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Local trees in the theory
of affine plane curves

By

D. DAIGLE*

If S is a complete nonsingular algebraic surface and D is a divisor of S with
normal crossings then the pair (S. D) determines a weighted graph which carries
some information about the surface S\D . If the divisor D with which one has
to  cope  doesn 't have normal crossings then one has to  desingularize it by
blowing-up the surface a t  the "bad" points of D .  This paper develops a graph
theory which relates that desingularization process to the weighted graph obtained
at the end. This is done by attaching graph-theoretic devices called "local trees"
to the singular points of D. in  such a way that each blowing-up gives rise to a
transformation of local trees (also called a blowing-up).

The first and third sections study sequences of blowings-up of local trees in
a  purely graph-theoretic manner. and the case where certain members of the
sequence are contractible to linear trees is given particular attention. The two
other sections apply these m ethods to geom etry. The second section gives a
characterization of the coordinate lines in the affine plane, in term s of the
m ultiplicity sequence at infinity; the fourth  section classifies the birational
morphisms of the affine plane with one or two fundamental points.

These graph-theoretic methods have been developed, as a part of our doctoral
thesis research, in order to investigate certain problems related to the geometry
of the affine plane. W e would like to thank our professor, K.P. Russell, for the
help he provided during the time this work was done.

For the theory of weighted graphs, we use the notations and results contained
in the fift section of [3]. For all geometric considerations, our ground field is
an arbitrary algebraically closed field k, all curves and surfaces are irreducible
and reduced, all surfaces are nonsingular and the word "point" means "closed
point". If X  is a (nonsingular) surface, Div(X) is its group of divisors: if P  is
a point of X  and D  D iv (X )  then  p(P, D ) is  the multiplicity o f P  on D; if
D 'eD iv(X ) h a s  no component in com m on with D  then  (D.D') p  i s  the local
intersection m ultiplicity at P :  i f  X  is com plete then D. D' i s  the intersection
number and D2 D . D  (self-intersection number). If DeDiv(X ) and -4  X  is
a monoidal transformation (resp. X  X '  is  an open immersion) then the strict
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594 D. Daigle

transform  of  D  in )7 (resp. the closure o f  D  in X ') is denoted by D  whenever no
confusion seem s likely to arise. N .  Z. and Q  denote respectively the sets of
positive integers, integers and rational num bers. If a, b  are two integers, their
g.c.d. is sometimes denoted by (a, b).

1. Local Trees

This section introduces local trees and begins the study of their blowings-up and
contractions. W e refer to  the last section of [3 ] for generalities about graphs
and weighted graphs.

Definition 1.1. A  local tree is a 4-tuple = (T, xo , R, Q) where:
1. T is a finite set and xo T ;
2. R is  a collection of subsets of T such that every (l e R contains exactly

two elements, and (T R) is a tree:
3. Q  is a set m ap Tqx 0 1 Z.

The elements of T are called the vertices, and those of R the links; xo  is called
the root of ..5r. Given x E tx0 }, Q(x) is  the weight of x .  W rite R° = {a E R I
xo ea}  and call the elements of R

°
 the principal links of 5 .  The neighbours of

the root are called the principal v ertices. The set of neighbours of xe T is denoted

An isomorphism of local trees is a bijective map between the sets of vertices,
preserving the root, the links and the weights.

Definition 1.2. If (T xo , R . 0 ) is a local tree, a multiplicity  map for 5
is a set map

p: R° u Ixo } N

(where N is the set of positive integers) such that p(a)> p(x0) for every a e R° .
An m-tree is  a pair (.9-. p) where gr is  a local tree and p is  a multiplicity

map for G iven an m-tree p ) ,  if x is either the root or a principal link
the num ber p (x ) i s  c a l l e d  i t s  m ultiplicity : d e n o te  b y  .AP(..F, p) the set
{x e aV,(xo ) I p( fx, x } )  = p(x 0 ))

Definition 1.3. Let .9- = (T x o , R . 0) be a local tree. A blowing-up of is
a local tree = (T', x ,  R ',  f2') together with a root-preserving injective set map
fi: T--■T', such  tha t if we identify T w ith  its  image in T ' then  the following
conditions hold:

1. T' = Tu {e} , for some e  T ;

2. R ' = {{e. x 0 }}1.1(R 
{{x,

 x0}IxeA})U{{x. e}ixe A I  fo r  so m e  se t A  g_
./V:9 - (x 0 )  such that I.A ',-(x0 )\A15 1. Note tha t A  = .Arg -(x0 )\Arg - (x0 ):

{ — 1, if x = e
3. f2'(x) = f2(x), if x 0 {e, x 0 } U Ars -(x0 )

f2(x) — 1, if x EArs-()C0).
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A  m ap 13: T ' such that the above conditions hold is called an identification
m ap . A  blowing-up of 3 - is denoted  by  Y 4-  5 -  o r  3-  -+ 3-  a n d  the se t T is
usually identified with its im age in T'.

Definition 1.4. Let (Y, p) be an m-tree. Y  = ( T, x0 , R, 0 ) .  We define three
notions of blowing-up of (Y . p).

1. A  blowing-up of the  f irst k ind  o f (Y . p ) i s  a n  m-tree (3- '. p'), where
3-  =  (T ', x , R', (2'), together with an identification map T-■ T' (i.e., we
have .5- . . 9 1 ,  such that (in the notation of (1.3))

(a) (3", p) ç .Ar."(x 0 )\.,4';-.(x0 ):
(b) p'({x, x 0 }) = p({x, xop - p(x0 ), if xe.1-(x 0 )n .(x0);
(c) p'({x o , e}) p(x0 ).

A  blowing-up o f the  first kind of (.5- . p ) will be denoted by (3 - , p)—
(Y , p) o r  by (g - , p').

2. A  blowing-up of the second k ind o f  (Y , p ) is  a  blowing-up of the  first
kind (3", p') such that equality holds in  (la). T h a t  situation
will be indicated either by (Y ', p ) o r  by (3', p) 4-- (3-  p ').

3. A  blow ing-up of  the third k ind of p )  is  a  blowing-up of the second
kind (g - , p ).- (3 - . p') such that equality holds in  (lc). T h a t  situation
will be indicated either by (Y . ', p) o r by  (3- , p ' ) .

R em arks. 1. If 3- 4- g-  then has either one  o r two principal link(s).
2. Any local tree Y  can be blow n up: in  particular, there is an  essentially

unique blowing-up Y  4 -  3 -  such that .5-  has exactly one principal link.
3. I f  (3", p ') then , in  th e  notation o f  (1.3) a n d  (1.4), p(x 0 )

p'({e, x 0 }) p'(x 0 ).
4. A  blowing-up of the second (or third) kind can be perform ed on an

m-tree p) i l lp ) I 1. If  th is is  the case , then there
is a n  essentially unique blowing-up 3- 4- .5- -  such  that (Y . p')
for some p' (where p ' is  no t necessarely unique).

Note tha t the set of multiplicity maps fo r  a  given local tree is an additive
(nonempty) semigroup. W e make the following trivial observation:

1.5. L e t  Y .-  3-  b e  a  blowing-up of local trees with identification map
T - •  T '.  Then, if p ' is any multiplicity map for there is a  unique p such

th a t  (.5-, a) (3 - , p') (w ith  th e  sa m e  /I ) . T h e  map so  d e fin e d  is  a
homomorphism of semigroups: denote it by /3*. In general, II* is neither injective
n o r  surjective. I n  particular, /3* (P i) =  r(i22)< . /4 1(a) = P2(a), fo r  a l l  principal
links a of .5'.

This can be generalized a s  follows:

L em m a 1.6. I f  . 'T0 4-••• 4 -  3 ;(k  > 1 ), each m ultiplicity  m ap p ,  f o r S r,
determines uniquely (p, ...... pk _ i ) such that (.5",,, po ) •••• (g ic , ilk ). M oreov er, i f
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(p0...... ILO  is such  that ( some q € Q  we have•5 -o• Po') • ••• (̀•-rk• P i)  and fo r

qpk (a)— i4(a), all a e R ,  then ; 4 _ 0 .

Definition 1 .7 . Consider a  sequence of local trees S: 5 .0 57-1, where
k is any nonnegative integer.

1. Define Mul(S) to  be the set of k + 1-tuples p = (po .............. p k ) of multiplicity
m aps such  that (.54-

0 . po ) -•• (3 1. p i ). T hen  Mul(S) is  a  semigroup
and (1.6) s a y s  t h a t  the projection m a p  Mul(S)—■ Mul(.fi) is an
isomorphism.

2. Suppose tha t k 1 and tha t 5 0 h a s  one principal link a. An element

P = (P o - -  pk ) of Mul(S) is said to satisfy the condition of (1.7.2) if the
following holds:
Let the euclidean algorithm of Ip o (a), po (xo )) he written as

p0 (a) = 2 oPo + Pi (where po = po (xo ))

Po=  2 IP1 P ,

P s -  = 2 sPs•

Then (p0 (x0 )...... pk _ 1 (xo )) = (Po ...... po  p , ...... p j  where each p i occurs

exactly 2 i  times.

L em m a 1.8. Let S: •-• 5 " ,i b e  a  sequence of local trees such that

k and such that has one principal link. Then the following conditions are

equivalent:

1. (1•15", has one principal link) = (0, k),

2. all peMul(S) satisfy the condition of (1.7.2).

3. some pE M U 1(S) satisfies the condition o f (1.7.2).

R em arks. •  If the conditions of (1.8) are met, p  M u l(S ) and if the
principal links of 5 -

0 and .Fic are a and a' respectively, then pk (d) is  the
g.c.d. of !O a )  and po (xo ).

• If k>  1 and the conditions of (1.8) are met then the principal vertex of
,f ;  is  a  branch point (for has tw o  principal links, w hile g i  has
only one). So a branch point is created each time an euclidean algorithm
terminates.

Definition 1.9. I. G iv e n  S: g-k such that k> 1 and both ..ro  and
.9,, have one principal link, define
Jr(S) = (j10 j < k, .1'; has one principal link and has two).
ft(S)=  (j10 < j  k, 3 ;_ , has two principal links and 3 ;  has one) and
/ = (# of branch points of ..'fk) — (# of branch points of 3 -

0 ).
W e see that 1.0(S)1= pr(s)i = 1. Write

.1(S) ={j 0 ............... jt-  11........ 0 .........< ......<
JOS) =  (h, ...... h,)........... 0 <h, <••• < h, < k:
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then 0  j o < h 1 j i  < • • • 5,h_, < h, k .
If  p = (po ............ p k ) e  Mul(S) then the  pa ir (S , p) determines the  following
numbers (where xo  i s  the root of any .3; and a; i s  the principal link of
5 ,  whenever i  is  such that g; has exactly one principal link):

io = 14;.(aio){
i, = p ( a )  = p ( a ) , 0 < r < 1

ii = Ph,(ah,)

Jmy = pi (x0 ), 0 r  <  1

tm = m(S, p) = m o  + •-• + m i _ i .

T hen io > mo  i ,  > m, _. — i1 _ 1 >  n11_ 1i ,  a n d , b y  (1.8), w e have
gcd ( i ,_ ,, m,,...,) = i ,  for r = 1 I 

Definition 1.10. Given an  infinite sequence S: (.9 , po )—(3-,, p,) - - • , there
exists an  i > 0 such that

• g ;  has at m ost one principal link, and if it has one then its multiplicity
is ; i 1(x0 ):

• V]> i. .3-; has exactly one principal link, say ai .  and p 1 (a3 ) = p i (xo ).
T h e  le a s t  s u c h  i w ill  b e  d e n o te d  k(S). O b se rv e  th a t  if k =  k(S) then
(g i. ilk) (.1 -k+1. Pk+ 1) * "'•

Relation to Geometry. See the last section of [3] for the definitions of strong
normal crossings (s.a.e.) and of the dual graph l (S ,  D) associated to a pair (S, D).

Definition 1.11. We consider a triple (P, D. S )  where
1. S  is a  nonsingular projective surface,
2. DE Div (S) has s .n .c . and r.f(S, D) is  a  (possibly empty) tree,
3. Pe supp(D) if D O.

The local tree of (P, D, S) is  5" = (T, x ( ,, R. Q) where:
(a) xo = P, T= {P} U {D, ...... D } ,  where D 1 ,...,..... D t h e  distinct irreducible

components of D,
(b) R = {{Di . #  j and POD 1 r1D1U  {P, D i llP E
(c) fl(D i ) = D ,  (self-intersection number in  S).
The local tree  of (P, D, S) is denoted .F(P, D, S ) .  I f  C  is  a  nonzero effective
divisor of S such that

4. Pesupp(C),
5. C  and D have no irreducible component in  common,

we define the m -tree o f  (P, C, D. S )  to be (5 . , p), where 3 =  .5r(P, D, S ) and
p: R

°
 u tx,} N  is as follows:

( d )  p(x 0 ) = ti(P. C ) (multiplicity of P  on  C),
(e) p ( {x o , = (C.D i )p (local intersection multiplicity at P), if tx0 , Di } eR ° . i.e.,

if P eD i .
Let (if (P. D. S ) denote the  se t o f nonzero effective divisors C  of S  satisfying (4)
and (5 ). W e note th a t it  is  a  semigroup and  tha t th e  m ap C i--)p , determined
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by conditions (d-e), is  a homotnorphism of semigroups W(P, D. S) -4M ul(f ).

1.12 (Blowing-Up). Suppose (P. D, S) satisfies conditions (1-3) of (1.11) and
let ..f" = (P, D. S). Let 7r: §-4S be the blow ing-up of S  at P . E = (P)e
Div(g), le t  -  m e a n  "strict transform of..." and define D' = 13 + E e D iv (§ ) . If
P' is a point of E  then we may consider .5r - ' = (P', D'. g) and we clearly have
5 - 4- X', where the identification m ap is the obvious one.

