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§ 1 .  Introduction and summary

1 . 1 .  T h e  B org-Levinson theorem  concerns t h e  uniqueness in inverse
eigenvalue p ro b lem s. W e  firs t reca ll t h e  1-dimensional c a s e . C onsider the
eigenvalue problem

— y" + q(x)y = 0 < x < 1,
t y(0) = y(1) = 0,

where q(x) is  a  rea l function . Let

1 (q) < /12 (q) < • • •

be the eigenvalues. A s can be seen easily, even if

= A i (g2 ) for a ll i > 1,

for two potentials q1 and  q2 , it does not necessarily imply g , = q2 . Thus to derive
the  uniqueness o f potentials having th e  same eigenvalues, one  m ust add some
auxiliary condition. L et y  = y(x, ) , g) be the solution of the initial value problem

(1.2)
y(0, A, g) = 0, y'(0, A, g) = 1.
—  y" + q(x)y  = Ay, 0 < x  < 1,

Then we have ([1], [6])

Theorem (B org-Levinson). Suppose that

= Ai (q2) f or all i > 1,

Y ( 1 , Ai, q1)= Y '( 1 , Ai, q2) f o r all i > 1,

where A i = 2 i (g 1 ) = 2 i (g2 ). T h e n  g , = g 2 .

This is  a  starting point of one-dimensional isospectral th eo rie s . The recent
article of P6schel-Trubowitz [9] gives a deep insight to this problem. It is proved
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tha t the map

{Ai(q)} x {log )/(1, A ,  q)1} 1

is a  real analytic isomorphism from L2(0, 1) to a Hilbert space of infinite sequences
([9], p.116), and tha t for any potential p

M(p) = {q; A i (p) = A i (q) for a ll i 1}

is  a  real analytic manifold (isospectral manifold) w ith the  system of coordinates

t1oglY( 1, Ai, 0117)=1

([9 ], 11  71 ).
d2Since y(x, Ai , q) is  a n  eigenfunction of dx2 + q(x) with eigenvalue Ai , this

result shows that there is a  one-to-one correspondence between the potential and
the pair of all eigenvalues and the norm al derivatives of eigenfunctions.

1.2. W e  tu rn  to  th e  n-dimensional case (n  >  2 ) . L e t Q  b e  a  bounded
domain in  R" with smooth boundary S. Consider the Dirichlet problem

f  (—  +  q ) u  Au in  Q,
tuls =

Although we consider the Dirichlet problem, all the results presented below holds
for the Neum ann or Robin boundary conditions by  a  suitable modification.

L e t A, < A 2  • • •  b e  th e  eigenvalues associated with (1.3). T o derive  the
uniqueness theorem corresponding to th e  1-dimensional case, we consider the
normal derivatives of eigenfunctions. However, we m ust be careful to choose a
system of eigenfunctions, since in  the  multi-dimensional case eigenvalues are not
simple in general.

Let m be the multiplicity of Ai ,  and be a  real-valued orthonormal
eigenfunctions associated with Ai . W e set

f(aau:  , . . . , aauv. )

y being the outer unit normal to S. O n e  can then see that for two such system of
eigenfunctions lu„..., v.} , there exits an orthogonal m atrix T  such
that

(1.4)
(au , au . av, ay.

ay • •' av ) av  ''• '' av  ) T o n  S.

N ow  (1.4) defines a n  equivalent relation in  th e  space o f the  functions on the
boundary S. Further, (1.4) shows th a t  fo r  th e  s e t  I E J ,  i  being fixed, there
corresponds only one equivalence class, which we denote by 14;, namely,

(1.3)

= lEil/ - •
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The following theorem generalizes the resu lt of Borg-Levinson to the multi-
dimensional case.

Theorem A  (N achm an-Sy lvester-Uhlm ann). L et q 1 , q 2  b e  re al f u n c tio n s
E C '( Q ) .  Suppose that

Ai(q1) = A 1(q2) f o r all i > 1,

l4(q 1 ) = 14/.".(q2) f o r all i> 1 .

Then q, = q 2 .

