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Refinement in terms of capacities of certain limit
theorems on an abstract Wiener space
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Tetsuya KAZUMI

Introduction

The notion of (p, r)-capacities was introduced by P . M alliavin [13] on an
abstract W iener space (B, H, y). A  s e t  o f  (p, r)-capacity 0 is alw ays a  se t o f
y-measure 0  and  therefore it is im portant and useful to sharpen statements or
properties holding y-almost everywhere o n  B  to  those holding quasi everywhere
on B , i.e., everywhere except o n  a  se t o f  capacity O . This k ind  o f sharpening
was studied by, e.g., Fukushima [5] and  Takeda [17] fo r  th e  familiar almost
s u re  sam ple  properties o f  W ie n e r  processes. A lso  the  ex istence  o f quasi
continuous modifications and their applications for a class of W iener functions
were discussed by Malliavin [13], Sugita [16], and Airault-Malliavin [1], among
others.

The first aim of this paper is to give a  similar refinement of limit theorems
for a class of independent random variables defined on  an  abstract Wiener space
(B, H, y). A  m ain result is Theorem 2.2 in Section 2, where a  criterion of the
K o lm o g o ro v  ty p e  fo r  th e  almost everywhere convergence or divergence is
sharpened to the criterion for the quasi everywhere convergence or divergence in
the case of sums o f  a  class of independent Wiener polynomial functions. As a
by-product o f  a  law  of large numbers obtained a s  a  corollary to Theorem 2.2,
we can show that the Cameron-Martin subspace is slim (cf. Feyel-de L a Pradelle
[ 3 ] ).

F o r  a  g iven positive generalized W iener function 0  o n  (B, H, y )  with
(0, 1) = 1, Sugita [16] constructed a Borel probability measure y =  y, on B .  In
Section 3, we study limit theorems (central limit theorems, criterions for almost
,sure convergence and divergence) for the same class of independent polynomial
Wiener functions as in Theorem 2.2 with respect to the probability space (B, y). An
interesting poin t in  these theorems is that these random variables are no more
independent on  the  space (B, y).

In Section 4, we collect some supplementary results obtained in the course
of study in Sections 2  a n d  3, which are  of independent interest. In particular,
w e obtain a n  estimate fo r the  tail capacities o f the  norm  a n d  a  refinement of
the Itô-Nisio theorem.
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§ 1 Preliminaries

H ere w e collect som e o f  fundamental notions and facts in  th e  Malliavin
caluculus which will be needed in  the  subsequent sections.

A n abstract Wiener space (B, H, p) is  a  trip le t (B, H, p) where B  is  a  real
separable Banach space with the norm  11 • 11,, H is a  real separable Hilbert space
(called th e  Cameron - M artin subspace) w ith th e  inner product < • , • >H  which is
contained in  B  densely  so  that the injection j :  H  B  is continuous, p  is  the
standard Gaussian measure o n  B, tha t is, the B orel probability measure o n  B
satisfying

TB ei B*(f B dp(x) = e - 4If 12H

for every f e B* c H * and H * is identified with H by the Riesz theorem.
In  the  following, we assume that dim H = cc. T h e n  w e  have always

(1.1) p(H) = O.

It is well - know n that for every heH, the  linear function o n  H:

h' e H <h, h'>H eR

can be extended to a  p-measurable function . This extension, called the stochastic
linear function, is denoted by (h, x). The family {(h, • ), he H } forms a  mean 0
Gaussian system o n  th e  probability space (B, p) w ith the covariance coinciding
with the H-inner product.

As usual, a  p-measurable function on  B is called a  Wiener function and two
Wiener functions with va lues in  the  sam e space a re  identified whenever they
coincide with each other p-almost everywhere (p-a.e.). F or 1 < p < cc, we denote
by Lu th e  usual Lu-space of Wiener functions and m ore generally, by L p (E ) the
Lu-space of E-valued Wiener functions where, generally in  this paper, we denote
by E a real separable Hilbert sp a c e . A real Wiener function F(x) on B is called a
polynomial function if it can be expressed in  the  form

F(x) = p((h i , x),...,(h„, x))

where p(t i ,...,t„) is  a  real polynomial and hi ,...,h„ e H .  If 1  i s  the totality of
polynomial functions, then g  L p  densely for every 1 < p < cc. L e t  H ( t )  be
the Hermite polynomial

(1.2) H ( t )  =

( — 2d " _ ie2 e  2 ,
n! dt"

n = 0, 1, 2, ....

Fix a n  orthonormal base (ONB) 1 in  H  and, for each a = (00,91,, a, E ,
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such that Ial = E i 1 a i < oo, define Ha,  Y  by

(1.3) HOE(x) = fl !1-4((hi, x)).
i=

Since H o (t) 1  a n d  ai =  0  except fo r finitely many i, (1.3) actually defines a
polynomial function. It is well-known that {H OE ; 1 < c }  fo rm s  an  ONB in  L ,
and for each n = 0, 1, 2,... {HŒ ; la 1 = n1 forms a n  ONB in  the  subspace (g„ (the
subspace of n-th homogeneous Wiener chaos) so  tha t L2  =  En"_, (en .

Now we review very rapidly the Sobolev spaces formed of Wiener functions
and generalized Wiener functions, cf. e.g. [8], [9], [15] and [ 1 9 ] .  For every s e R
and  1 < p < co, the  Sobolev space D  is defined roughly by

(1.4) Dp,s =  (I -  L ) 1 ( L )

with the norm

(1.5) II F Ilp,s = — F L P .

Here L  is  the Ornstein-Uhlenbeck operator

(1.6) L = E (- 11)
n=0

where J,, is  the orthogonal projection to  the subspace W„ so that
CO

(1.7) (I -  LA =  E  +  n) J .
n=0

More precisely, we fi rst define the norm  1I• 11 for Fe by (1.5) and define
to be the completion of go by th e  n o rm . Since the family of norms o n  satisfies
(1.8) (m onotonic ity) F F11„,r if p < p ' and s s'
(1.9) (compatibility) {F„} Y  is  su c h  th a t  11F ,11p ,s  -+0 a n d  11F, -
as n, m oo, then II F„ -> 0 as n -> co,

(1.10) (duality) if -
1  

+ - = 1,
1

P q

11F = sup FGcitt; Gel?, 11G < 1 , V F  e

we have immediately that

(1.11) D , 0 = Lp

(1.12) if p _< p' and s < s' and the inclusion is continuous,

(1.13) =

We set
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(1.14) D .  =  n  fl D 5 and
p>1 s>0