If C efe(P, D, S ) is  su ch  th a t P 'e su p p (e )  ( i.e ., eeW(P', D'. g)), we may
consider the m - trees (f ,  p )  of (P, C, D. S) and ( f ' ,  p ') of (P', e. D', g). We let
the reader convince himself that

P) —  (4/- ", P')

and tha t the following claims are true:

1. (5 - , p) 4— (f .  p ' )  i f  E n supp (5) n supp (e) g {P'}:

2. (gr, p') i f  Ensupp(C) =

Definition 1.13. Let (S, D) satisfy conditions (1-2) of (1.11) and let C  be a
nonzero effective divisor of S  satisfying condition (5). If P is a place of C, i.e..
a closed point of the nonsingular model of some irreducible component of C .
then the triple (P, c, s) determines an infinite sequence of monoidal transforma-
tions

So 4 —  S iS 2  + - -

where S o =  S, P, = image of P in S i _. 1 and 7ri is the blowing-up of S i _ 1 a t  P i . If
P i esupp(D) or D = 0 , w e  say  tha t the 4-tuple (P, C, D. S ) is  as  in  (1.13), or
satisfies the conditions of  (1.13). I f  th a t  is  the case, let C "' be the strict transform
of C ' ° ' = C  in  S i an d  le t Ei = I (P,): d e f in e  D

° =  De Div(S0 ), Di = (strict
transform of Di

-
1 ) + E i E Div(S i ) (i I).

Then, for i > O. , S i )  satisfies conditions (1-5) of (1.11) and we
can consider its m-tree pi). By (1.12), we have

(f o ,  p 0 ) '— (9 j .  p i )

which we call the  infinite sequence o f  tn-trees o f  (P, C. D, S). W e denote by
k = k(Î', C, 13, S) th e  in teg e r d e te rm in ed  b y  th is  seq u en ce , a s  defined in
(1.10). Observe that (.9 k Pk) +  P k  +  )  •  •  and that, as far as the place P
is concerned, the desingularization process ends with 5 k - 1  5 k •  W hat w e m ean,
here. is that k  is  the least integer i > 0 which satisfies:

Pi + , belongs to exactly ' one irreducible component T o f  Cu ) ,  I-  is nonsingular
at P i + ,  and (T. 5 1.

For these reasons, the finite sequence

(s-0, po) - ( .Ç. Pk)
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is given special consideration: we call it the sequence of  m-trees o f  (P, C, D, S),
and denote it by p(P, C, D, S). The sequence

-9 -o 4 - -  4 —  -9 -k

is called the sequence o f  local trees o f  (P, C. D, S).

Lemma 1 .1 4 . L et (P, C, D. S ) be as in (1.13) and consider

p(13 , C, D, S): (.5 ro. Po) Pk).

L et the notation be as  in (1.13) and assume k > O.
1. If  supp (C(k ) +  Dk ) = supp (B) f o r some B e Div (Sk)  with s.n.c., then

(
9 -0

, Po) 4-
 4 -  (

3
;  •  Ad •

2. I f  e" is  the disjoint union of  the nonsingular models o f  th e  irreducible
components o f  C, and if  r : supp (C ) is the canonical surjective set
m ap, then following are equivalent:

• o  Po) ( . Pk)
• t(P ,) = 1/3 ).

3. If  S \ supp (C +  D) has no loops at infinity (see [3] , just before (5.19)), then
the following are equivalent:

• (Y o. Po) (9k. Pk)
• only  one irreducible component o f  C contains P1 .

P ro o f . Immediate from (1.12).

Contraction of Local Trees. Given co e Z . th e  symbol (w) will denote any
local tree which has two vertices and such that the principal vertex has weight
co. W e will now study sequences

(w) = 4—  4 —  .9 ;

of local trees such that .%; contracts to some simple local tree, such as (w) or a
linear local tree. First, we define the necessary notions.

Definition 1 .1 5 . Let 3  =  (T, x 0 , R, Q) be a  loca l tree. W e  s a y  th a t  3  is
a linear local tree if it has exactly one principal link and if the tree (T, R) is linear.

Definition 1 .1 6 . L et ff  =  (T, x 0 , R, .Q) be a local tree.
1. A superfluous vertex of .9" is a vertex e eT\({x 0 } u .A1-

5 -(x0 )) which is linear
and which has weight — 1.

2. If e is  a  superfluous vertex of',.1" then a n  elementary contraction of  5 -

at  e is  a  local tree =  (T ', x , R'. Q') together with a  root-preserving
injective se t m ap fi: T' •-■ T such that, if  w e identify T ' w ith its image
in  T, the following conditions hold :
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T' = T\{e}

R' =
{ (R \{{e, x}Ixe.V1-(e)Du{.1:f (e)},

R\f{e. x}Ixe..4-(e)),
if I.X3-(e)l = 2
if 1.4(5-(e)I = 1,

I S2(x)+ 1. if x e .4(-5-(e)S2'(x) =
Q(x), if xe T\({x o , e}tLY.5-(0).

In other words, an elementary contraction of .9-  a t  e can be obtained
as follows: first, forget that xo is  the root and assign an arbitrary weight
to that vertex; then 5 -  becomes a weighted tree and e is  a superfluous
vertex of that tree; blow-down 9 -  a t  e ; forget the weight o f xo and
remember that x , is the root. The local tree so obtained (together with
the set m ap w hich  came w ith  the blowing-down) is an elementary
contraction of f  at e. Note that the elementary contraction of f  at e is
essentially unique.

3. A  contraction of 5 -  i s  a local tree gr' = (T', x„ R'. Q ') together with a
set map f i: T ' —■ T, such that either 13 is an isomorphism or the following
condition holds:

There ex ist local trees and maps f i s ,  fik (k 1) such that
.9; -= 5", 3 -k = ( 5 ,  fit) is an elementary contraction of  at some
superfluous vertex (1 5 i 5k), and fi =

In  particular, we see that fi is a root-preserving injective m ap and that
/3 restricts to a bijection of the sets of principal vertices (we say that the
tw o  tre e s  have the sam e principal vertices and  principal links). A
contraction as above is denoted by g - ' f  or f  >  3 - ' ,  and we say
that f  contracts to 9 - '.
Since the set m ap  T' T determined by a contraction 3 - '  <  f  allows
us to identify {4}  U R ' w ith  {x0 }u R°, we can compare multiplicity maps
for the two trees and define:

4. F o r  m-trees (g - , p) and p'), we define (f ,  (5". g')4*- .fr
and g = g'.

Remark 1.17. We deliberately avoided the term "blowing-down" for local
trees, to emphasize that the contraction is not the inverse operation of blowing-up
(for blowings-up happen  a t the root, while contractions occur away from  the
root). Contractions do n o t affect data which are "local" to  the root, such as
multiplicity maps. Indeed, if (P, C. D, S) satisfies conditions (1-5) of (1.11) and
(.9", g) is  the m-tree of tha t 4-tuple, and if E is  an irreducible component of D
which is a rational curve and a superfluous vertex of f ,  then the elementary
contraction of g -  a t  E corresponds to  the contraction of the curve E. More
precisely, by Castelnuovo's criterion for contracting a curve, there is a monoidal
transformation p:S -+ S', w here  S' is  a nonsingular projective surface and p(E)
is  a point of S'. N ow  let p,: Div(S)—■ Div(S') b e  the homomorphism defined
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b y  p.(E)= 0  a n d  p* (r)=  p (r )  (any curve r  o the r than  E ) .  Le t P' = p(P),

C ' =  p(C) and D' = p(D ). then (P', C', D', S') satisfies conditions (1-5) of (1.11)
and determines an m-tree p ' )  such that (5 ' , p'). Indeed, by definition
of superfluous vertex. p  is  a n  isomorphism in  a  neighbourhood of P  and the
multiplicities are not affected by the contraction of E.

The next fact is an  easy consequence of the definitions: we omit its proof.

Lemma 1.18. Let .9, 5 "  and 5 ' " be local trees with sets of vertices T  T'
and T " respectively. I f  5 "  < 9 . and *F" S .9" then the following a re  equivalent:

1. The maps T' -0 T and T" -oT have the same image.

2. There exists a n  isomorphism ,F "  that commutes w ith T' T  and
T" T  i.e., the two contractions are essentially the same.

H ence w e can refer to  a contraction process by specifying which vertices
disappear and which survive. In  view of that, let us adopt the following language:

Let = (T x o , R. 0 ) be a  local tree, ti a vertex of 5 ' o ther than  the root
a n d  B  a  b ra n c h  of 5 '  a t  7), n o t c o n ta in in g  th e  ro o t .  S u p p o s e  that

> = (T', xO, R', S2'), w here T' = T \ B  (after identification of T ' with its
image in T ) .  Then w e say that B  is absorbed by v o r  tha t y absorbs B.

Definition 1.19. Let to, j. i' be positive integers. A sequence of type (co, i. i')
is  a  finite sequence of positive integers, of the form

mo ............. m 0 5
.......i 1  ..........

 II..... Ili mi-i•.... ii••••54

where 1> 1,
occurs co times (1 < y 1),

iv occurs 2n, times, for some ris N  (1  <  y < 1 - 1),
it occurs ni tim es. for some ril e N,
and such that the following conditions hold (where we define io  =

1. i t = i'

m,_, = n i, , 1 < V <1

3 - = anny-i + Ç, 1 < y S 1.

Rem ark. C onsider a  sequence o f type  (co, i , i ') . w ith  no ta tion  as above.
Then:

1. io > mo > m 1 it -  > mi

2. iv _  = (cony + 1)i,, 1 S v < I

3. gcd  (i,_ my _ 1 ) = 1  <  y  S 1.

Lemma 1.20. Let co be a positive integer and let

9 9 : g",: , 4—  . 4 - -  g i (k 0)
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be a  sequence o f local trees, such that 3r0  h a s  one principal link a. Then the

following are equivalent:

1. 3 [1 = (po ...... POE MUI (Y) such that (140(x0)...... N - 10 0 )  is a sequence of

type ((n. /20 (a ), 1), for some i'.
V p = (po ............ pk)eMul(Y), (p 0 (x0 )...... pk _ i (xo )) i s  a  sequence o f  type

(co, po (a), i'), for some r.

Moreover, if these equivalent conditions are met then k co + 1, ,9; has one principal
link a', i' = pk (a') (in the notation o f (11 or (2)) and the principal vertex of .9- k is
a branch point.

P ro o f .  Fo llow s from  (1.6) and  (1.8).

Definition 1.21. Le t co be a positive integer and  le t .9': 3 -0
 4 —  • ' • 4 —  e9—  b e  a

sequence o f lo c a l trees. W e  s a y  t h a t  9 '  is  of type co i f  .9-
0  h a s  one principal

lin k  and  if the  equivalent cond itions o f (1.20) a re  m e t .  W hen  tha t is  the case,
we have in  particu lar k > co + 1, .1-,  has one principa l vertex and that vertex is
a  branch po in t o f g ;  .

Remarks. 1. If Y: .9 -0 ,  • • • 4 —  g i  is  o f type co. peMul (.9 ') and  if we write

011(x0)),-0 , k  -  1  =  ("7 0  it) according to (1.9), then this sequence satisfies
the cond itions o f (1.19), w ith  the same nt,'s and  i v 's.

2. I f  9' i s  a s  in  (1) , th e n  th e  num bers n 1 ............. n , o f  (1.19) a re  completely

dete rm ined  by < 9 .  Indeed, i f  p, p'E M ul (91 th e n  b y  (1.6) th e re  is  a

nonzero rational num ber q such that q(p0 ,... ,pk _1 ) = (pl, ..... p -  ,) .

Definition 1.22. W e  a re  now  go ing  to  de fine  a  no ta tion  th a t w e  w ill use
to avo id  draw ing p ictures o f lo ca l trees. W e  d o  th is for practica l reasons only
and we suggest that the reader reconstructs all pictures whenever these notations
are encountered . Let 9  b e  e it h e r  a  lo ca l tree o r  a  weighted tree w ith a  root
(i.e., a  distinguished vertex), let p be the weight o f the  root (w ith p = * if 9  i s
a  lo ca l tree) and suppose that, fo r  each vertex I:, the  se t o f branches (of 9  a t
y )  th a t  d o n 't  c o n ta in  th e  ro o t  h a s  b e e n  to ta lly  o rd e re d . In  pa rticu la r. le t
M i ....,gen (n > 0 ) be the branches of  9  a t  th e  ro o t .  Then  the t re e  9  w ill b e
denoted by the symbols ( [ 9 ] ) .  where [ T ]  is the sequence of symbols defined by

P if  n = 0

[ g ]  = I I if  n = 1P. [ ]{
P. (PfJ),....([4,,i) if n >  1.

T h is  makes sense, since each 4 , is  itse lf a  weighted tree w ith a  roo t (the root
be ing the ne ighbour o f th e  ro o t of 9 ) ,  w ith  a n  ordering  fo r each appropriate
set of branches. etc. For instance, the loca l tree
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— 2
e\ ( - -  2

— 2
— 1

w h e r e  is  the root a n d  d ,  Al are branches at v. is denoted by

(*, — 1 , ( — 2 ), ( — 2 , — 2 . ( [sit]), (YA ))) .

Abusing a  b i t ,  w e  w rite  .F = (*, — 1, (— 2), (— 2, — 2, (Ed]). ([i]))). which
amounts to identify  and  ( [ 5 1 ;  doing the  sam e thing with d  a n d  / ,  i.e.,
writing d  = (E d ])  and  gi = ( [ M ] ) ,  we get

= (*, — 1, ( — 2), ( — 2, — 2, d, 38)).

R em ark . If  cu e N the local tree (w), defined before (1.15). is  the  same as
(*, cu).

We are now ready to state the first significant result. in  the  theory of local
trees.

Theorem 1 .2 3 . L et co and k be positive integers and let .99 : 9 4— ...F„ be
a sequence of  local trees such that 3-0 > (0 ), 3 ; has one principal vertex  and that
vertex  is a  branch point of  3 .  T h e n  the following are equivalent:
(a) ..F„ contracts to a  linear local tree,
(b) is of  ty pe w.
Moreover. i f  these conditions hold then (see (1.9) f o r definition of  j o ............... j i _ 1 )

1. 'Y./. ...........contract to (co):
2. = (*, — 1, (— n — 1. — — 2), .4). where " — 2" occurs — 1 times,

n i s  the positive integer ni o f  definition (1.19), Jel is  a  branch that the
principal v ertex  (call it v) o f  9 k can  absorb  and  v gets w eight 0  after
absorption of M;

3. f  9  4-  g ;  4 -  •  •  •  4 -  .Y ..k  „  is the (unique) sequence such that g i + i  has one
principal link  (0 i n). then (o)).

