KO-theory of complex Grassmannians

By

Akira Kono and Shin-ichiro Hara

§0. Introduction

Let $M_{m, n}$ be the complex Grassmann manifold $G_{m}\left(\mathrm{C}^{m+n}\right)$ of m-planes in C^{m+n}. There is a homeomorphism:

$$
M_{m, n} \xrightarrow{\simeq} U(m+n) / U(m) \times U(n) .
$$

The $K O^{i}$-groups of $M_{m, n}$ are studied in [3]. The free parts of them are determined, but the torsion parts are partially known ([3], [4]). Here we compute them for arbitrary m and n, using only the Atiyah-Hirzebruch spectral sequence.

Main Theorem. Let $k=\left[\frac{m}{2}\right], l=\left[\frac{n}{2}\right], a=(m, n)$ and $b=(k, l)$. The $K O^{i}$ groups of $M_{m, n}$ are as follows:

i	$m=2 k+1, n=2 l+1$		all other cases
	$k+l=$ even	$k+l=$ odd	
0	$\frac{a}{2} Z \oplus b Z_{2}$	${ }_{-}^{-} Z$	$\frac{a+b}{2} Z$
- 1	$b Z_{2}$	$b Z_{2}$	$b Z_{2}$
-2	$\frac{a}{2} Z \oplus b Z_{2}$	$\frac{a}{2} Z \oplus b Z_{2}$	$\frac{a-b}{2} Z \oplus b Z_{2}$
- 3	0	$b Z_{2}$	0
-4	${ }_{-}^{a} Z$	$\frac{a}{2} Z \oplus b Z_{2}$	$\frac{a+b}{2} Z$
- 5	0	0	0
- 6	${ }_{-}^{a} Z$	${ }_{-}^{a} Z$	$\frac{a-b}{2} Z$
- 7	$b Z_{2}$	0	0

[^0]From this theorem, we have many corollaries about the relations to the complex K-theory of $M_{m, n}$. (See [3] and [2, Theorem 2].) For example,

Corollary. If m or n is even, the complexification:

$$
c: K O\left(M_{m, n}\right) \longrightarrow K\left(M_{m, n}\right)
$$

is a monomorphism.

§ 1. The Atiyah-Hirzebruch spectral sequence

Recall that the coefficient ring of the real K-theory KO is

$$
K O^{*}=\mathrm{Z}\left[\eta, \alpha, \beta, \beta^{-1}\right] /\left(2 \eta, \eta^{3}, \alpha^{2}-4 \beta\right),
$$

with $\operatorname{deg} \eta=-1, \operatorname{deg} \alpha=-4, \operatorname{deg} \beta=-8$.
Consider the Atiyah-Hirzebruch spectral sequence

$$
E_{r}^{*, *} \Longrightarrow K O^{*}(X), E_{2}^{*, *} \simeq H^{*}\left(X ; K O^{*}\right)
$$

It is well known that the first differential d_{2} is given as follows [1]:

$$
d_{2}^{p, *}= \begin{cases}S q^{2} \pi_{2} & \text { (if } p \equiv 0(8) \text {) } \tag{1.1}\\ S q^{2} & \text { (if } p \equiv-1(8)) \\ 0 & \text { (otherwise), }\end{cases}
$$

where $\pi_{2}: H^{*}(X ; \mathrm{Z}) \rightarrow H^{*}\left(X ; \mathrm{Z}_{2}\right)$ is modulo 2 reduction.
Here we detect the next possible non trivial differentials.
Proposition 1. Let X be a CW complex with cells only in even dimensions, and $E_{r}^{*, *}$ be its Atiyah-Hirzebruch spectral sequence of KO-theory. We have

$$
\begin{equation*}
E_{3}^{*,-1} \simeq H\left(H^{*}\left(X ; \mathrm{Z}_{2}\right) ; S q^{2}\right) \tag{1.2}
\end{equation*}
$$