(1.15) =  U  U Dp, — s •
p>1 s>0

D o c i s  a  Fréchet space, called the  space of  test W iener functions, a n d  D „ ,  is
the dual of D OE) , called the space of  generalized Wiener f unctions. If E  is a  real
separable Hilbert space, we can extend the definition of polynomial functions and
Sobolev spaces to the case of E-valued Wiener functions in an obvious w ay. The
spaces a r e  d e n o te d  b y  Y ( E ) ,  D ( E ) ,  D ( E )  a n d  D _ ( E )  a n d  norm s by
I Il p ,s : E •  The Ornstein-Uhlenbeck operator L ,  defined by (1.6) o n  ??, can be
extended to a n  operator L: D _  x , w hich is continuous D „„ ->  D ,  f o r
every s  and p. The Fréchet derivative D  is defined, first for F e ??, by

< D F ( x ) ,  h > , = l i m
F(x  + eh)- F(x )

h e H

a n d  D F c Y ( H ) .  Then D  can be extended to  a n  operator D: D_ 0 , -* 13_(H )
w h ic h  is  c o n t in u o u s  D „ ,, D p , s (H )  fo r every  s a n d  p. Therefore, th e  dual
o p e ra to r  D *  o f  D  is d e f in e d :  D*: D ( H ) - ÷  D _  c o w h ic h  is  c o n tin u o u s
Dp,s+1(H)-> D p , s . F u r th e rm o re , i t  h o ld s  th a t  L =  -  D * D .  T h e  following
equivalence o f  n o rm s is  d u e  to P. A. Meyer : fo r  every 1 p o o ,  se R  and
k =  0, 1, 2,..., there exist positive constants c„, k <  C  such that

(1.16) n k
c

p,s,k II II p,s;HO ... O H Fdp,s+k
k  t i m e s

C  E  Fp,s,k p,s;HO„.0115
1-=0

ti m e s

F e D oo .

From  now  on , w e le t p  and r  denote som e constants 1  <p  < aD and r > 0
1

and g  denote the dual index  to  p : -  +  
1

- =  1. W e  n o w  d e fin e  the (p, r)-capacity
P q

for subsets of B .  First, for any open set 0 ,  we set

(1.17) C „( 0 )  =  in f  {  F  ,r ;  F e D p , ,  F 1 pi-a.e. on 01

and for an  arbitrary subset A , define

(1.18) Cp . ,(A ) = inf { C ,( 0 ) ; A  c  0 ,  0 : open} .

These (p, r)-capacities possess the following properties:

(1.19) f i(A )< C p ,(A ), being the  outer measure for p.

(1.20) C„,(241) _< C„(A 2 ) if A, A2

(1.21) C „( E Cp ,r (A„)
n=1 n=1
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(1.22) C p , r (An ) Cp ,,.(A) if A n I A.

From these properties, we have the following :
(1.23) (Borel-Cantelli lemma for capacities)

co
I f  E

n 1  C
p ,r (A „) < oc, then Cp ,r ( riTn A n ) = 0

co=  

(1.24) (Fatou's lemma for capacities)

C p , r (lirn lim C p ,,.(A n ).
n—■ n—■ co

Following Malliavin, w e say that a  subset A  of B is  slim if  Cp ,(A ) = 0  for
all 1 < p < co and r > 0. Also any property holding everywhere except on a set
of (p, r)-capacity 0 (a slim  set) is said to  hold (p, r)-quasi everywhere (resp. quasi
everywhere), and we write simply (p, r)-q.e. (resp. q.e.)

A function F  defined on B with values in a metric space is called (p, r)-quasi
continuous if, for every g > 0  there exists an  open  se t 0 c B  w ith  Cp , (0 )  < e
and the restriction F  B\O is continuous. A Wiener function F  with values in
a  topological space is said to possess a  (p, r)-quasi continuous m odif ication F , if
among th e  equivalence class o f  F  coinciding each other p-a.e ., there exists a
(p, r)-quasi continuous function F .  T w o  (p, r)-quasi continuous modifications,
when they exist, must coincide (p, r)-q. e.

It is  w e ll-k n o w n  ( [6 ], [1 6 ])  th a t e v e ry  F e Dp ,  possesses a  (p. r)-quasi
continuous m odification F "  .  Furtherm ore, if F  > 0  p -a.e., then > 0
(p, r)-q.e. Also the following Tchebyshev-type inequality holds :

(1.25) Cp ,(F - T p i 11 F g o " A > 0 .

A  generalized Wiener function e Dq , is  sa id  to  b e  positive and  written
a s  0 > 0  if (0 , F)> 0  for every F e Dp ,  such that F > 0, p-a.e., where ( • , • ) is
the natural coupling between D r  = ,  and  Dp ,r . S u g ita  [1 6 ]  showed that
to every e Dq , > 0, there corresponds the unique finite Borel measure v„
on B such that

i) ,(A ) = 0 if  C p , r (A) = 0
ii) if F EDp , r , th e n  F  is  v,-integrable and

iii) (0 , F) = f F  d v , .

i) can be sharpened in  the  form of the inequality

(1.26) Vo(A) < 11 0  II q ,

Sugita also showed that a Borel set A  is slim if and only if v (A )  = 0 for every
positive generalized Wiener function O.
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§ 2 .  Quasi everywhere convergence and divergence

L e t  (B, H, I.1) b e  a n  abstrac t W iener sp a c e . Suppose w e  a r e  g iven an
orthonormal system (O N S )  N 1 o f  H  a n d  a  sequence of positive integers

Define a  sequence R n Ine°= of polynomial functions by

(2.1) fl(x) = N/p„!Hp n ((h,„ x)), n = 1, 2, ...

where H (t) is the Hermite polynomial defined by (1.2). Since (h,„ x), n = 1, 2,...
a re  standard  Gauss-distributed i.i.d . variables, fl (x) a r e  independent random
variables w ith m ean 0  and variance 1. A lso, by taking the  quasi continuous
modification, we m ay and do assum e t h a t  „(x) is (p, r) - quasi continuous on B for
every  1 < p  < co and r > 0  (in such a case, we say simply quasi continuous).

F irst w e state  the  following general lemma valid fo r independent, mean 0
and p-th integrable random variables X„, n = 1, 2, ... defined on  any probability
space.

Lem m a 2.1. For every p> 2, there ex ists a positive constant cp  such that,
f o r every real sequence a„, n = 1, 2, ...,

(2.2) E (sup  E a.X .IP) < c (  E an
2 g sup E1XPJ —  P

n j = 1n = 1 n 1

P ro o f . Set for each n, fn =E in= i ai X ;  and 3 7
n =  o- ({X i }5=1 ):= the a-algebra

genera ted  by  X j , j = 1, n. T h e n  {f„},7°__ i s  a  m artinga le  w ith  respect to
. Setting f*  =  sup I f n I, it follows from Burkholder's inequality ([7]) that

n> 1

c0

Elf  *1P  epE( E I L  _ f  1 I2)  = cpEI E an2x 2 ,
n= 1 n= 1

Pwhere cp  i s  a positive constant depending only o n  p. Since — > 1, it follows
2

co co co,2  PEl E an2 x.2 i2 E ce,(Eixn1902 E an
2 )2 sup E X„1P

n= 1 n= 1 n= 1 n> 1

This completes the proof of Lemma 2.1.