Since contractions d o  n o t change the number of principal links of a local
tree. it certainly m akes sense to assume, in (1.23). th a t .5rk h a s  one principal
v e rtex . However, the assumption that that vertex is a  branch point is there only
to m ake the conclusion simpler; when we do have to cope w ith a  sequence .99

such that the principal vertex of  3  is  n o t a  branch point, (2.23) gives a description
of the nontrivial part of .99,  say .F0 4— • • • 4-  g ; „  .  and 4— 4 -  ..9 ;,  is trivial (i.e.,
every tree in  it h as  one principal link).

Before we can prove the  theorem, we need to introduce some notions and
state  som e facts. T h e  proofs a re  elementary a n d  m ost o f  them  a re  omitted:
some can be found in  [2 ].
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Definition 1.24. A local tree is minimal if it has no superfluous vertex.

Lemma 1.25. L et gr be a local tree that contracts to a linear local tree. I f
y is a branch point of' then there is a branch of  g -  a t  v, not containing the root,
w hich can be absorbed by  v . I f  d i  i s  a m inim al local tree such that .11 <
then -If  is a  linear local tree.

Pro o f . Follows easily from (5.11) and (5.12) of [3].

Definition 1.26. A local tree gr is  universally minimal (write "g " is  UM")
if for every sequence

=  < — (k 0 ) .

is m in im al. Observe th a t if 3  is  U M  th e n  i t  is  minimal, and 5" is UM
wherever gr 4 -

Lemma 1 .27 . Let 3  b e  a  local tree. T h e n  the following are equivalent:
1. .9-  is U M ;
2. g -  is minimal and every linear principal vertex of  5 has negative weight.

Lemma 1 .28 . Suppose that 5 -0
 4 -  • • • 4 -  .1; (k 1 )  and that 5 0 T h e n

there is a unique diagram

3 7 -
0  4 -  g i  4 . • • - •  4 -  g i

gr; +-

such that the underly ing diagram  of  set m aps is com m utative. (B y  "unique", we
mean unique up to isomorphisms commuting with all maps.)

Rem ark. Whenever we have a commutative diagram as in (1.28), where the
first row is denoted by .9' and the second by .9" , we have Mul(Y) = Mul(Y').

Lemma 1 .29 . L et .9j2, 4 -  4 - ( k 1) b e  su ch  th at S has m ore than
one principal link  and g i  contracts to a  linear local tree. If i < k  then 5- ; can't
contract to a  UM  tree.

Pro o f . Let i < k be such  that > W . w here  W  is  U M . Construct a
commutative diagram as in (1.28):

VI VI

=  i 4-  "Wk.

Since 0/4 is minimal, -6-14 g i  and 3-, contracts to a linear local tree, (1.25) implies
that is  l in e a r .  T h e n  c le a r ly  is  l in e a r ,  w h ic h  is  a b s u r d  s in c e  g;,_ , has
more than one principal link and

Definition 1.30. 1. A local tree .9" is a comb if at every vertex y there are
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at m ost tw o branches that don't contain the  root, and  a t m ost one of
them is not a  linear branch. (A  linear branch is a  branch which contains
no branch point of t h i s  m e a n s  more than being linear as a graph.) In
particular. the root is a  linear vertex.

2. If .5- i s  a  com b, a  tooth of is a  linear branch a f of Y . a t e ith e r  a
branch p o in t o r  th e  ro o t, such  that .21 doesn't contain th e  r o o t .  So
every branch poin t has a t least one too th  (one branch point has two
teeth) and, if there are two principal links , the root has at least one tooth.

3. ..9" is a  comb with negative teeth if it  is  a  comb such that
(a) a t every  b ranch  po in t th e re  is  a t  le a s t o n e  too th  s i  such that

< —1 :

(b) if .5' has two principal vertices, then one of them, say y, has negative
weight and  belongs to a  tooth d  such that ..c1 \ tv} < — 1.

(Recall that, if (1 is  a  weighted tree, < — 1 means that every vertex
of 5  has weight less than — 1.)

Rem ark. Every linear local tree is a  comb with negative teeth.

Lemma 1 .3 1 . Suppose that either <— 9" o r .9- >  .9 " .  I f  .9" is  a  comb
(r e sp . a  comb with negative teeth) then so is

Proof of (1 .23). By (1.28), one can consider a  diagram of the form

3 "; 4—  4 - -  4 - 3 k
V/ V/ V/

(0 ) = 4-  4 -  . 9.7( •

Then a  little argument (which we leave to the reader) shows that we may assume
th a t .5r0 = (co). W e w ill p rove  tha t (a) implies (b), (1) a n d  (2): (2)=.(3) and
(b) (a) are easily verified.

Suppose that (a) holds, i.e., ..Fk contracts to som e linear local tree. U s in g
the notation of (1.9), we write

=  (9 1 = Uo, • • •
= ye(91= th , ...... h,)

where, clearly. 1 > 1 (for I  is  the number of branch points of 9 -
k ). We proceed

by induction on J.
Case 1= 1. Then the principal vertex y of 3 ;  is  the only branch point of
Let L denote the principal vertex of .9 0 . Since L is a free vertex of 5 -

0  it
is  a  free  vertex of 3 .  T h u s  = (*, — 1, .4 , 4 )  where s i  a n d  . 4  a re  linear
branches a t y and L is in .4 (say). Since 31 contracts to a  linear tree and since,
in 3 .  e v e r y  vertex other than x0 . y. L  has weight less than — 1 we must have

= (— 2, — 2, — 1) b y  (1.25). L et n >  0  b e  th e  number o f  vertices o f  R.
Then one easily figures out tha t .9' begins with

= (*, a)) 4-- (*, ( — 1), (0 ) — 1)) 4— 4—  (*, ( — — 2, ..., – 2), (0)) =



606 D. Daigle

and continues

(*. (— 2...... — 2), (— 1. — 1)) 4- . -

4-  (  (  n, —2...... — 2), (— 1, — 2 , .... —2. — 1))

4— (s, — 1, (— n — 1, — 2 .....  — 2), (—...........— 2. — 1)) = =

We leave it to the  reader to check that .9' is of type w and  that .f.„ has the
desired form (with, in particular, n=n,= n,).

Inductive step . A ssum e 1> 1. F o r  1 5 v <1, le t  ev b e  th e  branch point
created in 4— In  particular, e,_, is  the principal vertex of
= (*, — 1, 4 r )  where d ' a n d  a r e  b r a n c h e s  at el _ 1 . We have h, = k. so
e, is the principal vertex of 3 ; = (*, — I. d ,  .4), where d, .-M are branches at e,
and .4 = 9") contains e,_, (more precisely, s E  is the weight
of in  ..F„ and the branches Is' at el _, are  identical to what they were
in

Observe that, by (1.31) and the remark immediately before it, g; is a  comb
with negative teeth (0 5 i k ) ;  l e t  d '  b e  t h e  tooth o f  XI,  a t  el _ , with

< — I. B y  (1.25), it follows that el _, can absorb .11' in hence in
a s  w e ll. Thus

contracts w a  linear lo ca l tree.

Applying the inductive hypothesis to .9'1_, : • 4 -  5 -1, ,  we conclude that it
is a  sequence of type co, contract to (w) and that contracts to

= (*, O. — m — 1, —2 ......  — 2). where "—  2" occurs w — 1 times and
m = n,_,. Construct the  commutative diagram (1.28)

.3 ;1-1
V/ V/

5 74- 4—  4 - -  3 - ;, •

L e t  a  = — h,_, O. If =  0  then g  _ is U M  b y  (1.27): since
h,_, +1= j,_, +1 <k (for has two principal vertices by definition of
j,_,), this contradicts (1.29). H ence > O. Note that

.5- 1_, + , =(*.( —  1), ( — 2 , .... — 2.-1 .  — —  1, —2 ......  — 2)),

where the  first sequence of " — 2" contains a terms and the second has w — 1
terms. That contracts to 5 , + , =(*. (— 1), (-1, a — m —1, —2...... — 2)) which
can't be UM by (1.29). By (1.27), that tree is not m inim al, and we have
a = m. We conclude that .5- 1_, =(*. — I. — 2,....-2.  — 1, — m — 1, —
— 2). where there are a  — 1 = m — 1 terms in  the  first sequence of "— 2 - , and
w — 1 in  th e  s e c o n d .  Hence that tree contracts to (w ), a n d  so does

Applying the inductive hypothesis (or the case 1=1) to .ti";  4 -  • • •

we see that it is of type w and that 3; has the desired fo rm . Since a = m =
and is of type w, one sees that .9' is of type w . This completes the proof
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of (1.23).

2. Coordinate lines in  A2

We regard A2 a s  being equipped with a  fixed coordinate system. In particular.
it m akes sense to speak of the  degree o f  a  curve in  A2 . An open immersion
A2  ç  P2 is  s a id  to  b e  standard if  it doesn't change the  degrees o f the  curves:
the standard im m ersions fo rm  a n  equivalence class. (Two open immersions
A2 ç  P2 a r e  equivalent i f  th e y  fo rm  a  com m uta tive  diagram  w ith som e
automorphism o f  P 2 .) F ollow ing  severa l peop le , w e  adop t t h e  following
terminology for lines in  the  affine plane.

Definition 2 .1 .  L et C  be a  curve in A2 .
1. C  is  a  coordinate line if  there is a n  automorphism 4) o f  A2 such that

4)(C) has degree o n e .  Equivalently, the  polynomial F e k [X , Y ] deter-
mined by C  is such that k[F, G] = k [X . Y ] for some G e k[X. Y].

2. C  i s  a  lin e  i f  C  A ' (abstractly). Equivalently, th e  polynomial F
determined by C  is  such  tha t k [X , Y]/(F) is  a polynomial algebra in
one indeterminate over k.

As is very well known (see [1]), all lines are coordinate lines if and only if
char k = O.

Definition 2.2. Let F  be  a  curve in  A2 w ith  one place P  at infinity W e
say  tha t T  is  graph-theoretically  linear if there  is an open immersion A2  ç  P2

with the following property:

If  L =  P2 \ A2 and  9 - 0 4— • 4 -  grk is the sequence o f  local trees of  (P. r, L, P2 )
then Y  contracts to a linear local tree.

R em arks. 1. N ote tha t 9 -
0  = (1), in  (2.2). See (1.13) for the  definition of

the sequence of local trees of (P, F, L, P2 ). Note that, in p(P, F. L, P2 ),
all blowings-up are of the third kind by (1.14.2).

2. It c an  b e  sh o w n  th a t i f  F  is graph-theoretically linear then all open
immersions A2 ç  P2 satisfy the condition of (2.2).

Proposition 2 .3 .  L et F  be a  curve in A2 ,  w ith one place at infinity. T h e n
the following are equivalent:

1. F  is graph-theoretically linear,
2. F  is a  coordinate line.

Pro o f . (2) ( 1 )  is  trivial: Choose an open im m ersion A2 ç  P2 such  that
the closure in P2 of F has degree o n e .  Then k(P, F, L, P2 ) = 0, i.e., gi = = (1)
which is already a  linear local tree. H e n c e  F  is graph-theoretically linear.
(1) ( 2 )  Let F be graph-theoretically linear and let A2 ç  P2 be an open immersion
satisfying the condition of (2.2). Let P be the place o f a t in fin ity  and L =  P2 \ A2

the line at infinity. Then, as in (1.13), (P, L, P2 ) determines an infinite sequence
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of monoidal transformations and an infinite sequence of m-trees:

A2 c —.) p 2  = so 4 - - - Sk

(9 -0, Po) • (gi, Pk)

where k = k(P, 1, L, 11 2 ). By definition. g . .„ contracts to a linear local tree. If
k = 0  then (r.L)p = 1 in 13 2 ,  by definition of k ; hence 1.L = 1. F is  a line in
P2 and we are d o n e . Assume k > O . T hen  the hypothesis of (1.23) is satisfied
and, by the last assertion of it, we see that g -

k+n
>  ( 1 ) for some positive integer

n. Since all blowings-up have centers Ln. So \ A2 , A ' is naturally embedded in
Ski.,1 and, in fact, Sk + „ \ =  su pp (L k ") an d  (3 j +,,. pi{ + 1 1 )  i s  the m-tree of
(Pk + n „.1 , n k " ,  Li " ,  Sk  „.„)—notation consistent w ith  (1.13). B y ite ra ting  the
argument of (1.17), w e  se e  th a t the contraction (1 )  c o r r e s p o n d s  t o  a
birational morphism p: S k + .-+  LS'  which contracts all components of Lk " except

Let P' = p(Pk + „+ , ) ,  T ' = p ( F " " )) and L' = p,(E k + „); then by (1.17) the
m-tree of (P', ,  L ',  S ')  is ((1), p'), where the multiplicity p' of the principal link
of (1) is equal to the multiplicity pk .,„ of the principal link of .9 + „, i.e ., it is  1.
Hence ([".L ') . = 1 and since these two curves meet only at P', r". L ' = 1 . Now
we have an embedding of A2 in the nonsingular projective surface S', such that the
complement of A 2 i s  one curve E .  As is well known. S' must be  a projective
plane. Since F '.E  =1 , F ' is  a line in S ' = P2 and we are done.

Our characterization o f coord inate  lines can  be  sta ted  in te rm s of the
multiplicity sequence at infinity.

Definition 2 .4 .  Let F  b e  an affine plane cu rve  w ith  one place P  at
infinity. Em bed A2 in  P 2 the standard way. As noted in (1.13), an infinite
sequence of monoidal transformations is uniquely determined,

p2 = sos i s2

Let P i denote  the center of Si —■ Si _ , and P i ) the strict transform on S ; of
the closure in P 2 o f F .  The sequence p(13

1 . F (°)) , p(P 2 ,  r ) , . . .  is called the
multiplicity sequence o f  F at in f in ity . That sequence is completely determined by
the "embedding" of F  in A 2 , i.e., is independent of the choice of an embedding
of A2 in P 2 —as long as that embedding is "standard'.

