations has a holomorphic solution
u  f o r any  holom orphic functions (f1,... ,f ) satisfy ing (1.6).

In case d = n —  1 (i.e. 1J1 is subholonomic), we should take a  1-dimensional
complex submanifold, i.e. a  holomorphic complex curve, as S  in the condition
(ii) in Theorem 1.4. Hence the condition (ii) becomes trivial and actually it can
be shown that the condition (ii) always holds when d = n —  1 (cf. Remark 1.5. See
also Theorem 2.4 and Theorem 4.2.). This observation leads to

Corollary 1.8. L et DI and Q be the same as those in  Theorem 1.4. Suppose
that d = n —  1, and that Q satisf ies the following condition:

A t any  point z o  i n  Co Q  is bicharacteristically  convex w ith respect to 9N.
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Then the sam e conclusions as those in  Theorem 1.4 hold.

Corollary 1.9. Let 991, Q and 9 be the same as those in T heorem  1.7. Suppose
th at  d = n —  1 , an d  that Q , = { z eU  ; 9(z ) < el satisf ies the condition in  the
preceding corollary f o r any  e w ith 0 > 9(z 1 ). T h e n  the sam e conclusions as
those in  Theorem 1.7 hold.

2. K aw ai's theorem and the condition (Pos)

In order to explain how our main theorems are proved, we first recall Kawai's
theorem in  this sec tion . Though his theorem deals with more general situations,
we present it in  a  form suitable for our purpose.

L et us define a  g-m odule 9J1' by

(2.1) 9J1' = 91( 9 P y  +  E  g a l ) .
1 < k < n

By the assumption Py a n d  -0k com m ute for every y  and  k. Since Q is strongly
pseudo-convex, we have

(2.2) Extig (Q; 9R, Extig (Q; 901',

for every j  > 0, where denotes the  sheaf o f hyperfunctions o n  U  c n  R 2 n .

N ote that, since we suppose the conditions (1.1) and  (1.2), we can construct a
Koszul complex using Pi , . . . ,P d  (resp. 13

1 ,..., P , a n d  0 1 ,..., -0„) a n d  i t  is  a free
resolution of 931 (resp. 9R') with length d  (resp. d + n).

Kawai's result asserts the finite-dimensionality (or vanishing) of the right-hand
side of (2.2). In fact, he has proved

Theorem 2.1 (K a w a i [2 ] , [3 ]) . L et 991 and Q  b e  th e  sam e a s  those in
Theorem 1.4 and let 9J1' be def ined by  (2.1). Suppose that W V  and Q  satisfy  the
following condition:

(2.3) The generalized Levi f orm  of  the positive tangential system
9 1 , o n  0 0  induced from 9)2' is positive-definite at each
characteristic point of  91„.

Then dim Extig  (Q; 9J1', 4') is f inite f o r ev ery  j > 1. Furtherm ore, if  9 satisf ies the
conditions (1.12)—(1.14) f or some point z , in Q, and if  991' and Q, = { Z  E  U; 9(z ) < el
satisfy the above condition (2.3) f o r any  e w ith 0 > e> 9 (z 1 ), then Extig  (Q; 951',
vanishes f o r ev ery  j > 1.

T he  definition o f  th e  generalized Levi form  is g iven in  [7 ] ,  C hapter III,
Definition 2.3.1. Concerning this theorem see K aw ai [2] (Theorem 1) a n d  [3]
(Corollary of Theorem 2) for details. S e e  a ls o  [1 ] , [5 ] a n d  [6].

Now we want to write down explicitly the  generalized Levi form of 9 1 , at
its characteristic p o in t .  Its explicit form  is given in  [6 ]  in the case of single
equations, a n d  i n  [ 5 ]  i n  t h e  c a s e  o f  system s. First, by straightforw ard
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calculations, we find the characteristic variety of 914.  is

1(z, — 1 09(z)); z e Co } .

N am ely th e  cotangential com ponent o f  each characteristic p o in t  o f  9 1 ,  is
determined by its base point z and the projection of the characteristic variety of
91+  t o  the base space coincides with C0 . F or zo i n  Co w e  deno te  by  Q „ the
generalized Levi form of 91+ a t  the characteristic point (z 0 , — — 1 go (z 0 )). To
give the explicit form of Q ,, le t us introduce the following symbols, which will
be used repeatedly in  the  subsequent part of this article.

(2.4) c (z) = E pV)  (z, aço(z)) P(6k ) (z, 09(z)) i ak(p(z) for y, .5 = 1, , d.

(2.5) #7,5( z )  =  E py c p (z, 8ço(z))p(1)(z, acp(z))

+ E p(yi ) ( z ,  09(z)) P (6k ) (Z , ago(z))0J ak tp(z) for y, .5 = d.

(2.6) K ( z )  =  E p(
y
k ) (z, 09(z)) äJ 9(z)f o r ]  = 1, , n, y = 1,...,d.

1<k<n

(2.7) = p y o  (z, .09(z)) + E P (
y
k ) (z , 09(z))0 j ak (p(z)

1<k<n

for j  = 1,...,n, y = 1,...,d.

Here, and in what follows, pu) (z, C) and po (z, 0  denote (Op/ 0)(z, C) and (ap/azi )
(z, 0  respectively.

Remark 2 .2 .  Among these symbols, ay , and /30  are independent of the choice
o f  a  holomorphic lo c a l coordinate system  f o r  a n y  y  a n d  ô .  T h a t  is, i f

= (2 1 ,..., 4 ) is another holomorphic local coordinate system, a n d  if  th e  above
symbols calculated in  this new coordinate system 2 are denoted by 51 y , (2 ) , py ,(2)
and so  on, then we have

(2.8) 6(0(2) = aya(z), fiy a(2 ) = f3(z) for y, (5 = 1, d.

O n the  other hand, i o r  Ai y  is  n o t  so. They satisfy the following relations:

zk(2.9) Riy(2) =
eE ICkv(Z) for j  = n, y = 1,...,d,

1<k<na'2;

az
(2.10) ;1,jy(2) = E k 2/0 ,(Z ) for j  = 1,...,n, y = 1,...,d.

<k<na2,

In  terms of these symbols, the generalized Levi form Qz .(z o  e C0 ) is given as
follows :
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(2.11) Q0(t) = E gi ,k (z 0 )T i ri,
1 .j,k<n+d

considered with the constraint

(2.12) E  e i cp(z 0 ) t i  = 0,
1 5 .» .5n

where

(2.13)

cb,k(zo) = a i ak(p(zo)

q j ,n + y (Z O )  =  /
1
 jy(Z O )

q n +  y , j (Z O )  —  k jy (Z O )

q + , + ( z 0 )  =  Œ y (Z O )

(1 j, k  < n),

(1  <j < n , 1  < y < d).

