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KO-theory of complex Grassmannians
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Akira KONO and Shin-ichiro HARA

§ O. Introduction

Let M„,,„ b e  the complex Grassmann manifold G„,(C' )  of m-planes in
Cm+n. There is a  homeomorphism :

m m , n U ( m  + n) I U (m) x U (n).

The K O -groups  o f  M m ,„ a re  studied in  [ 3 ] .  The free parts of th e m  are
determined, but the torsion parts are partia lly  know n ( [3 ] ,  [4 ] ) .  Here we
compute them for arbitrary m and n, using only the Atiyah-Hirzebruch spectral
sequence.

Main Theorem. L e t k  = [In  1  = [1 ],  a = (m, n) and b = (k, 1). The K O -

groups ofo f  114,,,„ are as follows:

i
m — 2k + 1, n = 21 + 1
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From this theorem, we have many corollaries about the relations to  the complex
K-theory of M „,,„ . (See [3 ]  and  [2 , Theorem 2 ] . )  For example,

Corollary. I f  m  o r n  is even, the complexification:

c: K(M„,,„)

is a monomorphism.

§1 . The Atiyah-Hirzebruch spectral sequence

Recall that the  coefficient ring of the real K-theory KO is

KO* = Z[n, a, fl, 13 - 11(2n, 173 , — 4#),

with deg ri = —  1, deg a = — 4, deg 11 = — 8.
Consider the Atiyah-Hirzebruch spectral sequence

E7.* K O*(X ), E "  H * (X  ; K O *).

It is w ell know n that the first differential d ,  is given a s  follows [1 ]:

S e ir 2( i f  p 0 (8))
(1.1) d'•* = Sq 2 ( i f  p — 1 (8))

0 (otherwise),

where ir2 : H*(X  ;Z)— > H*(X  ; Z2 )  is  modulo 2  reduction.
Here we detect the next possible non trivial differentials.

Proposition 1. L e t X  be a C W  complex with cells only in even dimensions,
and E7'* be its A tiyah-Hirzebruch spectral sequence of KO-theory. We have

(1.2)E 1 ( X  ; Z2 ); Sq 2 ).

Suppose there are non trivial differentials d, (r > 3). The first one is given by

d,.: E,.*'' Er*' ' ,  r 2 (8),

with x e E,!' ° such that nx  0 0 and nd r x  0  0.

P roo f. A s  H* (X  ; Z ) is to rs ion  free , 7r2 i s  epim orphic a n d  w e  have
(1.2). Using the  fa c ts  th a t  E V  is  a  to rsion  free  group for q  0, —  4 (8), a
torsion group for q —  1 , —  2 (8), and  all elements in  EVe v "  have even total
degrees. W e see the candidates of the first non trivial differential d , (> 3) are:

( i ) dr : E,!'q (q — 1 (8)),
(ii) d,.: E$' - 2 E ; " (q — 1 (8)),
(iii) dr : E,!" (q— 2 (8)),
(iv) d,.: E:" E7'q (g — 1 (8)).
W h e n  q  — 1 (8), :  E ' E 1 i s  monomorphic. Thus, if  dr x e E "

and dr x  0  0, then ndr x  = d r (nx) 0 0, hence 'ix 0  0 .  This makes the cases (i) and
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(ii) impossible.
Consider the case (iii). If there is y E E r* '  1 , such  tha t dr y e Er"  (g — 2)

an d  dr y  0 0 , th e n  th e r e  is  x ,  s u c h  th a t  y  =  n x ,  s in c e  n: EV
°
 —) E r '  is

epim orphic. M oreover, we have dr x 0 0 , because dr y  = d r (rix) = ndr x 0 0 , and
n : Er"  --+ (g — 1) is m onom orphic . C onsequently , a s  x  Er"  and
dr xe E r'"  (g —= — 1), we can reduce the case (iii) to  (iv).

In  th e  case  (iv ), again considering th e  monomorphism Er"-1
(g — 1), we have 17c/r x 0  0 , and hence n x O .

§ 2 .  Computation of

For an arbitrary ring K,

H*(M„,, n ; K) K [a i ,...,a., b1,•••,b]/(c15•••,cm+n),

where ai and  bi are the images of the Chern classes by m aps which arise from
the fibre sequence:

U(m +  n)/U(m) x  U (n) BU (m) x  BU (n) BU (m + n),

and ci —  1a1 _ b.
Let A  = 11 * (M i n , n , Z 2 ) and d = Sq 2 , then (A , d) is a  differential algebra. We

compute the homology group H(A).

Proposition 2. L et B be  the algebra

Z2 [ a 2 2 5• • • a 2 k 2 5 b2. 2 5• • •5 /3 2/ 2 ] / ( c 2 2 5 • • • c2k+2/ 2 )•

Then we have the following isomorphisms.

