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The geometry of bicharacteristics and
the global existence of holomorphic solutions
of systems of linear differential equations

By

Yoshitsugu TAKEI*

0. Introduction

In the previous paper [4] of Kawai and the author we studied the relationship
between the geometry of bicharacteristics and the (semi-)global existence of
holomorphic solutions of single linear differential equations. The main result of
[4] is that, in order to discuss the (semi-) global existence of holomorphic solutions,
we have to take into account not only the convexity of the domain in question
with respect to bicharacteristic curves, but also the pseudo-convexity of some
manifold given through the foliation structure determined by bicharacteristic
curves. In this article we generalize this result to the case of over-determined
systems of linear differential equations with one unknown function; of course, we
have to replace bicharacteristic strips by bicharacteristic manifolds.

We proceed in a similar way as in [4]. When we study the existence of
holomorphic solutions, we should consider the Cauchy-Riemann equations
together with the linear differential equations under consideration. Then, due to
the Cauchy-Riemann equations, we can apply the theory of boundary value
problems for elliptic systems developed by Kashiwara-Kawai [1]. In fact, making
use of this theory with a result of Sato-Kawai-Kashiwara [7], Kawai has presented
in [2] and [3] some theorems on finite-dimensionality of cohomology groups
attached to elliptic systems. In the situation we are considering, his results give
sufficient conditions which guarantee the (semi-)global existence of holomorphic
solutions. (See Theorem 2.1 below). We will investigate the geometric meaning
of his conditions, supposing the second order tangency of the bicharacteristics
and the boundary of the domain in question (Theorem 2.4). As a result we can
obtain our main theorems (Theorem 1.5 and Theorem 1.8) which describe the
relationship between the geometry of bicharacteristics and the (semi-)global
existence of holomorphic solutions.

Here we should mention that the geometric conditions discussed here have its
origin in the work of Suzuki [8]. He has given a complete description of the
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conditions which guarantee the global existence of holomorphic solutions of single
linear differential equations of first order. Besides the work of Suzuki, for single
linear differential equations there are several works closely related to our problem
of the global existence of holomorphic solutions: For example, Pallu de la Barriére
[6], Trépreau [9], [10], and so on. Compared with the case of single equations,
almost no global existence theorems are known for general systems, as far as the
present author knows.

Now let us describe briefly the plan of this paper. In §1, we prepare some
notions and notations, and state our main results. In §2 we give the outline of
the proof of our main results. The proof consists of two theorems: One is
Kawai’s theorem, which is explained in this section, and the other is Theorem
2.4, which will be proved in the subsequent three sections. First we study in
§3 the geometric situations of bicharacteristics under a non-degeneracy condition.
Then we prove the decomposition theorem of some Hermitian form in §4,
assuming one proposition (Proposition 4.4). The main part of this paper is in
a sense this decomposition theorem, from which Theorem 2.4 easily follows. And
finally in §5, we give the proof of Proposition 4.4.

The author would like to express his heartiest thanks to Professor T. Kawai
for many valuable discussions and encouragement. This paper was written up
during the author’s stay at the Mathematical Sciences Research Institute as a
postdoctoral fellow. The author expresses his heartiest thanks to members of
MSRI, especially to Professor A. Weinstein, for their warm hospitality and many
kindnesses.

1. Notations and main results

Let us first prepare some notations. For an open subset U of C*, T*U
denotes the cotangent bundle of U and @ denotes the sheaf of holomorphic
functions on U. We denote by z the standard coordinate of C" and by { the
corresponding cotangential coordinate of T*C". We also denote by x and y the
real part and the imaginary part of z respectively. Let P,(z, 0,) (1 <y <d) be
linear differential operators with holomorphic coefficients defined on U. Let us
denote by p,(z, {) the principal symbol of the operator P,(z, 3,). Throughout
this article we suppose that 1 <d <n—1 and that P,(z, d,) (1 <y <d) satisfy
the following conditions:

(1.1) [P,, P5;], the commutator of P, and P,,
identically vanishes for y, 6 = 1,...,d.

(1.2) grad,p,(z, {),...,grad; p,(z, {) are linearly
independent over C on {(z, {)eT*U; [ #0,
P1(Z, C) == pd(z’ C) = 0}

We denote by M the coherent left 2-module determined by P,(z, 0,) (1 <y <d),
i.e.
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M=9/(DP,+ - +DP)),

where 2 denotes the sheaf of linear differential operators (with real analytic
coefficients) on U.

Let ¢ be a strictly plurisubharmonic real analytic function defined on U,
and Q2 be a relatively compact strongly pseudo-convex domain defined by

(1.3) Q={zeU; ¢(z) < 0}.
We suppose that

(1.4) 0¢ = grad, @ never vanishes on the boundary 0Q
of Q.

Here, and in what follows, d; and 5j denote

o
===, —~/—19,), Jj=1l..n

’=6zj=2

_ 0 1 —
a.=_=—ax'+ —la, ‘=l,---a#
T oz 2% W !

respectively. Let us denote by C, the set of characteristic boundary points,
Co={zeU; @(z) =0 and p,(z, 09(2)) =0, y=1,...,d},
and also denote by C and C_ the following sets:
C={zeU;p)z 0p(2) =0, y=1,...,d},
C_={zeU; ¢(z) <0 and p,(z, dp(z)) =0, y = 1,...,d}.

The purpose of this article is to find a geometric condition which guarantees
the solvability of an over-determined system of linear differential equations

(1.5) Pu=f, y=1...4d

in the space of holomorphic functions on Q, when f=(f,...,f,) satisfies the
obvious compatibility conditions:

(1~6) nya:P‘sfy, )},5= 1,...,d.

In studying this problem, bicharacteristic manifolds play an important role.
Here let us recall the definition of a bicharacteristic manifold.

Definition 1.1. For a point (zq, o) in {(z, )eT*U;{#0, p;(z, )= =
pa(z, ) = 0}, the bicharacteristic manifold of M through (z,, {,) is, by definition,
the (complex) d-dimensional integral manifold through (z,, {,) of the system of
Hamiltonian operators

op, 0 0
Hpvz Z <ﬁ__ﬁi>’ '}’=1,...,d.
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We denote by b, , its projection to the base manifold U.

Remark 1.2. It follows from (1.1) and (1.2) that {H,},_, _, satisfies the
integrability condition. In fact, they commute each other. Hence the bichara-
cteristic manifold really exists for any (zq, {;) by Frobenius theorem. In
particular, for a given point (z,, {,) there exist a neighborhood of (z,, {,) and d
complex parameters t = (t,...,t;)e C? such that, for any point (Z {) in that
neighborhood of (zq, {,), the bicharacteristic manifold through (2, ) is given
locally by the imbedding

(tla---,td)H(2(117--‘9&1; 29 Z), C(tl’n-,td; Ea g)),
which satisfies the following equations:

0z(t; 2, 0) _op, 5

o 3C,~(Z(t; £.0), (t; 2 0), forj=1,..,ny=1,..d,
it 2, ¢ 0 5 5
(17) C—'(talt-z’ﬁ= —%(Z(t; 50,0:20), forj=1..ny=1,..d
z(0,...,0; £, ) =2
£0.....0;2 0 =C.