(1  <j < n , 1 y d),

(1 y, (5 < d).

Remark 2 .3 .  Taking account of the transformation relations (2.8) and (2.10),
w e find that this generalized Levi fo rm  Q 0 is  independen t o f  th e  choice of
holomorphic local coordinates, if we view Q 0  a s  an  Hermitian form on the space
of H0 C d ,  where H z 0  is a complex 1-codimensional subspace of Tz 0 Cn given by

H00 = {(T 1, • . "T„)e Tz 0 C" ; E (z 0 )T  = .
1

Moreover, we should consider Cd , the  other direct summand of H 0 0  C) Cd , as the
complex conjugate o f the  tangen t space  a t th e  origin o f  th e  parameter space
(t i  t d )  explained in  Rem ark 1.2. See Rem ark 3.2 and  Lemma 3.4 below.

As in [4], let us denote by (Pos), or more precisely by (Pos) z o , the condition
that Q 0 0 (r )  is positive-definite.

(Pos) The generalized Levi form Q ( t )  is positive-definite,
i.e., Q 0 0 (r) is strictly positive-definite on

nIT ( T 1 , • • • I t n + d ) e c + d ; E  ai (p(zo )r, = 01.
l <

The following Theorem 2.4 is a  generalization of Theorem 2.8.1 in  [4 ]  to  the
case of over-determined systems.

Theorem 2 .4 .  L et 931 and Q  be  the sam e as  those in  Theorem  1.4. For a
point z ,  in C , the condition (Pos) z o  holds if  and only  if  the following two conditions
are satisfied:

(i) Q  is  bicharacteristically  convex  at z ,  with respect to  9311.
(ii) For a (com plex) d-codirnensional complex subm anifold S  passing through

z ,  and being transversal to  b( z 0 ,0 0 ( „ ) ) , C  f l  s is strongly pseudo-convex
at  z ,  in S.

Corollary 2 .5 .  L e t  T Z ,  Q  an d  z ,  b e  th e  sam e  a s  those  i n  Theorem



854 Y oshitsugu Takei

2.4. Suppose th at  d = n —  1. T hen  the condition (Pos) z o  is  e q u iv ale n t  to  the
bicharacteristical conv ex ity  of  Q  a t  z ,  w ith respect to  99I.

It is obvious that our main theorems (Theorem 1.4 and Theorem 1.7) follow
from Theorem 2.1, Theorem 2.4 and the isomorphism (2.2). We will prove this
Theorem 2.4 in  the  subsequent three sections.

3. The geometry of bicharacteristics

In  this section we give several propositions which describe some geometric
properties of C , Co a n d  b introduced in §1.

F irst le t u s  introduce the  non-degeneracy condition of the domain Q with
respec t t o  the bicharacteristics of  W .  L e t  z o  b e  a  p o i n t  i n  Co a n d
z(t i , . . . ,  t d ; z0 , acp(z 0 ))  be  the local expression of b ( z o , o ( p ( z 0 ) )  explained in  Remark
1.2. We denote by

(3.1)

Now let B z . =  (b y ,6(z(Mi< 7 ,3,2d

ep the restriction of cp to

(t1 ..... td ) = (p(z(t i ,...,t d ;

be the  Hermitian
020

b ( z 0 )  =

b( z o ( z o ) ) :

z o , 0(p(z 0 ))).

matrix defined by

(1 G  y, 6 d),

(1 < y, 6 d),

oty er6 (0)

0 20
by ,d + ,(z o)

atyat,(0)
(3.2) 02 cp

= (1 < y, 6

(1  < y, 6

d),

d).

a t
(0)

02
bd + y , d 61(Z 0) y.7 3 .(.6. 011

On the other hand, we denote by B i
z
i the real Hessian of Cp, that is,

(3.3)

(b (zo))1< y ,t55 2d is given by
02 (p

b ( Z — (0) (1 y, 6

(1 y, 6

(1 < y, 6

(1 y, 6

d),

d),

d),

d),

au y Ou,
02

13;,d+b(Zo) = (0)
O u  auY

a2
k i + y ,b (z o ) = (0)

av
y
au
02 (p

(0)y,d+S(ZO) av y ev,

where u y (resp. v y ) is the real (resp. imaginary) part of t y . T h e  matrix B z o  is tied
up with B z

R
o th rough  the following formula :
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(3.4) BzRo = t W B W,

where W is  the (2d) x (2d) matrix given by

(3.5) W = (  Id

d

( I d  is the d x d  identity matrix).

\/— Li d

— i d r

Definition 3.1. For a point z ,  in Co w e  c a ll  the Hermitian form whose
m a tr ix  is  g iv e n  b y  B 2 0  t h e  bicharacteristic fo rm  o f  T 1 a t  z o . W hen  the
bicharacteristic form of 931 a t  z o  is non-degenerate, the domain Q is said to be
non-degenerate with respect to  9J1 a t  z„.

Remark 3 .2 .  I t  is  o b v io u s  th a t the m atrix B 2 0  d o e s  n o t d e p e n d  on the
choice of holomorphic local coordinates. (See also (2.8) and the expression (3.7)
of B 2 0  b e lo w .)  In fact, according to (3.2)—(3.5), B 2 0  should be considered as an
Hermitian form on the complexification of the real tangent space To' Cd of the
parameter space (t 1 , . ,  t )  a t  the origin, more precisely, as an Hermitian form on
the complexification of the following real 2d-dimensional vector space:

(T , f) ;  te  C ' =  To Cd }.

The non-degeneracy of Q  a t  z ,  means the second order tangency of the
boundary 0 0  of Q  and the bicharacteristic b ( 2 0 , 5 4 , ( 2 0 ) ) .

Since the left-hand side of (3.4) is  a real symmetric matrix, it follows from
(3.4) and (3.5) tha t the positive-definiteness of 132 0  is equivalent to  the following
condition:

(3.6) For any 0  = (& .... .0 d)E Cd w ith  0 0 0,

0)Bz,:(0, 0) > O.

As is easily seen, the condition (3.6) is nothing but the bicharacteristical convexity
(1.9) of Q a t  zo . Hence we have

Lemma 3.3. The domain Q is bicharacteristically  convex w ith respect to  931
at z , in C, if  and only if the bicharacteristic form 13 2 0  o f  931 at z, is positive-definite.

