KO-theory of complex Grassmannians

By

Akira KONO and Shin-ichiro HARA

§0. Introduction

Let $M_{m,n}$ be the complex Grassmann manifold $G_m(\mathbb{C}^{m+n})$ of m-planes in \mathbb{C}^{m+n} . There is a homeomorphism:

$$M_{m,n} \xrightarrow{\simeq} U(m+n)/U(m) \times U(n).$$

The KO^i -groups of $M_{m,n}$ are studied in [3]. The free parts of them are determined, but the torsion parts are partially known ([3], [4]). Here we compute them for arbitrary m and n, using only the Atiyah-Hirzebruch spectral sequence.

Main Theorem. Let $k = \lfloor \frac{m}{2} \rfloor$, $l = \lfloor \frac{n}{2} \rfloor$, a = (m, n) and b = (k, l). The KOⁱ-groups of $M_{m,n}$ are as follows:

i	m = 2k + 1, n = 2l + 1		all other cases
	k + l = even	k + l = odd	
0	$\frac{a}{2}Z \oplus bZ_2$	$\frac{a}{2}Z$	$\frac{a+b}{2}Z$
- 1	bZ ₂	bZ ₂	bZ ₂
- 2	$\frac{a}{2}Z \oplus bZ_2$	$\frac{a}{2}Z \oplus bZ_2$	$\frac{a-b}{2}Z \oplus bZ_2$
- 3	0	bZ ₂	0
- 4	$\frac{a}{2}Z$	$\frac{a}{2}Z \oplus bZ_2$	$\frac{a+b}{2}Z$
- 5	0	0	0
- 6	$\frac{a}{2}Z$	$\frac{a}{2}Z$	$\frac{a-b}{2}Z$
- 7	bZ2	0	0

Received November 20, 1989

From this theorem, we have many corollaries about the relations to the complex K-theory of $M_{m.n}$. (See [3] and [2, Theorem 2].) For example,

Corollary. If m or n is even, the complexification:

 $c: KO(M_m, n) \longrightarrow K(M_m, n)$

is a monomorphism.

§1. The Atiyah-Hirzebruch spectral sequence

Recall that the coefficient ring of the real K-theory KO is

$$KO^* = \mathbb{Z}[\eta, \alpha, \beta, \beta^{-1}]/(2\eta, \eta^3, \alpha^2 - 4\beta),$$

with $deg \eta = -1$, $deg \alpha = -4$, $deg \beta = -8$.

Consider the Atiyah-Hirzebruch spectral sequence

$$E_r^{*,*} \Longrightarrow KO^*(X), E_2^{*,*} \simeq H^*(X; KO^*).$$

It is well known that the first differential d_2 is given as follows [1]:

(1.1)
$$d_2^{p,*} = \begin{cases} Sq^2\pi_2 & \text{(if } p \equiv 0 \ (8)) \\ Sq^2 & \text{(if } p \equiv -1 \ (8)) \\ 0 & \text{(otherwise),} \end{cases}$$

where $\pi_2: H^*(X; \mathbb{Z}) \to H^*(X; \mathbb{Z}_2)$ is modulo 2 reduction.

Here we detect the next possible non trivial differentials.

Proposition 1. Let X be a CW complex with cells only in even dimensions, and $E_r^{*,*}$ be its Atiyah-Hirzebruch spectral sequence of KO-theory. We have

(1.2)
$$E_3^{*,-1} \simeq H(H^*(X; \mathbb{Z}_2); Sq^2).$$

Suppose there are non trivial differentials d_r ($r \ge 3$). The first one is given by

$$d_r: E_r^{*,0} \longrightarrow E_r^{*,1-r}, \quad r \equiv 2$$
(8),

with $x \in E_r^{*,0}$ such that $\eta x \neq 0$ and $\eta d_r x \neq 0$.