Corollary 2 .5 .  L e t F  be  a curv e  o f  degree d  in  A2 ,  w ith one place at
infinity. L e t  (ro , r , , . . . )  be the m ultiplicity  sequence o f  F  at infinity. T h e n  the
following are equivalent:

1. F  is a  coordinate line.
2. Either d = 1  o r there is a positive integer k  such that (ro ............ rk _ ,) is  a

sequence of  type (1, d. 1) (observe that, in the latter case, d >1  and ri = 1
if k).

P ro o f . Clear from remark (2) after (2.2), together with (1.23).
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3. Weak sequences

Recall that (1.23) is concerned with sequences of local trees, some members of
which are contractible to linear local trees. This section is devoted to similar
considerations, but the sequences of local trees are of a different type.

A  weighted tree with a root is a pair (4 , v„) where 9/ is a weighted tree and
v, is a vertex of 4, called the root.

Definition 3.1. Let 9  be a local tree, and / a weighted tree with a root vo .

1. If v a vertex of f  o th e r  th a n  the root then denotes the local tree

obtained by taking the disjoint union of ...9" and /  and linking r  to
v0 . (For instance, let f  = (*. 1, 2). let y b e  the principal vertex of 9 -

and let 4  = (0, - 1). where the notation (1.22) is  u s e d . T h e n  f  =
(i, 1, (0. - 1), (2)).) If consists of one vertex of weight a E Z, we also
write fV .  = I f  /, are weighted trees with roots, define

Then /, ..... 5 p  are branches of
a t  u, called the extra branches. Clearly,

(a) if 9'4—  .9" then .9 - r'gi /r 4—  „9-v , gi , ....gp :

(b) if .9-. 9 "  and 17 is  in then .9-" ' >  g . ' V .

2. .5 T C  denotes the weighted tree obtained by taking the disjoint union
of f  and a n d  identifying v, with the root of f .  (For instance, ..9 [ T ]
=  [-  I. 0, 1, 2] if .9 and /  are as above and if we use the notation of
[3], (5.13) for linear weighted trees.) If 5 consists of one vertex of weight
a E Z, we also write .9- [a] = 9 [5 ] .  We have the following properties:

(a) if f  > .9-  th e n  ..9- [1 ] contracts to ..9- [/ ];
(b) i f  ..9" and 1.ir5 -(x0 )1 1..4(3 -.(x0 )1=  1  th e n  9141

where 4 ' is obtained from by decreasing by 1 the weight of the
root. In particular, .9- [a ] .9- [x  - 1 ], a e Z.

Definition 3.2. Given local trees the symblol .9' indicates that
we have chosen a map [I', from the set of vertices of .9 to  tha t of .9', satisfying
the following condition:

There exists a blowing-up such that, if  e is the vertex created in
that blowing-up, then g -  = for some g i ,...,1 p  (p > 1), and fi' is
the composition of the identification map of f 4- g; with the inclusion of
..9"; in 5".

Definition 3.3. A  sequence 3 ..... 5 r,c o f  local trees (with sets of vertices
respectively) is called a  weak sequence if k > 1, 3 rk h a s  one principal

link and if, for i = 1,...,k, there exists (and we have chosen) a map )6,: 7;_ , 
such that either . _, 9 ;  or .9_, 4- 37. The sequence is said to  be weak at

g ri if

g , .
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We now explain how the notion of weak sequence is related to Geometry.

Definition 3.4. L et S b e  a  nonsingular projective surface, let D 0  0 b e  a
reduced effective divisor of S  a n d  P  a  place o f  D  (i.e., a  closed point of the
nonsingular model of some irreducible component of D ) .  W e say that D can be
desingularized by blow ing-up at P  if the following condition holds:

L et S = S o  4 -  S, 4 -  •  •  •  be the infinite sequence of  monoidal transformations
determined by (P, D, S ), le t si eS i _ ,  be the center o f  Si _, S1 and  le t
Fi E Div (S i) be the corresponding exceptional curve. For G e Div (S). define

$ G°  = G e Div (S0 ),
= (strict transform of  G1 - 1 . ) + F i e Div (S i). i > 1.

Then D i h as  s.n.c., f o r some i.

Observe th a t, b y  L em m a (5.19) o f  [3 ]. i f  S \ supp(D) A 2 t h e n  D  can be
desingularized by blowing-up at some place P of D.

Definition 3.5. W e say that a  4- tuple (P, C, L . S ) satisfies the conditions of
(3.5) if

• S  is  a  nonsingular projective surface;
• C, L are connected, effective divisors of S  such that C + L  is reduced, L

has s.n.c. bu t C + L  doesn't ;
• the members of / [U ]  are trees, where U = S \ supp(C + L);
• P is a place of C and C + L can be desingularized by blowing-up at P;
• if L  0  then the image of P  on  S  belongs to supp(L)n supp(C).

Now suppose (P, C, L, S) satisfies the conditions of (3.5), let D = C + L  and
consider the sequence of monoidal transformations S = So  4 -  S 1 4-  • determined
b y  (P, D, S), w ith  notations s i , F i . G i a s  i n  (3.4). L e t .f -0 4-- —4- ,Fk b e  the
sequence o f  lo c a l  tre e s  o f  (P. C, L , S ). T h e  n o t io n  o f  w eak  sequence of
(P. C. L, S), which we will soon define, is motivated by the question

How can we obtain the weighted tree l(S k . Dk) from the local tree .Fk ?

To make the notation simpler, let's denote a  divisor of some S i and  its strict
transform in  Si (j > i) b y  the same sym bol. If only one irreducible component
C*  o f  C  con ta in s  s, t h e n  t h e  a b o v e  question  h a s  a  s im p le  answer:
W(Sk , = .9- k [5(S k , C)], where l(S k , C) is regarded a s  a  weighted tree with a
root, the roo t be ing  C . F rom  now -on , assume tha t s, belongs to more than
one irreducible component of C-this is  case that requires the notion of weak
sequence. Write C = I F ,e  Div (S), where each F, is a connected, reduced effective
divisor having exactly one irreducible component C, containing s , .  Observe that
there  is  a  unique v*  s u c h  th a t  sk , , e C , . .  I f  v o vi ,  then  for som e i  s k  the
blowing-up Si _ 1 4- Si "g e ts  C , away from P", i.e.,
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si e C, in S i _,

si + , C, in Si .

Let a, < ••• < am  b e  the indices i such that S i _  4— S. gets some C's away from
P : for r = 1 ...... m, say  tha t S„_, 4— Sz ,  gets c„„...,C,, p , away from P .  Then
we have for each  r=  1 ...... tn•

• r„. = Cy r i .FOE, = 1  ( 1  j  A.);
• r 1 ................... F ,  m eet F , a t  distinct points and s 2 , 1 i s  n o t  one of those

points;
• (f - ,,, + ••• + r )+ Lz. e Div (SO has s.n.c..

Let Wr i T „ i )  and 1 , =  (S ic , 1,.) and regard C„ i  resp. C„) as the root
of 4, i  (resp. W .). Define

if 0 s i < 2,,

if either 1 <r <m  and
=

or

r = m and am <  i <k.

Then 'CD  .......i s  a weak sequence; it is weak at  #   t h e
question raised after (3.5) is answered by W(Sk , Dk ) =

Definition 3.6. Let (P, C, L, S) be a 4-tuple which satisfies the conditions of
(3.5). The weak sequence of  (P, C. L, S) is  the sequence Irk , as defined
in the above discussion.

To be precise, if only one irreducible component of C contains si  (i.e., m = 0)
we define the weak sequence of (P, C. L, S) by (IV( )  .........=  ( 5 -0•••• , 5 0.

In  any case. since we start with a DeDiv(S) which doesn't have s.n.c.. we
have k>  O. D k - 1  doesn 't have s.n.c. and, by (5.19) of [3] . F k is a branch point
of 5(S.. IY), i.e.,

the principal vertex o f  YffOE- i s  a branch point.

Let P r i  denote the place of C ,  which corresponds to  the point C,,,n Fi r  in
S „ .  Now fix je {1 ...... P i } and let g- = g - (11

 i f . S2i): note th a t 3  has on ly
one principal link. Clearly, the sequence Ilfo  4— —4— Yl , 4— 3  c o n s is ts  of the
sequence of local trees of (P 1 i , L, S). followed by a (possibly empty) sequence
of blowings-up in which every tree has exactly one principal link. Thus 3 carries
some information about the curve C, i , and its embedding in S. On the other
hand. 5  is  r e la te d  to  the weak sequence IIP0 Yri in the following manner:

j.
Yi .0 4— # ; , ,  - 1  4 117;, •'•
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and 1 V ,[,] e W [U ] by above. If, for instance. U  A 2 , then # k [ * ]  [1] and
it might be possible to say something about g", hence about C . by investigating
the graph-theoretic situation described by the above d iagram . These ideas, and
in particular the question whether f is contractible to a  linear local tree, underly
the rest of this section—which is purely graph-theoretic. Actual applications to
geometry are given in  the  last section.

Theorem 3.7. L et -#'0
-  ................... it; be a w eak  sequence o f  local trees, weak at IV ,

and possibly  at other places. L et W -
0 4- - ‘.9 -  b e  the blow ing-up such that 5-  has

one principal link. A ssu m e  that f  does no t con trac t to  a  linear local tree and
that there exist a linear weighted tree 2' and a weighted tree with a root su c h  th at

I
r
k [W]

Then every  ex tra branch created in 111- 41 1 1', can be absorbed by  the vertex to
which it is attached, the principal vertex o f  5-  i s  a  branch point, 5 -  contracts to
a local tree whose only branch point is its principal vertex  and, given a  weighted
tree 1 ' w ith  a roo t, 5 - [ y ]  is equivalent to a  linear w eighted tree if f  1' can be
absorbed by the principal vertex  of

Moreover. i f  <Y > <1  then "01 -
0  can 't contract to  a local tree containing a

nonprincipal vertex of nonnegative weight.
(The nonnegative integer <Y> is defined in  (5.8) of [3].)

P ro o f . Suppose the principal vertex of Wi is  n o t  a  branch p o in t . Then
k —  1> 1, has one  principal link and , if W' is  th e  weighted tree with a
root obtained from b y  in c re a s in g  b y  I  t h e  w eight o f  th e  r o o t .  then

Ilf,:[W] (for 4-117). Hence it's enough to prove th e  theorem
fo r  th e  weak sequence **0 ............... 11/; a n d  * -0 4— 3- ,  i.e ., k  can be decreased.
Therefore we may assume that

(*) the principal vertex of is a branch point (of  weight — 1): consequently , it
survives to any  contraction of  Y K ,[5] to  a  linear weighted tree.

Now let's prove the last assertion of the theorem. Suppose  ̂ /ri)  > for some
local tree .1V,; having a  nonprincipal vertex of nonnegative weight. Observe that,
by the two assertions included in  the first part of (3.1), (1.28) can be generalised
to weak sequences in  such a  way that the upper sequence is weak at some tree
ill th e  lower sequence is weak at the corresponding tree. So we may form the
- commutative diagram"

V/ V/ V/

itr(') • • • .

Thus has a vertex y of nonnegative weight, such that v is  no t a  neighbour
of the principal vertex—call it u. Since u has been created in  th e  blowing-up
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involved in the "passage" from , to it has w eight -  I. So  its w eight
is not increased by the contraction -fit; > IV ; and it follows from (*) tha t u  is a
branch point of Since Vi[W] -  u  can absorb a  branch of
1 4 '[ 5 ]  by (5.11) o f  [3]; that branch doesn't contain 17 (for u  has nonnegative
weight) so IV, [ 1 ]  contracts to a weighted tree w hich  conta ins vertices u, t7 with
nonnegative w eigh ts a n d  n o t n e ig h b o u rs  o f  e a c h  o th e r .  B y  [3], (5.9),
1 < </+> = <Y> and the last assertion is proved-and so is (3.8), below.

The assertion about ..F [W ] is an immediate consequence of the preceding one.
L e t 1K, 11/ -4 , 1 =

 i
<...<  iq < k, b e  the  trees at w hich the  sequence is

w eak . F o r the rest of the proof. we proceed by induction on g. The case g = 1
will be proved after the

Inductive Step. Suppose  q >  1  and let 71;2 _, 4 —  g i"  be the blowing-up such
that h a s  one principal link. We claim that 5 - [- 1 ] is equivalent to a  linear
tree. In d eed , th is  is  c lea r  if 3 -  con trac ts to  a  linear local tree; if  .5-  doesn't
contract to a  linear local tree, the  claim follows from the inductive hypothesis
applied to 4— a n d  th e  weak sequence Yffi 2_1 ,   Yri. T hen  the
inductive step follows by applying the inductive hypothesis to YV, and the
weak sequence

Case q = I. If 5  h a s  a  superfluous vertex u that is not a  neighbour of the
principal vertex, then u is a  superfluous vertex of IV° . Let -YG be the elementary
contraction of Yirc ,  a t  u and form the commutative diagram:

g -  — 4  IVo 4 IV' 4—  4 —

VIV / V/ V/

.3-  —• Yr; 

Since 5 '  doesn't contract to a  linear local tree and -11/k*N1 [p]. it's enough
to prove this case for the weak sequence V.,: a n d  11- 0' 4- In  other
words, we may assume that

( * * )  all superfluous vertices o f  3 -  are  neighbours of  the principal vertex.

Consider the  blowings-up

0  = g  4—  4 _ - 5 ;

such that if e  is  the vertex created in  Tot h e n  for some W, p (p 1 )
we have Yri = (i = k). Before we continue the proof, let us state
a  definition an d  a  lemma:

Definition. L e t .5-  = (T , x. R , 0) and 5 ; = (T,. x i , R i , Q i ) (i = 0. 1) b e  local
trees and suppose tha t .5-  h a s  one principal link  a n d  tha t .5- L e t
e  (resp. e") b e  th e  vertex created in  ..5-0 ( r e s p .  3 -0 4 — .  W e define an
injective set m ap T\ {x} T , by
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e' e,

t 11, (13-  (t)), t e T\{e' x},
where ft,: T, and fi: To —0 T are the identification maps. That map should
be thought of as a natural embedding of f  in .9", (or in ..9- e,'''••••• , for arbitrary
I , ...... 1 d e  Observe that the root of .9" is not embedded in these trees.