Here let us write down B z o  explicitly in terms of 0  and the principal symbols
P i ,• • • ,P d •

Lemma 3 .4 .  F o r B 2 0  = (b y ,6(z 0))1<
y ,6< 2c1

 def ined  by  (3 .2), w e  h av e  the
follow ing form ula:

(3.7)

b (z0) = CIC y d(Z 0 )

by,d + S ( Z O )  =  I
3
y5(Z0)

bd + y,b(ZO) flyS(ZO)

b + y ,d - I - ( z 0 )  =  Cty,5(Z0)

f or y , 6 = 1,...,d,

for y, 6 = 1, . . . , d,

f o r y, 6 = 1, . . . , d,

f or y , 6 = 1,...,d,
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where ay ,  and fly ,  are the symbols given by (2.4) and (2.5).

N ote that, a s  a  consequence of the assumption (1.1), we have

(3.8) E  p(ylqz, op,oz, =  E  py (p(z, c)d)(z, for y, =  1 ,...,d.
1

Lemma 3.4 follows from (1.7) a n d  th is form ula (3.8). W e d o  not present the
detailed  calculations here . B u t  w e  shou ld  rem ark  tha t (3 .8 ) im p lies B y b  is
symmetric, i.e., fiy6 = 136y holds for every y and S.

From  now on, let z ,  be  a  po in t in  Co and suppose

(3.9) 52 is non-degenerate with respect to 9N at z o .

N ote  that, if S2 is bicharacteristically convex at z 0 ,  then  th is condition (3.9) is
sa tisfied  by  L em m a 3 .3 . U nder th is  condition (3.9) w e  h a v e  th e  following
geometric property o f C.

Proposition 3.5. Under the assumption (3.9), C is a real analy tic submanifold
o f  real codimension 2d in  a  sufficiently small neighborhood o f  z ,. Furthermore,
C  and b( z o , ( z . ) ) are transv ersal at  z„.

In order to prove Proposition 3.5, we make use of the following two lemmas.

Lemma 3 .6 .  L et f y (z) = f v (z, f) (1 y d ) be complex-valued real analytic
f unctions def ined on an  o p e n  subse t U  o f  C ", a n d  l e t  V  denote the set
{ zeU; fy (z) = 0, y = 1,...,d } . L et z ,  be a point in V , and suppose that, if

(3.10) E  ay ei f y (z0 ) +  E  eiy ai f  y (z0 ) = 0, j  = n

hold f o r (a1 ,...,a d)e C d ,  then (a 1 ,..., ad ) m ust be equal to zero. Then V  is a  real
analytic submanifold of  U with real codimension 2d in a small neighborhood of  z o .

Lemma 3 .7 .  L et f y , V  and z ,  be those in the preceding lemma, and  le t T
be a  real 2d-dimensional real analytic submanifold through z ,. Suppose that, if  a
tangent vector w = (w i ,...,w n)eCn o f  F  at  z , satisfies

(3.11) E w i ai f y (zo) + E v-v- i a j y (zo ) = o, y  = 1,...,d,
1 • j n j < n

then w m ust be equal to zero. Then V  and T  are  transversal at z0 .

Because these lemmas are almost self-evident, we do  not present their proofs
here.

Proof  of  Proposition 3.5. By definition, C  is given by

lz e U ; p y (z, ayo(z)) = 0, y =

To prove the  first assertion of Proposition 3.5, we choose py (z, acp(z)) as f1(z)
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and  use  L em m a 3 .6 . Suppose tha t (a 1 ,..., ad ) e C d satisfies (3 .10). H ere let us
remark that

(3.12) eif1(z0) = 2
i y (z0), a f  y (zo) = K i y (zo)

hold for j  =  1 ,...,n  and  y  =  1 ,...,d  in  the  nota tion  of (2 .6) and  (2 .7), and  that
the symbols of (2.4)—(2.7) satisfy the following equalities:

(3.13) E  Ai y (zo )pp(z o , 0(p(z 0 )) = )0 ( z 0 ) for y, (5 = 1, d,
,1,5,1

(3.14) Kiy (ZO)PP (ZO aq) (Z0)) = ly6 (z0) for y, ô = 1 ,...,d .
15, j _.5n

Hence (3.10) implies that

0 =  E t E a . 1 •
Y
(z )  + dytc i v (z 0 )1 p!,i )  (z 0 , Ocp(z 0 ))

Y  l 0

1 < j n  1 5 _ r _ ç d

=  E  ay fly 6 (z 0 )  +  E oty,(4) for (5 = 1,...,d.

By Lemma 3.4 this means that

(a i ,...,a d , d i ,...,d d ) Bz o = 0.

Since we a re  assuming (3.9), we obtain (a i , . . . ,a d ) = 0. Therefore, Lem m a 3.6
guarantees that C  is a  real analytic submanifold o f  real codimension 2d in  a
neighborhood of z o .

Next le t us prove that C  and b ( z 0 ,0 9 ( z 0 ) )  are transversal at z o , using Lemma
3.7. A n y  tangent vector w = (14) 1 , , w„) of b ( z .,,,p ( z o ) ) a t z o  has the following form:

wi  =  E  cy p (yi ) (zo , 4 ( 4 ) ) , j  =  1, n,

where each cy i s  a  com plex num ber. N ow  suppose that w  satisfies (3.11). It
follows from (3.12)—(3.14) that

o= E E  
C y 13(yi ) ( Z 0 ,  

09(4))) 2 0 (4 )  +  E E  ey p(yi ) (z 0 , 09(z 0 ))) tco (z o )
1 < j< n

=  E  cy #, y (zo ) +  E  Ey 26y (z0 ), b  = 1, d,
1 < y < d

which means

c1,...,ca)= 0.

Again by the assumption (3.9) we find (c 1 ,..., ca ) = 0, i.e. w  = 0. H ence L em m a
3.7 shows the transversality of C  and b( 2 0 p( z 0 ) )a t  z 0 . El

A s is shown in §1 (cf. the equality (1.8)), b( z o ,,,p ( z o )  i s  tangent a t  z ,  to  the
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boundary 00 of Q . S ince  C o i s  the intersection of C  with 052, we immediately
obtain the following proposition from Proposition 3.5.

Proposition 3.8. Under the assumption (3.9), Co is  a real analytic submanifold
of  real codim ension (2d +1) in  a neighborhood of  z„.

Next let us study the "foliation" b, i.e., the family of bicharacteristics of the
form

(3.15) lb(z,a,pcznIzEc•

M aking use of P roposition 3.5, w e  can  p ro v e  th a t b  is ac tually  a n  analytic
foliation a t least loca lly . M ore precisely, we have the following

Proposition 3.9. Under the assumption (3.9), the fam ily  of  bicharacteristics
o f  th e  f o rm  (3.15) def ines a  real 2d-dim ensional real analy tic f o liation  in  a
neighborhood of  z 0 .

