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Local times and related sample Path properties of
certain self-similar processes

By

Norio K ô N O  and Narn-Rueih SH1EH*

1. Introduction

Let X(t), t e R ± , be a  real-valued measurable stochastic process. We say that
X  is H-self-similar (abbrev. H-ss), H > 0, if for any c > 0  {X (ct)}  a n d  {c H X(t)}
have the same finite dimensional distributions. We say that X  is of stationary
increments (abbrev. si) if for any b 0  {X(t + b) — X (b)}  and X(t) — X(0)1 have
the same finite dimensional distributions. We say that X  is symmetric a-stable
(abbrev. SaS) if all finite linear combinations E7. 1 ai X (t i ) are  symmetric a-stable
random variab les. A  bibliographical guide to  th e  development o f  self-similar
processes can be found in  T aq q u  [18 ]. We also mention that there a re  two
important classes of H-ss si S aS  processes, namely linear fractional stable and
(real) harmonizable fractional stable processes, which are defined respectively by

fA L O E (a, b; t) = {a[(t — u) 118 —  (— u) 11a]

+ b[(t — 0 1 1 - 1 1 a  ZOE(du) , and
0.3 e it. _  1

WH2OE(a, b; =  Re b u l-H -1 1 a
) 2 ( d u )  ,

i l l

where 0 < H < 1, 0 < a < 2, H  0 1 /a, a a n d  b e R  such that a2 + b2 > 0 , and
Z Œ a n d  Za a r e  respectively real and  complex symmetric Levy a-stable motions.
See Cambanis—Maejima [6] for detailed discussions on the distributional prop-
erties and the  limiting theorems of these two processes.

The investigation on the "fine" sample path properties of s s  processes has
been stimulated a  lot by the intensive works of V ervaat [19, 20]. Regarded as
a contribution to this expanding topic, it is the  purpose of this paper to study
the local times and  the  related path properties of certain s s  processes. In  this
aspect, we mention that Kôno [10] and Kôno-Maejima [11] proved the existence
of square-integrable local times and Nolan [14, 15] discussed the joint continuity
of local times for certain stable processes including

 ' H Œ ( i ,
 1) [14, Proposition 4.9].
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In  §2  o f this paper, we shall prove (Theorem 2.1 (ii)) that, for certain ss si
processes with bivariate densities, almost every path has local times (p(x, t) which
are  continuous in  t  fo r a .e . x ; in  Berman's [5] terminology, it is the temporal
continuity of cp. We shall also find (Theorem 2.1 (iii)) an estimate on the modulus
of such a  continuity . In  §3 , we shall prove (Theorem 3.1) certain infinite local
oscillations of the sam ple paths and  shall prove (Theorems 3.3 and 3.4) some
results on the Hausdorff measures and dimensions of level sets. Then in §4, we
shall prove (Theorem 4.3) the joint continuity of local times of linear fractional
stable processes in case the stability parameter a >  1 and (Theorem 4.4) a  related
uniform dimension result for level sets; these results a re  derived from the local
nondeterm inism  of the processes (P roposition  4 .1 ). In  the  fina l §5 , we shall
prove (Theorems 5.1 and 5.2) tha t the  small value of the scaling parameter H
can im ply the  differentiability o f cp(x, t) in  x .  F o r  example, le t H  < 1/3. O u r
results assert that for certain H-ss si processes the derivative q' (x , t) in  x  exists
a n d  is H older continuous; this corresponds to Geman-Horowitz [8, Theorem
(28.5a)] for Gaussian processes.

A s  a  sum m ary, we m ay say that what we have done in  this paper shows
that "Berman's principle", i.e. the connections between th e  smoothness of local
times and the irregularity of sample paths, is also valid for certain ss non-Gaussian
processes.

2. Local times of certain ss  processes with bivariate densities

L et X (t), t e R + ,  be  a  real-valued measurable stochastic process. We start
with following assumption on the bivariates (X ( s ) ,  X ( t ) ) ,0 <s <t<T <o o .

Assumption (A). T h e  characteristic function (z 1 , z 2 ) E  exp [i(z ,X (s) +
z 2 X (0 )] is nonnegative and integrable over (z 1 , z 2 ) E R 2 .