Lemma. Consider local trees .1- w h e r e  S -  h a s  o n e  principal
link. L e t  e be vertex created in5 ,  let 5 1 .......... 1  be weighted trees with
roots and embed 3 -  in =   P  as in the above definition. Let b be a
vertex o f .3- , other than the root; then b has same weight in Îr ,  as in  .5'. Let

(n be the branches o f 3 -  a t  b, not containing the root. Then the
following hold:

I. I f  h is not the principal vertex o f 3 -  then the branches o f W I at h, not
containing the root, are 4, ..... .4............ has one more branch .11, at b:
contains the root, all principal vertices, the extra branches 5, ..... 1 p and
possibly other vertices.

2. I f b is the principal vertex of f  th e n  b is just e in YK,, so 1, ...... S p  are
branches of .Y.V, at h. Moreover:

(a) If YP, has one principal link then its other branches at b, not containing
the root, are and '11'j has one more branch .11, at h: ad,
is just the root.

(b) I f  l two principal links then its other branches at h, not
containing the root. are .4, ..... 4 ... ( i f  4 1 ,.....4„ are suitably
labelled): has one more branch 4 ,  at b: consists of the root
and gin .

We now return to the proof of (3.7). Since f doesn't contract to a linear
local tree, it is not a linear local tree; so .9' must have a branch point. Let b
be a branch point of .9- , and let (n> 2) be the branches of .9-  a t b,
not containing the roo t. Embed .9" in IV, as in the above definition.

If h is not the principal vertex of Y . then by the above lemma the branches
of 1r, at b are .4 1  4,7 and J, where .4, contains, in particular. the principal
vertex of IV,. Since Yli[/] contracts to a linear weighted tree, b must "absorb"
n — 1 of the n + 1 branches (of 111%1 at h) so  b y  (*) it must absorb some
A .  This is impossible, because by (**I .4 ; contains no superfluous vertices (for
b is not the principal vertex of 5 ).

So, not only does ..9" contract to a local tree whose only branch point is
its principal vertex, but .9 -  itself is such a  tree (this is because of assumption
(**)). N o w  let b  be the principal vertex of .97 - ;  then .4,  .4 1 „  are linear
branches. To finish the proof, there are two cases to consider—and in both cases
we have h = e   in Ili' (i 1 ) .

Case I. j has one principal link.
By the above lemma, the branches of Yf'i at b are .4—1 , •••, gen•li ..... '5  and 4

* ,

where gif,, contains the root of 1/1: (but ;,44, may not contain the principal vertex
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of since b m ight be that vertex). For each i, if b can absorb .4, in -11/„.  then
b can absorb .4ti in  5 .  Since 5  doesn't contract to a linear local tree, at least
two .41's can't be absorbed (in 5 - , hence in Irk [ g ] ) .  Thus b must absorb every
other branch (in "Ilik[ ]) and, in particular. 1,....,( p .

Case 2. has tw o principal links.
By the above lemma, if .4, ,...,.4„ are suitably labelled then the branches of 1Vk

at b are 4, , n - 1 , 1  ............ WI, and .4*  where, now, .4*  does contain the principal
vertex of Irk' (because If, has tw o principal links and IVic has only one k > 1
and b  is  distinct from  the principal vertex of 'Irk ). B y (*), b  can't absorb

Hence at most one branch in 4,  M „ _  1 , ,...,/ p  can't be absorbed
by b. Since 5 - doesn 't contract to  a linear local tree, some .4i (i < n) can't be
absorbed, so b absorbs

W e point out the following fact. which was established in the above proof.

Lemma 3 .8 .  Let Y17
0
-  .................... Îfk be a weak sequence such that the principal vertex

o f 'Xi is a branch po in t. If there exists a weighted tree with a root such that

Ifrk[W] is equivalent to a linear weighted tree .Y  with <Y> 1, then no 70'; with

i < k can contract to a local tree having a nonprincipal vertex of nonnegative weight.

Theorem 3 .9 .  Let a), k be positive integers and let

4" - -  4 - -  fk

be such that .90 (w ), ..f -
k has one principal link and its principal vertex is a branch

point. Suppose that gr, does not contract to a  linear local tree and that there

exist a  linear weighted tree Y  and a weighted tree with a  root 1  such that

—  9 . Finally, suppose that 3 1 _ 1  can't contract to a  local tree having a

nonprincipal vertex of nonnegative weight (and note that by (3.8) this condition

holds whenever <Y> <1).

Then .f -
k contracts to a local tree whose only branch point is its principal

vertex and I can be absorbed by the principal vertex of

Let p = (p, ...... pk) be the unique element of M u l(Y) such that pk (ak) = 1, where ai

is  the principal lin k  of 5 ;  whenever has only one principal link, and write

i = p0 (a0 ) and ri  = p1(x0 ). 0 j  < k. Define integers w and p by

k-1 k-1 ri (ri  — 1)
w — E ri

2  = — 1 and
J = 0 J . 0 2

Then the following conditions hold, where we use the notations of (1.9) determined

by 9 9  and p:
(a )  I f gcd(i, ro ) = 1 (i.e., I = 1) then

w  i r o  —  1 a n d p  =

(i — 1)(r — I)
2 •

Moreover, i f = [1] then ca > 2, i = w — 1, ro =  1 and the principal vertex

o f ..9-
k gets weight 0 after absorption of
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(b) If  gcd (i. ro ) 1 (i.e. 1> I) then .9°,  : 4- • • • 4 -  3 ;  is of type co, where h = 171 _1 ;
thus ni _, = m 1 _2 0 1_ 1 is  a positive integer. W ritin g  (5= j 1  —  h 0, we have
ni _, 15 and

h-1
i2 -  W  =  ( a )  -  1 )  E r? + + 1 — — _ ,m i _ + 1.

( 1+ ) i + 2 P _ w _ 2 = [ i i i _ â + 2 / ] i z_ i _ni i _ i .

Moreover, if  2' = [1] then ni _, = & w  > 2, 1, =  w — 1, mi _ i =1  and the

principal vertex of .9-k gets w eight 0 after absorption of  (S.

(c) If  co 2 or Y  = [1] or 3 1_, (col then
(

1 + —
2

) i + 2p — w — 2 > O.
co

Before we prove (3.9) we state some numerical lemmas, the verification of
which we leave to the reader. But first, let us introduce the notation

f  ( x )  —  
x(x — 1) xeZ.

2

Lemma 3 .1 0 .  Let i > Po >  0 be integers such that gcd (i, Po) =  • If the
corresponding euclidean algorithm is written as

i = ccoPo+ Pt
Po= ŒtPt + Pz

ps _, = P 5 (where p,= r),

then cco pg+ ••• + ŒsP! = ipo and m o p° + + as P s = + Po —

Together with (1.8), this gives

Corollary 3 .1 1 .  L et (5 -0, go) pk) (k _>_1) be  such  that 5  has one
principal link  iff ye (0, k ) .  L et a (resp. a') be the principal link  of  .9 0  (resp. .9- k)
and write i = Po(a), =  p k (a'). L et r, = 0  t  k  —  1. Then

k-1 k-1 k -1 iro— i — ro  +E r? = iro ,  E r;  = + ro — and E f (ri ) = 
i=o i=o 2

Lemma 3 .1 2 .  Let co, i, i  be positive integers and let (ro ,...,ri,_ ,)= (mo ............ ii)
be a sequence of type (w .i,f ), with notation as in (1.19). If  m= m o +  +  m 1_ 1 ,
then

I. i = wm + i.
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k -I

2. Erj  = (to + 2)m —

k-1
3. i2  =  E ri + (on, +

i=o
k-1

4. f(i — 1) = co E f (r)+ f(co)m  + (on, + 1)f(r)—  i' +1.

Proof of (3.9). Let the notations of (1.9) b e  in force. i.e., we consider
.3r(.9') = J 0(.9 ) = {h 1 ............... 11,), and the numbers /0 ........... i, and mo  , ....
mi _ i . For 1 < v 5 I, let e , be the branch point created in 4—

As in (1.23), we may assume that 3 -
0 = (co). Then i s  a comb with negative

teeth, 0 5 v k .  b y  (1.31). A lso , 3  = (*, — L  d , I t )  w here d ,  .4  are the
branches a t  el ,  not containing the root, and d < — 1 is  a linear branch. So
the branches of ..51[5] a t  e, are d, .4 and W . N ow  e, can't absorb d  < — 1,
and el can't absorb AS (for ..9'; doesn't contract to a linear local tree). H ow ever.
3-„[5] so e, must absorb some branch, in g i[5 ], by (5.11) of [3 ] .  Hence
e, absorbs 5.

1f! = 1 then .5'; is already a local tree whose only branch point is its principal
vertex. If I >  1, let's prove that 3;  contracts to such a local tree. .91 has three
branches at s a y  A t '  and .5ii; where d' < — 1 is a linear branch and M;
contains, in particular, e ,, w hich is a branch point of weight — 1: hence el ..,
can absorb neither d  nor .4 ;[5 ] in „9- [ f l .  Since 31[5] contracts to a linear
tree, el _ ,  must absorb  one of the three branches. S o  it ab so rbs A t and Si
contracts as specified.

Before we prove that conditions (a)—(c) hold, let us explain why I = 1  is
equivalent to gcd(i, ro ) = 1, as asserted in (a) and (b). W e c la im  th a t 5  h a s
two principal links. If not, then ..9'j = (*, — 1, co — 1) has a nonprincipal vertex
w ith nonnegative weight, and so  do ./-

2   s o  one of the hypotheses of
the theorem is violated. Hence:

(1) 5  h a s  tw o  principal links.

Clearly, grk _ , has tw o  principal finks, since the principal vertex e , of 31 is  a
branch point. Thus it is c lear that I =1  is equivalent to: has one principal
link if f  v {0, k ), and by (1.8), I = 1 <=. gcd (i, ro ) = p(a1 ) = 1.

CONDITION (a). T h e  two equations follow immediately from (3.11). The
other assertions follow from the proof of condition (b), from (15) to  the end:
Put I =  1 and observe th a t 97  = =  (w), i.e.. the two rows of diagram (15)
are the same.

CoNDrrioN (b). Suppose I >  1. Consider the in teger h = h,_, > 0 : the
branch point et _ ,,  w hich  can  absorb  the branch A l' o f .97, w as created in
.9 i n  f a c t ,  . =(* , — 1, s o  Aft' can  b e  ab so rb ed  in  .57 -„  as
well. Hence
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(2) .9",, contracts to a linear local tree.

So we consider the sequence (w) = 49 -0 4 -  •  •  •  4 -  g -h. By (1.23),

(3) .9"„ is of type a), — 1,(— n — 1. — — 2), Al') where n = n,_, and

where "— 2" occurs a) — 1 times, and the absorption of .4' increases by 1 the
weight of e1 _,.

Observe that 
a h ( h ) =

 i1 _, by definition. By (3),

(4) (ro ,..., r„_,) is  of type (a),

Applying (3.12) to we deduce (where in =  m o + • • • + -  2)

h -

(5) =  E rj + [can
J=o

h -

(6) f(i — 1) = w E f(r) + f(0))m + [am + 1] f (i, 1 ) — i + 1,
J=0

(7)
h -E ri  = (co + 2) m —
j = 0

(8) = cum +

By definition of j i _ , and h, .9; has one principal link whenever h 5 j 5 i 1 1
 so

(9) h j <

If we define (5 =11 _1
 — h 0, then

1, — — 2, (— n — 1, — 

w here th e  first sequence o f  " — 2" contains (5 term s and  the  second  co — 1
term s. So contracts to the following linear local tree:

= (*. o, — n —1, — 2.....  — 2),

where "— 2" occurs co — 1 times. W e claim that n. In fact, if (5 > n then
has a  nonprincipal vertex with nonnegative weight. Since by definition

< k, o n e  can  conside r the com m utative diagram  (1.28) determined by
e .  .5rk _ 1 a n d  deduce that c o n t r a c t s  t o  a local tree which

contains a  nonprincipal vertex with nonnegative w eight. This contradicts one of
the assum ptions. So,

(10) <n.

On the other hand, we have p i t  i (X 0 ) =  m1_1 a n d  pi ,_,(ai i _ )= by definition,
and (i1_,, m,_ 1) = j, = 1 by our choice of pEMul(g'). By (3.11),

k  -1
2 =  • _

t--
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k - 1

(12) E r = i+  m1_ -  1 ,
i =

k-1

E  f ( r  -

0 1 - 1  -
 1 ) ( m , _ 1

 -  (13)
2

W e can now check tha t the two equations of condition (b) hold.

h - 1i l  - t - 1k - 1
1 2  _  w  =  0 2  _ v  r z, _

jE  r 2 _  E  r z 4_ i
L-, .1 / J  .

j=0 .1 11 i=j1-1

h -  1

=  (0) —  1) E r +  (con + 1  - -  _  i m, _ + 1,
.1-0

by (5), (9) and (11). So

(14) i 2= —  1) E r + (con + 1 - 1  -  i t -  rui- + 1.
h- 1

J=0

which is the first equation. since n = n1_1 by definition-see (3). For the second
equation, observe that

h - 1. 1 1 -  t  - 1 k-1

f ( i  -  1 ) -  P = ( f ( i  -  1 ) -  E f(r i )) -  E  f( r i ) -  E  f(r)
J=0 i=h

h - 1

= (0.) —  1) E fir .,)+foom + (con + 1 - (5)f (it- - 1
j=0

+ 1 -
 -  1)(m1- 1 - 1)

2

by (6), (9) and (13). By multiplying that equation by 2  we obtain
h-1h - 1

i 2 — 3i + 2 - 2p = (co -  1) E rl (co -  1 )  E r + 2f(co)m
= o

+ (con + 1 - - - 2(1_, + 2  -

+ i l _ l  •  " 11 -  — 1

h- I

=  ( i 2 — 14)) — (CO —  I) E ri  + 2f(co)m
j=o

-  (con + 2  - + mi _. 1

by (14). Therefore,

h-

3i + 2p - w - 2 = (co -  1 )  E ri  -  2 f(co)m + (con + 2  - )i, 1 - m 1 1

j= 0

=  (CO —  1)[(0) +  2)m - mi _ 2] —  (.0(a) —  1)tn

+ (con + 2 -  6)4_, - m,_,
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= 2(co — 1)m — (co — 1)m,_ 2  + (con + 2 — —

= 2(co —  1)In — (co — 1»n1_ 2 + (0 )  -  1)ni,_ 1

+ (n + 2 — —  m i _

= 2(0) — 1)m + (n + 2 —   (5)4_, —

b y  (7) a n d  th e  f a c t  th a t  — m1 _ 2  + ni,_ i  = 0, which follows from (4 ). Since
m = (i — i,_,)/co by (8), we find

31+ 2p — w —2 = 2 (1 1  ( i  4 _ 2 ) + (n + 2— 6)4_ 1 —

co

from which the desired equation follows.
Next, consider the diagram

I .9 ;

VI VI

I  =  5 1- I 4 g - r
11 (5 < n then, by the description of given above, between (9) and (10),

we conclude that =(*,— 1. a " ,  .1*) where af* = .saf < — 1 and  At* < — 1
a re  linear branches. Recall that the principal vertex of , fk  can absorb (in
3 [4 ] ) .  Thus the principal vertex of S  c a n  a b so rb (in 3" :[4 ]) and

— .9; [4] — 5  [4 ] —  [A*, a, B*],

where A * and  B * a re  nonempty sequences o f integers less than — 1 a n d  a  is
som e nonnegative in teg e r. S o  2' [1 ] by, say, (5.16) o f  [3 ] .  Thus 2 — [1]

=n, as asserted.
Now assume that — [1]. Then (5= n and, by our knowledge of

_ (co). C o n s id e r  the local tree 5 defined by

■
(15) V/ V/

(w )  4 - - -  4 - -  .5 - -

In  tha t diagram, each tree in  the  lower row has the  same number of principal
links as the corresponding tree in  the upper row: hence, in the lower row, only
(w) and 5 " have one principal link (all others have tw o). T hus 3  = («, — 1, s i ,
(b 1 ,..., by , co )), where d < — 1 is  a  linear branch, co' < co is  the weight of the
vertex  w h ic h  was th e  p r in c ip a l v e r te x  o f  (w), y >  0  a n d  6, < — 1 for
1 s i v. S in c e  .91 doesn't contract to a  linear tree, Sr doesn't contract to a
linear tree, i.e.,

(16) to' — 1 or 31 b1 < — 2.