P ro o f . L et us consider the following map F:

(3.16) F :C  x (2, (t 1 , . . . , t d)) z(t i , . . . , t d ; 2, ago(5))e Cn ,

where z(t i ,..., t a ; 2, 4 (2 ) )  is the local expression of b(z N (z) ) explained in Remark
1.2. T h is  m a p  F  is  defined  a n d  rea l analy tic  i n  a  sm all neighborhood of
(zo , (0,...,0)) because C is a  real analytic submanifold near z o  an d  z (t i ,..., td ; 2, -C)
is holomorphic with respect to  (t 1 , . • , t d) and (2, C). Moreover, the transversality
a t  z o  o f  C  and b (z . , , o z o n  im p lie s  th a t th e  differential o f  F  at (z o , (0,...,0)) is
surjective. Hence F  is a local diffeomorphism near (z o , (0,...,0)). S ince  by  th is
diffeomorphism F  each bicharacteristic b(z ,4 ,( , ) ) (z  E C) is transform ed into the
subset

{(2, (t 1 , . .,t,)); 2 = z , (t 1 , ..., td): arbitrary}

of C  x C d , we find that the family of bicharacteristics in question is a  real analytic
foliation of real dimension 2d in a neighborhood of z ,  and the above map F  is
its distinguished local chart.

W e have defined by (1.10) and (1.11) j .'0 and the bicharacteristic hull
o f Co and  C .  T h e  following proposition is  a n  immediate consequence of the
preceding propositions.

Proposition 3.10. Under the assumption o f  (3.9), 'e o i s  a  non-singular real
hypersurface an d  e _  is an open subset with e0  as  its boundary in a neighborhood
of z„.

In  fac t, if  w e consider j' 0 i n  using th e  distinguished chart F  defined by
(3.16), it is locally the image of Co x  Cd , which is a  non-singular real hypersurface
o f  C x C .  S im ila r ly  C _  is locally the im age of C _ x C d ,  w hich is an open
subset of C x C d w ith  Co x  C d a s  its boundary.
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4. The decomposition theorem

In  this section we investigate the  relationship between the  generalized Levi
form  Qz .  introduced in  § 2  a n d  th e  geometry of bicharacteristics. The m ain
theorem is the decomposition theorem of Q. (Theorem 4.2 below). Theorem 2.4
is a  consequence of that decomposition theorem.

L et us begin with the following

Proposition 4 .1 .  L e t  z , be  a point in  C , and suppose that the generalized
Levi form Q z o , considered with the constraint (2.12), is positive-definite. T h e n  the
bicharacteristic form 130 0  at z , is also positiv e-def inite. In  other words, if  (Pos) is
satisf ied at z 0 , Q is bicharacteristically  convex  w ith respect to  T i at z „.

P ro o f . W e use the explicit forms of Qz .  and 130 0  given by (2.11)—(2.13) and
(3.7).

F o r  a = (a 1 ,..., a„ ) in  C 2 4 ,  le t us define g(z, and d) by

g ( z , ) = o-ypy(z,

=  (g( i ) (z 0 , acp(z 0 )),...,q(")(z 0 , ago(zo)), a d + 1 , • • • , a 2 d ) E C n ± d .

N ote that this d) satisfies the constraint (2.12), that is,

E ai cp(z0 )g (i ) (z 0 , acp(z 0 )) = 0

holds, since  each  py sa tis f ie s  (1 .8 ) . N o w  le t  u s  calculate Q z 0 (4)) f o r  0 .  A
straightforward calculation shows that

Qz.14)) = a Btd.

Hence (Pos) z 0 entails the positive-definiteness of .130 0 .

This Proposition 4.1 states a  relationship between the generalized Levi form
Q and the bicharacteristic form B .  But, in order that the generalized Levi form
Q  is positive-definite, we have  a lso  to  ta k e  a c c o u n t o f  th e  complex-analytic
structure of 0  in the transversal direction with respect to  the foliation b, which
is the reason why the condition (ii) appears in the statement of Theorem 1.4 and
Theorem  2.4. To describe that structure, let us prepare some notations.

Let z ,  be a  p o in t in  Co  and suppose tha t the condition (3.9) holds, i.e., S2
is non-degenerate with respect to 991 at z o . Take a (complex) d-codimensional
complex submanifold S  passing through z ,  a n d  being transversal t o  b(0 0 (0 0 ) ) .
We want to consider  n S  i n  S .  Since under the assumption (3.9) b is a  real
analytic foliation in a neighborhood of z ,  and  C is also transversal to  b( 0 0 ,„ (0 0 ) )

as well as S , we can define a  real analytic local diffeomorphism g  from  S  to  C
along b as follows:

(4.1) g: SD w g(w)EC,
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where the image g(w) of w  is determined by the following property:

(4.2) g(w) and w  lie  on the same leaf of b.

Remark that, using the distinguished chart F  of b  defined by (3.16), we can also
represent g  in  such a  way that

(4.3) g =n1 ° F - 1  is

where 7r1 i s  the projection from  C x  C I o n t o  C .  T h u s w e  have defined an
analytic local diffeomorphism g: S — > C. By definition, the images of n S and
its boundary e ;, n S  under this diffeomorphism g  a re  C _  a n d  C ,  respectively.
Therefore, if we define a  real analytic function tic o n  S  by

(4.4) = (plcog,

then we find

nSnco = {weSnco; tic(w)< 0}

fo r a  sufficiently small neighborhood co of z0 .
Now le t us state the decomposition theorem.

Theorem 4 .2 .  L et 9j1 and Q be  the sam e as  those in  Theorem 1.4. L et z o

be  a p o in t in  Co and  suppose  that Q is non-degenerate w ith respect to  9911  at
zo . L e t S  be  a (complex) d-codimensional complex submanifold passing through
zo  an d  being transversal to b (z o , (z o ) ) at  z o ,  and let be a  real analytic function
on S  defined by (4.4). Then the generalized Levi f o rm  Q o at  z o , considered with
the constraint (2.12), is equiv alent to the direct sum  of  the bicharacteristic form
Bzo o f  T i and the L ev i form  L zo o f  ç1, at z o .

Remark 4 .3 .  The Levi form  L zo (o-) e C " )  o f tif a t  z ,  is , by definition.
the Hermitian form

021k
_  oo-i d(z ,

1 < j ,k < n - d
0

W jO W k

considered with the constraint

(z o o - i =o,
<  j< n - d  ow;

where try 1, • •• 5  W n - d )  denotes a  ho lom orphic  local coordinate system  o f  S  at
zo . T his  i s  a  well-defined Hermitian form o n  th e  complex 1-codimensional
subspace K z .  o f  Tz o S  defined by

ao
K z o  -= {  a = (a l , ...,(7„-d)E 7 ; 0

5 ; (zo)E  —n( 7  =i 0  ,
1 < j - n - d U V V .i

tha t is, L 0 (a) is  a n  Hermitian form on K 0 0  which is independent of the choice
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of holomorphic local coordinates o f S . N o tice  tha t Kz o  is contained in  the  real
tangent space o f tiP = 01 a t  z „ .  As is well-known, the Levi form of (// a t  z o  is
an Hermitian form on the space of holomorphic tangent vectors of 1/ = 01 at z ,.