Theorem  2.2. L e t R n I ne°_, be  the sequence of  random  variables defined by
(2.1) and let fan 1 _ , be a  real sequence. Suppose that

(2.3) =  S U p  p  <  0 0  .

from the triangle inequality that

Then the following dichotomy holds for the convergence or divergence of  the series
ET=1 ann:



Abstract W iener space 7

(1) I f  Eǹ"_ a <  cc, th e n  the series E,;°_,a converges quasi everywhere.
(2) I f  I nc°_ a, = c c , th e n  f o r any  real sequence { b} °= 1 , t h e  series I nc°— 1

(a„„—  b„) diverges quasi everywhere.

P ro o f . First we prove (1). F or this, set

= Cp „(sup E > e), e  > 0, neN.
j= n

L- tu-L)Since C t h e  operator (I — L) - 2 = r  r 1— 10- t2 e
- id t  s positivity

2
preserving, we have

s u p  E a j j  = sup 1(/ — L r ir E  aj (I —  L k »
j= n Pri n

— LC21 sup a; (1 +
m n  j= r1

By taking a quasi continuous modification of the right-hand side, this estimation
can be sharpened as

sup ' E {(I — Lrisupl E a i ci + pA i r , q. e.
j= n m n  j = n

Hence, by the Tchebyshev inequality (1.25), an ,  can be estimated as

(Xn t 1  1 1  (
1 L ) -  msup j E_ n ai (1 + Pik ;  I 4,,

C1'' C1'

= sup a.(1 +
C1' B

Applying Lemma 2.1, we can estimate the above further as

C E + pi n2 sup f fli(x)IP dy(x)
eP i=n B

opPr
<  ( 1  +  a)T( E  a j ) r  max

e P 1 5 ,n o "

( 1 0 , 3 t2
N1/471 lim(t)1P

1
e d t

\ /2n

= Ap , r  a  ( E  a4)Pf
j= n

where we set

Pr 1 t2
! '(1  + a) 2  max

1 _frnSer /  !  H  m (t)I P e- 2 d t )
eP N./27r
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Combining this estimate with Fatou's lemma for capacities, we can now conclude

th a t i f  E a „ < 0 0 , th e  se t G , = lim {sup  E e l h a s  C p 0 .-capacity 0 for
n=1 j= nn--*co

every e > 0 and 1 < p < co, r > 0 ; that is, G, is a  slim set for every e > O. T h e n

setting G = U G  is  a lso  s lim . I t  is  c le a r  th a t 1  E ai mn-=, is  a Cauchy
1 i= 1

sequence outside G  and hence E aA, converges outside G .  This completes the
j= 1proof of (1).

N e x t w e  show  the  a sse rtion  (2 ). G iven  {a„} , a n d  {1)„}„'", 1 su c h  th a t
E a2  = oo, it is sufficient to show that

n=

(2.5) c„,r( n u  n n Gion,n) = 0
/ > 1  N > 1  n > N  m > 0

for every 1 < p < oo and r > 0, where

n ± m 1
G1,m ,„ fx; t E (ai (x)— 191 <1,

i=n

The left-hand side in (2.5) is dominated by

/, m, n e N.

c p , r (  u n n
N 1 m >0

and hence it is enough to show that

=  l i M  C p , r (  n n G 1,m ,n)N—, co

(2.6) lim  Cp ,r (  n n G
N—ooc n>N rtz 0

1 ,M ,n ) O.

Take two sequences {n k l 0= 1 and {m,}f= , of non-negative integers such that

(2.7) n , < n 1 +  m, < n 2 <  n 2 + m 2 < •••.

Then, if we choose k o ,  K e N  such that N < k 0  < K ,

(2.8) C p , r (  n n G 1,m,n) C p , r (  n G
l,mk,nO•

m?•_0 k=k0

Choose a COE)-function u(t) o n  R such that 0 < u(t) <  1  and

(2.9)
u(t) = 1 if tt < 1
u(t) = 0 if 2.

Set

(2.10) Ak(x) = E (aj (x)— b i ), xe B.
jeJk

where
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(2.11) Jk  =  ;  nk j  nk + mk }

Since

H u(Ak(o= if x e f l  G  , „,k

k = ko k = ko

we have

(2.12) Cp,r( n 11 11 u(Ak)11;,,
k = ko k = ko

If r =  1 , then by the equivalence of norms,

(2.13) 1111 u(Ak)11,,, A1(11 uoon+ fl u(A011°)
k=ko k= k0 k= k0

where II ' II P  is the L u-norm and here and in the following, A 1 , A 2 ,... are positive
constants depending only on p and a- in (2.3). By the chain rule for the operator
D (cf. [9]) and the fact that H (t)=  H n _ 1 (t), we have

D  FI u(A0=  E 0 4 0 2  E a P j ! H p ,-1 ((h i, x))hi H u(A 1).
k= ko k=k0 j a k 1= ko

1* k

Since hi  are orthonorm al in H,

ID fl u(doil,= E u'ox E  pi ! H p i _ 1 ((hi , x))2
 f l

 u(A,)2
k= ko k =ko .16.4 1= ko

1* k

E E cd pi ! Hp i _ i ((hi , x ) )2  H x(Ad
k = ko .16.1k 1= ko

where x (t) is the indicator function of the interval [ —  2, 2]. From this and the
Schwarz inequality, we deduce that

(2.14) I1D f l  u(ziou< J u' 112co
.B 

E E
k= ko jefk 

cqp i !Hpi _ 1 ((h i , 0 2 ) 2  F1 x(Addy
k= ko 1= ko

1 1  = J11 K( x))2) duE E 4 pi ! I -I p i _ i ((hi , P
B k =ko fElk

where

and

/ 2  = X(4
B I = ko
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We first estimate I .  S in c e  p i  a ,

K
f

K

I1 aP 1  1 E 4 [(p i  — 1)! H p i _ i ((hi , x)) 2 — 1] + E E 4 IP  dp(x)
B k= ko jeJk k=ko jak

K K

2Po- P{ T IE  E  cd [(p i  — 1)! H p i _ ,((hi , x))2 — 1]1P dp(x) + 1 1 E  4  li .
B k=ko jeJk k=ko jak

Applying Lemma 2.1 to centered random variables {X J := (p;  — 1)! H _ x )) 2

—11, j e J : = U L ( = k o f k ,
 we obtain

(2.15) 2Po-P c
P  ( 0 )1  m a x  I  X •1P di/ + ( E a2)P

je !JjeJ jeJ

A 2 (  a .
jeJ

From  (2.12), (2.13), (2.14) and (2.15), we can conclude that

p  1
(2.16) Cp,1( f l  G i,.„,„,) A3(1 + I E E 412)

k=k0 k=k0 jeJk

In  order to estimate 12, we consider the following three possible cases:

(i) lim a n = 0
n-■ co

(ii) 0 <  111-11 a n 1 G 00

n-■

First, we assume
and  {nk }  so that

Then, since E 4 =  co , we can choose the above
i =

{mk}

1
max l a • 12  

<
j_?:nk 2 "

(2.18)a  <  1 < Ea .
jeJk\((nk+mk)} jeJk

Then

E E 4  E ( I  -

2 k

)  K + 1.
k=ko jeJk k=ko

+

We introduce the following notations:

(2.17)
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L-■ J B =  E  •v  2a •
id k

Then we have

and ri k =  E
J J k

Ak(= E (aA  — b i )) = Aknk — Bk.
jeJk

We claim that nk
 (2±> N(0, 1) as k —> cc. Indeed, since nk is  a  sum of independent

random variables with mean 0 and variance 1, it is enough to verify the Lindeberg
condition:

(2.19) lim Ia , J JI2dp. =0,
k

It is clear that there exists a polynomial P(t) such that

Vs >0.

max 1N/n ! H„(t)1 P(t), VtER.
1<n<a

Hence,

1.;(x)1 X )) .

By (2.17) and (2.18), we have

ai 1
ak,; =

and consequently

10-k, i 12 dtt E p o i ,  0 2 0 (x )
je J k  J  I k , j j I  > e ) i€ J k 1(2 P (t )> E )

1 1 2= P(t)2 e-Y  dt.
J{P(0> 2L) N./2n

This proves (2 .19). Now

.12 =  11 2) = f l  t i( A k n k  Bk1 2)
k = ko k = k0

1
and 1 < AZ <  1  +  —  2 .  Hence

2"

ti( A k — Bk2 ) [2 (IT/k1 5 ) if 1Bkl-- 3
and
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From  these estim ates a n d  th e  fac t th a t qkN ( 0 ,  1 )  a s  k co ,  we can find
ko  > N  and 0 < a < 1 such that

p.(I AkIlk — Bk1 2) < a for a ll k > ko

a n d  consequently 1 2  < c(K-ko This estimate, com bined with (2.16), yields the
following:

P k
C , 1( n G l,m k,nk ) A 4 K 2 0 t2

k=k0

and by (2.8), we can conclude (2.6) if r = 1. The proof in the case of r = 2, 3,...
can be given in the same way and this completes the proof of (2.6) in the case of (i).

In the case of (ii), there exists e > 0 such that Ia n ' > e for infinitely many n
a n d  w e choose th e  above  {nk }  a n d  {mk }  s o  th a t  lan j  v  a n d  mk = O. Let
fl = s u p a < c c .  Then

E  E  =  E an
2

k < IV K.
k=k0 jeJk k=k0

Also

fiCAkl = aflk flk — -
5

) i f  b„,1 3

and, if lb„ I > 3,

P(lAk1 2 ) > 0 ) or ti( n k  < 0)

according as a n k  bn k  > 0 or an k bn k <O. Now we can easily find 0 < a < 1 such that

p(IzI k I 2) < I for all k

because the  number o f different laws o f {L } , ` , ,  is  a t m ost a. Then (2.6) can
be concluded in  the same way as in the case of (ii). The proof for the case (iii)
will be given in  the  next section.

Corollary 2.3 (L A W  OF LARGE NUM BERS). L et { „1,°,()= , be defined by (2.1) and
suppose that a = sup p„ < cc. T h e n

lim -  E • = o quasi everywhere.
n i=1

P ro o f . T his i s  a n  immediate consequence o f  th e  previous theorem and
Kronecker's lemma; le t  {13„},73_ 1 b e  a  sequence of positive numbers such that

alim b„ = oo and {a„},T= 1 b e  a  sequence of rea l num bers. If E converges, then
n—■oo n = i  b„
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i n

lim — E a .= 0
n- c b ._ i

Corollary 2 .4 .  H  is slim.

P ro o f .  Choose a n  ONS IhnI,T=1 in  H  such that hn e B * .  By Corollary 2.3,
n 1

it holds that urn E {(h,„ x) 2 — 1} = 0 q.e. and hence that
n- oon i , 2

= 1 q.e. But, for every heH, we have

him E 
( h »  

h)2 = lim E  <h• h> 2 <11112
J , h  — H

" -" °  j=  1 n-,co j= 1

1li m  —  E  ( h
i , 

x )2

n j =1

and hence l 
1

im — E 
( h »  

h)2 = O. F r o m  th is  the assertion immediately follows.
" x n j=1

§ 3  Central limit theorems under y and convergence in L k (v)

Let b e  a positive generalized Wiener function belonging to 13,7,,  such
that (0, 1) = 1 and y = y , be the corresponding probability measure as explained
in  § 1 . Since every set of (p, r)-capacity 0 is a  se t o f y-measure 0, we can state
Theorem 2.2 as a  theorem concerning y-almost everywhere convergence. We can
also obtain other limit theorems for the  same partial sum s with respect to  the
probability v. W e start by giving the following approximation lemma :

Lemma 3 . 1 .  For a given 1i as  above and an orthonorrnal base (ONB){1,,}f_,
of  H , there exists a sequence { 0 } '= 1 of  W iener functions satisfying the following
conditions:

(1) 0„,eD,b . ,  On, > 0 and (e m , 1) = 1

(2)
11mII — 0 .11q , = 0
m-,09

(3 ) f o r each m, there ex ist N m e N  and cp: R such that

0,„(x)= (p m ((l i , x),...,(//v„„ x)).

P ro o f . F ir s t  w e  d e f in e  V'm b y = eçJi. T h e n ,  w e  h a v e  gin , > 0,

(Ti„„ 1) = 1 a n d  lim II — Vi m II q ,  - r  =  0  ([16 ]). Let .4„ be the a-algebra generated

Wm,k D q, o o Ti m,k > 0, (W„,, k , 1) = 1 a n d  lim — =  0
Ic—■ co

Moreover W„,, k  can be expressed as

m—
b y  the x ) j  = k. T h e  conditional expectation  E k c a n  e x te n d  to  a
contraction operator from  D p ,  onto itself fo r a ll p >  1 a n d  r E R  ([1 3 ]).  For
each m, we define W m k b y  Vi

n i , k  =  E,,V„„ then we have
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Vin o , = x),..., (4, x))

where Co , : le R  i s  a  smooth function. Consequently, the assertion of Lemma
3.1 is evident.

Proposition 3.2 (CENTRAL LIMIT THEOREM). If f n  G H, n = 1, 2,... are such that
and f„-) 0  weakly as  n -) oo, then, on the probability space (B, v), we

have (f„, x) )N (0, 1).