In  th e  n o ta t io n  o f  (1.22), w rite  slf = (a, ...... aq ). Since el a b s o rb s  4, .9- [4]
contracts to the linear weighted tree •
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oc, b1   b,,

where a > 0. Now Ye — p l. so i e  must be m inim al. Indeed,
if X ' is not minimal then co' = - 1 and by (16) it contracts to a minimal weighted
tree ..)r = [a q  .......x ,  b , ...... bi _ 1 , b. +  1] which has more than two vertices but
only one nonnegative weight Such a  tree can't be equivalent to [I]. again by
[3], (5.16).

So Jr is m in im al. Since I ye' > 2, (5.16) of [3] implies that v = 0, a = 0 and
co' > 0. Since v = 0, every vertex of d  has weight - 2 by definition of 3- , thus
co' = 1 by [3], (5.16) aga in . N ow  v = 0 implies that i s  a multiple of m,_,,
because of the relation (see (1.8)) between the euclidean algorithm of (i1 _,.m 1_,)
and the sequence of multiplicities of the roots in ((co), kLk). T h u s
m,_, = 1 a n d  1 = co' = w -  Since i1_ 1 > rn,_, by definition, we get
co = 1 + i1_ 1 > 2. This proves condition (b). (N ote  that the principal vertex of
„97, gets weight x = 0 after absorption of W. )

CONDITION (c). If gcd (i, 1-0 ) = 1 then

(1 + -2 i  + 2p - w - 2 = -
2

i ro
co

by condition (a). Clearly, L.  i - ro > 0 if co .. 2: if 1P = [1] then -
2

i -  ro = 1 - -
2

co c o  co
> 0 by condition (a) a g a in . N ote  that j,_, = j0 = 0, so  it  is  n o t  possible that
.9  ( 0 .

N ow  suppose th a t gcd(i, ro ) *  1 . By condition (b), it is enough to prove

(n 1_ 1 - 6  +  -
2

) i1_ 1 - m,_, > 0. T h i s  is certainly the case if co 2  for n1_ 1 - (5
co

+ -

2  
> -

2  
>  1  . B y (b), if = [1] then 6 = n,_,. m i _, =  1, ii _i  =  -  1  and

CO C O
co > 2. so

2 2 2
(ni - -(5  + - m1-1 = - (w - 1 ) - 1  =  1  - - > 0.

co

By our knowledge of 11; ,_,, it is clear that the condition 9 1 (co) is equivalent
to  (5 < n1_ ,, which implies

(
2

nt- i - 6 +  -  it-1 - mi - 1 > i1_ 1 - int- 1 >0 .
co

This completes the proof of the theorem.

Corollary 3 .1 3 .  Let g':.9-
0 4-••• 4 -  g -k satisfy the hypothesis o f  theorem (3.9)

Jr some co and assum e, in addition, that

gcd(i, ro ) = 1 o r  co 2  or =  [1 ]  o r  ..91_, (co).
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Then no triple (d, u, v) o f nonnegative numbers can satisfy one of the following
two conditions:

(a) u + v < d, d, w c1 2 — u2 — v2 ,

(d — 1)(d —
nd p —

2) u(u — 1) v(v — 1)
a 

2 2 2

(b) v  +  +  ro 5 d, i = d + (co — 1)r0 , w = d2 — u2 — v2 + ((o — 1)ri,

a n d  p  =

(d — 1)(d — 2) u(u — 1) v(v — 1) 
+  (c o  —  1 ) 

ro (ro — 1)
2 2 2 . 2

P roo f. Assume that gcd (i, ro ) =  1 . Then by (3.9), w = ir o — 1 and p = (i — 1)
(ro — 1)/2. If (d. u, y) satisfies (a), then d2 — u2 — y2  =  dr, — 1 and (12 — 3d + 2
— u2  — y2 + u + y = (d — 1)(r0 —  1). These two equations imply that (d — u — v)
+ (d — r0) = O. whence ro _> d = i, w hich is absurd. (Note that whenever the
hypothesis of (3.9) is satisfied we have  i > r o ,  because of (1) in th e  p ro o f  of
(3.9).) If (d, u. v) satisfies (b), then d2 — u2 , 2 + (CO -  1)rl, = d r, + (co — 1)r1 — 1
and (d — 1)(d — 2) — u(u — 1) — y(v — 1) + (to — 1)r0 (r0 — 1) = (d + ((o — 1)r0 — 1)
(r, — 1). From  these tw o equations, w e find (d — u — r  — r0) + d = O. whence
d  0, contradiction. That proves the case gcd(i, ro ) = 1.

Now assume that gcd (i. ro )  0  1 . Then w  2  or 2 ' = [1] or .Y (w ), so
condition (c) of theorem (3.9) says that B > O. where we define

A = — w — 1. B=(1 + —
2

) i + 2p — w — 2.

Now a little calculation gives
{ 142 ± 1;2 1,

(1) A =
2d(co — 1)ro +  (a) —1)(co — 2) rl, + u2 + 172  -- 1,

(2) B =
1( — 2 + 2/w)d + u + y, if (a) holds,

(— 2 + 2/w)(d — r0) + u + v. if (b) holds.

If co 2 then  — 2 + —
2  

S — 1. so
co

if (a) holds,
if (h) holds,

O < B S {

— d + u + v < 0 ,

— (d — ro ) + u + v O.

and this is absurd. If w  = 1  then, by (3.9),

if (a) holds,
if (b) holds,

A = (n,_ , + 1 — , — = ,((n, _ , + I — S)i,_ , — m, _ 1) = xy

B = (n,_, — (5 + 2)i,_, — m i _, + (n,_ — + 1)i,_ — m,_, = x + y

where we define x = , and y = (n,_ — ô + 1)i, _ — tn, 1 . Thus x  and y are
integers. x > 2 and y >  I . W h e n c e  B2 —  2 A  x2 + y 2 >  5. On the other hand,
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we find from (I) and (2) that if either (a) or (b) holds then B 2  —2A = 2 — (u — v) 2

< 2, which is absurd.

Corollary 3.14. L et .9 9 -
0 4— ••• 4— .9; satisfy  the hypothesis o f  theorem (3.9)

for som e o.). I f  there ex ists a triple (d, u, v) o f  n onn ega tiv e integers satisfying

d>  v, ti + r o , i =  d +(c o -1 )r ° ,  w =c1 2 — — +(co—  1)ril

(d —1)(d — 2) u(u — 1) v(v — 1)
+  

(a )  
—  1 )

ro (ro —1)
and p=

2 2 2 2

then the integer I o f  (3.9) is at least 3 and 3 :i i ...(co).

Pro o f . Note th a t if / 3  then  5 .0 4 - •- 4 - .9 ; is  of type co b y  part (b) of
(3.9), w here h = h 1_, h 2 > j 1 ;  h e n c e  5h  ( w ) .  I t  re m a in s  to  p ro v e  th a t
I l an d /  2 . If 1= 1 then, as in the proof of (3.13), we find 0 = d — u — v — ro

+ d = (d — u — ro ) + (d — v)> 0, a contradiction.
Suppose 1= 2. Define A  and B  as in the proof of (3.13) then

(I) A  =2d(co — 1)r 0  + (co —1)(co— 2) rZ + /42 + 172  -

(2) B =(— 2 + 2/w)(d — ro ) + u + v.

On the other hand, we have by  part (b) of (3.9)
h1 -1

A  = (co — 1) E r  +  [u n , + 1 _  (5]i? —
.J=0

B = [n,—  ô + 21co]i,—  m ,.

r o = n 1 i 1 . j 1 = i — cor o = d —ro .

h1 - 1
E = ir o = dr o  + (co —1)1.1,

i=0

the last equation by (3.11) and the third line by parts (2) and (3) of (1.19). So

(3 ) .4 = (a) — 1) (dro + (co — 1) r1)

+ [((co — 1)n, + 1 — 2/w)+ (n 1 — 6 + 2/ (0)] if — iimi

=  (co — 1)(dr 0 + (co — l) r) + [(a) — 1) n1 + 1 —  2Ico]q + Bi,

=2(co — 1)dr o  + (co —1)(co — 2)/1, + (1 — 210)q + Bi,.

We get u2  + v2  — 1 = (1 — 2/co)q + B i, = (u + v)i, — i? by equations (1), (2) and
(3), i.e..

1 ,2  - +  ( i j  - + U 2  -  1 )  =  O.

That quadratic equation in v has discriminant

= — 31? + 4ui 1 — 4(u2 — 1) = — 3 [ ( i  —  u ) 2 + 4-- (2u2 — 3)1
3 9
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2 4
w hich is negative w henever u  >  2 . Thus u  <  1  and i -  -u  > since 1> 1

3 3
implies i t >  2 . H e n c e  4  < 0  in any case, a contradiction.

4. Birational morphisms

We studied birational morphisms of non-complete surfaces in [3 ], with special
attention t o  the case A2  -0 A 2 . In particular, we considered the problem of
classifying the irreducible birational endom orphism s o f  A2 ( f :  A2 -> A ' i s
irreducible if it is  no t an automorphism of A2 and if, whenever it is factored as
a composition 1 = h o g  o f  birational endomorphisms o f A2 ,  g  or h  i s  an
automorphism of A2 ). This section shows how the machinery of local trees and
weak sequences can be used to investigate that classification problem.

W e use the notations and terminologies o f  [3 ] . and in particular see (1.2)
for the notions of minimal decomposition, fundamental point, missing curve,
contracting curve, for the set J  and for the num bers n(f), c(f ). g o ( f ) , j( f )  and
S (f ): see (2.8) for the matrices j . g, E and E' determied by a minimal decomposition
of f .

The following result can be found in [3 ] with a somewhat fancy proof (see
(4.10) of [ 3 ] ) .  W e reprove it here by using the methods of this paper.

Theorem 4.1. Let f  be a birational endomorphism of  A2 , with n ( f ) =  1 .  Then
f  is a sim ple affine contraction.

P ro o f . By [3], (4.3). f  has one missing curve and that curve is rational
with one place P  at infinity: we have to prove that that curve is a coordinate
line (2.1). Embed A 2 in  P2 the standard way, let L = P 2 \ A2 .  let P 2 —) P2 b e
the blowing-up of P2 a t  the fundamental point P , and let C  denote the closure
in P2 of the missing curve of f  and also its strict transform in P2 . Note that
both  (P, C, L,13-2 )  and (P. C. L , P2 )  satisfy the conditions of (1.13). U sing the
notation of (1.13), write S o  =  F2 ,  etc., and consider the sequence of m-trees of
(P, C. L . F2 ):

SO 4-  4 -  Sk

P(P. C ,M o ) ( g - k ,  1-4).

If k = 0 then C.L = p o ({P. 1 }) = u k (IP, L ))= 1, so C is a line in P 2 and we are
done.

Assume k > 0. Let d = deg C , u = p(P C )(i.e ., u = 1, but we don't need
to know that) and

k - 1
2  = d2 u 2 E  (k i(x .)) 2.

i=o

We see that ..irk [a] W ( S k , C +  Lk) - [1] and th a t the principal vertex of
is a branch point. If ..Fk  does not contract to a linear local tree the hypothesis



A ffine plane curves 625

of (3.9) is satisfied (with w = 1, =  [ a ] .  =  [ 1 ] )  and consequently a = — I; it
fo llo w s th a t the triple (d, u, 0 )  satisfies condition (a) of (3.13), which is
absurd. Consequently3 3 -k d o e s  c o n t r a c t  to  a  lin ea r  local tree. S i n c e  the
sequences [A P, C. L, P 2 )  and p(P. C. L . P 2 ) a re  identical, the missing curve is
graph-theoretically linear, i.e.. it is a coordinate line by (2.3).

For the rest of this section, we shall study those birational endomorphisms
of A2  having the property that each missing curve is blown-up at most twice, i.e.,
those endomorphisms for which every column of the matrix p  has at most two
nonzero entries. W e begin by stating the results: the first one says that we are
in fact restricting ourselves to the case n ( f )< 2.

Theorem 4.2. L e t  f  be  an  irreducible birational endomorphism o f  A2 ,  with
n ( f ) > 2. If  every missing curve o f  f  is blow n-up at inost tw ice then n(f ) = 2.