It follows from Lemma 3.3 and Proposition 4.1 that, if Q is bicharacteristically
co n v ex  a t z „,  o r  i f  (Pos) z o  h o ld s ,  th e n  th e  assum ption i n  th is  theo rem  of
non-degeneracy o f  Q  a t  z ,  is satisfied. H ence, Theorem  2 .4  is  a n  immediate
consequence of this decomposition theorem and  Lemma 3.3.

I n  o rd e r  to  show  the  decom position theorem , we will m ake use of the
following proposition which describes the explicit form of L ,

Proposition 4 .4 .  L et 9N , Q, z 0 ,  S  and be  the sam e as  those in  Theorem
4.2. Let L ' 0 (i) =Ei<J,k ,uri,k (z o)(T idk  be an  Herm itian form  on H z 0  defined by

(4.5) ri,k (z ,)  = jekgo(z 0 ) — pi (z 0 )13Z-
0 ' p k (z o ), j, k  = 1, ...,n ,

where p1 (z 0 )  is a  2d-vector given by

(4.6) pi(zo)= (x 1 1 (z 0 ),...,K i d (Z0 ), /111(2.0), / 1 0 (4 )), j  = n,

and H z 0  i s  the following subspace o f  T „Cn:

(4.7)H 0  = f c . = (o- ,  ,  o -
 n) E T2 0 Cn ; E i cp(z 0 )o- =  O}.

Then, when we regard Tz 0 S  as a subspace o f  Tz 0 Cn through the canonical inclusion
S c  Cn, the Levi form  L ,  of  at  z ,  coincides with the restriction o f  L ',  to H z .
n Tz .S.

Remark 4 .5 .  By (2.8)—(2.10) we find that L ' 0 (ci) is independent of the choice
o f  holomorphic lo c a l coordinates w hen view ed a s  a n  H erm itian  fo rm  on
Tz o C " .  N ote a lso  that the assumption of the transversality of S  w ith bt z o ( z o ) )

a t  z o  a n d  th e  equality (1.8) im ply that H z o n Tz 0 S  is  a  complex 1-codimensional
subspace o f Tz0 S.

Remark 4 .6 .  W e can consider L' 0 (a) itself a s  a n  Hermitian form on T S ,
because the tangent space of 13( z 0 ( z 0 ) )  a t  zo is contained in  H z .  by (1.8) and

r 1  1 (z0 )  . . .  rl,n(ZO) )

(al, ... , a) (n : = 0
rn ,1 (zo ) • • • rn ,„(zo )

holds for any tangent vector o- = (a, ,..., o.„) of b( z o ,, n, ( z o ) )  a t  zo . In fact, for any
k  and y  (1 < k  < n, 1  < y  < d), we have

E  p ) (z 0 , Ocp(z„))ri . ,(z o )

=  E  p/)
 (z 0 , 13 ( z 0 )) — p (z )13 - 1  I o (z, k -0 )1

1 .j. 11
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=  Kky (ZO) (Z0), CXyd (Z0), fly 1 (z0), flyd (Z 0 )) 4 1  t Pk(ZO)

Y
V

= ICk y (Z0) 1, 0,...,01tpk(z0)

=  K k v (Z 0 )  —  Kk y (Z o )  =  O.

The proof of Proposition 4.4 requires many straightforward calculations. We
will prove it in  th e  next section. H e r e ,  assuming Proposition 4.4, let us finish
the  proof of the decomposition theorem.

P r o o f  o f  T h eo r em  4.2. First rem ark that, since the  generalized Levi form
Qz . ,  the bicharacteristic form B z 0  and the Levi form L z o  o f  tid are all independent
of the choice of holomorphic local coordinates as explained in Remark 2.3, Remark
3.2 and  Remark 4.3, it suffices to prove this theorem in  o n e  arbitrarily chosen
holomorphic local coordinate system. Let us choose a  system (2 ,,...,2 „)  so that
zo i s  the origin in  this system and that n — d+  1 —  • • • =  z  =  0} coincides with S
in  a  neighborhood of zo . F or simplicity we denote 2  by  z  in  what follows.

Let

Q 0 ( t )  = E q i,k  (
0

)  Ti t",
1 < j,k < n + d

be the generalized Levi form  at zo =  0 , where each qi ,k (0) is given by (2.13) and
T  =  ( T 1 , . . . , T n + d )  satisfies

(4.8) i ( p  ( 0 )  T  =  O.
1 5 .j< n

L et us transform T  =  ( T i , . . . , T n + d )  into X =  (Xi - • • , X„+d) as follows :

(4.9) (xi, • • • , T.) =  (Xi- - • , X. -d, 0 , ••• , 0 )

+  E  xn_d+,03;,"(0, 09 On, —  1  P(;') (0 , ap(0))),
1. 15_y:sd

(4.10) (T n + 1 ,• • • , t n + d ) (X n+  1 ,•  •  • , X n+ d),

that is,

o

PT)

(4.11) (t1 • • • ,Tn+d) =  (Xi, • • • , Zn +
„,(1)
Pd

p(dn)
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Note that, since S  is assumed to be transversal to  b( z o ,e v t z o o ,  the  matrix

Pl

(

n - d  + 1 )  1°  1  a ço (0» ... p(in) co, a q) co»

P!in - d + 1 ) (0 , &P (0 )) • • • P(1 ) (0 , 09(0))

is non-singular. Hence the transform ation (4.9)—(4.10) o r  (4 .11) is invertible.
Remark also that the transformation (4.9) is nothing b u t th e  decomposition of
To C ", the tangent space o f C " a t z , = 0 , into the  d irect sum o f  To S  and the
complex tangent space at the origin of (t 1 ,. t d ), the parameter space of b( z o ,N t z o n

explained in  Remark 1.2.
After this transformation we further transform Y (Y‘ , 1 1 • • • , X n + d ) into 6  =

(a l • • • 1 6 n + d )  in  such a  way that

1 0 01,1 0 1 , 2 d

0 I On -  d ,1 • • • -  d ,2 d(4.12) (Zi,•••, Z n +d ) ( ( I l l  • •• , a n + d )
1 0

0

1

where 0 ;  = (1 < n — d) is a  2d-vector given by

= —  00) B o-
 1

= — (KJ , (0), , Ki d (0), (0), , Ai d (0)) Bo-
 1  , j 1, , n — d.

