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Refinement in terms of capacities of certain limit
theorems on an abstract Wiener space

By

Tetsuya Kazumi

Introduction

The notion of (p, r)-capacities was introduced by P. Malliavin [13] on an
abstract Wiener space (B, H, ). A set of (p, r)-capacity 0 is always a set of
u-measure 0 and therefore it is important and useful to sharpen statements or
properties holding p-almost everywhere on B to those holding quasi everywhere
on B, i.e., everywhere except on a set of capacity 0. This kind of sharpening
was studied by, e.g., Fukushima [5] and Takeda [17] for the familiar almost
sure sample properties of Wiener processes. Also the existence of quasi
continuous modifications and their applications for a class of Wiener functions
were discussed by Malliavin [13], Sugita [16], and Airault-Malliavin [1], among
others.

The first aim of this paper is to give a similar refinement of limit theorems
for a class of independent random variables defined on an abstract Wiener space
(B, H, p). A main result is Theorem 2.2 in Section 2, where a criterion of the
Kolmogorov type for the almost everywhere convergence or divergence is
sharpened to the criterion for the quasi everywhere convergence or divergence in
the case of sums of a class of independent Wiener polynomial functions. As a
by-product of a law of large numbers obtained as a corollary to Theorem 2.2,
we can show that the Cameron-Martin subspace is slim (cf. Feyel-de La Pradelle
(3D.

For a given positive generalized Wiener function @ on (B, H, y) with
(@, 1) = 1, Sugita [16] constructed a Borel probability measure v=v4, on B. In
Section 3, we study limit theorems (central limit theorems, criterions for almost
sure convergence and divergence) for the same class of independent polynomial
Wiener functions as in Theorem 2.2 with respect to the probability space (B, v). An
interesting point in these theorems is that these random variables are no more
independent on the space (B, v).

In Section 4, we collect some supplementary results obtained in the course
of study in Sections 2 and 3, which are of independent interest. In particular,
we obtain an estimate for the tail capacities of the norm and a refinement of
the It6-Nisio theorem.
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§1 Preliminaries

Here we collect some of fundamental notions and facts in the Malliavin
caluculus which will be needed in the subsequent sections.

An abstract Wiener space (B, H, p) is a triplet (B, H, u) where B is a real
separable Banach space with the norm |||z, H is a real separable Hilbert space
(called the Cameron-Martin subspace) with the inner product (-, -», which is
contained in B densely so that the injection j: H— B is continuous, p is the
standard Gaussian measure on B, that is, the Borel probability measure on B
satisfying

J eim+ U308 gy (x) = ek
B

for every fe B¥ « H* and H¥* is identified with H by the Riesz theorem.
In the following, we assume that dim H = co. Then we have always

(1.1) u(H) = 0.
It is well-known that for every he H, the linear function on H:

hWeH —s(h hy,eR

can be extended to a u-measurable function. This extension, called the stochastic
linear function, is denoted by (h, x). The family {(h, ), he H} forms a mean 0
Gaussian system on the probability space (B, u) with the covariance coinciding
with the H-inner product.

As usual, a y-measurable function on B is called a Wiener function and two
Wiener functions with values in the same space are identified whenever they
coincide with each other u-almost everywhere (u-a.e.). For 1 < p < oo, we denote
by L, the usual L,-space of Wiener functions and more generally, by L,(E) the
L,-space of E-valued Wiener functions where, generally in this paper, we denote
by E a real separable Hilbert space. A real Wiener function F(x) on B is called a
polynomial function if it can be expressed in the form

F(x) = p((hl’ X),...,(h,,, X))

where p(t,,...,t,) is a real polynomial and h,,...,h,e H. If 2 is the totality of
polynomial functions, then 2 < L, densely for every 1 <p <oo. Let H,(t) be
the Hermite polynomial

(1.2) H,(@t) = ez—e 2, n=0,1,2,....

Fix an orthonormal base (ONB) {h;}2, in H and, for each a = (¢)2,, ;€Z,,
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such that |a| =X2, a; < o0, define H,e 2 by
(1.3) H,(0) = T] /ou! H (B, ).
i=1

Since Hy(t) =1 and o; =0 except for finitely many i, (1.3) actually defines a
polynomial function. It is well-known that {H,; |¢| < co} forms an ONB in L,
and for each n =0, 1, 2,... {H,; |a| = n} forms an ONB in the subspace %, (the
subspace of n-th homogeneous Wiener chaos) so that L, =X2,® %,.

Now we review very rapidly the Sobolev spaces formed of Wiener functions
and generalized Wiener functions, cf. e.g. [8], [9], [15] and [19]. For every seR
and 1 < p < oo, the Sobolev space D, is defined roughly by

p,s
(1.4) D,,=(—L)"2(L,
with the norm

(1.5) IENps=IU— L)2F || .

Here L is the Ornstein-Uhlenbeck operator
(1.6) L=Y (-nJ,
n=0
where J, is the orthogonal projection to the subspace €, so that

(1.7) U—Li=7S (1+nbJ,

n=0

More precisely, we first define the norm |- |, for Fe# by (1.5) and define D,
to be the completion of 2 by the norm. Since the family of norms on £ satisfies
(1.8) (monotonicity) | F|,s < [F|, s if p<p and s <+

(1.9) (compatibility) {F,} = 2 is such that |F,|,;—0 and [|[F,—F,l, -0
as n,m— o, then | F,||, v —0 as n— oo,

1 1
(1.10) (duality) if -+ -=1,
p 4

[Fll,s= sup{f FGdu; Ge2, |G|, -5 < 1}, VFe?,
B

we have immediately that

(L.11) D,o=1L,
(1.12) D, <D, if p<p and s <s and the inclusion is continuous,
(1.13) D,,=D, _,.