Here we should notice that this map (z(t; 2, ), {(¢; Z, {)) is holomorphic with
respect to both ¢t and (2, 0). Let us also remark that the assumption (1.2) entails
that b, ., is a complex d-dimensional submanifold of U given by

(Eys.stg ¥ (2(ty,. .05 L5 205 Co))-

On the other hand, according to Kawai’s theorem (whose precise statement
will be found in the next section), the “boundary behavior” of I, especially its
behavior on C,, should be essential in order that the solvability of the system
(1.5) may hold in the above sense. Hence it can be considered the most important
to study how the bicharacteristics of 9 are situated against the boundary of Q.

First we should notice that, for a point z, in C,, Euler’s identity for
homogeneous functions implies

0 0
(18) Y () Py, dp(z)) =0 for y=1,....d4,
1<7<n02; oL;

which show that the bicharacteristic b, s, i tangent to 02 at z,. Now let
us introduce the following convexity condition:

Definition 1.3. The domain Q is said to be bicharacteristically convex with
respect to M at z, in C, if

2z(rd,,...,rds; 2o, 00(20)))

2
ar r=0

(1.9) >0
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holds for any ¢ = (¢,,...,¢,)eC* with ||¢| = 1.

Here z(t,...,t;; o, 00(zo)) is the local expression of b, sz €Xplained in
Remark 1.2. It is obvious that the bicharacteristical convexity guarantees
bz, 20(z0y d0es not intersect with the closure of € except z, in a sufficiently small
neighborhood of z,.

As stated in the introduction, we have to take account of another condition
besides the bicharacteristical convexity. To formulate the condition, let us prepare
more notations. Let z, be a point in C, and suppose that @ is bicharacteristically
convex at z,. As we will prove in §3, under the assumption of the
bicharacteristical convexity C and C, are analytic submanifolds of real
codimension 2d and (2d + 1) respectively in a sufficiently small neighborhood of
zo. Furthermore, C intersects transversally with b, s, at zo (Proposition 3.5
and Proposition 3.8). Let us consider all bicharacteristics of the form

b opey With zeC.

As a matter of fact, these bicharacteristics define an analytic foliation of real
dimension 2d near z, (Proposition 3.9). We denote this foliation by b. Now
let us define C, and C_, the bicharacteristic hull of C, and C_ respectively, as
follows :

(1'10) CO - U b(z dp(2) = U b(Z.ﬁ(p(Z))’
2eCo zeC
®(z)=0
(111) - = U b(z dp(z)) — U b(z,aq;(z))'
zeC - zeC
@(z)<0

Because C intersects transversally at zo with a leaf by, 54, Of the foliation b,
C0 is a non-singular real hypersurface and C_ is an open subset with Co as
its boundary in a neighborhood of z, (Proposition 3.10).

Then our main theorem is

Theorem 1.4. Let M= D/(DP, + --- + DP,) be a coherent left D-module
satisfying (1.1) and (1.2), and let Q be a relatively compact strongly pseudo-convex
domain defined by (1.3) and satisfying (1.4). Suppose that Q satisfies the following
condition, that is, suppose that (i) and (ii) below hold at any point z, in C,.

(1) R is bicharacteristically convex at z, with respect to M.

(ii) For a (complex) d-codimensional complex submanifold S pessing through

zo and being transversal to b, 5,0 C_nSis strongly pseudo-convex at
Zo in S.
Then Exth,(Q; M, O) is of finite dimension for every j > 1. In particular,

{(Pyu,...,Pau); ue 0(Q)}
is of finite codimension in

{(froes f1)EO@ P fy = Pyf,, 7,6 = 1,...,d}.
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Remark 1.5. In the condition (ii), “the strong pseudo-convexity of C_nS
at z, in S” means that there exist an open neighborhood w of z, and a real valued
real analytic function { defined on Snw such that

C_nSnw={weSnw; y(w) < 0}

holds and the Levi form L, (o) (6eC"™% of ¥ at z,, restricted to {ceC" *;
{grady(z,), o) =0}, is strictly positive-definite. Note that C’OnSﬂw, the
boundary of C_nSnow, is a non-singular real hypersurface in Snw for a
sufficiently small neighborhood w, because S intersects transversally with b,
and 50 is a non-singular real hypersurface under the condition (i).

(20, 0¢(20))

Remark 1.6. As a d-codimensional complex submanifold S through z,, we
can take an arbitrary submanifold as far as it is transversal t0 b, sz In
fact, if the condition (ii) holds for some S, it holds for any S provided that the
condition (i) is satisfied. (See Theorem 2.4 below.) However, it is very important
that S must be a “smooth” complex submanifold in the complex-analytic
sense. Roughly speaking, the condition (ii) is concerned with the complex-analytic
structure of the domain Q in the transversal direction with respect to the foliation
b.

Further, if © can be contracted to one point with the condition in Theorem
1.4 being satisfied in the course of contraction, then we can obtain the following
vanishing theorem:

Theorem 1.7. Let M and Q be the same as those in Theorem 1.4. Suppose
that there exists a point z, in Q such that ¢ satisfies

(1.12) @(2) = ¢(z,) holds for any z in U,

(1.13) N {zeU; o) <t} ={z,},
t>o(z1)

(1.14) grad,p(z) #0 on {zeU;z #z}.

Suppose further that Q, = {zeU; ¢(z) < ¢} satisfies the condition in Theorem 1.4
for any & with 0> ¢ > @(z,). Then Exti,(Q; M, O) vanishes for every j>1. In
particular, the system (1.5) of linear differential equations has a holomorphic solution
u for any holomorphic functions (fi,....f,) satisfying (1.6).

In case d =n — 1 (i.e. M is subholonomic), we should take a 1-dimensional
complex submanifold, i.e. a holomorphic complex curve, as S in the condition
(i) in Theorem 1.4. Hence the condition (ii) becomes trivial and actually it can
be shown that the condition (ii) always holds when d = n — 1 (cf. Remark 1.5. See
also Theorem 2.4 and Theorem 4.2.). This observation leads to

Corollary 1.8. Let M and Q be the same as those in Theorem 1.4.  Suppose
that d =n — 1, and that Q satisfies the following condition:
At any point zq in Cq, Q is bicharacteristically convex with respect to M.
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Then the same conclusions as those in Theorem 1.4 hold.

Corollary 1.9. Let M, Q and ¢ be the same as those in Theorem 1.7. Suppose
that d =n—1, and that Q,={zeU; ¢(z) <e&} satisfies the condition in the
preceding corollary for any ¢ with 0 > ¢ > @(z,). Then the same conclusions as
those in Theorem 1.7 hold.

2. Kawai’s theorem and the condition (Pos)

In order to explain how our main theorems are proved, we first recall Kawai’s
theorem in this section. Though his theorem deals with more general situations,
we present it in a form suitable for our purpose.

Let us define a 2-module M’ by

@.1) M =2/ Y PP+ 23).

1<y<d 1<k<n

IA

By the assumption P, and 0, commute for every y and k. Since Q is strongly
pseudo-convex, we have

2.2) Ext}, (Q; M, 0) ~ Exts, (Q; M, B)

for every j > 0, where # denotes the sheaf of hyperfunctions on U = C" ~ R?".
Note that, since we suppose the conditions (1.1) and (1.2), we can construct a
Koszul complex using Py,..., P, (resp. P,,...,P, and 0,,...,0,) and it is a free
resolution of M (resp. M) with length d (resp. d + n).