Suppose there are non trivial differentials $d_{r}(r \geq 3)$. The first one is given by

$$
d_{r}: E_{r}^{*, 0} \longrightarrow E_{r}^{*, 1-r}, \quad r \equiv 2(8),
$$

with $x \in E_{r}^{*, 0}$ such that $\eta x \neq 0$ and $\eta d_{r} x \neq 0$.
Proof. As $H^{*}(X ; \mathrm{Z})$ is torsion free, π_{2} is epimorphic and we have (1.2). Using the facts that $E_{3}^{*, q}$ is a torsion free group for $q \equiv 0,-4$ (8), a torsion group for $q \equiv-1,-2(8)$, and all elements in $E_{3}^{*, \text { even }}$ have even total degrees. We see the candidates of the first non trivial differential $d_{r}(\geq 3)$ are:
(i) $d_{r}: E_{r}^{*,-4} \longrightarrow E_{r}^{*, q} \quad(q \equiv-1(8))$,
(ii) $d_{r}: E_{r}^{*,-2} \longrightarrow E_{r}^{*, q} \quad(q \equiv-1(8))$,
(iii) $d_{r}: E_{r}^{*,-1} \longrightarrow E_{r}^{*, q} \quad(q \equiv-2(8))$,
(iv) $d_{r}: E_{r}^{*, 0} \longrightarrow E_{r}^{*, q} \quad(q \equiv-1(8))$.

When $q \equiv-1$ (8), $\eta: E_{3}^{*, q} \rightarrow E_{3}^{*, q-1}$ is monomorphic. Thus, if $d_{r} x \in E_{r}^{*, q}$ and $d_{r} x \neq 0$, then $\eta d_{r} x=d_{r}(\eta x) \neq 0$, hence $\eta x \neq 0$. This makes the cases (i) and
(ii) impossible.

Consider the case (iii). If there is $y \in E_{r}^{*,-1}$, such that $d_{r} y \in E_{r}^{*, q}(q \equiv-2)$ and $d_{r} y \neq 0$, then there is x, such that $y=\eta x$, since $\eta: E_{3}^{*, 0} \rightarrow E_{3}^{*,-1}$ is epimorphic. Moreover, we have $d_{r} x \neq 0$, because $d_{r} y=d_{r}(\eta x)=\eta d_{r} x \neq 0$, and $\eta: E_{r}^{*, q} \rightarrow E_{r}^{*, q-1} \quad(q \equiv-1)$ is monomorphic. Consequently, as $x \in E_{r}^{*, 0}$ and $d_{r} x \in E_{r}^{*, q}(q \equiv-1)$, we can reduce the case (iii) to (iv).

In the case (iv), again considering the monomorphism $\eta: E_{r}^{*, q} \rightarrow E_{r}^{*, q-1}$ ($q \equiv-1$), we have $\eta d_{r} x \neq 0$, and hence $\eta x \neq 0$.

§ 2. Computation of $\boldsymbol{E}_{3}^{*,-1}$

For an arbitrary ring K,

$$
H^{*}\left(M_{m, n} ; K\right) \simeq K\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right] /\left(c_{1}, \ldots, c_{m+n}\right),
$$

where a_{i} and b_{i} are the images of the Chern classes by maps which arise from the fibre sequence:

$$
U(m+n) / U(m) \times U(n) \longrightarrow B U(m) \times B U(n) \longrightarrow B U(m+n),
$$

and $c_{i}=\sum_{j} a_{i-j} b_{j}$.
Let $A=H^{*}\left(M_{m, n} ; \mathrm{Z}_{2}\right)$ and $d=S q^{2}$, then (A, d) is a differential algebra. We compute the homology group $H(A)$.

Proposition 2. Let B be the algebra

$$
\mathrm{Z}_{2}\left[a_{2}^{2}, \ldots, a_{2 k}{ }^{2}, b_{2}^{2}, \ldots, b_{2 l}{ }^{2}\right] /\left(c_{2}^{2}, \ldots, c_{2 k+2 l}{ }^{2}\right)
$$

Then we have the following isomorphisms.
(i) If $(m, n)=(2 k+1,2 l)$, then $H(A) \simeq B$.
(ii) If $(m, n)=(2 k, 2 l)$, then $H(A) \simeq B$.
(iii) If $(m, n)=(2 k+1,2 l+1)$, then $H(A) \simeq B \oplus B\left\langle a_{2 k+1} b_{2 l}\right\rangle$.