Consequently, so are the characteristic functions z  E exp [izX (t)] and z
E exp [iz(X (t) — X (s))], z  e R .  Then, the joint density p(s, t; x, y ) of (X (s), X (0)
exists and  is continuous in (x, y), moreover p(s, t; x, y) p ( s ,  t ; 0, 0); so  a re  true
fo r  th e  density p(t; x )  o f  X (t)  a n d  th e  density cr(s, t; x )  o f  X (t) — X (s ) . The
conditional density p(s, t; x, y) of X (t) — X (s) = y  given X (s) = x then also exists.
Now, we impose on the second assumption.

Assumption ( B ) .  Fo r every e :0 < e < T  and a: a > 0, there exist positive
numbers C = C, , a  and  3  = 3, , a  such that

sup p(s, t; x, 0) Ca(s, t; 0)

for ails, t : e < s < t < T  an d  t— s<3 .

W hen X (t) is  a  process o f  independent increments, (B) holds trivially. W hen
X (t) is a  centered Gaussian process of which the correlation function is uniformly
smaller than 1, then, by the expression of conditional Gaussian densities, we see
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that (B) also holds with C =  1 . In  §4, we shall prove that (B) holds for a large
class of ss stable processes.

Remark. Observe th a t in  general, for each a, C,, a t 0 0  a n d  6,,„ 4, 0 a s  e 10,
and in case they are bounded away from co and 0  respectively we may just let
E = 0  in  (B). However, a s  we shall see in  §4, in  many cases w e have to work
o n  [E , T] ra ther than  [0 , T ]; c f. P itt [16, Comment, p 324] fo r  th e  Gaussian
c a se . With the same reason, we consider the supremum in (B) being over [— a, a]
rather than the  whole R.

We recall the following definition of local times as occupation densities. Let
f (t ) be a  real measurable function. The local tim e of f ( . )  over a  finite interval
I c R + ,  denoted by (p(x, I) , is defined to  be th e  Radon-Nikodym derivative of
the occupation measure p(A, I) = Leb { t e /1 f(t) e A }, A  e .4(R) w ith  respect to
Lebesgue measure o n  R , whenever the  form er is absolutely continuous with
respect to  the  la tte r. N o te  that, in  general, yo(x, I) is defined only a .e . x . When
/ = [0, t], w e also use the notation 9(x, t).

Theorem 2.1. Suppose that X (t) is H-ss, 0 < H < 1, and satisfies (A) & (B).
Moreover, assume that p(1; 0 ) >  0 . Then, X (t) a.s. has local times (i)(x, t), x e R
and 0 < t -. T such that (more precisely, a version of cp(x, t) can be chosen such that)

(i ) (1)(x, t, co) is jointly measurable in (x, t, a));
(ii) p(x, t) is continuous

f 
a
in t f or a.e. x, and

(iii) For each a > 0, E 9 2 (x, 1)dx < Const. 1/1 2 '
—a

f or all intervals I c  [e , T ] with the length III < 6, where 6 is the positive number
in (B). In  (ii), the statement holds a.s., and the constant in (iii) does not depend
on I (however it may depends on a).

Pro o f . Firstly , by  th e  definitions o f  p , p  a n d  a  a n d  (B), w e have that,
whenever 0 < t — s < 6 for a ll x  and  y

p(s, t; x, y) p(s, t; 0, 0)

= p(s; 0)p(s, t; 0, 0)

__ Cp(s; 0)a(s, t; 0)

here, it is sufficient to le t a =  1 in  (B). Since X  is  H-ss and  si, we then have

p(s, t; x, y) Cp(s;0)p(t — s; 0)

= Cp 2 (1; 0)s' (t —  s) ',

where we have used the following identity for the  densities o f  an  H-ss process.

p(ct; c' x) = c - H p(t; x) for a ll c > 0  and x e R.