Proof. As $H^*(X; \mathbb{Z})$ is torsion free, π_2 is epimorphic and we have (1.2). Using the facts that $E_3^{*,q}$ is a torsion free group for $q \equiv 0, -4$ (8), a torsion group for $q \equiv -1, -2$ (8), and all elements in $E_3^{*,even}$ have even total degrees. We see the candidates of the first non trivial differential d_r (≥ 3) are:

- (i) $d_r: E_r^{*,-4} \longrightarrow E_r^{*,q}$ $(q\equiv -1 \ (8)),$
- (ii) $d_r: E_r^{*,-2} \longrightarrow E_r^{*,q}$ $(q \equiv -1 \ (8)),$ (iii) $d_r: E_r^{*,-1} \longrightarrow E_r^{*,q}$ $(q \equiv -2 \ (8)),$
- (iv) $d_r: E_r^{\star,0} \longrightarrow E_r^{\star,q}$ $(q \equiv -1 \ (8)).$

When $q \equiv -1$ (8), $\eta: E_{3}^{*,q} \rightarrow E_{3}^{*,q-1}$ is monomorphic. Thus, if $d_r x \in E_r^{*,q}$ and $d_r x \neq 0$, then $\eta d_r x = d_r(\eta x) \neq 0$, hence $\eta x \neq 0$. This makes the cases (i) and (ii) impossible.

Consider the case (iii). If there is $y \in E_r^{*,-1}$, such that $d_r y \in E_r^{*,q}$ $(q \equiv -2)$ and $d_r y \neq 0$, then there is x, such that $y = \eta x$, since $\eta : E_3^{*,0} \to E_3^{*,-1}$ is epimorphic. Moreover, we have $d_r x \neq 0$, because $d_r y = d_r(\eta x) = \eta d_r x \neq 0$, and $\eta : E_r^{*,q} \to E_r^{*,q-1}$ $(q \equiv -1)$ is monomorphic. Consequently, as $x \in E_r^{*,0}$ and $d_r x \in E_r^{*,q}$ $(q \equiv -1)$, we can reduce the case (iii) to (iv).

In the case (iv), again considering the monomorphism $\eta: E_r^{*,q} \to E_r^{*,q-1}$ $(q \equiv -1)$, we have $\eta d_r x \neq 0$, and hence $\eta x \neq 0$.

§2. Computation of $E_3^{*,-1}$

For an arbitrary ring K,

$$H^*(M_{m,n}; K) \simeq K[a_1, \dots, a_m, b_1, \dots, b_n]/(c_1, \dots, c_{m+n}),$$

where a_i and b_i are the images of the Chern classes by maps which arise from the fibre sequence:

 $U(m + n)/U(m) \times U(n) \longrightarrow BU(m) \times BU(n) \longrightarrow BU(m + n),$

and $c_i = \sum_j a_{i-j} b_j$.

Let $A = H^*(M_{m,n}; \mathbb{Z}_2)$ and $d = Sq^2$, then (A, d) is a differential algebra. We compute the homology group H(A).

Proposition 2. Let B be the algebra

 $Z_2[a_2^2,...,a_{2k}^2,b_2^2,...,b_{2l}^2]/(c_2^2,...,c_{2k+2l}^2).$

Then we have the following isomorphisms.

(i) If (m, n) = (2k + 1, 2l), then $H(A) \simeq B$.

(ii) If (m, n) = (2k, 2l), then $H(A) \simeq B$.

(iii) If (m, n) = (2k + 1, 2l + 1), then $H(A) \simeq B \oplus B \langle a_{2k+1}b_{2l} \rangle$.

Proof. Let $R = \mathbb{Z}_2[a_1, ..., a_m, b_1, ..., b_n]$, and $c_i = \sum_j a_{i-j}b_j$. The differentials d of A are given by:

(2.1)
$$dx_{2j} = x_{2j+1} + x_1 x_{2j}, \quad dx_{2j+1} = x_1 x_{2j+1},$$

for $x_i = a_i$, b_i , or c_i . We construct inductively R_i by the following short exact sequences:

$$R_1 = R/(c_1).$$

(2.2)
$$0 \longrightarrow R_{2j-1} \xrightarrow{\cdot c_{2j+1}} R_{2j-1} \xrightarrow{\pi} R_{2j} \longrightarrow 0.$$

(2.3)
$$0 \longrightarrow R_{2j} \xrightarrow{\cdot c_{2j}} R_{2j} \xrightarrow{\pi} R_{2j+1} \longrightarrow 0,$$

for $2j + 1 \le m + n$. The multiplications by c_{2j+1} and by c_{2j} commute with d, thus R_i 's are differential modules. We show the following lemma.