Pro o f . It suffices to show that

(3.1) lirn e i tu -x ) dv(x) = e- qn- 00

fo r all te R . Let 14,1 b e  a n  O N B  o f  H .  By Lem m a 3.1, there exists a
sequence {0,„}:=  t satisfying the following conditions :

( i) Flin Mo — =m-.
(ii) Om> 0, (0,„, 1) = 1, m e D„,„0

(iii) = (P.(01, x))

where cpm : R  is  a  smooth function such that 1 Pm 1g dYN,„ < 00 and yN

RN-
stands for the N-dimensional standard Gaussian distribution. Then, we have

LBel t (f"'x) dv(x) - = l< 0 , eh c f - . ) > -

  

<1< 0  -  0 ., e1t )>1 + 1<0 ., e a ( f "'' ) > - e - q1

1110  -  0 .11q , -,11e"( f - . ) iip,r + I<0 ., e h u "' .1> - e - 1
and

f<Om , eit(f - ' ) > = el" f - x ) 9.(( 1i, x),...,(IN , x))dp(x).
B

It is easy  to  see  that the right-hand side of the above identity is equal to

exp [-  -
t2

( 1  -  E <L, 1.3 ) ] f  exp ( i t  E x i < f„,
2 RN", i= I

Since f„ - ) 0 weakly, lirn <f„, li >H = 0  for each j. Since
n-■  op

IR N '" R N "'
l(p.IdyN„, 1(pmlqdyN „ ,) <
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it follows by the dominate convergence theorem that lim <0„„ eit(f.' > = e - q for
n—■co

each fixed m .  Choose a n  integer N  >  r. By the  properties of norms (1.8) and
(1.16), we have

Ite f "' . )
 

p ,rI t  ei v r". ) tP .N A p,N(Itew f +  t DN  ei" f - . ) 11 )
=  A p , N(1 11(it)N e" ( f ". . ) 11p) = Ap,N(1

Cosequently, we obtain

SBeit tf"'' ) dv(x) - Ap,N (1 + Ill")11 0  - + 1<0 ., -

  

By letting n co and  then in,  (3.1) follows.

Corollary 3 .3 .  L e t  flin I,T= I  b e  a n  ONS o f  H  an d  {an }',T=1 b e  a  real
1

sequence. S e t  A n = ( E c 4 ) .  I f  lim A n = c o , th e n  the distribution of  — E
j= 1

n—,co An

1 " n
P ro o f . Set   E ai hi  s o  th a t  I =  —  E a =  1. B y  th e  previous

A n = An2

proposition, it is sufficient to prove that ,f„ converges weakly to 0 as n -> cc. I f
N < n and geH, then we have

n N i n

<fn, g>II =  —
A E a j < h j ,  g > I 1  = af <hi , +  E  aj <hp g>N.n i  l  

By Cauchy-Schwarz's inequality,

1 N 1
1<fn, g>HI  E g>HI + E E  <11 .,

j=1 An j=N +1 j=N +1

Since thn l  is  an ONS,

CO

liml<L, g>111_
n—.co

E 1<hp g>N1 2 .
j=N +1

Letting N  co, we obtain the desired result.

Proposition 3.4 (C E N T R A L  L IM IT  T H E O R E M ). L e t ta,j ,  b e  a  real sequence
and R n I  1 b e  the sequence of  random  variables defined by (2.1). Suppose that

13 = sup <  co A„ = ( E aDf —> co as  n
na. j= 1

1 (d )
Then, — E N(0, 1) under the probability v.

A n  =

(d )ai (hi , x) N(0,1) on the probability  space ( B, y) .
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P ro o f . The basic idea of the proof of this proposition is  the same a s  that
of Proposition 3.2. W ithout loss of generality we can assume tha t fhi ll°_ 1 i s  an
O N B . Let {0.1.= 1 b e  an approximate sequence of 0 in Lemma 3.1 with respect
to  th is O N B . It is enough to  show that

n

urn f exp  (it —  E a ..)dv(x) =
n•-• co A =1• "B n J

_E
e 2

for a ll t e R . W e have

TBeit k r i= iai4 i dv — = I (0, e"*.E7= ctg t) — e -

  

(o — e"k ri=  a i 4i )1 + R , e"71;,E7-- 4-9 — e- q1

°m11 q, -  r  e" k X  n i 4 i  t g , r ( m, ei t k I 7 = e - q  I •
First we show that

(3.2)
, „

sup II e"A„"J=
n> 1

<  )  •p,r

For this purpose, we state the following assertion which is a  consequence of (1.16)
and the chain rule; for each p  > 1 and r > 0, there exist p ' > 1 , r' > 0, k e N and
Kp , r  >  0  such that

(3.3) F p , Kp,,( 1 + 11F 11",' for every F e g .

Using (3.3) and  Lemma 2.1, we obtain

eitkr;= p,r

< K p , ,(1

k
I L Itik n k

• K,,. 1 + CP ' - (  E (24(1 + p i n i  max IiIP' dtt P '
[

P  Ak  • jn  J= 1 1. • n B

1-c, I tn k

kr' k k kr'< K ' [1  + c P  (I + arT( E al,d= Kp' ,(1 + 0;1(1 + 0") 2  ) •
P ' r P  Ak

j  =  1

Hence (3.2) follows immediately.
Next we show that

(3.4) (Om, ei(k r .;= iai 4i) as n co for each fixed m.

t n

 E a  •
A n i= 1

t n r '
— E +
An i= t k  )

If n > N„„ from the  independence of the (hi , x), 1 <j < n, it follows that
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( 0 „ „  e a k , - .°J4J)  = f  e il 1 ; 17 =1' 4' 49 .01, x ), ...,(hN ,, x )) d II
B

_  ( 0 m ,  e itk E l
i
v f",a sg j )  f e itk V I=  N r .  * 1 aj4j d t i .

e

B y  t h e  facts : leuk,'!'ir-■°A-1 Orn l < O rn e Dq , .  c  L q c  L 1 , An —> oo as n - ,  c o  and
(Om , 1) = 1, we can apply the dominate convergence theorem to obtain

(3.5) lim (Om , — 1 .

n—.0o

Next we claim that

• , t2

(3.6) lim ez- t a i4 , = e  2.
n—.co

,
To see this, setting 24„, rn = ( E  co -2-  it is sufficient to show that

1

1 (d)
E  a • • N (0, 1) a s  n

A , m  j= N,,,+ 1

because lim A " = l im  1 1 ( hi "  a i )  2 = 1. For each n>  N m ,
"

°9 A n " c ° An2 i=

is a  family of independent random variables satisfying

{ •

An,m j= N,„+ 1

fB  A

a

n". =  0 and
j  = N ,+  1  B

ai

A m m

6 i

2

dt = 1.