We set
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(1.14) D,=0N ND,, and
p>1s5>0
(1.15) pD.=-U UD,_.
p>1s>0
D, is a Fréchet space, called the space of test Wiener functions, and D_ is

the dual of D, called the space of generalized Wiener functions. If E is a real
separable Hilbert space, we can extend the definition of polynomial functions and
Sobolev spaces to the case of E-valued Wiener functions in an obvious way. The
spaces are denoted by 2(E), D, (E), D,(E) and D__(E) and norms by
I I,.se- The Ornstein-Uhlenbeck operator L, defined by (1.6) on 2, can be
extended to an operator L: D__ —» D__ which is continuous D, ., > D, for
every s and p. The Fréchet derivative D is defined, first for FeZ, by

F(x + ¢h) — F(x)
; .
and DFeZ?(H). Then D can be extended to an operator D: D_,—-D__(H)
which is continuous D, ., —» D, (H) for every s and p. Therefore, the dual
operator D* of D is defined: D*:D_ (H)-D__ which is continuous
D,,+1(H)—>D,,. Furthermore, it holds that L= — D*D. The following
equivalence of norms is due to P.A.Meyer: for every 1 <p< oo, seR and
k=0,1,2,..., there exist positive constants Cpsk < Cpsx such that

{DF(x), hyy = ling heH

(1‘16) cp,s,k ” DhF“p,s;H@...@H < ”F”p,s+k
k
< Cp,s,k Z ”DIF”p,s;H@...@H’ FEDOO'
1=0 N——

ltimes

From now on, we let p and r denote some constants 1 <p < oo and r >0
and q denote the dual index to p: 1+ l = 1. We now define the (p, r)-capacity
for subsets of B. First, for any oppen sqet 0, we set
(1.17) C,,(0)=inf{|F|?,; FeD,,, F>1 p-a.e. on O}
and for an arbitrary subset A, define
(1.18) C,.(4) =inf{C,,(0); A< O, O: open}.

These (p, r)-capacities possess the following properties:

(1.19) aA4) < C, . (A), i being the outer measure for p,
(1.20) C,.(4,)) <C,,(A,) if A, < A,

(1.21) Cn(U A)< S C,(4)
n=1 n=1
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(1.22) C,.(4)1C, (4 if 4,1 A.

From these properties, we have the following:
(1.23) (Borel-Cantelli lemma for capacities)

If 3 C,,(4,) < o, then C,,(limA4,)=0
n=1 n=o
(1.24) (Fatou’s lemma for capacities)

C,..(lim 4,) < 1im C, ,(4,).

Following Malliavin, we say that a subset A of B is slim if C,,(A) =0 for
all 1 <p<oo and r>0. Also any property holding everywhere except on a set
of (p, r)-capacity 0 (a slim set) is said to hold (p, r)-quasi everywhere (resp. quasi
everywhere), and we write simply (p, r)-g.e. (resp. g.e.)

A function F defined on B with values in a metric space is called (p, r)-quasi
continuous if, for every ¢ >0 there exists an open set O c B with C,,(0) <e
and the restriction F [ B\O is continuous. A Wiener function F with values in
a topological space is said to possess a (p, r)-quasi continuous modification F~, if
among the equivalence class of F coinciding each other p-a.e., there exists a
(p, r)-quasi continuous function F~. Two (p, r)-quasi continuous modifications,
when they exist, must coincide (p, r)-q.e.

It is well-known ([6], [16]) that every FeD,, possesses a (p,r)-quasi
continuous modification F~. Furthermore, if F>0 pu-a.e.,, then F~ >0
(p, r)-q.e. Also the following Tchebyshev-type inequality holds:

N 1
(1.25) ColF~ 2D < LIFI,,  1>0.

A generalized Wiener function @eD, _, is said to be positive and written
as ®>0 if (@, F) >0 for every FeD,, such that F >0, p-a.e., where (-, ) is
the natural coupling between D,, =D, _, and D,,. Sugita [16] showed that
to every ®eD, _,, @ > 0, there corresponds the unique finite Borel measure v,
on B such that

) vp(4)=0if C,,(4) =0
ii) if FeD,,, then F~ is v,-integrable and
iii) (@, F) = J F~ dv,.

B

i) can be sharpened in the form of the inequality

1
(126) ‘7¢(A) S ” ¢ ”q, —GC,r(A)p .

Sugita also showed that a Borel set A4 is slim if and only if v4(A4) =0 for every
positive generalized Wiener function @.
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§2. Quasi everywhere convergence and divergence

Let (B, H, uy) be an abstract Wiener space. Suppose we are given an
orthonormal system (ONS) {h,};°; of H and a sequence of positive integers
{p.},. Define a sequence {£,}>., of polynomial functions by

@2.1) &%) = /P H, ((hyy X)),  n=1,2,...

where H,(t) is the Hermite polynomial defined by (1.2). Since (h,, x), n=1, 2,...
are standard Gauss-distributed i.i.d. variables, &,(x) are independent random
variables with mean O and variance 1. Also, by taking the quasi continuous
modification, we may and do assume that &,(x) is (p, r)-quasi continuous on B for
every 1 <p < o and r >0 (in such a case, we say simply quasi continuous).

First we state the following general lemma valid for independent, mean 0
and p-th integrable random variables X,, n =1, 2,... defined on any probability
space.

Lemma 2.1. For every p > 2, there exists a positive constant c, such that,
for every real sequence a,, n=1,2,...,

2.2) EGup| Y. ;X1 < c (Y a®)zsupE|X,|".
n>1 j=1 n=1 nx1

Proof. Set for each n, f, =X}_,a;X; and &, = 6({X,}}-,):= the o-algebra
generated by X, j=1,...,n. Then {f}°, is a martingale with respect to
{Z.}>o,. Setting f* = sup|f,l, it follows from Burkholder’s inequality ([7]) that

n>1

- 2\2 o 2y2?
E|f*Pc,E(Y If,— fi-1l2=c,El Y a2 X2z,
n=1 n=1

where ¢, is a positive constant depending only on p. Since gz 1, it follows
from the triangle inequality that

2 y2 v 2 2B v 22
El Y aiX?1Z<(} ai(E|X,[")p)2 < () ap)2supE|X,[7.
n=1 n=1 n=1 n>1

This completes the proof of Lemma 2.1.

Theorem 2.2. Let {{,}°-, be the sequence of random variables defined by
(2.1) and let {a,}>-, be a real sequence. Suppose that

(2.3) o =supp, < .

Then the following dichotomy holds for the convergence or divergence of the series
X2 aé,:
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(1) If T2 a2 < oo, then the series £, a,&, converges quasi everywhere.
(2 If £2,al =, then for any real sequence {b,}* ., the series L.,
(a,&, — b,) diverges quasi everywhere.