Lemma 3. When $2j + 1 \le m + n$,

(2.4)
$$H(\cdot c_{2j+1}) = 0.$$

(2.5)
$$H(\cdot c_{2j})$$
 is monomorphic.

(2.6)
$$H(R_{2j}) \simeq H(R_{2j-1}) \oplus H(R_{2j-1}) \langle c_{2j} \rangle$$

$$(2.7) \qquad H(R_{2j+1}) \simeq \\ \begin{cases} Z_2[a_2^2, \dots, a_{2k}^2, b_2^2, \dots, b_{2l}^2, u]/(c_2^2, \dots, c_{2j}^2, u^2 - a_{2k}^2 b_{2l}^2) \\ (if (m, n) = (2k, 2l)) \\ Z_2[a_2^2, \dots, a_{2k}^2, b_2^2, \dots, b_{2l}^2]/(c_2^2, \dots, c_{2j}^2) \\ (otherwise). \end{cases}$$

Proof of Lemma. We demonstrate the lemma by induction on *j*. Let $\bar{x}_{2j+1} = x_1 x_{2j+1}$, for $x_i = a_i$, b_i and c_i , respectively. In R_1 , $\bar{c}_{2j+1} = c_{2j+1}$, and (2.1) implies:

$$d x_{2j} = \bar{x}_{2j+1}, \quad d \bar{x}_{2j+1} = 0,$$

for $x_i = a_i$, b_i , and c_i . By easy calculations we have

$$H(R_1) \simeq \begin{cases} Z_2[a_2^2, \dots, a_{2k}^2, b_2^2, \dots, b_{2l}^2, u]/(u^2 - a_{2k}^2 b_{2l}^2) & (if (m, n) = (2k, 2l)) \\ Z_2[a_2^2, \dots, a_{2k}^2, b_2^2, \dots, b_{2l}^2] & (otherwise), \end{cases}$$

This is (2.7) for j = 0.

If d(x) = 0, then $xc_{2j+1} = d(xc_{2j})$. So (2.4) follows. Consider the long exact sequence derived from homology of (2.2):

$$\cdots \longrightarrow H(R_{2j-1}) \xrightarrow{H(\cdot c_{2j+1})} H(R_{2j-1}) \xrightarrow{H(\pi)} H(R_{2j}) \xrightarrow{\delta} \cdots$$

As $H(c_{2j+1}) = 0$, $\delta(c_{2j}) = 1$ and the maps are $H(R_{2j-1})$ -module homomorphism, we can conclude (2.6). Consider the long exact sequence derived from homology of (2.3):

$$(2.8) \qquad \cdots \longrightarrow H(R_{2j}) \xrightarrow{H(\cdot c_{2j})} H(R_{2j}) \xrightarrow{H(\pi)} H(R_{2j+1}) \xrightarrow{\delta} \cdots$$

In order to obtain (2.5), i.e., $H(\cdot c_{2j})$ is monomorphic, it suffices to show that $H(\cdot c_{2j}^2)$: $H(R_{2j-1}) \rightarrow H(R_{2j-1})$ is monomorphic, since the form of $H(R_{2j})$ is given by (2.6). As (2.7) for $H(R_{2j-1})$ is supposed inductively, this is done by using the following fact (Here we rewrite a_{2i}^2 , b_{2i}^2 and c_{2i}^2 , as α_i , β_i and γ_i , respectively.):

Let

$$S = Z_2[\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_l]$$

or

$$S = \mathbb{Z}_{2}[\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l}, u]/(u^{2} - \alpha_{l}\beta_{k})$$

830

KO-theory

and $\gamma_i = \sum_j \alpha_{i-j} \beta_j$ then $\gamma_1, \gamma_2, \dots, \gamma_{l+k}$ is regular sequence of S.