 

Hence we have only to verify the Lindeberg condition to  obtain  (3 .6). As before
we choose a polynomial P (t) su c h  th a t m a x  f j1 H , ( t )1  P (t). F o r  E >  0 , we

1Si • tT

have

,N„,-1 (1  a i 1 > c )

ci?E  P((h i , x ))dy(x)
1 An2  m  P(01 x p > 8 )

T IP ( i»  c  A r)N /27r

1 I 2

P(t) e - 2 at 0 as n oo

From (3.2) and (3.4) we obtain the desired result.

Remark. A s  is  e a s ily  seen  fro m  th e  a b o v e  p ro o f , w e  c a n  replace the
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1
conditions on {an }1. 1 by  a weaker one: lirn  max lad = 0 where A n  = ( E aD1

A n 1<j<n

W e a re  now  in  a  p o sitio n  to com plete th e  proof o f  Theorem 2.2 in the
previous sec tion . F o r this, we need the following lemma:

Lemma 3 .5 .  L et P(t) be a polynomial, oci ,...,a,. be the real zeros of  P(t) and
m• be the multiplicity of  a i . Then there ex ist y  > 0  and (5 >  0  such that

ft; IP(t) U  It; It —  ai l . -yAn■-.11 f o r all e (O , 6 ].

P ro o f .  Suppose th a t the assertion of the lem m a does not h o ld . Then for
each positive integer n, there exist An a n d  t„ such that

1
0 < /1„< IP(t)l , It„ — ai l > nilLni 1 <V  j < r.

1
real number Œ . By the continuity of P(t) and the fact that IP(t)1 we have

P(a)= 0  and hence a  coincides with one of say a i . W e observe that

P(t) 13(7" i)  (a )lim      0 .
— m•1J •

Thus there exist d > 0 and an integer n o such that
Consequently it follows that for a ll n > no

P(t)
(t„ — ai )mi

> d for all n > no .

 

An 113 (4 ClItn Œnim i d n m i

and hence that dnini < 1 for all n >  n , .  This is  a contradiction.

Proof  o f  Theorem 2 .2  in  the  case (iii). By assum ption we can choose a
sequence fnk lf_ I of positive integers such that

b„
n1 < n 2 < n 3 < •••, lank ! > k , lim exists (possibly a) o r  — cc).

k - -* co a n k

Set A  = klyn. { Ia„„„k — b„„I 1}. Then A  is a B orel set and by  Fatou's lemma

it holds that v(A) < limv(Ia
f lk f lk 1) for every v = v , OE D _ 0 9 , 0 >  O. If

k-■co
we can show that

(3.7) lim v(I ank b.,1 1) = 0,
k-•

then by the fact mentioned in §1, we can conclude that A  is  s lim . On the other
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CO

hand lim (a  —  o 0 on Ac and hence
n = 

(a c b „) diverges on  A C ,  therefore

Theorem 2.2 is completely proved.

Let us show (3.7). Set uk = then
(i n k

1 1
1) = — u k l  v(14,— ukl

lank l
Here we devide the  proof into two parts:

1) The case — oo < lim u k <  co
k  co

Setting u = firm uk ,  we obtain
k  oo

1
V(1 L —

k
) v(i 141

E

1
where 2 k = I u — uk I + — . L e t  ta i l l

i =1 b e  t h e  totality  o f  rea l ze ro s of the

polynomials .\ ./n ! 11„(t) — u, 1 < n < a and mi  be the maximum of the multiplicities
corresponding to a i . Then, by Lemma 3.5 there exist y > 0  and  ko  such that

N nk — ul < AkI U 11(hn„, x) — Vk >
j =  1

Thus we obtain

— Ak) E v(I(hn k ,  x)— YAIn-l) •
j=

Let e  be a positive number. Then we have

v(I nk  —ul E vo(hnk , x) — <e)
j=

for all sufficiently large k. N ote that {h„ } 9.- 1 converges weakly to 0, and hence

by Proposition 3.2 (h„, x) N ( 0 ,  1) as n —> oo under the probability v. Therefore
we finally obtain

1
v(lan

k "  
— b <  1 )  <  E dt.

k co 
j =  1 { I t  — Cejl :5E) .\ /27r

Letting e 1 0, (3.7) follows immediately.

2) The case lim u k = — co o r  00
oo

Since the proof for the case lirn u = — oo is the same as for the case lim uk =
k co . k
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we prove (3.7) only for the latter case. Suppose th a t lirn uk =  co, then for every
k—rco

M > 0, there exists ko su ch  th a t M < u k — Vk > ko . Hence it follows that

v (
1

1 „, — v(M '1k > k o .

A  moment's reflection shows that there exists a  real valued function (/) defined
on  an  interval (Mo , co) such that

lim (P(M) = cc,
M—*co

0

U It ; N/P.Hi (t) > lt; t >  C M)}.
.i =1

T h u s , if M >  M o a n d  k > ko , w e  o b ta in  v(M < v(Rhno x/I > 000.
Letting co, it follows from Proposition 3.2 that

_ b„ 1) tifi,.0(m» N/2'

1 t2
liM v(land t .k  k k

Letting M (Do, we obtain (3.7).

Theorem 3 .6 .  Given an O N S  {h „ }, of  H and a sequence { pn } 1_, of positive
integers, we define by  (2.1). Let { a} 1 b e  a  real sequence, and suppose that
a = sup pn <  c c . T h e n  the following statements (i) , — (iv ) are equivalent:

n>1

(i) E an
2  <

n= 1

(ii) The series E a converges v-almost everywhere.
n 1

(iii) For all positive k, the series E a converges in Lk (v).
n=1

(iv) For some positive k, th e  E are  bounded in  Lk (v).
j

02

I f  E an
2 = oc, then f o r any real sequence {bn }fr..„1 ,  E (a—  bn ) diverges v-almost

n= 1 n=1

everywhere.

P ro o f . T h e  equivalence (i) ( ii)  is  im m e d ia te  b y  T h e o re m  2 .2 , and the
implication (iii) ( iv )  is  trivial. S o  w e  p ro v e  the implications (i) ( i i i )  a n d
(iv) (i).

To see that (i) implies (iii), it is enough to notice tha t for each k> 0  there
exists a positive constant A k  such that

ru
2  IE Ak( E ai )2

i=ni — f l
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for any positive integers m, n with m > n, which is shown as follows : choose an
even number, say 2N, such that 2N >  k. Then we have

a  . 1 2N 2N
1 1

E E <  'I 2N Eq, —r .1"..11 P,r
j= n :1=n i=n

1 1 1
It is known that for all k e N and all p, q, r>  1  such that -  =  -  +  -  it holds that

r p q

F 0 G F G VF,VG e.9 ([9 ], [15 ]). Iterating this property several
times, we obtain

II( E 
aio2N.