Proof. First we prove (1). For this, set
A, =C,, (sup| Y a;&|>¢€), e>0, neN.
m2n j=p

Since £;e€ C,, and the operator (I — L)y z= F(%) fea=te™ =D dy is positivity
preserving, we have

sup| Z a;¢;| = sup|(1 —L)72 Y ail — L)2¢|

m2n j=p j=n

<{- L)'ésupl Y a;(1 + pj)ééﬂ, u-a.e.

m2n j=n

By taking a quasi continuous modification of the right-hand side, this estimation
can be sharpened as

sup| ). a;¢;| < {(I — L) 2sup| Y. a1 + p)2&;1}~  qee.
m2n j=n m2n j=n
Hence, by the Tchebyshev inequality (1.25), o, , can be estimated as
Xy < —II(I — L) Zsup| Z a1+ p)2& 15,

mznjn

=—J sup| Z J(1+ p)2E;|Pdp.
B

& m2n j=p

Applying Lemma 2.1, we can estimate the above further as

C
an.a S _p(
€ j

M8

a(l + p,-)')%supj |En(X) [P dps(x)
B

n m>n

2 dt)

1 <a
j= sm<

w 1
1+ 2 <J JmVH, () -
8( 02(2 )2 max _wl m! H, ()] \/ﬂe

a0 2 p
Ap,r,e,a( Z a; )2’
j=n
where we set

pr _12
reg-=—(1 4+ 0)2 max H,()? e~ 7dt).
st g ([ e L )

A

l1<m<o



8 Tetsuya Kazumi

Combining this estimate with Fatou’s lemma for capacities, we can now conclude

that if z a? < oo, the set G, = lim {sup| Z a;¢;| > ¢} has C,,-capacity 0 for

n=1 mxn j=n

every e >0 and 1 <p < oo, r > 0; that is, G, is a slim set for every ¢ > 0. Then

setting G = {J GL, G is also slim. It is clear that {Z a;&;}, is a Cauchy

k>1

sequence outside G and hence Z a;¢; converges out51de G. This completes the
=1

proof of (1).
. Next we show the assertion (2). Given {a,};>, and {b,};>, such that
Y. a} = oo, it is sufficient to show that

(2.5) G U N N Gua=0

1>1 N>1 n>N m>0

for every 1 < p < oo and r > 0, where
n+m 1
Glmn = {x; |y (a;&;(x) — byl < 7}, I, m, neN.
j=n

The left-hand side in (2.5) is dominated by

prlU 0N Gipa)=Jim Cpi( N N G

N21 n>=N m>0 n>=N m>0

and hence it is enough to show that

(2.6) lim C,, (N N Gymn=0.

N—-w
Take two sequences {m}y>, and {m,}, of non-negative integers such that
2.7) ny<ng+m<n,<n,+m<

Then, if we choose k,, KeN such that N <k, < K,

K
(28) Cp,r( n n Gl,m,n) S Cp,r( ﬂ Gl,mk,nk)'

n>N m>0 k=ko

Choose a C®-function u(t) on R such that 0 < u(f) <1 and

2.9) {u(t)=1 if 1] < 1
. u()=0 if|t] =2
Set
(2.10) Ax) = ) (a;¢(x) - b), xeB.

JeJk

where
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(2.11) Je={im <j<n +m}
Since
K K
[T udi(x)) =1 if xe N Gy pmemes
k=ko k=ko
we have
N K
(2.12) Cor( N Gromend) < Il TT w4912,
k=ko k=ko

If r =1, then by the equivalence of norms,

K K K
(2.13) ITT wadi, < A (1 TT w@) iz + 11D T u(40)113)

k=ko k=ko k=ko

where |- ||, is the L -norm and here and in the following, 4,, 4,,... are positive
constants depending only on p and o in (2.3). By the chain rule for the operator
D (cf. [9]) and the fact that H,(t) = H,_,(t), we have

K K
D l—[ u(4dy) = Z u'(4,)? Z a; Pj!Hp,—1((hja x)) h; l—[ u(4,).
k=ko k=ko Jjedx ll=$kko

Since h; are orthonormal in H,

K K K
|D H u(Ak)I%I = Z ul(Ak)z z a}pj!Hpj—l((hja x))z l_[ u(4,)?
k=ko k=ko jeJx I=ko
1%k
K K
<|wl% Y Y aipj'H,_i((h; x))* [] 2(4)
k=ko jeJx I=ko

where x(t) is the indicator function of the interval [ — 2, 2]. From this and the
Schwarz inequality, we deduce that

K K K
214) D[] u@dlz< w12 | (Y Y a?p;tHyoi((hy, x))5 [ 2(4)du

k=ko B k=ko jeJi 1=ko

11
< W% 1313

where

K
L=\ (Y Y alp'Hy—1((h;, X))y du

B k=ko jeJx
and

K
I, =J l_[ x(4)du.
B

I=ko
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We first estimate I,. Since p; <o,

K
L<or| 1S T @l — D H, (2 — 11+ 3 Y @ Pduty

B k=ko jeJk k=ko jeJik

K
szw{ j 1SS @y — D Hy (9P — 1PdRG) + | Y Zafl"}.
: B

k=ko jeJi k=ko jeJx

Applying Lemma 2.1 to centered random variables {X;:= (p; — I)!H,,,_,((h;, x))?
— 1}, jeJ:= Ufi, Ji» We obtain

(2.15) I, < ZPJP{C,,(Z aj-‘)%majxf |X;1Pdu+ (3 af)"}
el Jp

Jjel JjeJ

< A,(Y a})y.

JjeJ

From (2.12), (2.13), (2.14) and (2.15), we can conclude that

K K 1
(2.16) Cot( N G <A1+ Y Y a2H13.

k=ko k=ko jeJx
In order to estimate I,, we consider the following three possible cases:

(1) lima, =0

n= o0

(ii) 0< Timla,| <

n—oo

(i) lim |a,| = 0.
n—oo

o0
First, we assume (i). Then, since ) a} = o0, we can choose the above {m,}
j=1
and {n} so that !