Now, (2.8) splits into the short exact sequence, and

$$H(R_{2j+1}) \simeq \operatorname{Coker} H(\cdot c_{2j}^{2}) \simeq H(R_{2j-1})/(c_{2j}^{2}).$$

Thus we have (2.7) for $H(R_{2j+1})$. This completes the induction.

We continue the proof of Proposition 2. When (m, n) = (2k + 1, 2l), $A \simeq R_{2k+2l+1}$, and hence $H(A) \simeq H(R_{2k+2l+1})$. We get (i). When m + n = even, A is obtained by the next exact sequence:

$$(2.9) 0 \longrightarrow R_{m+n-1} \xrightarrow{\cdot c_{m+n}} R_{m+n-1} \longrightarrow A \longrightarrow 0.$$

Consider the long exact sequence derived from (2.9). In the case (m, n) = (2k, 2l), $H(\cdot c_{m+n}) = H(\cdot u)$ is monomorphic, since $H(\cdot c_{m+n}^2) = H(\cdot \gamma_{m+n})$ is so. Thus we have $H(A) \simeq H(R_{2k+2l-1})/(u)$, and (ii). If (m, n) = (2k + 1, 2l + 1), we have the short exact sequence:

$$0 \longrightarrow H(R_{2k+2l-1}) \longrightarrow H(A) \stackrel{\delta}{\longrightarrow} H(R_{2k+2l-1}) \longrightarrow 0,$$

as $H(\cdot c_{m+n}) = 0$. It is easy to check $\delta(a_{2k+1}b_{2l}) = 1$. This implies (iii).

§3. Proof of Main Theorem

Proposition 4. The Atiyah-Hirzebruch spectral sequence $E_r^{*,*}$ for $KO^*(M_{m,n})$ collapses for $r \ge 3$.

Proof. Consider the maps induced by canonical inclusions $U(n) \rightarrow Sp(n)$ and $Sp(n) \rightarrow U(2n)$:

$$q: M_{m,n} = U(m+n)/U(m) \times U(n) \longrightarrow Sp(m+n)/Sp(m) \times Sp(n)$$

$$c': Sp(k+l)/Sp(k) \times Sp(l) \longrightarrow U(2k+2l)/U(2k) \times U(2l)$$

It is well known that

$$H^{*}(Sp(m + n)/Sp(m) \times Sp(n); \mathbb{Z}_{2}) = \mathbb{Z}_{2}[q_{1}, q_{2}, \dots, q_{m}, r_{1}, r_{2}, \dots, r_{n}]/(s_{1}, s_{2}, \dots, s_{m+n}),$$

with deg $q_i = deg r_i = deg s_i = 4i$, and

$$q^* q_i = a_i^2,$$

$$c'^* a_i = \begin{cases} q_{i/2} & \text{(if } i = \text{even)} \\ 0 & \text{(if } i = \text{odd)}. \end{cases}$$

Similarly r_i corresponds to b_i , and s_i to c_i , under q^* and c'^* respectively. First we consider the case (m, n) = (2k, 2l), that is, $M_{m,n} = U(2k + 2l)/U(2k) \times U(2l)$. The Atiyah-Hirzebruch spectral sequence for $KO^*(Sp(m + n)/Sp(m) \times Sp(n))$ collapses, by degree reason. Consider the maps between the Atiyah-Hirzebruch

spectral sequences:

$$E_{3}^{*,q}(q): E_{3}^{*,q}(Sp(m+n)/Sp(m) \times Sp(n)) \longrightarrow E_{3}^{*,q}(M_{m,n}),$$

$$E_{3}^{*,q}(c'): E_{3}^{*,q}(M_{m,n}) \longrightarrow E_{3}^{*,q}(Sp(k+l)/Sp(k) \times Sp(l)).$$

If $q \equiv -1$ (8), the elements of $E_{3}^{*,q}(M_{m,n})$ are in the image of $E_{3}^{*,q}(q)$, and $E_{3}^{*,q}(c')$ is an monomorphism by Proposition 2 (ii). Hence the triviality of $E_{r}^{*,q}(Sp(m+n)/Sp(m) \times Sp(n))$ implies $E_{r}^{*,q}(M_{m,n}) \simeq E_{3}^{*,q}(M_{m,n})(r \geq 3)$. Therefore the non trivial candidates of sources or targets of d_{r} are in $E_{r}^{*,q}$, with $q \equiv 0, -2, -4$ (8). So we conclude that $d_{r} = 0$ for $r \geq 3$, since q's concentrate in even degrees.