A 'N  E
j= n:1=n

where 24, is  a constant depending only on N .  Applying Lemma 2.1 we have

E aA112Np,, = E co +
i=n j= n

1  
1m 1<  c 2N p ( E a ?(1 p iy)2 max ( I B . /.I2 N P  d

) 2 N p
t t

2Np n5 , mi=n

i
1 00

1 (2 ) 2 N p  m 1
< ,-,2N p (1 _i_ 0-) max IN/P. 11; (t)I 2 N P e -  d t ( E 4p.—  '2N p k '  '

1 5,j 5a ,./27r i=n— co

The above argument shows that w e can take A N  as
1

1c o 1 12 2Np
A N  =  c 2Np

N  2 N  p  
( 1  ±  0 ) 2  max I --/ ; WI

2 N p   

dt
1 .N./2 ) •

N ext w e prove the implication (iv) (i). Suppose th a t  (iv) holds and set

M  - =  sup 11 EafJMLk(V). First we show that sup I an <  co so that Proposition 3.4
j 1 n>1

is applicable. By the fact thatII II' „Lk(v) is a  norm  or a quasi norm according as
k >  1  or 0 < k  <  1 respectively, we have

(3.8)

where dk i s  a positive constant.
On the other hand, we have

IaflMLk(V) 2dkM•

(3.9) ann v(„

It is easily seen that there exists fi s u c h  th a t  in f  in f ! I i i (t) 1. Therefore
t.?-43

we have

(3.10) v(„ > 1) > v((h„, ,6).
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Since (h,„ x) --2 * N(0, 1 )  by  Proposition 3.2, we have

C'e 1 t2
li M  v ((h„ x), fl) = e 2 dt > 0.

.\/27rc o

Thus there exist a positive constnt a ,  and a positive integer N , such that

(3.11) v ((h„, x) f i ) > a i ,
V  n I N.

Combining (3.8), (3.9), (3.10) and (3.11) shows la n l a , k  2dkM which proves our
assertion.

N ow  w e re turn  to  th e  proof of (i). S e t  A n = ( 4 ) 1  a n d  w e observe as

before

1 " n 1

M ï II   E aAilLk ( ,) A n v  —  E 1 .
i=1 j= 1 A„ i =1

N ow  suppose, on the contrary, that lim  A n = c c . T h e n  b y  Proposition 3.2 we
oo

have

1 n 1 /2
lim  —  E ai i > 1) =

f  
e  2 dt > 0

" An j=1 N/2 n

which allows us to  take a 2  >  0  and  an  integer N 2  such that

v(

t n

—  E a2, V n  N2
An i=1

_
and  hence it holds that A n < a 2  k M, Vn > N 2 , this contradicts our assumption.
Therefore (i) is proved.

Corollary 3 .7 .  L e t  {X n }°_ , b e  a  Gaussian system  o n  a  probability space
(Q, P ) su ch  th at E(X„) = 0 ,  E(X „X „,) = 6,,„,— cn c,„ w here Ic„1 1 i s  a  real

00

sequence such that E  d  < 1 . L e t p„eN, and set = .N/p ,,!H (X „). Suppose
n=1

sup pn <  c c . T h e n  the assertions of  Proposition 3.4 and  Theorem 3.6 remain valid
n> 1

by replacing y  by  P.

P ro o f . Choose an O N B Ih n l;,°=  , o f  H .  We define f  by f =  E  cn hn where
0. 1n = 0

Co =  (1 — E  d g . T h e n  w e  have < f  hn >, = e n , I f  IH = 1. L e t  v  b e  the
n=1

probability measure corresponding to the positive generalized Wiener function
60 ((f, x)) ( [9] , [15] ). T h e n  th e  sequence { (hn , x)} n°3_1 o f  random  variables on
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the probability space (B , v) forms a  Gaussian system such that

TB 
(h„, x)dv(x) = 0

fB 
(h„, x)(h,n , x)dv(x) = nm — <f, h> a<f, hm >ff =  6,,„, — cn c„,

(d) (d)H ence {X„(co)},T= {(hn , x)},T= 1 . T h e re fo re  w e  have { ! Hp (X„(w))1 —
1.\ ./p„!H p .((h„, x))},T= 1 . Since the assertions of Proposition 3.4 and Theorem 3.6
are concerned only with the law under y  of the random sequence { „}„°°_. defined
by (2.1), our assertion is clear.

§ 4  Other results

In  this section, we present some results obtained in the course of the study
of the previous sections. The asymptotic behavior of the tail measure II x  > 2)
as n—  is known :

1 1
(4.1) lim — 1 0 g11(  x  IIB > =  - --A,„„, /12

w here  y  is th e  p o s it iv e  c o n s ta n t defined  i n  T heorem  4 .1  g iven  below
([2], [14]). From  this fact Fernique's result follows in  a  strengthened form :

1
(4.2)

1
ea x 11;3 dt4 (x ) < co if and only if a <  .

B 2y

O ur result is as follows :

Theorem 4 . 1 .  L et p  > 1  and y  > O. Then

1
(4.3) —  —  =  lim  log Cp,r( x  >  2)

2y A'

where y  is  the norm  of  the injection j :  H —■ B i.e. y =  s u p  II hils•

P ro o f . The basic idea o f the  proof is due  to  T a k e d a  [1 7 ] . The point is
that the following inequality holds :

a +
x IIB 1 \  (

17,111B) (x) x
a

where VOE, =  04(al — L) - T o  s e e  t h i s ,  note that the norm  II • IIB is expressed as



e x p  [ c  
oc + 1 y r mxm]

, , v e c , I . 1 1 2,3,—(x) q.e. x.
a
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il x 11 B = sup (f, x)I where ce is a  countable subset o f { f e B* ;
eW

11 f  II,. 1}. From
f  

the positivity o f  17 ,
r
 a n d  th e  fact that (f, x) e (  e 1 , it follows that

IX BB =  suPl(f, x)I = suplUoci — L O (a  +  1 ) . (f, • )] (x)1
f e e f e e

( 1  +
cc 1 sf ue i fp •il(x)I

<  +   ) ji
Eva, suP 1(f, • )1Ex) +  [Vœ,r 1113FX).

\ feSe a

Recall that 17„,
r
 h a s  the  integral expression mentioned in  th e  proof of Theorem

2.2 (1) a n d  Va d . 1 = 1. Hence by Jensen's inequality, we obtain

11 X 3 ( c x  

+   ) r  

11 Va,r 11 . 11 BYX)}2
(  a  +   ) r

[Var,r MiN)C) •
OC a

Let c  b e  a positive constant w ith c <  1 . Then again by Jensen's inequality,
2py

we have

e x p  [ c (  
 +  1

e x P  [ ( V Œ , , 1123)(x)] [V„,, 112.] (x)

04
e. X.