1
2
2.17) rjrgfmjl <?
(2.18) Y ai<l<y al.
Jedr\{(nic + my)} jeJx
Then

K K 1
Y Yai< ) <1+§>3K+1.
k=ko

k=ko jeJk

We introduce the following notations:
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A= [Yaf,  Bi= )b,
JjeJx Jjedx

and n, = Y. 0;¢;

JjeJk

Onji =

»|e

Then we have
a(= Z (a;¢; — b)) = Ayny — By.
jeJx
We claim that #, DN 0, 1) as k- co. Indeed, since 7, is a sum of independent

random variables with mean 0 and variance 1, it is enough to verify the Lindeberg
condition:

(2.19) lim ¥ f o, ,;¢;12du=0,  Ve>0.
tlak, j¢j1> ¢}

k=0 T

It is clear that there exists a polynomial P(t) such that
max I/n!'H, ()| < P(t), VteR.

Hence,

|éj(x)| < P((hj’ x))-
By (2.17) and (2.18), we have

o'k‘. =

~.
RS
B —

and consequently

Y j low, ;&P du< Y, Uf.jj p P((h;, x))* du(x)
{lok,j&51> ) {2 2P(n)>¢)

JjeJx jelx

1 1.,
= . P@®? e 2" dt.
J( N

P(t)> 22¢} 2n

This proves (2.19). Now

K K
I, = 1_[ pl4l <2) = l_[ p( A — Bl < 2)

k=ko k=ko
n S A’( S k S n

p(l A — Bl <2) < pu(iml <5) il |B] <3
and
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1 . ,
p(lAgme — Bl <2) < p |’7k|2ﬁ if By > 3.

From these estimates and the fact that nkﬂ»N(O, 1) as k— oo, we can find
ko> N and 0 < a < 1 such that

u(lAgnme — Byl <2) <« for all k >k,

and consequently I, < aX *. This estimate, combined with (2.16), yields the
following :

A Pk
Cp,l( N Gy men) < As K22

k=ko
and by (2.8), we can conclude (2.6) if r = 1. The proof in the case of r =2, 3,...
can be given in the same way and this completes the proof of (2.6) in the case of (i).
In the case of (ii), there exists ¢ > 0 such that |a,| > ¢ for infinitely many n
and we choose the above {m} and {m,} so that |a,|>¢ and m, =0. Let

p =supla,| < 0. Then

K K
> Yai- ¥ @ <P
k=ko jeJk k=ko

Also

5 .
u(l4il < 2) = pllap o, — bul <2) < #(Ifnkl £;> if |b,, | <3

and, if |b, | > 3,
p4] <2) < p(é, >0  or <pu, <0)
according as a,, b, >0ora,b, <0. Now we can easily find 0 < « < 1 such that
uldel €2y <o for all k

because the number of different laws of {£,.}°. | is at most 6. Then (2.6) can
be concluded in the same way as in the case of (ii). The proof for the case (iii)
will be given in the next section.

Corollary 2.3 (LAW OF LARGE NUMBERS). Let {&,}°. | be defined by (2.1) and
suppose that ¢ = supp, < oco. Then
.1 .
lim-) &=0 quasi everywhere.
Proof. This is an immediate consequence of the previous theorem and

Kronecker’s lemma; let {b,}>, be a sequence of positive numbers such that

[ee]
. a
lim b, = oo and {a,}>, be a sequence of real numbers. If ) - converges, then
n— oo

n=1Uy,
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lim = 3 a;=0.
=1

1
n=ob,

Corollary 2.4. H is slim.

Proof. Choose an ONS {h,}>, in H such that h,e B*. By Corollary 2.3,
. A B | n
it holds that lim - Y —{(h,, x)> — 1} =0 g.e. and hence that liml Y. (h;, x)?

n—»oonj=l\/§ n-*conj=l

=1 g.e. But, for every he H, we have
lim Y (hj, h)* = lim Y. <hj, B < |hi}
n=>o /= n=o /2

1 n
and hence lim — Y (h;, h)> =0. From this the assertion immediately follows.
nsopn iy

§3 Central limit theorems under v and convergence in L*(v)

Let @ be a positive generalized Wiener function belonging to D, _, such
that (@, 1) = 1 and v = v, be the corresponding probability measure as explained
in §1. Since every set of (p, r)-capacity 0 is a set of v-measure 0, we can state
Theorem 2.2 as a theorem concerning v-almost everywhere convergence. We can
also obtain other limit theorems for the same partial sums with respect to the
probability v. We start by giving the following approximation lemma:

Lemma 3.1. For a given ® as above and an orthonormal base (ONB) {I,},>,
of H, there exists a sequence {®,}x_, of Wiener functions satisfying the following
conditions

(1) @,eD,,, ¢,>0 and (P,,1)=1
@ lim [®—&,l, -, =0
(3) for each m, there exist N,,eN and ¢: R"" >R such that

D,(x) = ol(ly; X),...., (y,,, X))-

q,—r

1

Proof. First we define ¥, by ¥, =em"®. Then, we have ¥, >0,
(Y., 1)=1and li_{n & — ¥, -, =0([16]). Let &, be the o-algebra generated

by the (I;, x) j=1,....k. The conditional expectation Eg4 can extend to a
contraction operator from D,, onto itself for all p>1 and reR ([13]). For
each m, we define ¥, , by ¥, = Eg ¥, then we have

Yk€Dg w0 Yk 20, (Wpro ) =1 and klim [P — Pkl —» =0

Moreover ¥,,, can be expressed as
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.{Im.k = wm,k((ll’ x),‘--’(lk’ X))

where ¢, .: R > R is a smooth function. Consequently, the assertion of Lemma
3.1 is evident.

Proposition 3.2 (CENTRAL LIMIT THEOREM). If f,eH, n=1,2,... are such that
|folg =1 and f, >0 weakly as n— o, then, on the probability space (B, v), we

have (f,, x) 5N, 1).