Kawai’s result asserts the finite-dimensionality (or vanishing) of the right-hand
side of (2.2). In fact, he has proved

Theorem 2.1 (Kawai [2], [3]). Let M and Q be the same as those in
Theorem 1.4 and let I’ be defined by (2.1). Suppose that W' and Q satisfy the
following condition:

(2.3) The generalized Levi form of the positive tangential system
. on 0Q induced from W' is positive-definite at each
characteristic point of N, .

Then dim Ext}, (Q2; M, B) is finite for every j > 1. Furthermore, if ¢ satisfies the
conditions (1.12)~(1.14) for some point z, in Q, and if M’ and 2, = {ze U; ¢(2) < &}
satisfy the above condition (2.3) for any ¢ with 0 > ¢ > @(z,), then Ext}(2; M, B)
vanishes for every j > 1.

The definition of the generalized Levi form is given in [7], Chapter III,
Definition 2.3.1. Concerning this theorem see Kawai [2] (Theorem 1) and [3]
(Corollary of Theorem 2) for details. See also [1], [5] and [6].

Now we want to write down explicitly the generalized Levi form of 9, at
its characteristic point. Its explicit form is given in [6] in the case of single
equations, and in [5] in the case of systems. First, by straightforward
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calculations, we find the characteristic variety of M, is

{(z, =/ = 100(2)); ze Co}.

Namely the cotangential component of each characteristic point of 9, is
determined by its base point z and the projection of the characteristic variety of
N, to the base space coincides with C,. For z, in C, we denote by Q. the
generalized Levi form of 9t, at the characteristic point (z,, — / — 10¢(z,)). To
give the explicit form of Q, , let us introduce the following symbols, which will
be used repeatedly in the subsequent part of this article.

(2.4) ws(z) = Y. PPz 09(2) pP (z, 0¢(2)) 0;0,9(2) for y,6=1,....d.

1<jk<n

(2‘5) ﬁy&(z) = Z py(j) (Z’ a‘P(Z))Pﬁsj)(z, a(P(Z))

1<j<n

+ Y PV 00(2) P (2, 09(2)) 0,0, 0(z)  for y,6=1,....d.

1<jk<n

(2.6) K, (z) = P (z, 09(2)) 0,0, ¢(2) forj=1,...,ny=1,...d

1<k<n

27 A(2) = py (2 00(2) + P (z, 0(2)) 0;0,¢(2)

1<k<n

A

forj=1,...,n,y=1,...,d

Here, and in what follows, p(z, {) and py;(z, {) denote (dp/d(;)(z, {) and (dp/0z))
(z, {) respectively.

Remark 2.2. Among these symbols, a,; and B, are independent of the choice
of a holomorphic local coordinate system for any y and 4. That is, if
Z=(Z,,...,Z,) is another holomorphic local coordinate system, and if the above
symbols calculated in this new coordinate system Z are denoted by &,(2), BYJ(Z)
and so on, then we have

(2.8) 0,5(2) = a,5(2), B,s(2) = B,s(2) for y,6=1,...,d.

On the other hand, k;, or 4;, is not so. They satisfy the following relations:

Jv

0
2.9) i, = Y “he(z)  forj=1l...ny=1...4d,
l<k<nazj
- 0z, .
(2.10) ljy(f) = Z 'é;’}.k.y(z) fOI‘ j = 1,...,”, 'y = 1,...,d.
1<k<nlsj

In terms of these symbols, the generalized Levi form Q, (zo€C,) is given as
follows:
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(2.11) Q1) = Z ‘Ij.k(zo) 7Tk

1<jk<n+d

considered with the constraint

(2.12) Z 0;0(z9)t; =0,
1<j<n
where
4;(20) = 0;0,9(20) (1<j,k<n),
Gjn+5(Z0) = 4j,(20) Q<j<nl<y<d).
(2.13)
n+y.5(Z0) = 4j(20) (1<j<n1<y<d),

An+y.n+8(20) = %,5(20) (1 <v,06<d).

Remark 2.3. Taking account of the transformation relations (2.8) and (2.10),
we find that this generalized Levi form Q, is independent of the choice of
holomorphic local coordinates, if we view Q, as an Hermitian form on the space
of H,, @ C“, where H,, is a complex 1-codimensional subspace of T,,C" given by

H, = {(ty,...,1)eT,,C"; Y, 0;0(zo)7; = 0}.
1<j<n
Moreover, we should consider C?, the other direct summand of H, @ C4, as the
complex conjugate of the tangent space at the origin of the parameter space
(ty,...,t;) explained in Remark 1.2. See Remark 3.2 and Lemma 3.4 below.

As in [4], let us denote by (Pos), or more precisely by (Pos),,, the condition
that Q, (1) is positive-definite.

(Pos) The generalized Levi form Q, (t) is positive-definite,
i.e., Q,, (1) is strictly positive-definite on
{t=(t1,00sTasd €C™H4 Y. 0,0(20)T; = 0}.
1<j<n
The following Theorem 2.4 is a generalization of Theorem 2.8.1 in [4] to the
case of over-determined systems.

Theorem 2.4. Let MM and Q be the same as those in Theorem 1.4. For a
point zy in C, the condition (Pos),, holds if and only if the following two conditions
are satisfied:

(i) Q is bicharacteristically convex at z, with respect to M.

(i) For a (complex) d-codimensional complex submanifold S passing through

zo and being transversal 10 b, 200y, C-NS is strongly pseudo-convex
at zy in S.

Corollary 2.5. Let M, Q and z, be the same as those in Theorem
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24. Suppose that d =n— 1. Then the condition (Pos), is equivalent to the
bicharacteristical convexity of Q at z, with respect to .

It is obvious that our main theorems (Theorem 1.4 and Theorem 1.7) follow
from Theorem 2.1, Theorem 2.4 and the isomorphism (2.2). We will prove this
Theorem 2.4 in the subsequent three sections.

3. The geometry of bicharacteristics

In this section we give several propositions which describe some geometric
properties of C, C, and b introduced in §1.

First let us introduce the non-degeneracy condition of the domain Q with
respect to the bicharacteristics of 9. Let z, be a point in C, and
z(ty,...:ta; 2o, 0@(2zo)) be the local expression of b, ;4. €Xplained in Remark

1.2. We denote by ¢ the restriction of @ to b, sp00):

(3.1) Glty,....t)) = @(z(ty,....t5; 2o, 00(20))).

Now let B, = (b, 5(z0))1 <y.6<24 b€ the Hermitian matrix defined by

byslz0) = 22 () (1 <y 6<d)
noto ot 0t; sro=da
%P

b,a+4(20) = ? ) (1<y,6<d),

ot,0t,

(32) o
baty,s(z0) = af,—af,,(o) (1<y,86<d),

Rl

bysy,a+s(z0) = gya—té(o) (1<y,0<d).