Set g(s, t) = Cp 2 (1; 0)s' (t —  s) ' ,  since g(s, t) is integrable over 0 < s < t _- T,
by Geman [7, Theorem B ] w e see that the first and the second assertion hold
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for any interval in  [a, T ] of which length is smaller than (5. Since [a, T ] is  a
finite interval, w e can  obta in  local tim es over the  whole interval [a, T ] b y  a
standard patch-up procedure, i.e. we partition [E ,  T ]  in to  U7-1 [7;-1, T i] and
define (p(x, [a, T]) = E7=, (p(x, 7 ; ] ) ,  where T , = E  and  T„ = T  Finally, we
can obtain the local tim e 9(x , T ) by defining it to be lim„, c. cp(x, [1/n, T]).

A s for the  th ird  assertion, w e observe th a t  fo r a n y  [a, fl] [ s ,  T ]  with
— a < (5, again by H -ss, s i and (B) we have, for each a > 0,

f a  [13 I f i a  f f l  f f l

p(s, t; x, x)dtdsdx C p(s; x)p(t — s; 0)dtdsdx
—a J a  s — a  a  s

a ( ' f i  113
= Cp(1; 0) p(s; x)(t — s)'d td sd x

— a  a  s

Since

_cl,p(s; x)dx = 1 for all s

the above integral is

Cp(1; 0)(1 — H) - 1 0 — 002 - H .

Thus, in  view of Berman [4 , Theorem 3.1] we have

a

E  f  9 2 (x, [a, b])dx I2  
a I' f' p(s, t; x, x)dtdsdx

—a —a a s

< 2Cp(1; 0)(1 — H) - 1 (fl — oc)2 - 1 1  .

3. Local oscillations and level sets of the sample paths

Firstly, we recall that the approximate lim sup (resp. the approximate limit)
o f  a  nonnegative measurable function f ( • )  a t  t  is  + c o , if and  only if, for all
K  > 0  t  is  no t a point of dispersion for {s : f( s )  >-K} (resp. for all K  > 0  t  is  a
point of dispersion for { s f (s) < K}), see Geman-Horowitz [8, Appendix] for the
more detailed definition and discussion.

Theorem 3.1. L et X  (t) be  the ss process in  Theorem 2.1. W ith probability
one,

X. (s) — X(01 (i) approx. hm —  +co f or a.e. t e  [a, T ] , and
—

X(s) —  X(01
—  +co f o r all t e [a, T](ii) approx. lim sup ,

s-t — tI 1 + 1 1 0(1s — t )

w here 0(4  r > 0  is any right-continuous function decreasing to 0  a s  r  O.
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Corollary 3.2. W ith probability one, X ( ,  co) is nowhere Holder continuous
of  any  order >1 + H.

Remark. Kôno [10] proved that for certain general s s  processes, the path
is nowhere Holder continuous of a n y  o rd e r  > 2 . The Corollary 3.2 above im-
proves his result and actually relates to  the scaling parameter H.

Proo f . The first assertion follows directly from Theorem 2.1 (ii), see Geman
[7, Theorem A ] .  To prove the second assertion, we shall work on [0, 1] for the
notational convenience (with a  linear change of variable, we can transform to
[B, T ] ) .  Fix an  a > 0. Define a  process M(t), t e [0, 1], by

M(t) =  (2  K f_a (09a 2  ( x  r.,_ 1  i i \  d  '\ 1/2

'  L 2 "  ' 2 " ] )  x ) '

whenever 2 - " '  <  t 5  2- ", which is Berman's [5] modulator of the local time.
Here we consider the case m = 2 in his p ap e r. By Theorem 2.1 (iii), we have

lim inf 2" [EM 2 (2-
m 1 / 2 [ ( 2 — n ) 1 + H 1 1 / ( 2 — n ) ] 1 1 2

n—■co

< Const. lim inf (2") 1 + ( 1 - ( 2 - H ) ) / 2 - ( 1 + H ) / 2 4 / 1 / 2 ( 2  
n )

n—oco

= 0 .

Then, by Berman [5, (4.4) and the  statement after i t ]  we see that the second
assertion holds whenever I X(t)i < a. Since a  is arbitrary, the latter restriction
can be removed.

Next, we recall that the Hausdorff measure Ho(A) of a Borel subset A  of
R  is defined to be

H,JA) = lim inf { E o(II,I): {4,} is a  countable cover of
e.i.o n=1

}

A  by compact intervals and 14,1 < s .