(i) I f  (m, n) = (2k + 1, 21), then H ( A )  B.
(ii) I f  (m, n) = (2k, 21), then H(A) B.
(iii) I f  (m, n) = (2k + 1,21 + 1), then H(A) B B  <a2k+ib21> •

P ro o f . Let R = Z2 [a l , ..., b1 ,...,b ,], and ci = a, _ i b The differentials
d  of A  are given by :

(2.1) dX 2i = X23 +  +  X i X 2 3 , d X 2 3 +  -=  X i X23+1,

for x i =  ai , b1 ,  or cz . We construct inductively R i b y  the following short exact
sequences:

R 1 =

(2.2)

 

R 2 3 _  R23_1

       

(2.3) 0 R23 .C23 R 23 R21+1  0,

for 2j + 1 m  +  n .  The multiplications b y  c23 + 1 and by c 2 ,  commute w ith d,
thus R i 's  are differential modules. W e show the following lemma.
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Lemma 3. When 2] + 1 m  + n ,

(2.4) H(• c 2 i  1 ) = 0.

(2.5) H(• c 2 i)  is monomorphic.

(2.6) H (R 2 ) H (R 2 i _ 1 ) H(R 2 i _ 1 )  <c 2 i >.

(2.7) H(R 2 i + i )
Z 2  [a2 2 ,...,a2k 2 , b2 2 , ... , b212 , u ] / ( c 2 2  , ... , c2i 2  , u 2  — u2k 2 b212 ).{.

(otherwise).

Proo f  o f  L em m a. W e dem onstrate th e  lem m a  b y  induction on j. Let
—  X 1  X 2 + 1 ,  for x • a i , b i a n d  c1,  respectively.

In  R 1 , ë 2 1 = c 2 ,  and (2.1) implies:

d . X 2 i  —  X 2 i+  ,  d  '..t2 i +  —  0,

for x i =  a 1 ,  b1,  and  ci . By easy calculations we have

H(R 1) -  
{  Z 2  [a 2 2 , . „ , a 2 k  , '2  , •  •  •  , 2 /  "J /  l . . . 2 k 2 , , 2 /

2) (if (m, n) = (2k, 21))
Z 2  [a 2 2 , , a2k 2 ,  b 2 2 ,  • • • b 2 / 2 ] (otherwise),

2  h  2 b  2  „ i  H u 2  _  , , I,

This is (2.7) for j  = 0.
If d(x) = 0, then xc 2 i + 1

 =  d(xc 2 i ). So (2.4) follows. Consider the long exact
sequence derived from homology of (2.2):

 H(R 2 j-1  ) " H(it)H(R
2 j -  1

) H(R 2 )

As H(• c 2 J + i ) = 0, (5(c 2 ; )  =  1  and the maps are H(R 2 ; _ 1 )-module homomorphism,
we can conclude (2.6). Consider the long exact sequence derived from homology
of (2.3):

(2.8) H ( R 2 )  H ( R )  H ( R 2 i+  1 )

In  order to  obta in  (2.5), i.e., H ( c 2 )  is  m onom orphic, it suffices to show that
H(• c 2 7): H(R 2 ; _ 1 ) —> H(R 2 i _,) is monomorphic, since the form of H(R 2 ) is given
by  (2.6). A s (2.7) fo r H(R is supposed inductively, this is done by using
t h e  fo llow ing  fac t (H ere  w e  rewrite a 21

2 , b 2 i
2  a n d  c2 1

2 , as S i  and y 1,
respectively.):

Let

S =  Z 2  [ (X i • • •504k, fi 1,. • •

Or

(if  (m, n) = (2k, 21))

Z 2  [a 2 2 , u2k2 , b2 2 ,...,b2/ 2 ]/1c2 2 , — ,c2i 2 )

S  =  Z 2  [a l  , otk , fi t , u]/(u 2 01/ f3k)
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and yi = then 11  Y 2
is regular sequence of  S .

Now, (2.8) splits into the short exact sequence, and

H(R 2 i + C o k e r  H(• c 2 i
2 ) H ( R 2 i _ 1 )/(c 2 ;

2 ).

Thus we have (2.7) for H(R 2 J +  i ). T h i s  completes the induction.

W e  c o n tin u e  th e  p ro o f  o f  P ro p o s it io n  2 . When (m, n) = (2k + 1, 21),
A  = R 2k 4 2/-1-1, and hence H ( A )  

H ( R 2 k + 2 1 - 1 - 1 ) •
 W e get (i). W hen m  + n =  even,

A  is obtained by the next exact sequence:

(2.9) 0 R„,  _ " R rn n  _

 

A 0.

 

Consider the long exact sequence derived from (2.9). In the case (m, n) = (2k, 21),
H(• c„, + ,) = H(• u) is monomorphic, since H(• c„, + „2 )  =  H (•  + „ )  is  s o .  Thus we
have H (A) (R _  i )/ (u), and (ii). If (m, n) = (2k + 1, 21 + 1), we have the
short exact sequence:

OI I ( R 2 k + 2 / - 1 ) 11(A) I I (R2k+ 2 1 -  1 ) (1),

as H( • cm+n) = O. I t  i s  e a s y  to  check 6 ( a 2 k + 1 b 2 1 ) =  1. This implies (iii).