On the other hand, we denote by B} the real Hessian of @, that is,
B:‘o = (b;,5(z0))1 <y,5<24 18 given by

, 0%
b, s5(z0) = (0) (1<y,6<d),
Ou,,0u
%P
b, a+s(z0) = L) 1<y, dé<d),
Ou, 0v,
(3.3)
’ 62(Z)
bi+y,8(z0) = (0) (1 <y, 6<d),
0v,0u,
0%
bi+y.a+s(z0) = s ) 1<y, 6<d),
0v, 0v;

where u, (resp. v,) is the real (resp. imaginary) part of t,. The matrix B, is tied
up with B} through the following formula:
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(3.4 BX ='WB_ W,

where W is the (2d) x (2d) matrix given by

(3.5) W=<"’ V= )
I, —J-11,

(I, is the d x d identity matrix).

Definition 3.1. For a point z, in C, we call the Hermitian form whose
matrix is given by B, the bicharacteristic form of It at z,. When the
bicharacteristic form of M at z, is non-degenerate, the domain Q is said to be
non-degenerate with respect to I at z,.

Remark 3.2. It is obvious that the matrix B,, does not depend on the
choice of holomorphic local coordinates. (See also (2.8) and the expression (3.7)
of B,, below.) In fact, according to (3.2)-(3.5), B,, should be considered as an
Hermitian form on the complexification of the real tangent space TgrC“ of the
parameter space (t,,...,t;) at the origin, more precisely, as an Hermitian form on
the complexification of the following real 2d-dimensional vector space:

{(z, 7); TeC? = T, C"}.

The non-degeneracy of Q2 at z, means the second order tangency of the
boundary 022 of Q and the bicharacteristic b, 44 z0)-

Since the left-hand side of (3.4) is a real symmetric matrix, it follows from
(3.4) and (3.5) that the positive-definiteness of B, is equivalent to the following
condition:

(3.6) For any ¢ = (¢,,...,¢,)e C? with ¢ # 0,
(¢, @) B.,(¢. ¢) > 0.

As is easily seen, the condition (3.6) is nothing but the bicharacteristical convexity
(1.9) of Q at z,. Hence we have

Lemma 3.3. The domain Q is bicharacteristically convex with respect to I
at zy in Cq if and only if the bicharacteristic form B, of M at z,, is positive-definite.

Here let us write down B, explicitly in terms of ¢ and the principal symbols
Pis...5Da-

Lemma 3.4. For B, =(b,;(20))1<ys<2a defined by (3.2), we have the
Sfollowing formula:

b, s(z0) = a,5(20) for y,0=1,....d,

by,d+é(20) = Byé(ZO) Sfor y,6=1,...d,
(3.7)

bd+v‘6(zo) = ﬁy&(ZO) for y,6=1,....d,

bd+y,d+6(zo) = Oly,s(Zo) for v, 6 =1,....d,
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where a.; and P,; are the symbols given by (2.4) and (2.5).

Note that, as a consequence of the assumption (1.1), we have

(3-8 Y PP Opag(z = Y bz 0Pz 0 for 9,8 =1,....d.

1<j<n 1<j<n

Lemma 3.4 follows from (1.7) and this formula (3.8). We do not present the
detailed calculations here. But we should remark that (3.8) implies B,s is
symmetric, i.e., f,; = B5, holds for every y and 6.

From now on, let z, be a point in C, and suppose

(3.9) € is non-degenerate with respect to MM at z,.

Note that, if Q is bicharacteristically convex at z,, then this condition (3.9) is
satisfied by Lemma 3.3. Under this condition (3.9) we have the following
geometric property of C.

Proposition 3.5. Under the assumption (3.9), C is a real analytic submanifold
of real codimension 2d in a sufficiently small neighborhood of z,. Furthermore,
C and b, 550 are transversal at z.

In order to prove Proposition 3.5, we make use of the following two lemmas.

Lemma 3.6. Let f,(z) = f,(z,2) (1 <y <d) be complex-valued real analytic
functions defined on an open subset U of C", and let V denote the set
{zeU;f(2)=0,y=1,...,d}. Let zy be a point in V, and suppose that, if

(3.10) Y o a,0;f(z)+ Y 4,0;f,(z))=0, j=1,..,n

1<y=<d 1<y<d

hold for (a,,...,a) € C* then (a,,...,a;) must be equal to zero. Then V is a real
analytic submanifold of U with real codimension 2d in a small neighborhood of z,.

Lemma 3.7. Let f,, V and z, be those in the preceding lemma, and let I
be a real 2d-dimensional real analytic submanifold through z,. Suppose that, if a
tangent vector w = (wy,...,w,)eC" of I' at z, satisfies

(3.11) Y widifz)+ Y Wb fze) =0, y=1,..d,

1<j<n 1<j<n
then w must be equal to zero. Then V and I’ are transversal at z,.

Because these lemmas are almost self-evident, we do not present their proofs
here.

Proof of Proposition 3.5. By definition, C is given by
{zeU; p,(z, 00(2)) =0, y = 1,....d}.

To prove the first assertion of Proposition 3.5, we choose p,(z, 0p(2)) as f,(z)
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and use Lemma 3.6. Suppose that (a;,...,a,)e C? satisfies (3.10). Here let us
remark that

(3.12) ajfy(zo) = )'jy(zo)’ 6jfy(20) = ij(zo)

hold for j=1,...,n and y =1,...,d in the notation of (2.6) and (2.7), and that
the symbols of (2.4)—(2.7) satisfy the following equalities:

(3.13) Y A(20)pY (20, 09(20)) = Bye(20) for 9,6 =1,....4,
1<j<n

(3.14) Y k(2P (20, 00(20)) = a,5(20) fory,6=1,...,d
1<j<n

Hence (3.10) implies that

0= Y { Y aiyz)+ Y ak;(z0)} P (2o, 00(20))

1<j<n 1<y<d 1<y<d

= Y aBuze)+ Y a, o,z for 6=1,....d.

1<y<d 1<y<d

By Lemma 3.4 this means that
(al""’ad’ él""’dd)Bzo = 0

Since we are assuming (3.9), we obtain (a,,...,a;) =0. Therefore, Lemma 3.6
guarantees that C is a real analytic submanifold of real codimension 2d in a
neighborhood of z,.

Next let us prove that C and b, 5, are transversal at z,, using Lemma
3.7. Any tangent vector w = (Wy,...,w,) of b; s,z @t Zo has the following form:

wi= Y ¢,p, 00(zy). j=1...n
1<y<d

where each ¢, is a complex number. Now suppose that w satisfies (3.11). It
follows from (3.12)—(3.14) that

0= Z ( Z cyp(yj)(zo’a‘P(Zo)))'{ja(Zo)‘*' Z ( Z c, p‘},j)(zo, a(P(Zo)))’Cja(Zo)

1<j<n 1<y<d 1<j<n 1<y<d

= Y o520+ Y €as(20), 6=1,..,4d,

1<y<d 1<y<d

which means
Bzo'(c_l""’c_da Cl,...,cd) =0.

Again by the assumption (3.9) we find (c,,...,c;) =0, i.e. w=0. Hence Lemma

3.7 shows the transversality of C and b, 5, at Zo. O

As is shown in §1 (cf. the equality (1.8)), b,y 40 1S tangent at z, to the
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boundary 0Q of Q. Since C, is the intersection of C with 02, we immediately
obtain the following proposition from Proposition 3.5.