Then, by a  straightforward calculation, we find that Q 0 ( î )  is transformed into the
form

9 :, ,k a  jci k

which is defined in  the  following manner:

qf,k =3kq(0)—pJ(0)BO ' 1 P k ( 0 ) (1 < j, k < n —  d),

q j , n - d + y cl:t - d + y , j 0 (1 j_ n — d ,l..<_  y < 2d),

q ;r- d - E y ,n - d + S rYydy ,  ( 5  <  d ) ,

q ;i - d +y ,n - F S q + - d + 1 1 3 y < 5 •)), 6 d),

(In' y , n =  a l y r 5 (1 < y, d).

Furthermore, using (1.8), we find the constraint (4.8) of Q0 (T) is transformed into

(4.13) E go (0) o- = 0
1 5 ,j5 _ n - d
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under these transformations (4.11) and (4.12).
Now Proposition 4.4 tells us that, in  th e  coordinate system we a re  using

now, the Levi form L 0 (a) a t zo =  0  is

L0(a) = E (0 (0 )  pi (0)1V i t  Pk(
0 ) )a i 6 k,

w h e re  =  (a 1 , • • • n  -  d )  is  a tangent vector of S  a t z o  =  0 satisfying

E ai ga(0)o- i  = O.
1 n-d

In  fact, in  the current coordinate system, the tangent space To S  of S  a t z0 = 0
can be identified with the subspace

{(a 1, • • • , n )  E  T o C
n
 ;  a n - d +  1  — =  an  —

o f To C . H en ce , the  Hermitian form

, • • • ,a n -  d )

q1, n - d

- d,n - d a n - d

with the  constraint (4.13) is exactly the Levi form L o (a). O n  th e  other hand,
Lemma 3.4 implies that

- d +  1 ,n - d +  1  • - d + 1 ,n + d

=  B o .

H n + d ,n - d + 1 61 1 4 d ,n + d

Thus we obtain

Q 0 ( t )  =  L 0 ( 1 6  1, • • •, an - d ) B 0 (an  -d  + 1 ,•  •  • , + d),

which means that Q0 is equivalent to the direct sum of Bo a n d  1, 0 . LII

5. Proof of Proposition 4.4

Finally, le t us prove Proposition 4.4.

Proof  of  Proposition 4 .4 . A s  in  th e  proof of Theorem 4.2, le t us choose a
holomorphic local coordinate system (21 ,...,f „) o n  a  small neighborhood W  of
zo  so  that z o  i s  th e  origin in  this system and  that S  =  

k - n - d +  1  =  •  = —

holds in  W . For the  sake of simplicity, we will denote by z  in what follows.
I n  this coordinate system , every p o in t  w  o f  S  n  W  is represented by

w = (w 1 ,..., w  0, ..., 0 ) ,  and w' = (14 , , w „ _ d) g iv es  a holom orphic  local
coordinate system o f S  around z o . Hence, in  this system, the Levi form L o  (o-)
of at zo  =  0 has the form
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8 20

(o) i dk

1<i,k<n-dawfavvk

with the constraint

( o ) o - i  =  o.
1, ; <._dawi

On the other hand, in this coordinate system the restriction of the Hermitian form
L', (a), given by (4.5)-(4.7), to  the subspace 1-10 nT0 S is expressed as follows:

I: 0 (a) = E (a;
 -6k9(0) — 0 0 ) A:7 Pk(0) ) a id k

where

P J(0 ) = (K ;1(0 ), id(0), 2;1(0), , Aj d(0)), j  =

and

n T o S  = 10- = (0- 1 ,...,0 - n_d, 0, —,0); E a4p(o)0-•=J

Therefore, since both  L 0 ( a )  and L '0 ( a )  a r e  independent o f  t h e  choice  of
holomorphic local coordinate systems as stated in  Remark 4.3 and  Remark 4.5,
it suffices for us to  prove the following equalities :

a z
(5.1) (0) - aj ak  cp (0) - p ; (0) B p (0 ) for j, k = 1,...,n - d

Ow J aw-

and

aw;

The proof of (5.1) and (5.2) will be done in the similar way as in  [ 4 ] .  We divide
it in to  four steps.

STEP 1: First le t us investigate how we can obtain an  explicit form of the
real analytic local diffeomorphism g defined by (4.1) and (4.2). Once we find an
explicit form of g, we can easily obtain the one of according to (4.4).

Let w = (w', 0,...,0) be a point in S n W, and let 0 = (0 i ,...,0„) denote a point
i n  a  s e t  {0e Cn; 10 4(0 )1  <  c l  w here c  i s  a  sm all positive constant. Let
(z(t; w, 0), (t; w , 0)) (t = (t 1 ,...,t,)eC d)  b e  the local expression of the bicharac-
teristic manifold through (w, 0) explained in  Remark 1.2. L et us define

(5.3) / (t ; w', 0) = Ci (t; w , 0 ) - i 9(z(t ; w, 0)) (1 j n),

(5.4) f„,y(t; w', 0) = p y (z(t; w, 0), a(p(z(t; w, 0))) (1 y d),

and consider the simultaneous equations

(5.2) (0) - aj cp (0)f o r ] = n  - d.
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(5.5) f,i(t; w', 0) = 0,i  = 1,...,n + d.

It is obvious that, if (5.5) holds for some t = (t 1 , ,  t d ), then z(t; w, 0) belongs
t o  C  and (w, 0 ) lies on the bicharacteristic m anifold of 9J1 passing through
(z(t; w, 0), ecp(z(t; w, 0))). In  other words, if (5.5) holds fo r some t, b 0 ) i s  a
leaf of the foliation b. Since b is  a  real analytic foliation in a neighborhood of
z, = 0, we can expect that for any point (w ', 0,...,0) in S  near 0 there exists a
unique (t, 0) near (0, aq)(0)) such that (t, w', 0) satisfies the equations (5.5). As a
m atter o f fac t, w e  w ill sh o w  in  th e  n e x t s te p  th a t  the  Jacob ian  m atrix  of

with respect to  0, 0, t and f is non-singular at (t, W ,
= (0, 0, 0q)(0)). Hence, by the implicit function theorem, (5.5) can be converted to
the form

(5.6) (t, 0) = (T(w'), 0(W))

in  a  neighborhood of (t, w', 0) = (0, 0, 0cp(0)). Remark that T(w') and 0(w') are
real analytic in w ' but not necessarily holomorphic in  w '. T hen , by the definition
(4.1) and (4.2) of g ,  we find that

g(w) = g((w', 0))

=  z(T(w'); (w', 0, ,  0 ) ,  9 (w')).

Thus we obtain the following expression of i/J:

(5.7) 1// (w) = cp(z (T(w); (w', 0, ,  0 ) ,  0  ( 0 ) ) .