Note that, if f  is such that every missing curve is blown-up at most twice,
then so is h  whenever f  = h o g .  Hence (4.2) can be rephrased as:

4 .3 .  L et f  be a birational endomorphism of A2  each  o f  whose missing curve
is  b lo w n -u p  at m o st tw ic e . I f  n ( f )> 0  th e n  f  = h o  g  f o r so m e  b iratio n al
endomorphisms g , h  o f  A2  such that 1 < n(h)< 2.

The next two results give a complete classification in the case n ( f ) = 2.

Theorem 4.4. L e t  f  be  an  irreducible birational endomorphism of A 2 , with
n ( f ) = 2. T hen  g(f )= 2  and there is a  coordinate system  on A2  such  that the
closures of the missing curves meet the line at inf inity  at distinct points, when A2

is embedded in P 2  th e  standard way. Moreover, that coordinate system is unique.
up to affine automorphism of A2  (i.e., linear automorphism + translation), and has
the follow ing property : If  the m issing carves C 1, C 2  and the fundamental points
P ,, P 2  are suitably  labelled (w here P 2  m ay  be i.n. PO then there is a positiv e
integer b such that:

1. C 2  is a  rational curve o f  degree 2b +1, w ith one place at infinity:
2. p ( P  C 2 ) = b + 1. p(P 2 . C 2 ) = b:
3. C , is  the line (of  degree one) through P, and P 2 ;
4. the multiplicity sequence o f  C 2 at inf inity  begins w ith a sequence of type

(2, 26 + 1, 1) and continues 1, 1

Theorem 4.5. L et C 1, C 2, P 1 , P 2  be curves and points in A2  satisfy ing the
four conciiiions listed in (4.4), f o r som e positiv e integer b. T hen there ex ists an
irreducible birational endomorphism f: A2 A 2 ,  w ith n(f ) = 2, hav ing C,, C 2  as
missing curves an d  P,, P 2  as fundamental points. Moreover, that endomorph ism
is unique, up to equivalence.

W e mention the following related fact: Given a positiv e integer b and  a
sequence ,(/' o f  type (2, 26 + 1, 1). there exist C 1 , C 2 , P,, P 2  satisfying conditions
(1-3) of  (4.4) and such that the multiplicity sequence of  C2 at infinity begins with .99.



626 D. Daigle

To avoid  repeating long parts of arguments, (4.2) and (4.4) are proved
together. The following two lemmas are needed.

Lemma 4 .6 .  If f  is a birational endomorphism of A ' with n(f)> 0 and such
that sonic column of the matrix p  has less that two nonzero entries then f = hog
where h is a simple affine contraction in V .

P ro o f.  Suppose tha t p(P i , C 1) =  0  if i I. T h en  ev e ry  en try  of the first
column is divisible by p(P I . C I ), whence p(P,. C,)= 1 by (4.3b) of [ 3 ] .  Let W
be the surface obtained by blowing-up A2 a t  P, and removing the strict transform
o f C,, and let h: A2 b e  the birational morphism so obtained. Clearly,
f =- ho g  for som e birational morphism g: .42 --• W . B y (4.4) o f [3 ]  w e have
W.fl- A ', and h is  a simple affine contraction by (4.1).

Lemma 4 .7 . Let f  be a birational endomorphism o f .42 a ll of whose missing

curves have degree one (with respect to some coordinate system on A.2 ). If  n(f)> 0
then f  hog where h is a simple affine contraction in it 2 .

P ro o f. B y  (4.6), w e m ay assume that each missing curve is blown-up at
least tw ice. W e now  show that q(f)= 1, so  tha t the result follows from (4.11)
of [3].

Suppose g(f).: 2. Choose a minimal decomposition for f ,  w ith notation
as in (1.2h) of [3]. embed Y, = codom(f)= A. 2 in = 13 2  the standard way and
consider the corresponding diagram

A2y i n

rj

A 2y o yo p2

where 77; is  the blowing-up of at P ; (1 <  i <  n). Let L be the line at infinity
and D = C, + •-• + C +  E E, + Le Div (Y„). By [3], (2.17), it is clear that D has

iE J

s.n.c. i f  the missing curves meet L a t distinct points.
I f D has s.n.c. th en  the weighted graph D) con trac ts  to  a minimal

weighted tree w h ic h  h a s  e x a c tly  one vertex of nonnegative weight—that vertex
is L and its weight is positive. Moreover, if L is the only vertex of 4  then the
weight of L is greater than one. So [ I ]  b y  [3], (5.16), and this is absurd.

I f  D  d o e s  n o t  have s.n.c. th e n  b y  [3], (5 .19), th e r e  is  a  monoidal
transformation S, S0  =  f„ with center s, and exceptional curve F , such that
D + F i e Div (S t ) has s.n.c.. Let 4 = 4(,5 1 . D + F 1). Since the point s i belongs
to  L  and to  a t least tw o C 's, F ,  is  a branch point of weight — 1 (in 4) and
also a "special vertex", which contradicts [3], (5.18).

Proof of (4.2) and (4.4). Let f  be an irreducible birational endomorphism
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of A2 such that n (f )>  2  and such that every missing curve is blown-up at most
twice. By (4.6) every missing curve is blown-up exactly  twice and by (4.11) of
[3 ]  we have g( f)>  2. G iv e n  a n y  open immersion 1: A2  = codom(f ) q  P 2 ,  let
L be the line at infinity and consider the following condition on 1:

(*) A ll missing curves of f  m eet L at the sam e point, in  P 2 .

As is well known, the embeddings that don't satisfy (*) form a finite number of
equivalence classes (two embeddings A 2 q  P 2 a r e  equivalent i f  they  fo rm  a
commutative diagram with some automorphism o f P 2 ). The first part of the
argument consists in  th e  construction of an embedding that doesn't satisfy
(*). F r o m  the existence of such an embedding we will then deduce that n (f)=  2
(which will settle (4.2)) and prove the rest of (4.4).

CLAIM I. S om e m issing curv e is a coordinate line.

Pro o f . Choose a  minimal decomposition for f ,  w ith notation as in (1.2h)
of [3]. choose an embedding z that satisfies (*) and consider the diagram in the
proof of (4.7).

Let S =  C=C, +  • - •  +C g + E Ei  e Div (S) and D=C + Le Div (S). Clearly,
je)

S \ A2  =  supp (D ). By (*), C is connected and D  does not have sai.c.. By [3],
(5.19), there exists a place P of one of the Cy 's such that "D can be desingularized
by blow ing-up at P "  (see (3.4)) and it fo llo w s  th a t (P, C. L . S ) satisfies the
conditions of (3.5).

Consider the weak sequence I r k  o f (P. C, L . S ) .  W e re fe r  to  the
discussion preceding and following (3.6) for the definition of the numbers 2 1 and
Pi. the c u r v e s  C ,  the places P .  the graph W * . e tc ., and for the meaning of
the sentence "the blowing-up Si _, 4— S i gets C , aw ay from  P".

Let's show that, given je (1  p i ) . C  a  coordinate line. L e t  .5" =
(P i p  L'', S„ i ). Clearly, the sequence It o- 4— *  g -  consists of the

sequence of local trees of (P, i , C .  L, S) followed by a (possibly empty) sequence
of blowings-up in which every tree has exactly one principal link. We are now
going to  show th a t 5 " contracts to a linear local tree. S in c e  the sequence of
local trees of (P, i , C j , L, S) is identical to that of (13

1 ,  C , L , Po ) , it will then
follow that C y i , is graph-theoretically linear, and hence a coordinate line by (2.3).

Suppose .5— doesn't contract to a linear local tree. S ince  V i[/,.] —  [I]. w e
m ay apply  (3 .7) to  the weak sequence ... ,Yrk . W e conclude that the
principal vertex of .5-  is  a branch point. 3[— 1] is equivalent to a linear weighted
tree and Yr„,_, can 't contrac t to  a local tree having a nonprincipal vertex of
nonnegative weight. Hence the sequence

(I) = 4 - - * 4- -

satisfies the hypothesis of (3 .13). Now (3.7) also says that every extra branch
created in lry , (in particular, (.g, i ) can be absorbed by the vertex F .
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which implies that C,2u  = — 1 in Si i , since every other vertex of 51,i  has weight
less than — I  (by, say, (1.2i) o f [3 ]) .  Therefore (d, u. r) satisfies the condition
(a) of (3,13) (which is absurd). where d  is the degree of C,,,j  in  Fo and u, y are
the two nonzero entries of the v,P column of the matrix p. That proves claim 1.

By replacing if necessary the minimal decomposition of f  by another one,
we may assume that C, is a coordinate line and that p (P  C1) = 11(P2 . C 1) = I.
These assumptions will be in force until the end of the proof o f claim 6,
below. Consider the following condition on the embedding 1:

(* * ) C , has degree one in Yo .

Since (**) is satisfied by infinitely many nonequivalent embeddings. there are
embeddings satisfying both (s) and (**).

CLAIM 2. If  t satisfies both (s) and (**) then k >1 and the center o f  the
blowing-up S2 --* S, is a point o f  L. Moreover, C , is the only missing curve of
degree one and the blowing-up S, So  gets C1 , and no other missing curve, away
from P.

Proof Suppose k = 1. Then D t eDiv(S,) has s.n.c., which implies that
Cy .L = 1  in So (hence in f o ) for I v g, i.e.. all missing curves are lines in

Since that contradicts (4.7), we see that k>  I.
N o w  suppose that the center o f  S 2  - >  S 1  in  n o t o n  L .  Then, in

(S„, D1 )e l [A 2 ] ,  L  has weight 0 and is not a  neighbour o f 
Fkrn

 which is a
branch point of weight —1 (by, say, (5.19) of [3 ] ) .  As is shown in the proof of
(3.7), such a  tree contracts to a  weighted tree I '  which contains vertices of
nonnegative weights and not neighbours of each other, so that <(S,,. Dk )> = <V >
>  1, a contradiction.

Clearly, the first blowing-up SO 4-- S, gets a  missing curve away from P i f
that curve has degree one in i'o , i.e., m, = 1 and C,,, ...... C,,,, , are those missing
curves which are lines in  Yo . Thus each C,,, has weight — 2 in  V, ...... Vk •
Hence the branches of l(S k , Dk ) =  Irk [1 *1 at F, a r e  it ...... gtp,•....... where is
the one that contains FA and where < — 1 for each j  ([3], (5.17)). Since FA
is a branch point of weight — I. AS can't be absorbed by F , .  Hence no branch
can be absorbed by F, and, by [3]. (5.11), F, must be a linear vertex of (Sk . Dk ),
i.e., p, = 1 and claim 2 is proved.

CLAIM 3. I f  r I then p (P  COO 0 or p(P 2 , C )  O .

Proof Choose an i satisfying (s) and (**) and let d  be the degree of C, in
Yo . By previous claim, d > I  and C, n C, = 0  in S1 . Therefore

p(s,, CO= C,. C, (in So ) = d — CO— ti(P2. C,).

Let s denote the point C, n L of rro . Then we must have p(s,, C,)= C,) <d.
which proves the claim.
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CLAIM 4. Suppose j ( f ) >  0. Then f o r each y e{2 ..... q )  there is a unique
(t,) e 11, 21 su c h  th at  p (P , , ,  C O 0  0  a n d  a  unique C(y) E {3, .... n )  such that

p(P c ( „) , C„)0 O. M oreov er, the num bers (2)  C(q) are distinct.

Pro o f . By [3]. (4.12), j (  f )  > 0 implies that (5(f ) < j( f ). Since p  has exactly
(5(f) zero rows, y  has at least q + I  nonzero rows. Since the upper two entries
of the first column are nonzero and since each column has exactly two nonzero
entries, the result follows from claim 3.

CLAIM 5. Suppose j ( f ) >  0 .  If  y  1 and either C , doesn't meet 4 , 1 i n  Yn

or p(1 4 ,„) , C )=  1  then the ring of functions k [X . Y ] of Y0  = A 2 is generated, as
an algebra over k, by  the irreducible polynomials G1 . G , that correspond to C,, C,.
(i.e.. some coordinate system on A2 h as  C , and C„ as coordinate axes).

P ro o f  Let u = p(P 4, 1. Ce ). If C , doesn't meet in Y then p ( P ,
=  u  too, so the v̀ h column of p  is a multiple of u. By [3], (4.3b). it follows
that u = I. S ince {ilP i eC , nC ,} =  g (v ))  and since C , and C„ are disjoint in Y,„
the intersection number of C , and Ce at finite distance is u = 1, i.e.. the k-vector
space k [X , Y]/(G,, Gr )  has dimension 1; since missing curves have one place at
infinity, the assertion follows from a known result-see for instance [4], (1.17).

CLAIM 6. L et (6' be the connected component of  lin \ A2 containing C 1 .

1. I f  re contains som e E, then som e coordinate system  on A2 h a s  C , and
some other missing curve as coordinate axes.

2. I f  (6' doesn't contain any  E, then, for some coordinate system on A2 ,  C,
and some other missing curve C' meet the line at infinity  at distinct points
(when A2 is em bedded in  P 2 th e  s tan d ard  w ay) an d , if  n ( f )=  2 ,  the
multiplicity  sequence o f  C ' at inf inity  begins w ith a  sequence of  type
(2, d', 1) where d ' = deg C'.

P ro o f . For the first assertion. let's proceed by contradiction and assume
that Se contains some E , and that no coordinate system on A2 has C ,  and
another missing curve as coordinate axes. Clearly, either E , or E2 is in (6 and.
in fact. E 2  is in if whenever P ,  is i.n . I 3  1 . So in any case we may assume that
(6) contains E 2 .  Note that j( f) >  0  and n( f ) > 2.

Our assumptions and claim 5  imply that C ,, meets E4 0 ,  in Y ,. fo r
v  =  2 ,... ,q . In particular, Edo , can't be in (6 , so  '(2) =  ••• =  (q) = 1  and the
missing curves a re  already d is jo in t in  Y ,. Consequently, n o  element of
fl P 2* 13‘12)  P c,0 1 is i.n. another element of that set and, if we define

{ max {i > 21 P i.n. P 2 ).
M (v) =

max {i
if v = 1.
v = 2,...,q,

then M (1),....M (q) are distinct elements of {3..... n 1  (an d  in  particular
n ( f )>  3). Since EL,,, = —  1 in  Y„(v = 1....,q) no M (v) is  in  J  by (1.2i) of
[ 3 ] .  Whence
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J = {1 ...... n} \IM (I )..... M(g)}........and l ei.