Proof. 1t suffices to show that

n—* oo

(3.1) lim J D) dy(x) = =5
B

for all teR. Let {l,}*_, be an ONB of H. By Lemma 3.1, there exists a
sequence {®,}x_, satisfying the following conditions:

(i) lim & — &, -, =0
(i) ®,>0, (9, )=1, ¢Dmqu,w
(i) B, = @nllly, %), (Iy,,, X))

where ¢,: R¥ - R is a smooth function such that j [@ml?dyy,, < o and yy

RNm

stands for the N-dimensional standard Gaussian distribution. Then, we have

. 2
= (@, "y — 77|

. 12
j U dy(x) —e” 2
B

i . 2
< |<(p _ ¢m, eu(fn.')>| + |<¢m, eu(fn.')> _ e—%I

. . . 2
<D — D, ll, _, 1", + [{D,, e'Un)y — e 5]
and

<¢m’ eml"‘.)> = f ei’(f",x)(pm((ll’ x)a---?(le’ x))d;t(x).
B

It is easy to see that the right-hand side of the above identity is equal to

2 Nm
exp[— S0- X l,->,2,)”

Nm
exp (it Z Xifor LD w) @m(x1,..., Xy, ) dyy,,
=1

Nm J

Since f, » 0 weakly, lim <{f,, [;>y =0 for each j. Since

1

q
j |¢m|dYNmS<J I(Pm|qd7Nm) < 0,
RNm RNm
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. . . . 2
it follows by the dominate convergence theorem that lim (@, ¢"U»"> = ¢~ 7 for
n— oo

each fixed m. Choose an integer N >r. By the properties of norms (1.8) and
(1.16), we have

16 < 1S < Ay (€05, + [ DY e
= A (L4 G ,) = Ay y(1+ ).

Cosequently, we obtain

. 2
+ KD, ett(fn.~)> —e 2|,

) 2
I e dy(x) — e 2| < A, (1 + [t D — B,
B

q,—r

By letting n — oo and then m — oo, (3.1) follows.

Corollary 3.3. Let {h,}>, be an ONS of H and {a,}>-, be a real
n 1 n
sequence. Set A, =()Y, af)%. If lim A, = oo, then the distribution of — Y
i=1 e ni=1
%)

aj(h;, x) — N(0, 1) on the probability space (B, v).

1z | L )

Proof. Set f, = = Y a;h; so that |f,|5 = ye Y a} =1. By the previous
nj=1 nj=1

proposition, it is sufficient to prove that f, converges weakly to 0 as n—»co. If

N < n and geH, then we have

1z 1 XN 1 "
oo P =— Z aj<hj’ Py =— Z aj<hj’ Pu +— Z aj<hj’ 9u-
A, j=1 A, =1 A, j=N+1

By Cauchy-Schwarz’s inequality,

n

1 X 1 n
[{fo» Pul < A_ Z laj<hj, Poul + A_\/ Z a;\/ Z <hj7 g>,2,
nj=1 nV j=N+1 j

Jj=N+1

Since {h,} is an ONS,

Tm (S gdul < | X Kby goul®

j=N+1
Letting N — oo, we obtain the desired result.

Proposition 3.4 (CENTRAL LIMIT THEOREM). Let {a,}., be a real sequence

n=1

and {&,}7., be the sequence of random variables defined by (2.1). Suppose that

n
1
=supla,| <o 4,=(Y a?)2 — as n —» .
p n n J
n>1 j=1

z ()

1
Then, = Y. a;j&; — N(0, 1) under the probability v.
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Proof. The basic idea of the proof of this proposition is the same as that
of Proposition 3.2. Without loss of generality we can assume that {h;}2, is an
ONB. Let {®,}>_, be an approximate sequence of @ in Lemma 3.1 with respect
to this ONB. It is enough to show that

1 & 2
lim J exp(it—— Y a,-éj>dv(x) —e 2
" g Anj=1

for all teR. We have

2
= (@, e'A,5-14%) — 75|

aLsn ae, _2
e'4,%i=1%%dy — e 2
B

< (¢ ¢ ll—'}:J lajf.;)l + |(¢ "_ZJ 1“)51) e_%l

n iLyn g _2
< ”¢ - ¢m ” “ e"_z ajgj”p.r + I(¢m’ euAﬂzj:laJ{J) —e 2|

q,—r

First we show that
.1 on
(3.2) sup || "4, %i=195% l[pr < 0.
nx=1

For this purpose, we state the following assertion which is a consequence of (1.16)
and the chain rule; for each p > 1 and r > 0, there exist p’ > 1, ¥ > 0, ke N and
K, ,> 0 such that

(3.3) leFil,, < K, 1+ [FI%.,) for every Fe?.

pr =

Using (3.3) and Lemma 2.1, we obtain

k
)SKWQ+
p.r
k

k n -
< K| 1+ (S a2+ py)k max (| 16,7 du)
A 1 1<j<n B

n J=

AT st

t &
< Kp‘,.<1 + ’ Z Z ajéj

nj=1

n

Y ol + )¢,

nj=1

)

|tl* PN 1 , L. ke
<K,, 1+cl’;l—(1+a)2(z a2z | =K, (1 +cge](1 + 0)2).

n j=1

Hence (3.2) follows immediately.
Next we show that

(3.4) (D,,» e"A‘l‘zJ 1858y — e~ 5 as n — oo for each fixed m.

If n> N,,, from the independence of the (h;, x), 1 <j <n, it follows that
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ipLsn  goe a-lgn gk
(@, €14,55=125%) = J EAT=15 g ((hy, %), ... (. X)) dps

B

jt-LyN L
= (¢m, e"A"r'j:llanJ) J‘ e"A"Z';= Nm+ 18485 d/—t.
B

T
By the facts: |e"4,50 %% @, | < ®,eD, ,cL,cL,, A,> o as n— o and
(®,, 1) =1, we can apply the dominate convergence theorem to obtain

3.5) lim (&, e"‘zlj,zivé"laxéf) =1.
n—o

Next we claim that

(3.6) limj e"AL,.z?wmn‘”éf du = e_%

n-—*oo

n

. . 1. . .
To see this, setting 4,,, =( Y, a?)z it is sufficient to show that
j=Nm+1

1 n
— ) ajéjﬁL»N(O, 1) as n — o
An,m j=Nm+1

1

im Anm _ LS eyl 21, For cach 4 ¢ U
because llm—=’llm.}) I—F(Z a?)p =1. Foreachn>N,, A——é,.

n-w A noi=1 nm ) j=Nm+1

is a family of independent random variables satisfying

2
du = 1.

a.
J
fj

a; !
du=0 and
J;‘4 éj “ E: Amm

n,m j=Nm+1JB

Hence we have only to verify the Lindeberg condition to obtain (3.6). As before

we choose a polynomial P(t) such that lnslax lﬁ H;(t)| < P(t). For ¢>0, we
Jj<a

have

n ai 2
> J . R s
Jj=Nm+1 {'A"fm§j|>5) n,m
n a;
< 3 4 P((h;, x))du(x)

2
i= Nt 1 A J PP (x>0

1 2
=J . P(¢) e~ 2dt — 0 as n — 0.
(P> L2nemy 2n

From (3.2) and (3.4) we obtain the desired result.