Here, the measure function tfr(r) is any nondecreaing right-continuous function
of r 0  with 4/(0) = 0.

The "progressive level set" Z , is defined by Z, = {s E  [ 0 ,  T]lX(s) = X(t)}.

Theorem 3.3. L et X (t) be the s s  process in  Theorem 2.1. L et the measure
function be

o r)  =  r ci-Ho l io g  r l e 5 0 > 1/2.

W ith probability one, I 1 q,(Z ,) = + op f or a.e. t.

Pro o f . We consider again the case [0, 1] and the modulator M (t) defined
in the proof of Theorem 3.1. Since

EM 2 (2- ") < Const. (2- n ) 1 — H  ,

CO
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we have

c o  EM2 (2 - n) co (2- n )1 - H

E  Const. co .
n=i [0(2-

nn 
2 nE0 (2 )1 "n2° <

Then, by Berman [5, (4.6) and  the  statement after i t ]  w e see that the assertion
holds.

The Hausdorff dimension of a Borel subset A  of R  is defined to be

dim A = inf 1/311/0 (A) = 0, tP(r) = rP1

= sup {al H ,(A ) = +co, t1/(r) = .

We mention that the following dimension result for the zero set Z0 = {s e [0, T]l
X(s) = 0} cannot be derived directly from local tim es. R eason : it is  now  a t a
fixed level and local times in general are defined up to a set of Lebesgue measure
zero.

Theorem 3.4. L et X (t) be the ss process in  Theorem 2.1. Assume moreover
that X() has at most countably many discontinuies (for example, X (•) is "cadlag").
Then dim Z , > 1 —  H  with positive probability.

Remark. Takashima [17] introduced the concept of the "ergodic" ss  pro-
cesses. F o r such a process, in Theorem 3.4 then we have dim Z o > 1  — H  a.s.;
this gives a  lower bound estimate for Takashima [17, Proposition 5.2].

P roo f. F ix  an  s :  0  <  < T, a n d  le t  ZS = { t e [e, T ]lX (t) = 01. Set 00 (z) =
(1/20)z r_0,01(z), z  e R  a n d  0 < 1 .  Following the argum ents in  the  proof of
Marcus [13, Theorem 1] or P itt [16, Proposition 3.1], we can find a.s. a  sequence
On 0  such that for a ll rationals t E [v, T]

lim (s))ds A LW)
n-• co c

exists. W e  mention tha t (B) enforces that the conditions set up  in  [13, 16] for
the convergence above are  actually satisfied. I n  [16], i t  is  the case k  = 2.

Then, w e  h a v e  a  measure L1) (dt) constructed from  th e  "right-continuous
modification" of L o (t). It is easy  to  check that whenever X (•) is continuous at
som e t o  e [s , T ] a n d  X(t o ) 0  0  then  14(.1) = 0  fo r  all sm all neighborhood of
to . By P itt [16, Proposition 3.2], the  measure 14(dt) has n o  atoms, and  hence
4 ( d t )  is supported  o n  4  whenever X ( )  h a s  a t  m o s t  countably many dis-
continuities. W hen [a, b] [e, T ] and b — a < (5, ô  : the positive number in  (B),
letting k(r) = r - ' ,  0 < t  <  1  —  H  a n d  r >  0, a n d  using th e  sam e arguments as
those in  the  proof of Theorem 2.1, we see that

b

p(s, t; 0, 0)k(t — s)dtds < cc.
S
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Moreover, we have
b dt

0 < p(t; 0)dt = p(1; 0) f aG  CO .
a

Therefore, by th e  proof o f  Marcus [13, Theorem 1 ]  we see that the assertion
holds for Z .  T h e n , le t  e  O.

4 . Joint continuity of local times of linear fractional stable processes

We set

f(u) = a{(1 — — (—u) }  + b{(1 —  0 11' —  (-011-11.) u e R

and set

f t'ilŒf(u/t) , t > 0(4.1) f ( t ,  u )  = 0 t o.
T hen , the  linear fractional stable processes .61, , 2 (a, b; t )  defined in  § 1  is also
expressed by

(4.2) X (t) = f (t, u)Z Œ(du) .