Proof. Let $R=\mathrm{Z}_{2}\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right]$, and $c_{i}=\sum_{j} a_{i-j} b_{j}$. The differentials d of A are given by:

$$
\begin{equation*}
d x_{2 j}=x_{2 j+1}+x_{1} x_{2 j}, \quad d x_{2 j+1}=x_{1} x_{2 j+1}, \tag{2.1}
\end{equation*}
$$

for $x_{i}=a_{i}, b_{i}$, or c_{i}. We construct inductively R_{i} by the following short exact sequences:

$$
\begin{gather*}
R_{1}=R /\left(c_{1}\right) . \\
0 \longrightarrow R_{2 j-1} \xrightarrow{\cdot_{2 j+1}} R_{2 j-1} \xrightarrow{\pi} R_{2 j} \longrightarrow 0 \tag{2.2}\\
0 \longrightarrow R_{2 j} \xrightarrow{\cdot c_{2 j}} R_{2 j} \xrightarrow{\pi} R_{2 j+1} \longrightarrow 0 \tag{2.3}
\end{gather*}
$$

for $2 j+1 \leq m+n$. The multiplications by $c_{2 j+1}$ and by $c_{2 j}$ commute with d, thus R_{i} 's are differential modules. We show the following lemma.

Lemma 3. When $2 j+1 \leq m+n$,

$$
\begin{equation*}
H\left(\cdot c_{2 j+1}\right)=0 . \tag{2.4}
\end{equation*}
$$

$H\left(\cdot c_{2 j}\right)$ is monomorphic.

$$
\begin{equation*}
H\left(R_{2 j}\right) \simeq H\left(R_{2 j-1}\right) \oplus H\left(R_{2 j-1}\right)\left\langle c_{2 j}\right\rangle . \tag{2.5}
\end{equation*}
$$

$$
\begin{align*}
& H\left(R_{2 j+1}\right) \simeq \tag{2.7}\\
& \left\{\begin{array}{c}
\mathrm{Z}_{2}\left[a_{2}{ }^{2}, \ldots, a_{2 k}{ }^{2}, b_{2}{ }^{2}, \ldots, b_{2 l}{ }^{2}, u\right] /\left(c_{2}{ }^{2}, \ldots, c_{2 j}{ }^{2}, u^{2}-a_{2 k}{ }^{2} b_{2 l}{ }^{2}\right) \\
(\text { if }(m, n)=(2 k, 2 l)) \\
\mathrm{Z}_{2}\left[a_{2}{ }^{2}, \ldots, a_{2 k}{ }^{2}, b_{2}{ }^{2}, \ldots, b_{2 l}{ }^{2}\right] /\left(c_{2}{ }^{2}, \ldots, c_{2 j}{ }^{2}\right) \\
\text { (otherwise). }
\end{array}\right.
\end{align*}
$$

Proof of Lemma. We demonstrate the lemma by induction on j. Let $\bar{x}_{2 j+1}=x_{1} x_{2_{j+1}}$, for $x_{i}=a_{i}, b_{i}$ and c_{i}, respectively.

In $R_{1}, \bar{c}_{2 j+1}=c_{2 j+1}$, and (2.1) implies:

$$
d x_{2 j}=\bar{x}_{2 j+1}, \quad d \bar{x}_{2 j+1}=0
$$

for $x_{i}=a_{i}, b_{i}$, and c_{i}. By easy calculations we have

$$
H\left(R_{1}\right) \simeq \begin{cases}\mathrm{Z}_{2}\left[a_{2}{ }^{2}, \ldots, a_{2 k}{ }^{2}, b_{2}{ }^{2}, \ldots, b_{2 l}{ }^{2}, u\right] /\left(u^{2}-a_{2 k}{ }^{2} b_{2 l}{ }^{2}\right) & (\text { if }(m, n)=(2 k, 2 l)) \\ \mathrm{Z}_{2}\left[a_{2}{ }^{2}, \ldots, a_{2 k}{ }^{2}, b_{2}{ }^{2}, \ldots, b_{2 l}{ }^{2}\right] & \text { (otherwise), }\end{cases}
$$