Remark. As is easily seen from the above proof, we can replace the
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n

.1 1
conditions on {a,},%; by a weaker one: lim = jmax la;| = 0 where 4, = (Y a})2
n—oo <j<n o
n ji=1

We are now in a position to complete the proof of Theorem 2.2 in the
previous section. For this, we need the following lemma:

Lemma 3.5. Let P(t) be a polynomial, o,,...,0a, be the real zeros of P(t) and
m; be the multiplicity of «;. Then there exist y >0 and 6 >0 such that

{(t;1POI <A < U {t: 1t —a;| <yim}}  for all 1e(0, 5].
j=1

j=

Proof. Suppose that the assertion of the lemma does not hold. Then for
each positive integer n, there exist 4, and t, such that

1 1
0<4, <—, |P(t)| < A, [t, — o] > nAmi I1<vj<r
n

. 1
real number a. By the continuity of P(t) and the fact that |P(t,)] < -, we have
n

P(x) =0 and hence a coincides with one of «,,...,a,, say a;. We observe that

P@®) _ P™()
u (t— ) myl

#0.

P(t,)

Thus there exist d > 0 and an integer n, such that o
tn - (Zj

‘deor all n > n,.

Consequently it follows that for all n > n,

A, > |P(t,)| =d|t, — a,|™ > dn™ 4,

and hence that dn™ < 1 for all n>n,. This is a contradiction.

Proof of Theorem 2.2 in the case (iii). By assumption we can choose a
sequence {m )}, of positive integers such that

. b . .
ny<n,<nyg<--,la,l|>k khm —% exists (possibly oo or — oo).

i

Set A = kli_m{la,,kﬁ,,k —b,|<1}. Then A is a Borel set and by Fatou’s lemma
i

it holds that v(A4) < kli_m v(la, & — by | < 1) for every v =vy, ®eD__, & >0. If

we can show that
(3.7 kli_m v(lay, &, — b, | < 1) =0,

then by the fact mentioned in §1, we can conclude that A4 is slim. On the other
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hand nan; (a,&, — b,) # 0 on A° and hence ) (a,&, — b,) diverges on A°, therefore
n=1

Theorem 2.2 is completely proved.

Let us show (3.7). Set u, = ﬁ, then

Nic

1 1
v(|am‘;énk_bnk|S 1)=v<|€nk_uklS )Sv<|énk_uk| S_>-
|| k

Here we devide the proof into two parts:

1) The case — 0 < klim u, < 00
—*

Setting u = klim u,, we obtain
- 00

1
V(Iink — Ul < E) SV(In —ul < A

1
where A, = |u — u,| + = Let {o;}j-, be the totality of real zeros of the
polynomials \/n! H,(t) — u, 1 < n < ¢ and m; be the maximum of the multiplicities
corresponding to «;. Then, by Lemma 3.5 there exist y > 0 and k, such that
! 1
{I&n —ul < A} < U {l(h,,, x) — oyl <9}, Yk > ko.
j=1

Thus we obtain
! 1
V(& — ul < 4) < Y v(I(hy,, x) — o < pA).
j=1
Let ¢ be a positive number. Then we have

1
v(|&, —ul < A) < Y v(|(hyy, x) — ol < &)
j=1

J

for all sufficiently large k. Note that {h,}>., converges weakly to 0, and hence

by Proposition 3.2 (h,, X) DN (0, 1) as n — oo under the probability v. Therefore

we finally obtain

t2
e~ 2dt.

1
limv(|a,, &, — bnl <1< Y
k= J=1J{lt—ajl<e) 2n

Letting ¢] 0, (3.7) follows immediately.
2) The case klim W, = — 00 Or ®©

Since the proof for the case lim u, = — oo is the same as for the case klim U, = o0,
k=0 . -



20 Tetsuya Kazumi

we prove (3.7) only for the latter case. Suppose that klirg u, = oo, then for every

1 .
M > 0, there exists k, such that M < u, — p Vk > ko,. Hence it follows that

1
v<|€"k—uk|SE>Sv(M<£,,k) Vk > k.

A moment’s reflection shows that there exists a real valued function ¢ defined
on an interval (M,, c0) such that

Jim ¢(M) = oo, U {t: ViU H (0) > M} < {t; t] > p(M)}.

Thus, if M > M, and k >k, we obtain v(M <¢,) <v((h,, x)|> ¢(M)).
Letting k — oo, it follows from Proposition 3.2 that

e~ 2dt.

lim v(1a,, &, — by, < 1) sj
®© (1> (M) /27

Letting M — oo, we obtain (3.7).

Theorem 3.6. Given an ONS {h,}>., of H and a sequence {p,}-, of positive
integers, we define £, by (2.1). Let {a,}, be a real sequence, and suppose that
o =supp, < . Then the following statements (i) ~ (iv) are equivalent:

n>1

g
(i) Y al<oo.
n=1

0
(ii) The series Y. a,&, converges v-almost everywhere.
n=1

(iii) For all positive k, the series Z a,&, converges in L¥(v).
n=1

(iv) For some positive k, the Y a;¢; are bounded in L*(v).
j=1

0 [oe]
If 3 al = oo, then for any real sequence {b,}>-,, Y. (a,&, —b,) diverges v-almost
n=1 n=1

everywhere.

Proof. The equivalence (i)<>(ii) is immediate by Theorem 2.2, and the
implication (iii)= (iv) is trivial. So we prove the implications (i) = (iii) and
(iv) = (i).