STE P 2: L e t u s  now  prove  tha t th e  equations (5.5) can be converted to
(5.6). T o  d o  so , it suffices to  show  th a t  th e  following Jacobian matrix J  is
non-singular at (t, w', 0) = (0, 0, 0cp(0)). In  what follows the  evaluation of some
function, say f ,  a t  (t, w', 0) = (0, 0, 0q(0)) will be indicated by the  symbol fl y .

0f10 f10 f 1 01'10 f10 f1 

ae, ae,0 e2a o n at, Ofd
o f o f o f o f  
ae, ae, 002a e n at, ad
0f 20 f 2 of20 f 2

ae, ao,0 e2

• • •

q ‘ n+d Of n + d  f n + d a  f n+d 

001 001 0e2a r d
Now the following relations are immediate consequences of (1.7).

az.
(5.8)  = Pu) (0 , 0 (P(0 )), j 1,...,n, 1,...,d,

Oty

J=
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a
(5.9)   =  —  PAW°, a (P(0 )), j=  1,...,n, = 1,...,d ,

aty

(5.10) it=o — j  =  1 ,...,n , k = 1,...,n —  d,
awk

(5.11) aç
l—  0 j  = 1, ,  n, k = 1,...,n —  d,

a w k t=o

az•
(5.12) = 0, j ,  I = 1,...,n,

a0,

aCi(5.13)
a e i

ii= 0 — 1= 1,...,n,

w here  j , k denotes the Kronecker a. M oreover, since z(t; w, 0) and C(t; w, 0) are
holomorphic functions of (t, w, 0), we have

aCi(5.14) j = 1, n, y = 1, , d,
aZJ
atya t ) ,
az;a c ;(5.15)

_ 0
j =  1 ,...,n , k = 1,...,n —  d,

awk awk

azi(5.16) j, 1 = 1,...,n.
ae, ae, '

Using these relations, we can easily calculate each component of J. For example,
af;

— 6;4,j ,  I  = 1,•••>n,

af. _ a ;
ilY aiak(p(o)  lyarya t

=  —  E  aA(p(o) e)(0, N (0))
1<k<n

= — Ki1 (0), j  =  1,...,n, y = 1,„.,d,

af n + 
ly = P1(i)(0, N ( 0 ))

a z i

at 1 . j < n a t

E  1 3 (1 )A  4 0 » 
a
 ja k(Pn

az k

 IY
1.çj,k5,na t

= py(;) (o, ço (0)) p(f ) (0, a cp (0))
15j5n

ae,
Of

'l y  = 0, p = 1,...,n + d , 1 = 1,...,n,ae,



1 0  • • •  0  —  2 1 1 (0) —  k 1 1 (0) ••• —  K id(0)

0 — —  211(0) ••• A1d(0)

0

0  • • •  0  1  —  K 1 ( 0 )  —  An t ( 0 )  •  •  •  —  A nd(
0

)

ai i (0) a1d(0)

fl (0) fi,d(o)
0
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+ PV)(0, a(P(0 ))11 ) (0 , 0(19(0)) i t3k cp(0)

= f l y ,(0), y, 6 =

af n+ 
et, 1 5 j ,k <n

Yly — E  p ( 0 ,  a(p(0)) j ak (p(o) Y- 1
Ozk
Ot,

E  0 ) (0, (p (0 ) )  d ) (0 , (P (0 )) a j 6k (p(0)

=  c ( 0 ) , y, 6  = 1 ,...,d ,

and so  o n .  Thus we find

CX d 1 (0 ) #d  1 (0 ) ddfl (0 )

Since B ,  is non-degenerate by the  assumption, it follows from Lemma 3.4 that
the matrix

fl11(0) 1101 aid0:1)

Œi (0) 13 (0) fl i d (o)

d 1 (0 ) d  1  ( ° )  d  d  ( 0 )

is non-singular. Hence, J  is  so, to o . T h u s  w e  have proved that the equations
(5.5) have a unique solution (t, 0) = (T(W), e(W)) for each w' in  a  neighborhood
of (t, w ', 9) = (0, 0, Oct. (0)).

STEP 3 :  Before proving (5.1) and (5.2), le t us calculate the first derivatives
o f  T(w') a t  th e  o r ig in . Besides this we prove some equalities which th e  first
derivatives o f 0 (w ) satisfy at th e  o r ig in . They w ill be used in  th e  calculation

J =
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of a2olaw j avT,k (o). It is  a  little amazing that, though we have to calculate the
second derivative of we need not know the second derivative of T(w') or 0(W)
as we will see in the final step.

First let us consider the derivatives of T (w ') . By the definition of T(w') and
0 (w ), we have

(5.17) f,,,y(T(w); w', 0(0) = 0 for y =

We differentiate these equalities by wk  and  evaluate at w' = 0, then we find

Of,,, O , Of„, OT6 Ofn,
E

T
(0) + Yly (0) n  1Y

S at,, UUWk U t 6  U W k Wk

+  E  af
n" iy 

°e
lm + 

af
"_"ly 

 °e
 ̀(04 = 0,

i,/,„ ae, ow, ae, avvk

y  = 1 ,...,d , k = 1,...,n —  d.

Now we have already known the derivatives of f n + 7  w ith  respect to  t, t ,  0  and
0 at (t, w', 0) = (0, 0, 8 p (0 ) ) . Using (5.10) and (5.15), we can also easily calculate
(Ofn + y l awk ) (0, 0, 4 ( 0 ) ) .  Thus we obtain

(5.18) E  fl ( ) 0T (0 )
(0 ) E  ay , (0) 

 O T ,

(0) +  4 7 (0) = 0,
aWk 1< 6< d awk

y  = 1,...,d, k  = 1,...,n —  d.

Similarly, by differentiating (5.17) by W k, we obtain

(5.19) E fl y ,(0An+  E  cxy,o) 87-6 (0)+  K k y (o) = o,
i<6<d uwk 1<6<d awk

y = 1, k  = 1,...,n —  d.

Since c(7 6  =  a 6 7  a n d  fly ,, = fl,y ho ld  for any y  and (5 (cf. (3.8)), it follows from
(5.18) and (5.19) that

(

0T1 0TdO T aTa
(0), ...,  (0) 

I
(0),, , (0)) Bo

awk awk awk awk

— (K k (0) .. • K 41(0 ) k  ( 0
) , • • • , Ica (0 ) )

= Pk(0 ), k = 1, ,n  —  d.

Hence we have

(5.20)
(O T ,O T d OT, eTd(0),...,  (0), (0),...,  (0)

awk awk0 w , , awk
= — P k (0) BO- 1 f o r  k = 1,...,n —  d.