Proposition 3.8. Under the assumption (3.9), C, is a real analytic submanifold
of real codimension (2d + 1) in a neighborhood of z,.

Next let us study the “foliation™ b, i.e., the family of bicharacteristics of the
form

(315) {b(z.aw(z))}:eC'

Making use of Proposition 3.5, we can prove that b is actually an analytic
foliation at least locally. More precisely, we have the following

Proposition 3.9. Under the assumption (3.9), the family of bicharacteristics
of the form (3.15) defines a real 2d-dimensional real analytic foliation in a
neighborhood of z.

Proof. Let us consider the following map F:
(3.16) F:C xC¥(Z (ty,....t))—z(ty,....t5; Z, 0p(2))e C",

where z(t;,...,1,; Z, 0p(2)) is the local expression of bz ,,:, explained in Remark
1.2. This map F is defined and real analytic in a small neighborhood of
(2o, (0,...,0)) because C is a real analytic submanifold near z, and z(t,...,1,; Z, {)
is holomorphic with respect to (t,,...,t,) and (Z, {). Moreover, the transversality
at zo of C and b, 5,0, implies that the differential of F at (z,, (0,...,0)) is
surjective. Hence F is a local diffeomorphism near (z,, (0,...,0)). Since by this
diffeomorphism F each bicharacteristic b, 5, (z€C) is transformed into the
subset

{( (t1.....t0)); 2 =z, (1,...,1,): arbitrary}

of C x C’, we find that the family of bicharacteristics in question is a real analytic
foliation of real dimension 2d in a neighborhood of z, and the above map F is
its distinguished local chart. O

We have defined by (1.10) and (1.11) 50 and C_. the bicharacteristic hull
of Co and C_. The following proposition is an immediate consequence of the
preceding propositions.

Proposition 3.10. Under the assumption of (3.9), C0 is a non-singular real
hypersurface and C_ is an open subset with C0 as its boundary in a neighborhood

of zo.

In fact, if we consider C~IO in using the distinguished chart F defined by
(3.16), it is locally the image of C, x C¢, which is a non-singular real hypersurface
of C x C% Similarly C_ is locally the image of C_ x C? which is an open
subset of C x C? with Cy, x C? as its boundary.
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4. The decomposition theorem

In this section we investigate the relationship between the generalized Levi
form @, introduced in §2 and the geometry of bicharacteristics. The main
theorem is the decomposition theorem of Q, (Theorem 4.2 below). Theorem 2.4
is a consequence of that decomposition theorem.

Let us begin with the following

Proposition 4.1. Let z, be a point in C, and suppose that the generalized
Levi form Q,,, considered with the constraint (2.12), is positive-definite. Then the
bicharacteristic form B, at z, is also positive-definite. In other words, if (Pos) is
satisfied at z,, Q is bicharacteristically convex with respect to M at z,.

Proof. We use the explicit forms of Q. and B, given by (2.11)~(2.13) and
(3.7).
For ¢ = (0,,...,0,,) in C%, let us define q(z, {) and ¢ by

qz. ) = Y o,p,(z ),

1<y<d

¢ = (q"V(zo, 09(20));...,4"™ (20, 09(20)), Ty 1s...,0,)€C"H4.
Note that this ¢ satisfies the constraint (2.12), that is,

Z 5;“/’(20)‘1(”(20, 09(z0)) =0
1<j<n
holds, since each p, satisfies (1.8). Now let us calculate Q, (¢) for ¢. A
straightforward calculation shows that

0.,(¢) = 0B.c.
Hence (Pos),, entails the positive-definiteness of B, . (]

This Proposition 4.1 states a relationship between the generalized Levi form
Q and the bicharacteristic form B. But, in order that the generalized Levi form
Q is positive-definite, we have also to take account of the complex-analytic
structure of Q in the transversal direction with respect to the foliation b, which
is the reason why the condition (ii) appears in the statement of Theorem 1.4 and
Theorem 2.4. To describe that structure, let us prepare some notations.

Let z, be a point in C, and suppose that the condition (3.9) holds, i.e., Q
is non-degenerate with respect to 9 at z,. Take a (complex) d-codimensional
complex submanifold S passing through z, and being transversal to b, 40 ()-
We want to consider C_nS in S. Since under the assumption (3.9) b is a real
analytic foliation in a neighborhood of z, and C is also transversal to b, 5.0
as well as S, we can define a real analytic local difftfomorphism g from S to C
along b as follows:

4.1) g: Sawr— gw)eC,
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where the image g(w) of w is determined by the following property:
4.2) g(w) and w lie on the same leaf of b.

Remark that, using the distinguished chart F of b defined by (3.16), we can also
represent g in such a way that

4.3) g=7T1°F_lls

where n, is the projection from C x C? onto C. Thus we have defined an
analytic local diffeomorphism g: S — C. By definition, the images of C_nS and
its boundary C‘OnS under this difffomorphism g are C_ and C, respectively.
Therefore, if we define a real analytic function { on S by

4.4 Y =0lcey,
then we find
C_nSnw= {weSnw; y(w) <0}

for a sufficiently small neighborhood w of z,.
Now let us state the decomposition theorem.

Theorem 4.2. Let M and Q be the same as those in Theorem 1.4. Let z,
be a point in C, and suppose that Q is non-degenerate with respect to M at
zo. Let S be a (complex) d-codimensional complex submanifold passing through
2y and being transversal 10 b, a,z0) Gt Zo, and let Yy be a real analytic function
on S defined by (4.4). Then the generalized Levi form Q. at z,, considered with
the constraint (2.12), is equivalent to the direct sum of the bicharacteristic form
B,, of M and the Levi form L, of Y at z,.

Remark 4.3. The Levi form L, (o) (6eC"™“) of ¥ at z, is, by definition,
the Hermitian form

o*y _
z —_(ZO)Jjok
1<jk<n—aOW;0W,
considered with the constraint
—(2o) 0;= 0,
1<j<n—-dOW;

where (w,,...,w,_,) denotes a holomorphic local coordinate system of S at
zo. This is a well-defined Hermitian form on the complex 1-codimensional
subspace K, of T, S defined by

0
K, = {cr =(61,....0,_)€T,S; Y —w(zo)aj = 0},

1<j<n—dOW;

that is, L, (o) is an Hermitian form on K., which is independent of the choice
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of holomorphic local coordinates of S. Notice that K. is contained in the real
tangent space of {{y =0} at z,. As is well-known, the Levi form of ¢ at z, is
an Hermitian form on the space of holomorphic tangent vectors of {{ = 0} at z,.

It follows from Lemma 3.3 and Proposition 4.1 that, if  is bicharacteristically
convex at z,, or if (Pos), holds, then the assumption in this theorem of
non-degeneracy of Q at z, is satisfied. Hence, Theorem 2.4 is an immediate
consequence of this decomposition theorem and Lemma 3.3.

In order to show the decomposition theorem, we will make use of the
following proposition which describes the explicit form of L,,.

