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KO-theory of complex Grassmannians
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Akira Kono and Shin-ichiro HARA

§0. Introduction

Let M,,, be the complex Grassmann manifold G,,(C™*") of m-planes in
C™*". There is a homeomorphism:

M,,, =5 U(m + n)/U(m) x U(n).

The KO'-groups of M,,, are studied in [3]. The free parts of them are
determined, but the torsion parts are partially known ([3], [4]). Here we
compute them for arbitrary m and n, using only the Atiyah-Hirzebruch spectral
sequence.

Main Theorem. Let k=1[%5], |=[%], a=(m,n) and b = (k,]). The KO*-
groups of M, , are as follows:

m=2k+1,n=21+1
i all other cases
k + 1 =even k + 1 = odd
a a a+b
0 -Z®bZ, -Z
2 2 2
-1 bz, bz, bz,
a a a—>b
-2 -Z®bZ, -Z®bZ, —Z®bZ,
2 2 2
-3 0 bz, 0
a a a+b
—4 -Z -Z®bz, Z
2 2 2
-5 0 0 0
a a a—b
—6 -Z -Z
2 2 2
-7 bZ, 0 0

Received Novenber 20, 1989



828 Akira Kono and Shin-ichiro Hara

From this theorem, we have many corollaries about the relations to the complex
K-theory of M,,,. (See [3] and [2, Theorem 2].) For example,

Corollary. If m or n is even, the complexification:
c: KO(Mm,n) — K(Mm,n)

is a monomorphism.

§1. The Atiyah-Hirzebruch spectral sequence
Recall that the coefficient ring of the real K-theory KO is

KO* = Z['?, a, ﬂ, ﬂ_l:l/(zrl’ ’73v o — 4p),

with degn = — 1, dega = — 4, degf = — 8.
Consider the Atiyah-Hirzebruch spectral sequence

EX* — KO*(X), E¥* ~ H*(X ; KO*).
It is well known that the first differential d, is given as follows [1]:

Sq*n,  (f p=0 (8)
(1.1 ds* ={ Sq° ifp=—1(8))
0 (otherwise),

where n,: H¥*(X ; Z) > H*(X ; Z,) is modulo 2 reduction.
Here we detect the next possible non trivial differentials.

Proposition 1. Let X be a CW complex with cells only in even dimensions,
and E¥* be its Atiyah-Hirzebruch spectral sequence of KO-theory. We have

(1.2) E3 ™'~ H(H*(X ; Z,); Sq°).
Suppose there are non trivial differentials d, (r > 3). The first one is given by
d:E¥° — EX'"r r=2(8),

with xe E¥° such that nx # 0 and nd,x # 0.

Proof. As H*(X;Z) is torsion free, n, is epimorphic and we have
(1.2). Using the facts that E¥? is a torsion free group for =0, —4 (8), a
torsion group for g = — 1, — 2 (8), and all elements in E%*°**" have even total
degrees. We see the candidates of the first non trivial differential d, (> 3) are:

(i) d:E}"*—E} (g=-1@)),

(i) d:EFr"2—E¥r (g=-1(8)),

(i) d:EF"'—E} (g=-2(@9),

(iv) d,: EX¥® — E} (g=—-1(@).

When g= —1 (8), : E¥*— E¥7 ! is monomorphic. Thus, if d.xeE}?
and d,x # 0, then nd,x = d,(nx) # 0, hence nx # 0. This makes the cases (i) and
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(i) impossible.

Consider the case (iii). If there is ye E*~!, such that d,ye E*1 (g = — 2)
and d,y #0, then there is x, such that y=nx, since n: E¥° S E¥*"! js
epimorphic. Moreover, we have d,x # 0, because d,y = d,(nx) = nd,x # 0, and
n:E¥*—>E*! (g= —1) is monomorphic. Consequently, as xeE*° and
d,xeE¥? (g = — 1), we can reduce the case (iii) to (iv).

In the case (iv), again considering the monomorphism #5: E¥4— E*77!
(g = — 1), we have nd,x # 0, and hence nx # 0.

§2. Computation of E¥ !
For an arbitrary ring K,
H*M,, ,; K)~ K[a,,...,a,, by,....b,]/(cis....Cusn)s

where a; and b; are the images of the Chern classes by maps which arise from
the fibre sequence:

U(m + n)/U(m) x U(n) — BU(m) x BU(n) — BU(m + n),

and C,~ = Z}'al‘_]b!.
Let A= H*(M,,,; Z,) and d = Sq?, then (4, d) is a differential algebra. We
compute the homology group H(A).