For the proof, see [8], and also Ramm [10 ]. Suzuki [12] recently obtained
an interesting generalization. Now, the one-dimensional results lead us t o  the
following questions. Is  the map

tAiM i x

a (local) isom orphism  ? C an {  V W _ be the coordinates of isospectral set of
potentials? T h e  answers are always negative. In fact, we have

Theorem B .  L et (I,  q 2 eC"(Q ) be real-v alued. Suppose that there ex ists an
N  > 0 such that

At(91) = A1(q2) f o r all i> N ,

N q i)  = 1V(12) f o r a ll  i> N.

Then q 1 = q 2 .

In other words, q, = q 2  provided Ai (q 1 ) = A i (q2 ), Wi (q,)= l4(q 2 )  except for a
finite number of indices i. The above theorem means that the totality of Ai and 1, K
is too much to determine the potential. One can further see that the potential q(x)
is uniquely reconstructed from the asymptotic properties of the eigenvalues and the
eigenfunctions (T heorem  2 .3 ). It is  a  com m on belief that, contrary to the 1-
dimensional case, the multi-dimensional eigenvalue problem has a sort of rigidity
(see e .g . [2], [3]). W e can find one of its examples here.

1.3. The proof of Theorem B is given in § 2 .  The essntial point of the proof
is to  introduce a  function sim ilar to the scattering matrix in  scattering theory
(Lemma 2.2). By using the idea of Born approximation in scattering theory, one
can reconstruct the potential from the Neumann operator (Theorem 2.3), from
which Theorem B easily follows. In §3, these results are extended to the operators
of variable coefficients by introducing asymptotic solutions and Fourier integral
operators, a l t h o u g h  r a t h e r  s t r o n g  r e s t r i c t i o n s  are im p o s e d  o n  th e
coefficients. Needless to say, many problems are left open in this field of multi-
dimensional inverse spectral theory. Among them, perhaps, the most interesting
problem is to find a set of data related with the spectrum which has a one-to-one
correspondence between the potential. A t the presen t stage, however, the
complete solution is beyond of our scope.
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§ 2 .  Proof of Theorem B

Let A D be the Laplacian in 0  with the Dirichlet boundary condition. For a
bounded real function q(x), le t NO., g )  be the Neumann operator :

(2.1) MA, = —

O v
ls,

where y is  the solution of the Dirichlet problem

( —  + q)y = in  0 ,

v  =  f .

We always assume A the eigenvalues
We introduce the following notation

of — A, + g.

(2.2) (f, g) = f (x) g(x) dx,

(2.3) < f, g > = f (x) g(x) dS x ,

(2.4) A,co(X) = e " , A e C — ( — oc, 0), w e s n -1 .

Definition 2.1. Let the function S(A, 0, co; g )  be defined by

S(A, 0, co; g) --= <N(A, q, _o>.

The crucial fact is the following lemma.

Lemma 2.2.

S(A, 0, co; g )  =  -  -
2

(0 - co) 2  e - " ( " x  d x
n

I+ e - 1 8 ' ) x g(x) dx - (R(A)g9 A,., gy9,1, _0),
Q

where R(A)= ( — AD  + g — A )' .

Proof. Recall the Green's formula

(2.5) (A u•v -u•A v )dx =
u

— y
av

d s .yu L
Ov

Let t/J (x, A.,  (o) be defined by

tfr(x, A, co) = cp,„(x) - R(A)(gyo A,(0)(x),
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which is the solution to  the Dirichlet problem

5(- A + q ) i=2 1 i in  Q,
tfr Is = (P2,.•

W e have by Definition 2.1

aS(A, 0, co; g )  = I 2 , _6 (x)—
a v

0(x, A, co)dSx .
Js

Let u = 0  and y = in  (2.5). Then

a
f  g(x)(It(x, _ 0 (x) d x  =  ( — _0 -  (If )dSOv ' ev x•

W e have, therefore,

S(A, 0, co; g )  = -  i ‘ f i. 1.  O. ve -  W 'T( ' )x dSx

J s

+ f e - i '5 . ( ' )x g(x) dx - (R (2)q , gg o A , _ 0 ).