Proposition 4.4. Let M, Q, z,, S and Y be the same as those in Theorem
42. Let L, (0) =Y. <ji<ntjx(20) 0,6, be an Hermitian form on H,  defined by

4.5) rj,k(ZO) = ajékﬁl’(zo) - pj(ZO) Bz-olt «(20) s jok=1,...n,
where p;(z,) is a 2d-vector given by

(4.6) pilzo) = (Kjl(zo)’-u’Kjd(ZO)’ ljl(zo)am,/ljd(zo))a ji=1..n
and H_, is the following subspace of T, C":

4.7) H, ={o=1(0q,....0)eT,,C"; Y 0;0(z0)0;=0}.
1<j<n
Then, when we regard T, S as a subspace of T, C" through the canonical inclusion

S & C", the Levi form L, of ¥ at z, coincides with the restriction of L, to H_
nT,,S.

Remark 4.5. By (2.8)—-(2.10) we find that L’ (o) is independent of the choice
of holomorphic local coordinates when viewed as an Hermitian form on
T,,C". Note also that the assumption of the transversality of S with b a,.0)
at z, and the equality (1.8) imply that H, nT, S is a complex l-codimensional
subspace of T, S.

Remark 4.6. We can consider L7 (o) itself as an Hermitian form on TS,
because the tangent space of b, 54, at zo is contained in H, by (1.8) and

ri,1(zo) = 71,(20)
(G15...,0,) ( : : )=0

rn,I(ZO) rn,n(ZO)

holds for any tangent vector o = (0y,...,0,) of b, s,z at Zo. In fact, for any
kand y (1 <k <n 1<y<d), we have

Z P(yj) (20> a(.l’(Zo))",'.lc(Zo)

1<j<n

= Z P;j) (2o, 0(20)) {ajékﬁl’(zo) - Pj(Zo) B:_ol ! Pk(zo)}

1<j<n
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= Kiy(20) — (2y1(20), .-, %ya(20), Byl(zo)’---hByd(ZO))Bz_ol "pi(20)

y
= Kkr(ZO) - (0»'“’0’ 1’ O?N-vo)lpk(zo)

= Kky(zo) - Kky(ZO) =0.

The proof of Proposition 4.4 requires many straightforward calculations. We
will prove it in the next section. Here, assuming Proposition 4.4, let us finish
the proof of the decomposition theorem.

Proof of Theorem 4.2. First remark that, since the generalized Levi form
0., the bicharacteristic form B, and the Levi form L, of i are all independent
of the choice of holomorphic local coordinates as explained in Remark 2.3, Remark
3.2 and Remark 4.3, it suffices to prove this theorem in one arbitrarily chosen
holomorphic local coordinate system. Let us choose a system (Z,,...,Z,) so that
zo is the origin in this system and that {Z, ,,, = --- = Z, = 0} coincides with S
in a neighborhood of z,. For simplicity we denote Z by z in what follows.

Let

Qolr) = Z qj,k(O) T;Ty
1<jk<n+d

be the generalized Levi form at z, = 0, where each g;,(0) is given by (2.13) and
T =(Ty,..., T4 q) satisfies

4.8) Y 30(0)1; =0.

1<j<n

Let us transform t = (t;,...,T,44) INt0 ¥ = (X1s..., Xn+a) @S follows:

(4.9) (T1,...,Tn)=(Xla---?Xn—d’ 0,»0)
+ Y Xn-a+y (P00, 00(0)),..., pi7(0, 89(0))),
1<y<d
(4.10) (Tnt 1o Tnsd) = Hnt 15e0s Xnta)s
that is,
1 0
0 0
0 1
e PP
(4J1) ﬁln-wrn+ﬂ:=(X1w-HXn+” E E 0
pi’ o PP
1 0
0
0 1
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Note that, since S is assumed to be transversal to b the matrix

(z0,00(z0))>

P40, 09(0) -+ P (0, 00 (0)) )

Py (0, 99(0) - P (0, 99 (0))

is non-singular. Hence the transformation (4.9)-(4.10) or (4.11) is invertible.
Remark also that the transformation (4.9) is nothing but the decomposition of
T,C", the tangent space of C" at z, =0, into the direct sum of T,S and the
complex tangent space at the origin of (¢,,...,t,), the parameter space of b
explained in Remark 1.2.

After this transformation we further transform y = (yx;,...,¥%,+4) into o=
(64,...,0,4+4) In such a way that

(z0,0¢(z0))

1 0 4’1‘1 ¢1,2d

0 L dy_an = Gu-y,

(412 (o tnsd) = (0100000 o .
0 1

where ¢; = (¢; 1,....9;24) (1 <j<n—d)is a 2d-vector given by

d)j = — p;(0) By!
= — (Kjl(O),...,Kjd(O), ljl(O),...,ljd(O))B(;l, ] = 1,...," - d
Then, by a straightforward calculation, we find that Q,(t) is transformed into the

form

Y 4ix0;0y

1<jk<n+d

which is defined in the following manner:

q},k=aj5k(p(0)_pj(o)3(;l’ p«(0) (1<j,k<n-—d),
q},n—d+y:qu|—d+y,j:0 (1 S]Sn_d» 1 Sngd),
qI;—d+y,n—d+6 = ayé (1 < Y- 0 < d).,

n—d+yn+s = nson—da+y = Bys (1 <y, 6<d),

Griymrs = %5 (1<7.8<4d).

Furthermore, using (1.8), we find the constraint (4.8) of Q,(t) is transformed into

4.13) Y 9,(0)0;=0

1<j<n-—-d
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under these transformations (4.11) and (4.12).
Now Proposition 4.4 tells us that, in the coordinate system we are using
now, the Levi form Ly(g) at z, =0 is

Lo(o)= Y (3;0,0(0) — p;(0) By** p,(0)) 0,6,

1<j,k<n-d

where ¢ = (g4,...,0,_,) is a tangent vector of S at z, = 0 satisfying

Y. 9;00)0;=0.

1<j<n-d

In fact, in the current coordinate system, the tangent space T,S of S at z, =0
can be identified with the subspace

{(O.lw-"o-n)ETOCn; Opn—d+1 =" =0, = O}

of T,C". Hence, the Hermitian form

di1 " din-a G,
(613~--v6n—d) ( ) ( )
Gn-da,1 ° On-da

’
* An—d,n—d

with the constraint (4.13) is exactly the Levi form L,(s). On the other hand,
Lemma 3.4 implies that

! !
An-d+1,n—d+1 """ Qn—-d+1,n+d
( : : ) = B,.

’ ’
Gn+dn-d+1 dn+dn+d

Thus we obtain

Qo(t) = Lo(0y,....0,-0) + Bo(0y_g415...,0014),

which means that Q, is equivalent to the direct sum of B, and L. O

5. Proof of Proposition 4.4
Finally, let us prove Proposition 4.4.

Proof of Proposition 4.4. As in the proof of Theorem 4.2, let us choose a
holomorphic local coordinate system (Z,,...,Z,) on a small neighborhood W of
zo so that z, is the origin in this system and that S= {%,_,,, = =2,=0}
holds in W. For the sake of simplicity, we will denote Z by z in what follows.