Next we consider the case (m, n) = (2k, 2l + 1), that is, $M_{m,n} = U(2k + 2l + 1) / U(2k) \times U(2l + 1)$.

Let

$$U(2k+2l)/U(2k) \times U(2l) \xrightarrow{i} M_{m,n} \xrightarrow{j} U(2k+2l+2)/U(2k) \times U(2l+2)$$

be the inclusions. By Proposition 2 (i), we know that $E_3^{*,q}(j)$ is epimorphic and $E_3^{*,q}(i)$ is monomorphic for $q \equiv -1$ (8). Thus, because of the triviality of the spectral sequences of the both sides, the non trivial elements of $E_3^{*,q}(M_{m,n})$, $q \equiv -1$, survive permanently. By same arguments as above, we have the theorem for (even, odd)-case.

Finally, we consider the case (m, n) = (2k + 1, 2l + 1), that is, $M_{m,n} = U(2k + 2l + 2)/U(2k + 1) \times U(2l + 1)$.

Let

$$U(2k+2l+1)/U(2k+1) \times U(2l) \xrightarrow{\iota} M_{m,n} \xrightarrow{J} U(2k+2l+3)/U(2k+2) \times U(2l+1)$$

be the inclusions. By Proposition 2 (iii), we have

$$E_3^{*,-1} \simeq B \oplus B \langle a_{2k+1} b_{2l} \rangle$$

where $B = Z_2[a_1^2, ..., a_{2k}^2, b_1^2, ..., b_{2l}^2]/(c_1^2, ..., c_{2k+2l}^2) \langle \eta \rangle$. Moreover it is clear that $E_3^{*, -1}(i)$ is monomorphic on B, $E_3^{*, -1}(j)$ is surjective onto B and Ker $(E_3^{*, -1}(i)) \simeq B \langle a_{2k+1} b_{2l} \rangle$. Therefore B survives permanently, and we can exclude B from this spectral sequence.

Suppose there are non trivial differentials. By Proposition 1, we can conclude that the first non trivial differential $(r \ge 3)$ is

$$d_r: E_r^{p-r,0} \longrightarrow E_r^{p,q}, \quad a_{2k+1} b_{2l} \longmapsto d_r(a_{2k+1} b_{2l}),$$

with r = 1 - q, $q \equiv -1$ (8). Because $p = 4k + 4l + 3 - q \equiv 0$ (4), the target is not in $B \langle a_{2k+1} b_{2l} \rangle$ but in *B*, which is already excluded from this spectral sequence. This contradiction affirms the theorem for the case (m, n) = (odd, odd).

Proof of Main Theorem. The rank of the free part of $KO^{i}(M_{m,n})$ is already

given in [3], and

Torsion part of
$$KO^{2i}(M_{m,n}) \simeq KO^{2i+1}(M_{m,n})$$

 $\simeq s(\mathbb{Z}_2),$

(See [3, Lemma 2.1].), where s is the dimension of $\bigoplus_{p \equiv 2i+2(8)} E_{\infty}^{p,-1}$. The theorem follows from Proposition 2 and Proposition 4.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ABERDEEN, THE EDWARD WRIGHT BUILDING, DUNBAR STREET, ABERDEEN AB9 2TY, U. K.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] M. Fujii, KO-groups of projective spaces, Osaka J. Math., 4 (1967), 141-49.
- [2] S. Hara, Note on KO-theory of BO(n) and BU(n), J. Math. Kyoto Univ., 31 (1991), 487–93.
- [3] S. G. Hogger, On KO theory of Grassmannians, Quart. J. Math. Oxford (2), 20 (1969), 447-63.
- [4] S. A. Ilori, KO^{-i} Groups of $G_3(C^n)$, n Odd, K-theory, 2 (1989), 623-24.