To see that (i) implies (iii), it is enough to notice that for each k > 0 there
exists a positive constant A4, such that

m m
1
[ Z a;&ill ey < Ay Z af)z
j=n Jj=n
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for any positive integers m, n with m > n, which is shown as follows: choose an
even number, say 2N, such that 2N > k. Then we have
m

1
I Z a;&illem <l Z a;ijllave < ||<15|Iq LAY a8 13N

It is known that for all keN and all p, g, r > 1 such that 1= 1 +1 it holds that
r p 4
IFRGI, s < I Fll,xllGll,e YVF, YVGe2 ([9], [15]). Iterating this property several

times, we obtain
4_ m
II(Z a; &N I < Ay Y aiillanp.r
j=n
where Ay is a constant depending only on N. Applying Lemma 2.1 we have

1Y a8 llanpr = I Y aj(1 + pY2E;l2n,
j=n j=n

1

SC%I (Z a(1 +p)’)2 max <j Ié,l’”"du> "

1
1 r © 1 2 m
< 301 + o)f ma;(d( f NI Hj(t)|2N"\/2_e"t7dt>2Np( $ b,
- T

The above argument shows that we can take Ay as
1
2Np
Ay = A} 3 gu-+ap max(J. |Vf_H(nPN" e 2&) .

Next we prove the implication (iv)=>(i). Suppose that (iv) holds and set

n
M=sup| ) a;¢;l| k- First we show that sup|a,| < oo so that Proposition 3.4
nx1l j=1 n>1

is applicable. By the fact that |- | ., is @ norm or a quasi norm according as
k>1 or 0 <k <1 respectively, we have

(3.8) @n&nll ey < 2dM

where d, is a positive constant.
On the other hand, we have

(39) 1ayEy e = 1@, v(E, = Dk,

It is easily seen that there exists f§ such that 1nf mf \/— H;(t) > 1. Therefore
we have

(3.10) V(& = 1) = v((h,, x) 2 B).
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Since (h,,, x) 9N (0, 1) by Proposition 3.2, we have

£}

2
e 2dt>0.

lim v((h,, x) = f) = I

8 /2m

Thus there exist a positive constnt «; and a positive integer N, such that

(3.11) v((h,, x)> B)>a,, Vn>N,.

_1
Combining (3.8), (3.9), (3.10) and (3.11) shows |a,| < a, ¥2d, M which proves our
assertion. n .
Now we return to the proof of (i). Set A4, =(), a})z and we observe as

i=1
before

1

n l n 1 n E

M>| Z a;i&ill ey = An “A_ Z a;&ll ey = AnV<A— Z a;é; > 1) .
j=1

nj=1 nj=1

Now suppose, on the contrary, that lim A, = co. Then by Proposition 3.2 we
n—+ow

have

nm e nj=1 1 2n

. 1 & ® 1 e
llmv(A—ZajCj21>=f fe zdt >0
which allows us to take «, > 0 and an integer N, such that

nj=1

1 n
v<A—Zaj§j21>2a2, anNZ

_1
and hence it holds that 4, <a, *M, Vn > N,, this contradicts our assumption.
Therefore (i) is proved.

Corollary 3.7. Let {X,};2, be a Gaussian system on a probability space
(2, B, P) such that E(X,)=0, E(X,X,)=0um — CsCn where {c,};°-, is a real

n=1

sequence such that Y ¢2<1. Let p,eN, and set ¢, =./p,'H, (X,). Suppose

n=1
supp, < 0. Then the assertions of Proposition 3.4 and Theorem 3.6 remain valid
nx1

by replacing v by P.

Proof. Choose an ONB {h,}*., of H. We define f by f= Y c,h, where
0 n=0
co=0-Y 2. Then we have {f,h)y=c,, |fluy=1 Let v be the

n=1
probability measure corresponding to the positive generalized Wiener function
do((f, x)) ([9], [15]). Then the sequence {(h,, x)};>, of random variables on
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the probability space (B, v) forms a Gaussian system such that

f (h,, x)dv(x) =0
B

J (hm x)(hm’ X)dV(X) = 5nm - <f’ hn>H<f’ hm)H = 5nm — CuCp
B

Hence {X,(@)}%, ~ {(h,, ©)},. Therefore we have {\/p,!H, (X,(@)}%; <

{/PatH, ((h,, x))};%,. Since the assertions of Proposition 3.4 and Theorem 3.6
are concerned only with the law under v of the random sequence {£,}%, defined
by (2.1), our assertion is clear.

§4 Other results

In this section, we present some results obtained in the course of the study
of the previous sections. The asymptotic behavior of the tail measure u(| x|z > 4)
as n— oo is known:

1 1
4.1 lim —lo X|lg>A)=——
@.1) Jim —logu(lxly > 2) = -~
where y is the positive constant defined in Theorem 4.1 given below
([2], [14]). From this fact Fernique’s result follows in a strengthened form:

2 . . 1
(4.2) J e*1*lsdu(x) < oo if and only if a < e
B Y

Our result is as follows:

Theorem 4.1. Let p>1 and y>0. Then

1o
4.3) 3 Jim 3108 G, (l1xll5 > 4)

where y is the norm of the injection j: H— B i.e. y = sup | h|.
|hlg<1

Proof. The basic idea of the proof is due to Takeda [17]. The point is
that the following inequality holds:

1 r
nnus(?})ﬂnmw»u) pae. x

where V,, = oz%(cxl — L)‘é. To see this, note that the norm |- | is expressed as
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x|z =sup|(f, x)| where & is a countable subset of {feB*; | flp <1}. From
fe€

the positivity of ¥, and the fact that (f, x)e%;, it follows that

Ix15 = sup|(f. 0)| = supl[( — L)"Z(x + 1)2(f, )1()|
fe¥ fe¥

1 r
- ("‘ b )zsuplm,,(f, 1)
fe¥

o

1\2 LY?
s(“* )2[z,,sup|<f,-)|](x)=(i)zm,ArnBJ(x).
o fe¥ «

Recall that ¥, has the integral expression mentioned in the proof of Theorem
2.2 (1) and ¥,,1 =1. Hence by Jensen’s inequality, we obtain

1 r r
||x||§s(%> (V- 1516032 s(%l) OV, 1 121(0).

.\ . 1 .
Let ¢ be a positive constant with ¢ < —. Then again by Jensen’s inequality,

2
we have by

[<a+1
exp| ¢

Hence we have

[<a+1
exp| c

Thus it follows that

>—r ||x||lzf] <exp[(V,cl 1D <[V, e 15l (x)  pae x.

)_' ||x||§] <[V, qe x.