Proposition 2. Let B be the algebra
Z,[a5%,...,a52, by%, .., b0 /(c57 conr ).
Then we have the following isomorphisms.

(i) If (m,n) =k + 1, 2l), then H(A)~ B.
(i) If (m, n) = (2k, 21I), then H(A)~ B.
Qi)  If (mon)=Qk+ 1,20+ 1), then H(A)~B® B {ay., by

Proof. Let R=Z,[a,,...,a,, by,...,b,], and ¢;=) ;a;_;b;. The differentials
d of A are given by:

(2.1) dXy; = Xpj41 + Xy Xgj,  dXgjp1 = X1 X541,

for x; = a;, b;, or ¢;. We construct inductively R; by the following short exact
sequences :

R, = R/(cy).
2.2) 0 —— Ry, —2*5 R, | ——R,; ———0.
(2.3) 0 » Ry — 2 Ry — " Ry » 0,

for 2j + 1 <m + n. The multiplications by c,;,, and by c¢,; commute with d,
thus R;’s are differential modules. We show the following lemma.
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Lemma 3. When 2j + 1 <m+n,

24) H(-3j11) = 0.
2.5) H(- ¢c,;) is monomorphic.
(2.6) H(RZj) = H(sz—l)@H(sz—1) <Czj>-

@7 H(R3j41) ~
Z,[a,%,....a52%, by2,....by%, ul/(cy?, ... e, uP — aylby?)
(if (m, n) = (2k, 21))
Zz[azz,...,GZkz,bzz,...,bz,z]/(CZZ,...,chz)
(otherwise).
Proof of Lemma. We demonstrate the lemma by induction on j. Let

Xyj41 = X1 X3j4+1, for x; = a;, b; and c;, respectively.
In Ry, Cyj41 = C3j+1, and (2.1) implies:

d Xy;=Xzj41, d X350, =0,
for x; = a;, b;, and c;. By easy calculations we have

z, [azza---,azkz’ bzz’--wbz:z, “]/(“2 - azkzbzzz) (if (m, n) = (2k, 21))
Z, [a223-'~:a2k25 bzza---,bzzz] (otherwise),

H(Rl):{

This is (2.7) for j = 0.
If d(x) = 0, then xc,;,; = d(xc,;). So (2.4) follows. Consider the long exact
sequence derived from homology of (2.2):

. ——— H(Ry_y) MH(RZj—l) _Hm | H(R,) s ..

As H(:cyj4+1) =0, 6(cy;)) = 1 and the maps are H(R,;_,)-module homomorphism,
we can conclude (2.6). Consider the long exact sequence derived from homology
of (2.3):

H(~c2j

(2.8) --- —— H(Ry)) )’H(sz) 0 > H(R3j4 1)

In order to obtain (2.5), i.e., H(:c,;) is monomorphic, it suffices to show that
H("¢y;%): H(Ry;_,) = H(R,;-,) is monomorphic, since the form of H(R,)) is given
by (2.6). As (2.7) for H(R,;_,) is supposed inductively, this is done by using
the following fact (Here we rewrite a,;?, b,> and c,?, as «;, f; and vy,
respectively.):

Let

S = Zz[a1,~n,ak’ Blw-nﬂl]

or

S = Zz[al,...,ak, B],...,ﬁla u]/(ul - alﬁk)
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and y; =Y jo;_;B; then vy, y,,...,714, is regular sequence of S.
Now, (2.8) splits into the short exact sequence, and

H(Rj;4 ) ~ Coker H( c2j2) ~ H(Ry;- 1)/(C2j2)'
Thus we have (2.7) for H(R,;,,). This completes the induction.

We continue the proof of Proposition 2. When (m, n)= (2k + 1, 2l),
A~R,i54+1,and hence H(A) ~ H(R,,15+1). We get (). When m + n = even,
A is obtained by the next exact sequence:

(29) O'__)Rm+n—l ;cm_l’Rm+n—l » A4 0.

Consider the long exact sequence derived from (2.9). In the case (m, n) = (2k, 2I),
H(-c,+,) = H(-u) is monomorphic, since H("¢,+,2) = H(*7,,+,) is so. Thus we
have H(A) ~ H(R,;45-1)/(), and (ii). If (m, n) = (2k + 1, 21 + 1), we have the
short exact sequence:

0 — H(Rys21-1) — H(A) 2> H(Ryyy 21— 1) — 0,

as H('¢,+,) =0. It is easy to check d(ay4,b,) = 1. This implies (iii).