This is (2.7) for $j=0$.
If $d(x)=0$, then $x c_{2 j+1}=d\left(x c_{2 j}\right)$. So (2.4) follows. Consider the long exact sequence derived from homology of (2.2):

$$
\cdots \longrightarrow H\left(R_{2 j-1}\right) \xrightarrow{H\left(\cdot c_{2 j+1}\right)} H\left(R_{2 j-1}\right) \xrightarrow{H(\pi)} H\left(R_{2 j}\right) \xrightarrow{\delta} \cdots .
$$

As $H\left(\cdot c_{2 j+1}\right)=0, \delta\left(c_{2 j}\right)=1$ and the maps are $H\left(R_{2 j-1}\right)$-module homomorphism, we can conclude (2.6). Consider the long exact sequence derived from homology of (2.3):

$$
\begin{equation*}
\cdots \longrightarrow H\left(R_{2 j}\right) \xrightarrow{H\left(\cdot c_{2 j}\right)} H\left(R_{2 j}\right) \xrightarrow{H(\pi)} H\left(R_{2 j+1}\right) \xrightarrow{\delta} \cdots . \tag{2.8}
\end{equation*}
$$

In order to obtain (2.5), i.e., $H\left(\cdot c_{2 j}\right)$ is monomorphic, it suffices to show that $H\left(\cdot c_{2 j}{ }^{2}\right): H\left(R_{2 j-1}\right) \rightarrow H\left(R_{2 j-1}\right)$ is monomorphic, since the form of $H\left(R_{2 j}\right)$ is given by (2.6). As (2.7) for $H\left(R_{2 j-1}\right)$ is supposed inductively, this is done by using the following fact (Here we rewrite $a_{2 i}{ }^{2}, b_{2 i}{ }^{2}$ and $c_{2 i}{ }^{2}$, as α_{i}, β_{i} and γ_{i}, respectively.):

Let

$$
S=Z_{2}\left[\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l}\right]
$$

or

$$
S=\mathrm{Z}_{2}\left[\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l}, u\right] /\left(u^{2}-\alpha_{l} \beta_{k}\right)
$$

and $\gamma_{i}=\sum_{j} \alpha_{i-j} \beta_{j}$ then $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{l+k}$ is regular sequence of S.
Now, (2.8) splits into the short exact sequence, and

$$
H\left(R_{2 j+1}\right) \simeq \operatorname{Coker} H\left(\cdot c_{2 j}{ }^{2}\right) \simeq H\left(R_{2 j-1}\right) /\left(c_{2 j}{ }^{2}\right)
$$

Thus we have (2.7) for $H\left(R_{2 j+1}\right)$. This completes the induction.
We continue the proof of Proposition 2. When $(\mathrm{m}, \mathrm{n})=(2 \mathrm{k}+1,2 \mathrm{l})$, $A \simeq R_{2 k+2 l+1}$, and hence $H(A) \simeq H\left(R_{2 k+2 l+1}\right)$. We get (i). When $\mathrm{m}+\mathrm{n}=$ even, A is obtained by the next exact sequence:

$$
\begin{equation*}
0 \longrightarrow R_{m+n-1} \xrightarrow{{\cdot c_{m+n}}^{\longrightarrow}} R_{m+n-1} \longrightarrow A \longrightarrow 0 . \tag{2.9}
\end{equation*}
$$

Consider the long exact sequence derived from (2.9). In the case (m, n) $=(2 \mathrm{k}, 21)$, $H\left(\cdot c_{m+n}\right)=H(\cdot u)$ is monomorphic, since $H\left(\cdot c_{m+n}{ }^{2}\right)=H\left(\cdot \gamma_{m+n}\right)$ is so. Thus we have $H(A) \simeq H\left(R_{2 k+2 l-1}\right) /(u)$, and (ii). If $(\mathrm{m}, \mathrm{n})=(2 \mathrm{k}+1,2 l+1)$, we have the short exact sequence:

$$
0 \longrightarrow H\left(R_{2 k+2 l-1}\right) \longrightarrow H(A) \xrightarrow{\delta} H\left(R_{2 k+2 l-1}\right) \longrightarrow 0,
$$

as $H\left(\cdot c_{m+n}\right)=0$. It is easy to check $\delta\left(a_{2 k+1} b_{2 l}\right)=1$. This implies (iii).