Taking u = e 0 - "̀)x  and y = 1 in  (2.5), we have,

f-  2 (0 - (0) 2e -  i ( ' - ' )x  dx  = - i f  ( 0 -  cv)• ve - " Ø dS ,.
Jo J5

Letting u = e 's /3"Øx, y  = in  (2.5), we also have

f0 - - i .\f i, (0 + w)• ye -  ' ( ' ' ' ' ) x dSx .
S

Adding these two equalities we obtain

A
-  i f 0 .  v e - W 1 ( e - w)x dS x  =

s
-  -

2
(0 -  0 )2e -  'I X ( ' - w)x dx

n
,

which completes the proof.

One should note that the formula in Lemma 2.2 is very similar to the S matrix
in  scattering theory (see e.g. [11]).

H e re  w e  re c a ll the  B orn  approx im ation  utilized in the reconstruction
procedure i n  sca tte ring  theory . L e t  0E  R" be arbitrarily  fixed. C hoose

ES"'  s o  t h a t  n is  orthogonal to For a  large parameter N , we define

 

4_
=  1 1  2N '

C N  = ( 1I V   ) 1/2

4N2

(2.6) coN = curl 2 N '

NfiN = N  +

  

£7
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They have the following properties :

oN ,  c o x  e  s n- i{

\/N  (O N  —  CON) - 4  a s  N  - -  aD,

where Tm denotes the imaginary p art. Using (2.7) and Lemma 2.2, one can easily
show

Theorem 2.3.

11 
liM  S ( tN , ON, CON; q) = 2 e- ix4 dx + e  i x 4  q(x) dx.

N—■ co 2

Thus one can reconstruct the potential q from S(.1., q).
N ow  w e turn to  the proof of Theorem B.

Lemma 2.4. Under the assumptions of Theorem B , there exists a constant C
> 0  such that

II N(2, (11 ) — N(2, q 2 )11
' B( ` ' s» I al'

f or large 121, where II„• „B(L2(s)) denotes the norm o f  an  operator on OS).

Theorem B then readily follows from Definition 2.1, Theorem 2.3 and Lemma
2.4.

Proof of  Lemma 2 .4 .  This is intuitively obvious, since N(2, q) has, formally,
the integral kernel

,.0 1 ( Ou i ( x ) ( Ou i ( y ) ,

i ' 1 A i — ), a v  ) Ov )

ui (x ) being  the eigenfunction associated w ith Ai . T o  m a k e  th is  observation
rigorous, we use the idea of [8 ] , Lemma 3.1. Choose m large enough and set

i '  i 2 ) , _  i ( aui ( x ) ( Oui ,  1r(x, y) = m ! (A  _
i= i Ov ) av ) U '' .

Then as has been proved in  [8 ] ,  Lemma 3.1, r(x, y) i s  the integral kernel of

(

c±  m  N(2; q). Therefore, by our assumption,
d2

Y (N ( 2 , qi) — NR q2)) = m! — A r m - 1  A i,
=

A i being a  bounded operator. Integrating m times we have

(2.7)
Im tN o o  a s  N

IM N O N , 'M N. f iN CON  are bounded as N oo,
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in- I

qi) — MA , q2 ) = — 2) - 1  A i + Bk,
i =1 k=0

where B k  is  a  bounded operator. The formula (3.6) of [ 8 ]  shows that B„
= 0, 0 < k < m — 1, which proves the lem m a. I=1

Remark 2.5. From the very proof, one can see that if the eigenvalues and the
norm al derivatives o f  eigenfunctions a r e  sufficiently c lo se , th e  potentials
coincide. In other words, the potential is uniquely determined by the asymptotic
properties of eigenfunctions and eigenvalues. We should also remark that the
main concern in  [8 ]  is to deduce the uniqueness of the potential from the
Neumann operator fo r  a  fixed value 2. In  [7 ] ,  Nachman has obtained a
construction procedure of the potential from the Neumann operator with fixed
A. See also Novikov-Khenkin [4].