Let us next consider the derivatives of 60( w ) .  We begin with the following
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equalities :

(5.21) py(z(T(W ); w ,19(0), C(T(w); w , 0(W ))) = 0, y = 1,...,d.

These are immediate consequences of (5.3)—(5.5) and the definition of T(w') and
(w'). Then w e ca rry  on  our calculations in  th e  sam e way a s  w e d id  in the

case of the derivatives o f  T (w ') . T hat is, we differentiate (5.21) by w k and W k ,
a n d  eva lua te  a t w ' =  0 . T hus, m aking  use  of (3 .8), w e  ob ta in  th e  following
equalities :

(5.22)

E  p(y1)(0, aq)(0))
8 0 1  

(0 ) Py(k)(0, &P(0 ))
awk

for y = k  =1,...,n —  d,

(5.23)

E  p(
1,0 (0, 89(0)) ‘3 ( (0) = 0 for y =1,...,d , k  =1 ,...,n  —  d.

l< 1 < n °W k

S T E P  4 : N ow  le t  u s  calculate 0 2 0 / Ow;  evT,k (0) and i/  8 w (0 ) . In  what
follows, we will keep the notations at/i/ Ow;  e tc . to  deno te  the  differentiation in
w-variables, and the symbol e i cp etc. always refer to the one in z-variables. We
will also abbreviate p(yi) (0, 4 ( 0 ) )  e tc . to  p (yi )  e t c .  fo r  th e  sake  o f  simplicity of
notations.

First we note the following relations, which follow from (5.8)—(5.16):

a2 z .

(5.24) ly =  E  {Pil()A)P(1) — Paw}Ot
),
at 1 1. n

j  =1 ,. . . ,n ,  y, 6  =1 ,...,d ,

z

(5.25)   1), —  p (yi)k) , j =1 ,...,n , k  =1 ,...,n  —  d, y =1 ,...,d ,
Oty0w,,

0 2z .

(5.26) ly — j ,  1= 1, n , y  =1 ,...,d ,
et y00,

02 z .

(5.27) It=0 = 0 , j ,  1= 1, , n, k  = 1 ,...,n  — d,
0%00,

a z z .

(5.28) It=0 = 0 , j ,  1, l' =1,...,n .
00,00,,

(5.29) Every second derivative of z i  (1 j  <  n) containing the
differentiation with respect to  fy , W„ or 0, (1 y < d,
1 < k  < n — d, 1 <1 < n) is equal to  zero.

Using (5.8)—(5.16) and (5.24)—(5.29) together, we obtain the  following equality :
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a2ip aT aTy
(5.30) (0) = aj ak cp + 1  p r  aj a ' +

Y,A1a W k 'aWk
E  1) (y

1
) a iaOwi 0vV,k

_ a T -  -  aT
+ Ep(vP)ap ak 4 9 Y1 ) ( y " )  a A ak9 Y

1, ,11

▪ E p(;) avçoaT, aT6
A O W

!

. 01T)
k

 - O T+ E OT
11 (; )a v ( P  Y .3

yo3,g,v aW
j  

aW
k

OT 87'0+ E p(y/') Po av(P Y 
A O W

j  
OVT)

k

aTy OT,
av49+ E  I)(

y
P.) PSv) -6 AL

Y,S,g,v

+ {P ỳir  (v, P6")
5,g,v

awi  aw ,

p ( r o  p a w „ _ a T y  OT,
.1 ° 1 ' 9  Ow. ;  0 1 ,T)k

  

aT, 87-'6
— p(r,P6(v)} 0 ATawi  Ow,

E TloP ' %  + 9 ° T y

aTy Oev Oev aTy l
aw 0i ,t)k aW i 01T 1k  j

+ E  {P()v)pSv)
y,S,p,v

OT + E P(yVi)a
Y,11' ' v k

▪ E  p (7,z,v) 0 A 9 {
Y ,A,v

+ E
Y,P,v

n o,,v) atoy 
ja T ),  Oeva e v  aTy l
taw. ; Ow, awi  aw k j

+ E P (YA ) aA(19 
a 2

±
Y,/.1 aWialT,k Y,11

j, k =1,...,n —  d.

02 f,
p ( ;)  0 4 9  Y  

OWi0W- k '

Applying Euler's identity to (5.30), and then using p y (0, 09(0)) = 0(1 y d) and
(3.8), we find

(5.31)
n2 ./,
u  ` P   (o) — ai 6k(p + E a .; +  2-KiYOwi01T)k

OT
(317Vk Y °wk

— OT —  aT
Kk y  E A k,

y aWi y aWi
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+E fly6
0 T y  0 7 '6   

+ y 6  

O T y  O T ,

V.38 1 4 V )1, y,6 3 w1 8Wk

flyS+E  y6

V,
 .5

OT Eav-vk . „ „
8 i ;  7:5

411 0 w ,,

ai; aT +E(my 1) {P YU) Y + P Y(k)
W

awY.
Y a k J

+ E p ( ,) ( 07; 00 1  + 00 1 a T y )
i
 Y 0 1 4 ,,i Oilv-ka W  i  a W  k  )

+ E  p (v,) (aT, ao, 00 1

014,.i O w kO w i

j, k =1,...,n —  d.

OTy

a w l ,  ) 1 '

Here m y denotes the  order of the operator P .

Remark that (5.22) and (5.23) imply the last term  Ey(m y —  1
)

of (5.31)
vanishes. Moreover, denoting the vector

OT, OT d  0 7 ' 18 T d )

k ' ° W k  a W k aW k

by co,„ we have the following equality by (5.20):

wk =  —  Pk B cT1f o r  k  = 1 ,...,n  — d.

Hence we obtain

(0) — 8J 8kP + p i twk + co i tp k + co i B o ttok

tp

jaW k

j e k 9 p i  B cT, 1 tfikp i  A:T i t  - kp  +  p i lV 1 B o B (7, k

= e i 0k 9 — piBo l t Pk

Thus we have proved (5.1).
Finally let us prove (5.2). It follows from (5.7) and (5.8)—(5.16) that we have

— (0) =  i cp (0) + E p (
y
i) 01 cp  T

Y (0)
ew i 1 , y a w i

+E p (
y
i) Oicp

a T y  

(0), j  =  1 , ,  n — d.
1,y

Since

for j, k =1,...,n —  d.

Ep(ỳ)(0, 89 (0 ))81 (p(0 )=  o
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ho lds fo r  y  = 1, d  b y  Euler's iden tity , w e obtain

Ow, 
(0) = Oj cp(0) for j  = 1, , n  —  d,

th a t i s ,  w e h a v e  (5.2). T h is  com pletes th e  proof o f P ro p o s it io n  4.4.
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