In this coordinate system, every point w of SNW is represented by
w=W,...,Ww,_40,...,0), and w =(w,,...,w,_,) gives a holomorphic local
coordinate system of S around z,. Hence, in this system, the Levi form L, (o)
of y at z, = 0 has the form
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2

0) g0,
Ow ;0w !
1<j,k<n—d OW;jOW,

with the constraint
oy
2 —(0)o; =0.
1<j<n—dOW;

On the other hand, in this coordinate system the restriction of the Hermitian form
Ly (o), given by (4.5)—(4.7), to the subspace HynT,S is expressed as follows:

Ly(@)= Y (86,00 — p;(0)Bg'" p,(0)) 0,5,
1<j,k<n—d

where

Pj(O) = (Kjl(o)a---a’cjd(o)’ '1,'1(0),---#1;,1(0)), ji=1..n
and
ceH,NT,S = {0 =(04,...,0,-4,0,....,0); Y. 09;0(0)g; = 0}.
1<j<n-d

Therefore, since both Ly(6) and L¢y(s) are independent of the choice of
holomorphic local coordinate systems as stated in Remark 4.3 and Remark 4.5,
it suffices for us to prove the following equalities:

2 —
(5.1) d '//_ (0) = 9;0,0(0) — p;(0) By ** p,(0) for j,k=1,....n—d
Ow;0W,
and
(5.2) %(0)=aj(p(0) for j=1,....n—d.
ow;

The proof of (5.1) and (5.2) will be done in the similar way as in [4]. We divide
it into four steps.

Step 1: First let us investigate how we can obtain an explicit form of the
real analytic local diffeomorphism g defined by (4.1) and (4.2). Once we find an
explicit form of g, we can easily obtain the one of Y according to (4.4).

Let w=(w', 0,...,0) be a point in SN W, and let § = (4,,...,0,) denote a point
in a set {#eC"; |0 — dp(0)| < c} where ¢ is a small positive constant. Let
(z(t; w, 0), L(t; w, 0)) (t =(t;,...,t;)eC? be the local expression of the bicharac-
teristic manifold through (w, ) explained in Remark 1.2. Let us define

(53) [t W, 0) = Li(es w, 0) — 0,0(z(t; w, 0)) (1<j<n),
(5.4) SoryE: W, 0) = py(t; w, 0), do(z(t; w, 0)) (1 <y<d),

and consider the simultaneous equations
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(5.5) fut;w, 0)=0, u=1..,n+d.

It is obvious that, if (5.5) holds for some t = (t,,...,t,), then z(¢; w, ) belongs
to C and (w, 0) lies on the bicharacteristic manifold of 9 passing through
(z(t; w, 8), do(z(t; w, 0))). In other words, if (5.5) holds for some t, b, is a
leaf of the foliation b. Since b is a real analytic foliation in a neighborhood of
zo =0, we can expect that for any point (w, 0,...,0) in S near O there exists a
unique (¢, 6) near (0, dp(0)) such that (t, w', 8) satisfies the equations (5.5). As a
matter of fact, we will show in the next step that the Jacobian matrix of
(fiseeisSusds f1seeesfnsa) With respect to 6, 8, t and T is non-singular at (¢, ', 6)
= (0, 0, dp(0)). Hence, by the implicit function theorem, (5.5) can be converted to
the form

(5.6) (t, 0) = (T(w'), O(w))

in a neighborhood of (¢, w', 6) = (0, 0, d¢(0)). Remark that T(w') and @(w’) are
real analytic in w' but not necessarily holomorphic in w'. Then, by the definition
(4.1) and (4.2) of g, we find that
gw) = g((w, 0,...,0))
=z(T(w); W, 0,...,0), O(W").

Thus we obtain the following expression of y:

(5.7 Yy(w) = o(z(TW); W, 0,...,0), O(W))).

STEP 2: Let us now prove that the equations (5.5) can be converted to
(5.6). To do so, it suffices to show that the following Jacobian matrix J is
non-singular at (¢, w, 6) = (0, 0, d¢(0)). In what follows the evaluation of some
function, say f, at (¢, w', 0) = (0, 0, dp(0)) will be indicated by the symbol f|y.

o o o 9 h %
20, 09, 00, 20, at, o,
of of o o o O
6, 06, 06, 20, at, o,
J=\| % 9% o o
26, 00, 00, o,
afn+d afn+d afn+d aan+d
601 691 602 afd 'Y

Now the following relations are immediate consequences of (1.7).

0z .
(58) = p0.000) = ey = Lnd,
Y



(5.9

(5.10)

(5.11)

(5.12)

(5.13)

where §;, denotes the Kronecker 6. Moreover, since z(t; w, 6) and ((t; w, 0) are
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oL; .
J|Y - py(j)(o’ a¢(0))a ] = l,...,n, )’ = 1,...
ot,
5 im0 = 810 j=1,..,n k=1,
ow klt 0 J
oc.
'ﬁlt=0=0a j=1, ,n,k=1,,
0z; .
55;|x=0=0» I I=1,...,n,
o,
Ap 1= 216' ’ ; l==1,“.,n,
aellr 0 Jsl ]

holomorphic functions of (¢, w, ), we have

(5.14)

(5.15)

(5.16)

Using these relations, we can easily calculate each component of J. For example,

oo
an an 1l EERRERAL) 1)
95 %o jetm k=1
ow, ow, e B
92 % o =t
a6, 06, ’ ’ T

of;

_'6 ; l=:ln-w )
a‘9l|y J n
af,
00‘:|y—0 u=1....n+d l=1,.,n,
of; - 0z,
—y = — 00,000 —
at_y Y L Jj k(p( ) aty'l/
= - 3;0,0(0) pP(0, d9(0))
1<k<n
- ij(0)5 .]= 1’ h, Y= 1,
afn+y
= 0, 0p(0 %
ot ly lgqpyu)( o ))aaly
0z,

+ Y P00, 00(0)0;0.0(0 )

1<j,k<n

= Y 0, 39(0)) p§(0, d¢(0))

1<j<n

4

7d7
N _'d»
,h _'da
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+ Y P90, 39(0)pP(0, 8¢(0))8,0,¢(0)

1<j,k<n

=ﬂy6(0)a ')), 5:1,...,‘1,

of, . - oz
D= Y P20, 090(0)0;0,0(0) Xy

0t 1<jksn Ot

= Y P00, 99(0) pF(0, 3¢(0)) 0,0, ¢(0)

1<jk<n
=a,0), 9, 6=1,...4,

and so on. Thus we find

1 0 -« 0 —2;,,000 —x;0) -~ — K,40)
0 1 =k — 4,0 - — 21,0)
.0
0 .- 0 1 _m) — 2,,00) - _"d_(())
= B0 2, (0) - 2y4(0)
. 0,000 B0 - B0
%00 Bu0) - Bul0)

Since B, is non-degenerate by the assumption, it follows from Lemma 3.4 that
the matrix

B11(0) o;,(0) -+ ;4(0)
a11(0) B11(0) -+ B14(0)

#1(0)  B41(0) -+ B4a(0)

is non-singular. Hence, J is so, too. Thus we have proved that the equations
(5.5) have a unique solution (t, §) = (T(w'), @(w)) for each w’ in a neighborhood
of (¢, w, ) = (0, 0, d¢p(0)).

Step 3: Before proving (5.1) and (5.2), let us calculate the first derivatives
of T(w) at the origin. Besides this we prove some equalities which the first
derivatives of @(w') satisfy at the origin. They will be used in the calculation
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of d*y//ow;0w,(0). It is a little amazing that, though we have to calculate the
second derivative of i, we need not know the second derivative of T(w') or @(w')
as we will see in the final step.