§3. Operators of variable coefficients

We briefly mention the case of variable coefficients. Consider the operators
n a

Ho =  —  E  (a i i (x)—n  

i , j =1 - ex ;

H  = H o  + g(x),

with Dirichlet boundary conditions. The most interesting problem in this case is
to recover the coefficients ai i (x). However, it seems to be so difficult (for a related
problem see [5]) that in this paper we content ourselves by fixing a,; (x) and trying
to reconstruct the potential q (x ) . We assume that a i (x) = a 1(x) and that

(3.1) sup E  a'(a i i (x) — 6,; )1
x " 2

is sufficiently small,

where 0 ' = 
( ) a1 (

, a = , ,  an )  and m is a  sufficiently large fixed
xO

constant.
We employ the method o f geometrical optics. First we note that by

extending a,; (x) suitably one can assume that a i (x) is defined on R" and satisfies
(3.1) on W . Next we construct functions cp(x, co), ao (x, co), a i (x, co) satisfying

ago ago
; au  ax, ax ;

L a, = 0,

La i  +  M a, = 0,

ago a aai; ego a29
L = 2E a.;   n   E   +  ,

("xi ux ; u x ,  u x i o x i u x ;

aa, 0 a29
M  =E  + Ea,•

ax, ax ; j , j a x i a x ; '
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for xeS2 and weSn - 1
.

By the standard method, choosing 6  sufficiently small, one can construct a
solution cp(x, co)e Cm(r2 x S" -  1)  such that

(3.2) sup E ac;,a1l,(q)(x, — x • 01 GO,
xe 12, toeS. Ifil 7P1

and solutions ao (x, (OE Cm (Q x sn-  '), ai (x, co)e Cm- 3 (0  x S ' ' ) that

(3.3) sup E ac; (a0 (x, co) — 1)1 CO,
xen, toeS" - + m — 2

C  being a constant independent of O. W e  set

(3.4) OÀ,.(x) = e is/ I 9 ( x'' (ao (x, co) + (0 ) _  ai (x, co)),

(3.5) g (x) = e' r i : 9 ( x'w) (H , — 2) , , , ,o (x)

= (0 ) _  M a  (x, to).

Let the Neumann operator for H = H o  + g  be defined in the same way as in
a(2.1), where the normal derivative —

a v  
is replaced by

a a=  E  a i i (x) viavH i j

We define

(3.6) S(2, 0, to; g )  = <N(),, q) 01, .,

Using the  Green's formula

(H o  • v — u- Ho v)dx = —
s (

au a v  
av  H y u a v H )dS ,

one can prove the following lemma in the same way as in Lemma 2.2. Note that
the  complex conjugate of ei`l  " (xm is equal to e-  (p(x,0).

Lemma 3.1.

a
 ,S(2, 0, co; q)= f E a i i ( ,,,,) a dx

dX iO X in

— 2 OA, .  0,,,dx — 0 , . e - i . I . v ( x , O )  
g7i.,0 dxf

12 n .

+ f  0 "  G 0 dx — (R(2)G 2 „  G71 , 6),
Jo

w here GA, .  = ga," +  e W ;1 "(" ) gA,,,„ R(2) = (H D  —  2) -  ,  H ,  being H o + g  with
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N-■

(3.8)
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Dirichlet boundary condition, and 2 0  the eigenvalues of  HD.

N ow , let ON , a)N a n d  tN b e  a s  i n  (2.6). W e com pute th e  limit
limN „  S(tN , ON , coN ; g) in Lemma 3.1. Obviously the third and the fifth terms of
the right-hand side tend to 0 as N  (X). To compute the remaining terms let

9(x, =  I c p ( x ,  —
I

)  for 0 O. T hen

(9(x, ON) — (P(x, coN)) = • V (,o(x, (1).

In fact,

NfiN1 (P (x, ON) —  (x, coy)) = N /N (ON  (1)N) (17 9)(x, (ON  + (1 —  t)coN)dt.