§3. Proof of Main Theorem

Proposition 4. The Atiyah-Hirzebruch spectral sequence $E_{r}^{*, *}$ for $K O^{*}\left(M_{m, n}\right)$ collapses for $r \geq 3$.

Proof. Consider the maps induced by canonical inclusions $U(n) \rightarrow S p(n)$ and $S p(n) \rightarrow U(2 n):$

$$
\begin{aligned}
& q: M_{m, n}=U(m+n) / U(m) \times U(n) \longrightarrow S p(m+n) / S p(m) \times S p(n) \\
& c^{\prime}: S p(k+l) / S p(k) \times S p(l) \longrightarrow U(2 k+2 l) / U(2 k) \times U(2 l)
\end{aligned}
$$

It is well known that

$$
\begin{aligned}
H^{*}(S p(m+n) / S p(m) \times & \left.S p(n) ; \mathrm{Z}_{2}\right)= \\
& \mathrm{Z}_{2}\left[q_{1}, q_{2}, \ldots, q_{m}, r_{1}, r_{2}, \ldots, r_{n}\right] /\left(s_{1}, s_{2}, \ldots, s_{m+n}\right),
\end{aligned}
$$

with $\operatorname{deg} q_{i}=\operatorname{deg} r_{i}=\operatorname{deg} s_{i}=4 i$, and

$$
\begin{aligned}
& q^{*} q_{i}=a_{i}^{2}, \\
& c^{\prime *} a_{i}= \begin{cases}q_{i / 2} & (\text { (if } i=\text { even }) \\
0 & \text { (if } i=\text { odd }) .\end{cases}
\end{aligned}
$$

Similarly r_{i} corresponds to b_{i}, and s_{i} to c_{i}, under q^{*} and c^{*} respectively. First we consider the case $(\mathrm{m}, \mathrm{n})=(2 \mathrm{k}, 2 \mathrm{l})$, that is, $M_{m, n}=U(2 k+2 l) / U(2 k) \times U(2 l)$. The Atiyah-Hirzebruch spectral sequence for $K O^{*}(S p(m+n) / S p(m) \times S p(n))$ collapses, by degree reason. Consider the maps between the Atiyah-Hirzebruch
spectral sequences:

$$
\begin{aligned}
& E_{3}^{*, q}(q): E_{3}^{*, q}(S p(m+n) / S p(m) \times S p(n)) \longrightarrow E_{3}^{*, q}\left(M_{m, n}\right), \\
& E_{3}^{*, q}\left(c^{\prime}\right): E_{3}^{*, q}\left(M_{m, n}\right) \longrightarrow E_{3}^{*, q}(S p(k+l) / S p(k) \times S p(l)) .
\end{aligned}
$$

If $q \equiv-1(8)$, the elements of $E_{3}^{*, q}\left(M_{m, n}\right)$ are in the image of $E_{3}^{*, q}(q)$, and $E_{3}^{*, q}\left(c^{\prime}\right)$ is an monomorphism by Proposition 2 (ii). Hence the triviality of $E_{r}^{*, q}(S p(m+n) / S p(m) \times S p(n))$ implies $E_{r}^{*, q}\left(M_{m, n}\right) \simeq E_{3}^{*, q}\left(M_{m, n}\right)(r \geq 3)$. Therefore the non trivial candidates of sources or targets of d_{r} are in $E_{r}^{*, q}$, with $q \equiv 0,-2$, -4 (8). So we conclude that $d_{r}=0$ for $r \geq 3$, since q 's concentrate in even degrees.

Next we consider the case $(\mathrm{m}, \mathrm{n})=(2 \mathrm{k}, 2 l+1)$, that is, $M_{m, n}=U(2 k+2 l+1)$ $/ U(2 k) \times U(2 l+1)$.