Hence we have

Thus it follows that

Cp ,r ( >  =  C p ,r (exp [c(  +  1  )  r X >  e X p [C ( oe ±  1 )  r

a oc

< C p d . ( [ va , r ec • II ;3] -  (x ) >  exp [c ( Œ + 1)  r  A 2 ])

exp [ — cp ( a + 1 _ r

OC
'12]11 e cll • 112B 11j1,,r

/12 ]11 (I  — L)11 arl(OEI — L) -
 e c II • 11;3  p= exp [ — cp

By Meyer-Shigekawa's multiplier theorem ([19]), the operator (I  — (aI —
is bounded on  LP (it). Thus
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Pr
0C2 exp [ – cp ( OE ±  1 Y  2 2 ]

 ( I — — L)—  ec II '11 11;
Ol

-r
< A p ,c,,, e x p [–  c p ( œ  2 2 ]

a

where

Pr x 2,3= 11(1 – L )i(al – L )  '21111;1  ep, 11 dp(x).

Note tha t by  (4.2) A p ,c. „ < cc.. Consequently we obtain

1
/17  log Cp,r( x

1 a + 1 )
> 2) /17  log A c „ – cp

1
Letting A –) co first, and a –) cc, c  ,  we have

2py

1 1
FE —log C  (11 > A) –

A 2 Pd. 2y

N ex t w e  show  the  re st. B y  the  property (1.19) w e  have
x  > A) and hence

—
1

2
10gPOIXIIB > 2) -

1

log C A).
13 ,1*

From  (4.1) it follows that

1 1– —  < lim —log Cp,r( x 11B > 2).
2y A2

12( II x II, >

This completes the proof of the theorem.

From  the above theorem  the  following corollary follows immediately (the
same result was obtained by Sugita [16] in  a  different way).

Corollary 4 .2 .  L et y  be  the probability  measure corresponding to a positive
1

generalized Wiener function 0  e l3 q , ,  with (0 ,  1) = 1. T hen lim —log v( > 2)
1<  – .

2py

Our next theorem is a  refinement of what is called Itô-Nisio's theorem : For
any ONB {e„}:= 1 o f  H  it holds that

(4.4) lim M X – M  B  = 0 a. e. X
n—.co
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where x„ is defined by x,, = E (es, x)es . O ur result is that w e can reduce the
J=1

exceptional set of It6-Nisio's theorem to a  slim set (this result was also obtained
by Feyel-de La Pradelle [3]):

Theorem 4 .3 . L et {e„} ,  be an ONB of  H  and  x„ be the quasi continuous

mapping defined by x E  (es, x)es . Then it holds that lirn x - x„ IIB = 0 q.e. x.
J=1

Remark. The proof of the theorem is based on It6-Nisio's theorem and the
fact that

(4.5) fim  f  x  -  x „  ro dir(x) = 0 for every p >  0 .
n—.co

Hence we cannot deduce It6-Nisio's theorem a s  a  coro lla ry . F o r the  proof of
(4.4) and (4.5), see [12] and [18] p.290.

P roo f. Given an c >  0 we define oc„,„, by

= Cp,,.( max II x, - x„ II B >  E).+15.k,sm

for each pair of positive integers n, m with n < m . A s in  th e  proof of Theorem
4.1 we have

max II xk II • • IIn+1. k.çm XndB 2 i[( I  -  L) - 12:  m a x -  B r (x) q.e. x.

Thus by the Tshebyshev-type inequality we have

2127.
oc„,„, (  —  f  max II x k —  X rigd ti(x ).

y
E Bn+ m

N o te  that 1 II x k - xn II BIT, + i is a  m artingale , hence it follow s from  D oob's
inequality that

) P Xrn X n 3 c lii(x ).
œ n 'm  ( O P  —  

1
)  IB

Since  1  m ax II x k -  x „  > {  sup II x k - x„ II B  >  e l  as m - , w e  have by
n+1.,krn n+1<k

(1.22)

an = sup II x k - X >  E) =  lim  an , m .
m—■co

O n the  other hand, it holds from (4.5) that
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lim f  IIXm  — xn é dit(x) = Ç Ix — xn 1111'3 4 ( 4
JB

Consequently we obtain

< f,an

e(p — 1))
— x,, 34/(x).

By (4.5) again, the right-hand side of the above inequality tends to  0  as n cc.
Therefore by Fatou's lemma we finally obtain

lim { sup II xk — >  e} ) =  0
nr . c° n + 1 < k

for all e>  O. Set

G = U
1=1

where G, =  fim  { s u p  11 xk — x„ MB  >
"3

—
1 

}.
n — n + 1 < k 1

It is clear that G is slim and that {x k } 1 i s  a Cauchy sequence on G ` .  Similary
setting

G' U
1=1

1
where G; = 11m TM x — —

1
} •

n—oco

we can prove that G ' is slim and that we can extract a  subsequence {x n j }J i  so
th a t lim  x — x f l J MB  =  0  on  G '` .  This proves Theorem 4.3.

Corollary 4.4. L et {cp„},T=, be an ONB of  L 2 (0,1) and gp,I,T=, be a Gaussian
system such that

E („ )=  0 and E ( r i n i )
=

 (
5

nm C n C m

i
where c„= f yon (s) ds. The stochastic process {X„(t)1,o<t<1 defined by

o

X n ( t ,  0 ) )  =  E  . ; (0)). ( ( p,(s)ds
0

converges uniformly to a pinned Brownian m otion for almost all co.

P ro o f .  I t  is  e n o u g h  to  show that there  exist a certain probability space
(Q, P) and a Gaussian system { on it such that

(4.6) E(1„)= 0 E(tm„,)= (5„,„— c n c,„

and th a t  the  stochastic process
converges uniformly to a  pinned Brownian motion.

IY1 1 (0 1 0 < t<  I defined  by Y(t) = E (pi (s)ds
j  n1 I to

Let (W0
1 , H, /.4) be  the one-dimentional Wiener space, that is, W0

1 i s  the set
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of real continuous functions o n  [0, 1] vanishing at 0, H is  the Cameron-Martin
subspace of W 0 ' ,  i . e . ,  H = {h: [0, 1] R; h  is a b so lu te ly  c o n tin u o u s  and
lid  = fo

l lh'(012 dt < <4  and pt is  the standard W iener m easu re . W0', equipped
w ith  th e  sup norm  II wIl, = m ax lw(t)I, i s  a  Banach sp a c e . L e t  v  b e  the

o«.<1
probability measure corresponding to the positive generalized Wiener function
So (w(1)). v is  n o th in g  b u t  th e  probability law  o f  pinned Brownian motion
([8], [15]).

W e take (W0', ,l(W 0
1 ), v) a s  (Q, .4, P) where .4(14/0

1 ) is  the Borel a-algebra
t

on W0'. Let { en }„c°, I be  the ONB of H defined by e n (t) = f  (p„(s) ds, and we set
o

n(w) = (en, w) = (p,,,(s)dw(s).
Jo

Then fq„},T= 1. satisfies (4.6) and  by Theorem 4.3 we have

lim  m ax l w(t) — E (e„, w)e,,(t)1 = 0 a.e. w .
05,t51 j= 1

Therefore Corollary 4.4 is shown.
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