First let us consider the derivatives of T(w'). By the definition of T(w’) and
O (w'), we have

(5.17) sy (TW); W, O(W)) =0 for y=1,...,d
We differentiate these equalities by w, and evaluate at w' = 0, then we find

afn+y % afn+y % afn+y
Z {6 |y ()+ lya k(O)} ak|y

L
afn+'y a@l afn+y a@l
Iy ly ——(0)
00, k a0,

Ld k=1,. —d.

1<dé<d

Now we have already known the derivatives of f,,, with respect to t, f, § and
0 at (t, w, 6) = (0, 0, dp(0)). Using (5.10) and (5.15), we can also easily calculate
(0fn+,/0w) (0, 0, 09(0)). Thus we obtain

0Ty
(5.18) ) ﬁya(o)—(O) y&(o) (0) + Ay (0) =

1<é<d 1<d<

y=1..,d k=1..n—d
Similarly, by differentiating (5.17) by w,, we obtain

0T, oT, -
(5.19) ﬂyo(O)a—_"(OH Y 0,500 —2 (0) + ,(0) =0,
1<é<d Wy 1<o<d 0w,

Y= 19-~-’da k = 1,...," —d.
Since o,; = fx_ay and f,; = B;, hold for any y and J (cf. (3.8)), it follows from
(5.18) and (5.19) that
0T, aT oT, oT.
( 02580, S0). d(O)>BO
“ow,

— (K41 (0), ..., K4(0), 441(0),..., 4,4(0))
= — p,(0), k=1,...n—4d
Hence we have
0T, oT, oT. oT,
5.20 ! ,—2(0 ! —4
(5-20) <awk() e () () awk())
= — p(0)By! for k=1,...,n —d.

Let us next consider the derivatives of @(w'). We begin with the following
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equalities :
(5.21) p,z(T(W); w, OW)), L(TW); w, OW)) =0, y=1,..,d

These are immediate consequences of (5.3)—(5.5) and the definition of T(w') and
©w'). Then we carry on our calculations in the same way as we did in the
case of the derivatives of T(w’). That is, we differentiate (5.21) by w, and w,,
and evaluate at w' =0. Thus, making use of (3.8), we obtain the following
equalities:

(5.22)

ISZISnpgn(o, 8¢(0))Z—§:(O) = pw(0,000) fory=1,..d k=1, .n—d,
(5.23)

2O a"’(o))%(o) —0 fory=1...d k=1,.,n—d

STEP 4: Now let us calculate 9*y/0w;0w,(0) and o0y /ow;(0). In what
follows, we will keep the notations dy/dw; etc. to denote the differentiation in
w-variables, and the symbol d;¢ etc. always refer to the one in z-variables. We
will also abbreviate p{’(0, dp(0)) etc. to p'¥ etc. for the sake of simplicity of
notations.

First we note the following relations, which follow from (5.8)—(5.16):

0%z; ) .
(5.24) P a;(Sly = Y PSPy — PV Do} s
¥ <u<n
j= 1,.,,,", y’ 6 = 1’---’d)
8z ) ;
(5-25) at aw |Y=py(k)9 ]:1’---”17 k=13---,n_ds 'Y=15-~,d,
v k
0%z, .
(326 S =gt = ln =1
Y ]
0%z,
5.27 — |,_,=0, j,l=1,...,n, k=1,...,n—d,
(527 awkaa,l 0 J n n
0%z;
5.28 J |_,=0, i, L1I=1,...,n
( ) 80,60,r|t 0 J n
(5.29) Every second derivative of z; (1 <j < n) containing the

differentiation with respect to #,, w, or 6, (1 <y <d,
l<k<n-—d, 1 <l<n)is equal to zero.

Using (5.8)—(5.16) and (5.24)—(5.29) together, we obtain the following equality:
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62
.//_ (0) = 0,0, + Zp(‘"a aucp—-+ Z p“" 0;0,¢

Wjawk awk

(5.30)

. 0T,
+ Zp“"@ B Z P 0,002
ow; ow

J

N L 1
V0,1,V a 6wk
oT, T,
6w- ow,

J

T, oT;
0 6wk

+ Z p<u) (v)aa
V50, 1,V

+ Z p(u) (v)aa
V50, 1,V

6‘T oT,
+ Z p(u) p(V) a Fl (P— Y7%s
7,0, 1,V 0w

;0w

6T oT,
+ P(y'fl) Py — Pgﬂ % Pa(v)} au‘P 2
V50, 4,V 6 awk

&

oT, 3T,
+ { P9, P — PPV poy } 00— =2

V20,1,V ow 6wk

>

.I

oT, oT,

+ Zpgﬂ,a,,q;a—+ ) Py(k) u‘Pa—
you Wi w;

{aTy 26, 00, aTy}
ow; 0w,  Ow; 0w,

+ Z p(uv)a

Vslts vV

LY e, { , 06, . 96, aT}
aJ

b NTRY W aW aW 6wk

+Zp(u) T, SR (u) 5 02
6 OWe awawk

j k=1,...,n—d.

Applying Euler’s identity to (5.30), and then using p,(0, d¢(0)) = 0(1 <y < d) and
(3.8), we find

0%y = oT. oT,
5.31 0)=20;0 A —2 P
( : 5Wj6wk( : i +§ ”awk +;K” Owy

oT. (7T
+Z’ckva )’+Z kya

Y Y
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oT, 3T, , oT, 3T,
2293
Zﬁy"a OV, VZ Y ow; ow,
8T oT, *aT oT,
DN T Y At el
7,0 * ow; TR\ ow; 0w,
oT, — 0T,
+2(m,—1) {Pm) -t Py
Y 0w, ow;

cp (25 8, 0o
1

ow; 0w, Ow; 0w,
LY <ﬂ 96, | 96, 9T, >}
1 Y aWJ 0Wk aW] awk ’
Jok=1,...,n—d.
Here m, denotes the order of the operator P,.

Remark that (5.22) and (5.23) imply the last term Zy(my —1) {---} of (5.31)
vanishes. Moreover, denoting the vector

(an o1, OT, ai,)

ow, ﬁwk 6wk ’ ’ﬁ_wk
by w,, we have the following equality by (5.20):
o= — peBo ! for k=1,...,n—d.
Hence we obtain

o2y

Ow ;0w

0) = 0;0,¢ + p;'dy + w;'p + w;Bo'wy
= ajgkq’ — piBo P — p;Bo P + p;Bo ' BoBg 'py
=0;0,¢0 —p;Bs''p,  forj, k=1,...,n—d

Thus we have proved (5.1).
Finally let us prove (5.2). It follows from (5.7) and (5.8)—(5.16) that we have

M 0= 500 + 1o o o)
6wj 6

w;j
+Z Ea 61<p—(0) j=1l..n—d.
Since

ZP"’ (0, 09(0)) 0,0(0) =
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holds for y = 1,...,d by Euler’s identity, we obtain

0

—'p(0)=a,.¢(0) for j=1,...,n—d,

ow;
that is, we have (5.2). This completes the proof of Proposition 4.4. O
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