Letting N  tend to infinity we obtain (3.8). We have, therefore

(3.9) lim 0,,,,,,,,, G i. .,, ,o , dx  = I) 2  q ( x ) d x .
i■i —  C9

11J o

A straightforward calculation shows that

a  ,,, a , a9 , a9 , n ,
— w  A co . C  0  =  A OC, (0) —  V I  " )  

U ' ot,(0
e X i ' O X k ' OX •J eXk

±  e - " M x ' ° ) -  9 ( x 'w )) B ik(X , 2, 0, co),

where,

Bi k (x, 2, 0, co) =
{aa ()PC. aXk aX

k

-  (X, CO ao (x, co)
,

 (x, 0)
0 9  

(x, 0) a0 (x, 0)
3 a °

 (x co)}
act 

+ — (x , co)fa i (x, co)
a a °

 (x, 0)
ax • axk

aa,
axk(x, 0)a0 (x, co)}

aa, 
( x ,  c o ) a , ( x ,  0 ) }xk

( x ,  O) a 0 0 ) &11 (x, w) a ax • aX •

aao  ( x ,  co acio  ( x , +  O( ').
ax ; a x k

The Taylor expansion with respect to co and 0 and a simple manipulation show the
existence of the limit

(3.10) lim a ik (x)B i k (x, tN , ON , coN) 132 (x, n).
N-■ co '

We introduce the inner product < , >A (x ) by

(3.11) 11>A(x) — E ai k (x)
k
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Since (p(x, co) satisfies the eikonal equation it follows that

acp OcpEa k (x) (x, 0) — 1
j,k ux; oxk

1
= — —

2  

(Fx (p(x, w) — (x, 0), 17
),(p(x, co) — Vx cp(x, 0)>, ( x ) ,

which implies the existence of the limit

Ocp Ocp
(3.12) tN ai k (x) (x, (0,,i ) (x, ON) — 131(X,

W e thus arrive at

Lemma 3 .2 .  Let ON , coN and tN b e  as in (2.6). Then

l irn  S ( tN , ON, W N ; q) = e - t4 .  v o ( " ) (b i (x, n) + b 2 (x, n))dx
N  co

f2

+ 1err 1 4 . 1 7 4 4 9 (x
'
n) ao (x, ri)2 q(x)dx,

12

where bi (x, n) and b2 (x, n) are defined by (3.12) and (3.10), respectively.

O ur next aim  is to reconstruct the potential from the expression

(3.13)j '
1 7 4 9 ( x 0 )  a0  (x, 02 q(x) dx.

If n can be chosen a s  a  smooth function of (3.13) can be viewed as a Fourier
integral operator applied to the potential q (x ) . Since r/( ) is orthogonal to and
o f  ab so lu te  v a lu e  1, it d e f in e s  a  ta n g e n tia l v e c to r  field o n  t h e  u n i t
sphere. However, as is well-known, whether or not we can choose a smooth non-
singular vector field on the unit sphere depends upon the space dim ension. If n =
th e  space dimension is  even , there  ex ists a  Cm-function ri()e Cm(Rn — {OD,
homogeneous of degree 0, such that n( ) is orthogonal to c. C o n s id e r  the Fourier
integral operator

A f  =  J e a o ( x ,  n ( ) ) 2 f (x) dx,

= • (voci)(x, n ( )).

Using (3.2) and (3.3), one can easily see that

A* A = I  +  0 (6 ) as

which shows th a t  o n e  can reconstruct q(x ) from  (3.13) w hen 6  is sufficiently
sm a ll. If the space dimension is odd, we introduce a  partion of unity {AO} such

that xk ( )e Cœ'(Rn — {0}), Ekxko2 = l  xkg)= x ,( -
11

) and  on  suppxk(), n can
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be chosen a s  a  sm ooth function o f  0 0 w hich  is  deno ted  by  1, ( ) . D e f in e  the

F o u rie r  integral operator i l k  by

Ak f = ao(x, tik( ) )2  x k () f(x )d x ,

tilk(x, = •([7 (P)(x, 111,( )).

T hen w e have

E A t A k =VL_,XIADY +

= I + 0(6),

a n d  hence, Ek  A kq = (I + 0(6))g, which show s that w e can reconstruct g from
(3.13).

W e h a v e  thus proved

0
Theorem 3.3. Theorem B also holds for the operator HD, where —

0 v  
is replaced

0
by  0v ,
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