§ 3 .  Proof of Main Theorem

Proposition 4. The A tiyah-Hirzebruch spectral sequence E .* f or K 0*(M m ,„)
collapses f o r r > 3.

P ro o f . Consider the maps induced by canonical inclusions U(n)—*Sp(n) and
Sp(n)—> U(2n):

q  : M .,„=U (m + n)/U (m ) x  U(n) -->S p(m  + n)/S p(m ) x  Sp(n)

c': Sp(k +1)1Sp(k) x  S p(1)--U (2k  +21)1U (2k ) x  U(21)

It is well known that

H*(Sp(m + n)/Sp(m ) x  Sp(n); Z 2 ) =
Z

2 [9 1 9  9 2 5 •  •  • ,  gm, 1'15 r 2 5 • • • , r „ ] / ( s 1 ,

with deg q i = deg r i = deg s i = 4i, and

q* q i = a 2 ,

c'* ai =  q i 1 2 ( i f  i = even)
0 (if i = odd).

Similarly ri corresponds to  1)1 ,  and si t o  ci ,  under q* and c '*  respectively. First
we consider the case (m, n) = (2k, 21), th a t is, M„,,„ =  U(2k + 21)IU(2k) x  U(21).
The A tiyah-H irzebruch spectral sequence f o r  K0*(Sp(m + n)1Sp(m)x Sp(n))
collapses, by degree reason. Consider the maps between the Atiyah-Hirzebruch
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spectral sequences :

EVg (q): (Sp(m + n)/ Sp(m) x Sp(n)) (M„,,„),

ET'q (c): ET'q (M„,,„) ---+ (Sp(k + 1)/ Sp(k) x Sp(1)).

If q — 1 (8), the  elements of Etq(M m ,n)  are in  the im age of EVq(q), and
• (c ) is  a n  monomorphism b y  Proposition 2 (ii). Hence th e  triviality of
E (Sp(m + n)/ Sp(m) x Sp(n)) implies E,!"(M m ,„) E t 'q  (M m , n )(r 3). Therefore
the non trivial candidates of sources or targets of dr  a re  in  E " ,  with q 0, — 2,
—  4 (8). So we conclude that d,. = 0  fo r  r > 3, since q 's concentrate in  even
degrees.

Next we consider the case (m, n) = (2k, 21 + 1), that is, M,,,„ = U(2k + 21 + 1)
/U(2k) x  U(21 + 1).

Let

U(2k + 21)/U(2k) x U(21) U(2k  + 21+ 2)/U(2k) x  U(21+ 2)

be the inclusions. By Proposition 2 (i), we know that EVI(j) is epimorphic and
Et.q (i) is monomorphic fo r q — 1 (8). Thus, because o f the  triviality of the
spectral sequences o f  th e  both sides, th e  n o n  tr iv ia l elements o f  Er'q(M m ,„),
q — 1, survive permanently. By same arguments as above, we have the theorem
for (even, odd)-case.

Finally, we consider the case (m, n) = (2k + 1, 21 + 1), that is , M„,,„ = U(2k
+ 21 + 2)/U(2k + 1) x U(21 + 1).

Let

U(2k + 21 + 1)/ U (2k + 1) x U(21) M„,,„ U (2k + 21+ 3)/ U (2k + 2)

x  U(21 + 1)

be the inclusions. By Proposition 2 (iii), we have

E t -
1 B  C )  B  <a2 k ± , b 2 i >,

where B= Z 2  [a 1
2  , a2k2, b1

2 , . . . , b212 ] /1c12 ,..., C2k + 2/ 2 )  01> • Moreover it is clear
th a t E r i  (i) is monomorphic o n  B, 1  ( j )  is surjective onto B  and
Ker (Et' - 1 (i)) B  <a2 k  + 1  b2 i >. Therefore B  survives permanently, and  we can
exclude B  from this spectral sequence.

Suppose there are non trivial differentials. B y  Proposition 1, we can conclude
that the first non trivial differential (r > 3) is

dr: ErP'g a2k + 1 b21 1 - - -" dr(a2k + 1 b21) ,

with r = 1 — q, q — 1  (8). Because p = 4k  + 41 + 3 — q -=- 0  (4), the  target is
not in  B  < a 2 k + t b 2 1 >  b u t  i n  B ,  which is already excluded from this spectral
sequence. This contradiction affirms the theorem for the case (m, n) = (odd, odd).

P roo f of  M ain T h eo rem . The rank of the free part of KO l (M .,,,)  is already
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given  i n  [3], and

Torsion p art of K 0 2 t (M .,„) K O ' ±
s(Z 2 ),

(S e e  [3, L em m a 2.1].), w h ere  s  i s  th e  d im e n s io n  o f (4)-- p E 2 i+ 2 (8 )E C O  1 • The
theorem  fo llow s from  P ro p o s itio n  2 a n d  P ro p o s it io n  4.
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