1\ -r
i () v (57) 4]
< C,,,,<[Va,,e""”fﬂ~(x) > exp[e(“ - 1> ,12])
o
sexp[—cp<ﬁ—1) AZ]||14,,e°“"'%||s,,
o

1 or r r r 2
- exp[‘ cp(i> “] 10— L) os(ad — L) el 3 5.
o

By Meyer-Shigekawa’s multiplier theorem ([19]), the operator (I — L)g(al - L)”é
is bounded on LP(u). Thus
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r 1\’ r r 2
d%eXP[_ Cp<a ; > '12] I(F = Lyz(ad — L)~ 21 I3 )|2
o

1 -r
< Ap,mexp[— cp<a + > 12]
o

Apew =02 ||(I — LY2(al — L) 3|2 f er =15 dp(x).

B

where

Note that by (4.2) 4,., < . Consequently we obtain

1 1 a+1\"
?log Cp,r(” X ”B > '1) S Plog Ac,p.a - Cp( > .

1
Letting A — oo first, and o — o, c—>2—, we have
14

1 1
A@Flogcp,r(nxnﬂ > '1) < - '2;

Next we show the rest. By the property (1.19) we have u(|x|z>4) <
C,..(Ixllp > 4) and hence

L10gulllxlly > ) < ;108 Cu(lxls > .
From (4.1) it follows that
e fim llogc (x> A).
2y~ Amhw j? P
This completes the proof of the theorem.

From the above theorem the following corollary follows immediately (the
same result was obtained by Sugita [16] in a different way).

Corollary 4.2. Let v be the probability measure corresponding to a positive

1
generalized Wiener function ®€D, _, with (D, 1) = 1. Then ll'i?n' l—zlog v(lIx|lg = 4)

1
< ——.
2py

Our next theorem is a refinement of what is called It6-Nisio’s theorem: For
any ONB {e,}2, of H it holds that

(4.4) lim |[x — x,llp =0 a.e. x
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where x, is defined by x,= Y (e, x)e;. Our result is that we can reduce the
j=1
exceptional set of 1t6-Nisio’s theorem to a slim set (this result was also obtained

by Feyel-de La Pradelle [3]):

Theorem 4.3. Let {e,}>., be an ONB of H and x, be the quasi continuous
mapping defined by x,, = Y. (e, x)e;. Then it holds that lim |x — x|z =0 g.e. x.

ji=1

Remark. The proof of the theorem is based on [t6-Nisio’s theorem and the
fact that

4.5) lim j | x — x,|§du(x) =0 for every p > 0.
n—a B

Hence we cannot deduce Itd-Nisio’s theorem as a corollary. For the proof of
(4.4) and (4.5), see [12] and [18] p.290.

Proof. Given an ¢ >0 we define «,, by

an,m = Cp,r("+linsakxs'" ” X — Xp ”E > 8)

for each pair of positive integers n, m with n <m. As in the proof of Theorem
4.1 we have

r r
max X, — <22[I—-L) 2 m . ~
max fxxle <0 -D7F max |- 1,070 ge x

Thus by the Tshebyshev-type inequality we have

22\
an,m < <—> J‘ max " X — Xy ||f,d/1(x)
&

Bn+15k5m

Note that {|x; — x,llg}i=n+: is a martingale, hence it follows from Doob’s

inequality that
27p
Oy m < ( P ) J‘ “ Xm — Xy “Iéd.u(x)'
ep—1) B

Since { max |[x,— x|l >¢&}1{ sup [x,—x,lp>¢} as m—co, we have by
n+l1<k<m n+1<k
(1.22)

a,=C,,(sup |x, — x,llp>¢) = lim a, .
k=2n+1 m— o

On the other hand, it holds from (4.5) that
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'll_{l‘cloj [ Xm — X, 15 du(x) = J % — x, 15 dp(x).
B B

Consequently we obtain

05,.<< ) J Ix — x, 15 du(x).
-1

By (4.5) again, the right-hand side of the above inequality tends to 0 as n— co.
Therefore by Fatou’s lemma we finally obtain

pr( hm{ sup ”xk n"B>8})=0

O p+1<gk

for all ¢ > 0. Set

@ 1
G=| G where G, = lim{ sup ||xk—x,,||B>7}.
n2o (n+1<k

It is clear that G is slim and that {x,};°, is a Cauchy sequence on G°. Similary
setting

1
G,  where G| = ﬁﬂ{|lx—xn"s>7}-

we can prove that G’ is slim and that we can extract a subsequence {x,}; so
that lim |[x — x, |3 =0 on G*. This proves Theorem 4.3.
J= oo

Corollary 4.4. Let {¢,}>, be an ONB of L*(0, 1) and {&,}2-, be a Gaussian
system such that

E(ﬁn) =0 and E(éném) = 6nm — €yl

1
where c, =J ©,(s) ds. The stochastic process {X,(t)}o<,<1 defined by
(4]

Xt w) = 3 &) f 0,()ds
j=1 0

converges uniformly to a pinned Brownian motion for almost all w.

Proof. 1t is enough to show that there exist a certain probability space
(Q, 8, P) and a Gaussian system {#,};%; on it such that

(46) E(”n) =0 E(nnr’m) = 5nm —CpCpy

t
and that the stochastic process {Y,(t)}o<,<; defined by Y,(t)= Z 111'[ @j(s)ds

j=
converges uniformly to a pinned Brownian motion.

Let (W', H, ) be the one-dimentional Wiener space, that is, W' is the set
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of real continuous functions on [0, 1] vanishing at 0, H is the Cameron-Martin
subspace of W, ie., H={h:[0,1]—>R;h is absolutely continuous and
|hlg = 5|0 (t)|?dt < oo}, and p is the standard Wiener measure. W', equipped
with the sup norm ||w||w=ons1'a<xl|w(t)l, is a Banach space. Let v be the

probability measure corresponding to the positive generalized Wiener function
do(w(1)). v is nothing but the probability law of pinned Brownian motion

([81, [151).
We take (W), B(W,), v) as (Q, 8B, P) where #(W,') is the Borel o-algebra
t
on Wy'. Let {e,}>, be the ONB of H defined by e,(t) = J @,(s) ds, and we set
0

1

Ma(W) = (€,, W) = f Pm(s) dW(s).

0

Then {n,}>, satisfies (4.6) and by Theorem 4.3 we have

n

lim max [w(t) — Y (e,, we, ()| =0  ae w.
n»o 0<t<1 i1

Therefore Corollary 4.4 is shown.
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