§3. Proof of Main Theorem

Proposition 4. The Atiyah-Hirzebruch spectral sequence EX* for KO*(M,,,)
collapses for r > 3.

Proof. Consider the maps induced by canonical inclusions U(n) = Sp(n) and
Sp(n) -» U(2n):

qg:M,,=Um+n)/Um)x Um) — Sp(m + n)/Sp(m) x Sp(n)
¢t Sptk + 1)/Sp(k) x Sp(l) — U2k + 21)/U(2k) x U(2])
It is well known that
H*(Sp(m + n)/Sp(m) x Sp(n); Z,) =
Zy[q1s Gaseees Qs F1o T s '] /(S1s Saseiss Stn)s
with deg q; = deg r; = deg s; = 4i, and
q*q; = a’,
wam {3 o

Similarly r; corresponds to b;, and s; to ¢;, under g* and c¢'* respectively. First
we consider the case (m, n) = (2k, 21), that is, M, , = U2k + 21)/U(2k) x U(2l).
The Atiyah-Hirzebruch spectral sequence for KO*(Sp(m + n)/Sp(m) x Sp(n))
collapses, by degree reason. Consider the maps between the Atiyah-Hirzebruch
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spectral sequences:
E3*9(q): E3*(Sp(m + n)/Sp(m) x Sp(n)) — E3*(M,, ,),
E34(c): E3*(M,,,) — E$*(Sp(k + )/Sp(k) x Sp(1)).

If g= — 1 (8), the elements of E¥Y(M,,,) are in the image of E¥%(q), and
E%9(c’) is an monomorphism by Proposition 2 (ii). Hence the triviality of
E¥*(Sp(m + n)/Sp(m) x Sp(n)) implies EX**(M,, ) ~ E¥*(M,, ,)(r = 3). Therefore
the non trivial candidates of sources or targets of d, are in E*?, with g =0, — 2,
—4 (8). So we conclude that d, =0 for r > 3, since ¢’s concentrate in even
degrees.

Next we consider the case (m, n) = (2k, 21 + 1), thatis, M, , = U2k + 21 + 1)
JUQ2k) x U2l + 1).

Let

U2k + 21)/U@2k) x UQ2l) = M,, , —> U2k + 21 + 2)/U(2k) x U(2l + 2)

be the inclusions. By Proposition 2 (i), we know that E¥?(j) is epimorphic and
E%9(i) is monomorphic for g = — 1 (8). Thus, because of the triviality of the
spectral sequences of the both sides, the non trivial elements of E$7(M,,,),
q = — 1, survive permanently. By same arguments as above, we have the theorem
for (even, odd)-case.

Finally, we consider the case (m, n) = (2k + 1, 21 + 1), that is, M, , = U(2k
+21+2)/URk+ 1) x URL+1).

Let

Uk + 21+ 1)/JUQRk + 1) x UQl) —> M,, , = U2k + 21 + 3)/U(2k + 2)
x UQ2l+ 1)
be the inclusions. By Proposition 2 (iii), we have
E} "' ~B® B <ay+ by,

where B=Z,[a,%,...,a52, b.%,....b221/(c\%,....canv %) <n)>. Moreover it is clear
that E¥* ~!'(i) is monomorphic on B, E¥~!(j) is surjective onto B and
Ker(E¥ ~'(i)) @ B <{as4+by). Therefore B survives permanently, and we can
exclude B from this spectral sequence.

Suppose there are non trivial differentials. By Proposition 1, we can conclude
that the first non trivial differential (r > 3) is

. -r,0 p.q
d,: Ef — EP% Ay by— d (a1 by),

with r=1—¢q, gq= —1 (8). Because p=4k+4l+3 —gq=0 (4), the target is
not in B {a, 4+ b,y but in B, which is already excluded from this spectral
sequence. This contradiction affirms the theorem for the case (m, n) = (odd, odd).

Proof of Main Theorem. The rank of the free part of KO'(M,,,) is already
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given in [3], and

Torsion part of KO*(M,,,) ~ KO**'(M
> 5(Z,),

m,n)

(See [3, Lemma 2.1].), where s is the dimension of @ ,_,;, . E% " '. The
theorem follows from Proposition 2 and Proposition 4.
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