Let

$$
U(2 k+2 l) / U(2 k) \times U(2 l) \xrightarrow{i} M_{m, n} \xrightarrow{j} U(2 k+2 l+2) / U(2 k) \times U(2 l+2)
$$

be the inclusions. By Proposition 2 (i), we know that $E_{3}^{*, q}(j)$ is epimorphic and $E_{3}^{*, q}(i)$ is monomorphic for $q \equiv-1(8)$. Thus, because of the triviality of the spectral sequences of the both sides, the non trivial elements of $E_{3}^{*, q}\left(M_{m, n}\right)$, $q \equiv-1$, survive permanently. By same arguments as above, we have the theorem for (even, odd)-case.

Finally, we consider the case $(\mathrm{m}, \mathrm{n})=(2 k+1,21+1)$, that is, $M_{m, n}=U(2 k$ $+2 l+2) / U(2 k+1) \times U(2 l+1)$.

Let

$$
\begin{array}{r}
U(2 k+2 l+1) / U(2 k+1) \times U(2 l) \xrightarrow{i} M_{m, n} \xrightarrow{j} U(2 k+2 l+3) / U(2 k+2) \\
\times U(2 l+1)
\end{array}
$$

be the inclusions. By Proposition 2 (iii), we have

$$
E_{3}^{*,-1} \simeq B \oplus B\left\langle a_{2 k+1} b_{2 l}\right\rangle,
$$

where $B=\mathrm{Z}_{2}\left[a_{1}{ }^{2}, \ldots, a_{2 k}{ }^{2}, b_{1}{ }^{2}, \ldots, b_{2 l}{ }^{2}\right] /\left(c_{1}{ }^{2}, \ldots, c_{2 k+2 l}{ }^{2}\right)\langle\eta\rangle$. Moreover it is clear that $E_{3}^{*,-1}(i)$ is monomorphic on $B, E_{3}^{*,-1}(j)$ is surjective onto B and $\operatorname{Ker}\left(E_{3}^{*,-1}(i)\right) \simeq B\left\langle a_{2 k+1} b_{2 l}\right\rangle$. Therefore B survives permanently, and we can exclude B from this spectral sequence.

Suppose there are non trivial differentials. By Proposition 1, we can conclude that the first non trivial differential $(r \geq 3)$ is

$$
d_{r}: E_{r}^{p-r, 0} \longrightarrow E_{r}^{p, q}, \quad a_{2 k+1} b_{2 l} \longrightarrow d_{r}\left(a_{2 k+1} b_{2 l}\right),
$$

with $r=1-q, q \equiv-1$ (8). Because $p=4 k+4 l+3-q \equiv 0$ (4), the target is not in $B\left\langle a_{2 k+1} b_{2 l}\right\rangle$ but in B, which is already excluded from this spectral sequence. This contradiction affirms the theorem for the case $(\mathrm{m}, \mathrm{n})=$ (odd, odd).

Proof of Main Theorem. The rank of the free part of $K O^{i}\left(M_{m, n}\right)$ is already
given in [3], and

$$
\text { Torsion part of } \begin{aligned}
K O^{2 i}\left(M_{m, n}\right) & \simeq K O^{2 i+1}\left(M_{m, n}\right) \\
& \simeq s\left(\mathrm{Z}_{2}\right),
\end{aligned}
$$

(See [3, Lemma 2.1].), where s is the dimension of $\oplus_{p \equiv 2 i+2(8)} E_{\infty}^{p,-1}$. The theorem follows from Proposition 2 and Proposition 4.

Department of Mathematics
Kyoto University
Department of Mathematics, University of Aberdeen,
The Edward Wright Building, Dunbar Street, Aberdeen AB9 2TY, U. K.
Department of Mathematics
Kyoto University

References

[1] M. Fujii, KO-groups of projective spaces, Osaka J. Math., 4 (1967), 141-49.
[2] S. Hara, Note on $K O$-theory of $B O(n)$ and $B U(n)$, J. Math. Kyoto Univ., 31 (1991), 487-93.
[3] S. G. Hogger, On KO theory of Grassmannians, Quart. J. Math. Oxford (2), 20 (1969), 447-63.
[4] S. A. Ilori, KO^{-i} Groups of $G_{3}\left(C^{n}\right), n$ Odd, K-theory, 2 (1989), 623-24.

[^0]: Received Novenber 20, 1989