Recall that C ,  meets E ,  in  Y , i n  Y„ if  2 < v < q. B y  (2.17) o f [3], it therefore
follows that g = 2. that E, doesn't meet C, in Y„ (which implies P 2 e E l ) and that
C2 meets E ,  transversally in  Y„. Define u = C2); since u> 1  by  c la im  5,
w e see  tha t  P t ( 2 ) E E ,  a n d  th a t  p(P ( 2 ) . C 2 ) = u —  1. W e  m a y  assum e that
1(2) = 3. Since p(P i . C2 ) = 0  fo r  i > 3  and  since E, an d  E3 meet C2 i n  Y3. E,
and E3 meet C, in Y„; so 3$.1 by (2.17) of [3], i.e., M(2) = 3 and
{1...... n}\J = (3. p l. Moreover, /1

1 0E 3( 4 i n) and, i f  n( f ) > 4, Pe E1 _ 1

(5 5_ i n) fo r  3  a n d  n  a re  th e  o n ly  i's such that E =  —  1 in Y.. Finally,
P 4 eE 1 n E2 since these two curves a re  d is jo in t in  Y„. By what has been said,

-  0  0  0  ---

I  0 0

=  1  0  0

1 1  0

(see [3], (2.8), fo r defin ition  o f g. e', p) and  therefore

[  1 0  1  --•
E i t  =

a b 0 •••

1

1 0

0  u — 1

0 0

1 2u — 1

La +  b  au

_0 0

where a, h are  positive  in tege rs. Then  one  sees that the determ inant o f e' p is
ne ither 1 n o r  — 1, which contrad icts [3], (4.3b).

To p rove  the second part of c la im  6, we assume that Se contains no E. and

we choose an em bedding that satisfies both (s) and (**). If g > 2 then we may
assume that C, 21 =  C 2 (i.e., v 2 1 =  2 ) .  In  any  case, the curve C 2 i n  Yo  h a s  one

place P' at infinity. Let

YO = Se1 4 —  S i 4—  S'2 4- -

be the infinite sequence o f monoidal transformations determ ined by (P', C 2 , "fo )
and denote by F; the exceptional curve created in  S;_ , s; . L e t

(3 - 0- ito)

be the infinite sequence o f ni-trees of (P', C2, L, V0 ): le t r;  b e  the m ultip lic ity  of
the roo t of (r,, r 1 ,...) is  the multiplicity sequence o f  C2 at in fin ity), let

d be the degree of C2 in  Yo and  le t u, v be the two nonzero entries of the second
co lu m n  o f p  where, say , v  occupies a  low e r po s it ion  th an  u doe s . W e  now

proceed to prove the fo llow ing fact:
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CLAIM 6 .1 .  Let n1 =r 0 lr 1 : then n,eZ  and d — ro =r,= •  = r2n 1• Moreover.
if n(f )= 2 then (ro . r o ,  r ,  r 2 , r 3 ,...) begins with a sequence of type (2, d + ro , 1).

P ro o f  Define

fk . if q = 2.
=

a2 , if q > 2

and note that A >  k(P', C 2 ,  L, f o )—see (1.13) for the definition of k(P', C 2 ,  L, Yo ).
Consider the sequence of m-trees

v–i) ( ro, v0 ) ( , — ,11)

where, in the notation of (1.22),

• =  (  2 ) ,  v_ 1 (x0 ) =  ro and the value of v_ 1 a t the principal link is
d + ro :

• -ro = (— 1), (0), v0 (x0 ) = ro and the value of yo at the principal link
that contains the vertex of weight — 1 (resp. 1) is ro (resp. d):

• = (1 j  <  and

if q = 2,
=

A L 2 2 .  52 2), if q > 2.

(Observe how -ro - r i  i s  a  consequence of the assumption - C  contains no
Ei ".) Note that if -V, contracts to a linear local tree then

(2 ) = 4 - - 4—  "Vi(r.c2.L.170)

is a sequence of type 2 by (1.23), thus (ro , ro , r1 , r2 ,...,rk ( r x 2 ,L . f. ) _1) is a sequence
of type (2, d + ro , 1) and claim 6 .1  follows. Let's assume that -V, does not
contract to a linear local tree. We now show that n(f ) > 2  and that claim 6.1
holds in this case too . Let .9 ' be the sequence -V_ , • • •  4 -  j .

Case q(f ) = 2. 1 / : ,  =1V„, so the principal vertex of Ir,„ is a branch point
and -KATO —  [1 ]. Hence the sequence 9 '  satisfies the hypotheses of (3.9) and
(3.13). with co =  2 .  By ( 3 .9 ) ,  /  can be absorbed by the principal vertex of
(which implies Ci = — 1 in 5, =  SA). Hence the triple (d, u, v) satisfies condition
(b) of (3.13) except, perhaps. for the inequality u + y + ro  d .  Thus u + y +  r o

> d (otherwise we contradict (3.13)) and since

d  =  or  + u + v,{ if n = 2,
ro + u. if n > 2,

we see that n> 2. The assertion is then a consequence of (3.14). (That result
asserts that there is a j  such that 1 < j  <  A and > (2); then -Vi contracts to a
linear local tree, where i = max (.1f (<9') n { —  I ....... j} ) ,  hence 1/1., 4 -  •  •  •  4 -  r; is of
type 2  by (1.23), etc.)

Case q (f )> 2. By (3.7) applied to the weak sequence
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22 -

the principal vertex of -r -
A i s  a branch point, 'f -

A [— 1] is equivalent to a linear
weighted tree and -6_ , can't contract to a local tree having a nonprincipal vertex
of nonnegative weight. Hence the sequence .99 satisfies the hypothesis of (3.9),
with co =  2 .  Moreover, (3.7) says that every extra branch created in W;2 _,
1V32 can be absorbed by the vertex to which it is attached (which implies that

= — 1 in S2 2 =  SA ). H e n c e  the triple (d. u, v) satisfies the condition of (3.14)
and, as in the case g( f ) = 2, claim 6.1 follows.

From claim 6.1 we see that

= (*, — 1, — 2 ..... - 2 .   (— n, — 1), ( - 2 ...... —2, — 1))

where the first sequence of " — 2" has n, terms. Hence > (1) and to that
contraction corresponds a birational morphism p: S . 1 4.1 - P S ' that contracts L,
F , F'2 . F i, in that order. So we get an embedding A2 q  S' such that the
complement of A2  is = p(F; + ,), which is a curve of self-intersection I. H e n c e
S ' = P 2 . Moreover, if x denotes the point F 2 n F , + , of then C , meets
L ' a t  the point p(x), which is distinct from the point at which C 2  meets L'. So
we have constructed an embedding A2  q  P 2  such  tha t C , and C , meet the line
at infinity at distinct points; note that the multiplicity sequence of C2 at infinity
is  now  (ri)p. 2 n 1 ,  

which begins with a sequence of type (2. d — ro , 1) whenever
n(f ) = 2  (by claim  6.1); one easily sees that d — ro  = deg C2 ,  so  the proof of
claim 6  is complete.

By claims 1 and 6, there exists an embedding 1: A 2 q  P 2 that doesn't satisfy
(*); we choose such an embedding. Then one of the missing curves. say C,, has
degree one and doesn 't m ee t any  o ther m issing  cu rve  a t in fin ity , by  [3],
(4.3c). Choose a minimal decomposition such that p ( P  CO= 1 = p(P 2 ,
For each j e {2..... g), let (j) and C(j) be the two elements of (1...... n} such that
p(.13

4 0 , C )  0  and p(Pcch , #  0 ,  w ith  (j) < ( J ) •  The minimal decomposition
and the immersion i determine a commutative diagram as the one displayed in
the proof of (4.7).

CLAIM 7. n ( f ) =  2.

Proof. Assume n(f ) > 2. Let j e {2..... g ) .  Since C , and Ci  don't meet at
infinity they must m e e t a t f in ite  distance, w hence .(j) <  2 .  W e claim  that
CO)> 2. Indeed, if C(j) 2 and j ( f ) = 0  then f  is reducible by (4.5) of [3]; if
C (j) . 2  and j ( f ) >  CI t h e n  p  h a s  a t  le a s t  n(f )—  q(f ) = j(f ) zero rows, i.e.,
(5(f ) j ( f ) >  0 and f  is reducible by (4.3a) of [ 3 ] .  Hence C(j)> 2. which implies
tha t C , and C . are already disjoint in Y4 tn ,  i.e.,

p(Po h , Ci ) = C,. C;  =  deg C.; in Po  .

S o  w e  must have deg Ci  =  1 , i.e., all m issing curves have degree one. This
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contradicts (4.7). hence n ( f )= 2  and claim 7  is proved.

Note that the proof of (4.2) is now complete: let's now finish that of (4.4). By
changing if necessary the minimal decomposition, we may assume that
p(P,, C2 ) p(P2 , C2 ) = b E N .  Since the determinant o f p  is ±  1 , w e have
p(P,, C2 ) = b  + 1 . Since C , and C2 are disjoint in r7

2 , the degree of C , in f o

must be p(13
1 , C2 ) + lz(P2 . C 2 ) = 2b + 1. Finally, it is well known that there can

be at m ost one coordinate system that doesn't satisfy (* )  (u p  to  affine
automorphism of A2 ). Hence the coordinate system which we are considering
right now is essentially the same as the one that is given by the second part of
claim 6. Consequently, the multiplicity sequence of C2 at infinity begins with a
sequence of type (2, d', I) where d' is the degree 2b + 1 of C2 . So (4.4) is proved.

Proof  of (4.5). Embed A2 in  P 2 the standard way and let L  be the line at
infinity. Blow-up P 2 a t  P ,  and P2, then C , and C2 are disjoint and C , is
exceptional of the first kind. It's enough to show that the complement of
supp(C, + C 2 +  L) is A 2 . Equivalently, if S  is the complete nonsingular surface
obtained by contracting C , and if U = S \ supp(C 2 +  L ) , we have to show that
U .1z- A2 . By [3], (4.1), it's enough to prove that [1] e 1[U ].

Let P be the place of C. , which corresponds to the point C2 nL  of S. Let
S = SO 4— be the sequence of monoidal transformations determined by the
triple (P, C2, S) and let

P ro, go) (gi.

be the sequence of m-trees of (P, C2, L. S). If D is the reduced effective divisor
of Sk such that Sk \ U = supp(D) then, clearly. D has S.II.C. i f  C 2 is nonsingular
in Sk . Now the last condition of (5.3) says that

(ro  rk _,) = (p i (x 0 )); ... 0  , k_i is of type (2, 21) + 1. 1).

Let's use the notation f(x) = x(x —  1)12 ,  x  Z ,  as in  the numerical lemma
(3.12). Using parts (1) and (4) of that lemma (with o) =  2 , i =  2b +  1 , = 1) we
find that the arithmetic genus of C2 in S k  is

k— 1
( f(2b) — f(b + 1) — f(b))— E f (r. ) = b(b — 1) — b(b — 1) = O.

i=0

so D has s.n.c., Now the dual graph (.4(Sk . D) is just .9-,[13], where 13 = Cl in
Sk. By part (3) of (3.12) we find fl = n, where n, is determined by (ro ...., rk _ ,)
as in  (1.19). Since 9 -

0 4— —4— 9-
k i s  of type 2. .3  0, — n, — 1, — 2) by

(1.23). Hence

4 [1 1 ] gi =  g -k[n i] [nl , O. — n, — 1, — 2] — [1],

as desired.

One o f the consequences o f (4.3) and (4.4) is that if f  is  a  birational
endomorphism o f A2 w ith  the special property that every missing curve is
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blown-up at most twice, then one of the missing curves is a  coordinate line. T h e
following example shows that this fails in  general.

Example 4.8 (Russell). I n  A2 ,  le t  P, = (0, 0). P ,=  (0, 1), P3 = — 1, — 1),
P4 = (1, 2) a n d  le t C,, C,, C3 a n d  C4  be the  curves given by th e  polynomials

F, = Y 3 + 8X — 6XY — Y'

F2 = Y4  ±  32X 3 — 48X 2 Y + 20X —  2Y 3  +  20X 2 — 20X Y+ Y2

F3 = Y4  — 32X 3 4 8 X 2 Y— 20X —  2Y 3  — 28X 2 + 20X Y + Y2

F4 = Y 5 +  128X 4  — 288X 3 Y+ 224X 2 Y2 — 60X Y3 — 2Y4  +  96X 3

— 156X 2 Y + 60X Y2 +  Y3

respectively. Blow-up A2 at P,, P2, P3 an d  P4, and  remove from the surface so
obtained the  stric t transforms o f C1 . C2, C3 a n d  C 4 . T h e  resulting open set is
isomorphic to A2 ,  so a n  equivalence class o f  endomorphisms f :  A' —■ A ' is
determined. N ote  that

2 2 2 3 -
1 2 2 2

1 2 1 2

_ l  1  2  2

so th e  endomorphism is irreducible by [3]. (4.5).
are singular.

DEPARTMENT OF MATHEMATICS
YORK UNIVERSITY
TORONTO, ONT.
CANADA M3J 1P3

P =

N ote  that all missing curves

CURRENT ADDRESS
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OTTAWA
OTTAWA, ONT.
CANADA KIN 6N5

References

S. S. A bhyankar and T. T. M oh, Em beddinp,s o f  th e  line in  th e  p la n e , J. Reine Angew.
Math., 276 (1975), 148-166.
D. Daigle, Birational endomorphisms of the affine plane, Thesis, McGill University, Montreal,
Quebec, Canada, 1987.
D. Daigle, Birational endomorphisms of the affine plane, J .  M ath. K yoto Univ., 31, No.2
(1991), 329-358.
R . G anong , O n  plane curves with one place at infinity, J. Reine A ngew . Math., 307/308
(1979), 173-193.
K . P . R ussell, H am burger-N oether expansions a n d  approxim ate  roots o f  polynomials,
Manuscripta Math., 31 (1980), 25-95.