N ote that, for all s, t  0 < s  < t a n d  all u e R,

(4.3) f(t, u) — f(s, u) = f(t — s, u — s) .

Takashima [17] considered a  class of s s  s i  SaS processes determined by (4.1),
(4.2) an d  (4 .3 ) . In  th e  below, we prove our results for linear fractional stable
processes; yet most of our arguments can be extended to Takashima's ss processes.

Proposition 4.1. L et 1 < a < 2 and  0  < s < T  < co . For all m  > 2 and t, <
t2 < • • • < t„„ t e  [a, T ], and v 1 , . , v „, e  R , the kernel of  A H  ,„(a, b) has the following
positive Ulm inf:

II[f(t., -) - •)] v iE f( t i , • ) -  f( t i - i ,  • ) ] I I :lim  inf inf — C >  0 ,
(t„,-/04.o VERf ( t m ,  . ) -

where t o = 0  and Ilf(t, • )11„ denotes O R ) norm  w ith respect to  the variable • .

Pro o f . Suppose on the contrary that Cn , = 0 for some m .  Then there exists
sequences ty and cti7, j = 1, 2, ..., m  and n = 1, 2, 3, ...,  < <  t3 < • • <  t ." <  T,
(t t7) 1 0  a s  n i and  ai7 E R  such that

E fn ,  • )  - -  7=- ,1 f  ( t 7 ,  _  0(4.4) lim
n—■ co

Using (4.1) and (4.3), we see that

—u f(t:„ u) — f(t„_,, u) = 4,7, —
— _ ,)  •

II f (t;,' - -1, •)II:
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By a  linear change of variable:

u  =  t_ , +  (t

the numerator of (4.4) becomes
m - 1

1 1 a f  
) 

11-
47,-1 + —

(4 .5) (tm" — t_,) H Œ f(u 1 ) — E 
i 1 \t„, —

and the denominator of (4.4) becomes

— t:,-1)H a llf04 1)11̀;- 2 (du i ) •

Therefore, the limit in (4.4) is 0 means that the LŒ(dui )  norm in (4.5) tends to
0  as nt co. Since a > 1, there must exist a  subsequence tie a n d  ay' such that

.-1 ( el' )H - 1/a (t mn' _1 +  je" tnmiou 1)
(4.6) f(u1) = l

j
im  E a!e  ,  . 1 , f  

n'-.co j=1 t: —  t:-1 ee1

for a.e. u l . W e argue that (4.6) is impossible. W e write f ( • )  in  th e  above
summund as

f(1  + vie ) = a {(— _  ( - 1  _  V7') ' }

+ b{(—v7e )H_ - 1 1 Œ — (-1 — )11- 1 1 1 )

where

=  1 ) 7 ( U 1 )  —  

(t1_1 — ty) + (t: —

Since, for each j =  1, 2, ..., m  —  1, e t ;  and 0 < (t_, —  ty) < (t„," — t)1 0 as
n i co, vl -+ 0+ a s  n i  co for each u , >  0 . Thus, f(1 + b{(0 or cc) —
according to H > 1 /a  o r  H < 1/a. T h e  lim it is  in  any  case independent on
u „ . This means that f(u 1 ) given by (4.6) is constant a.e. on u, > 0, which is
impossible from the definition of f(•).

Now, we mention some literature background concerning Proposition 4.1.
Berman [3] introduced the concept of local nondeterminism for Gaussian pro-
cesses. Nolan [14] later extended this concept to  stable processes. In  view of
[14, Theorem 3.2 (b)], what we have proved in Proposition 4.1 then can be
stated as that 4,„(a, b), 1 < a < 2 and 0 < H < 1 is locally nondeterministic over
any [e, T ] with E > 0. As a corollary to the case m = 2 in Proposition 4.1, we have

Corollary 4.2. When 1 a < 2 and 0 <H  < 1, ,61H , Œ(a, b) satisfies the assump-
tion (B) in § 2.

Pro o f . Observe that, by Proposition 4.1 with m = 2, for e < s < t <  T,

21Iz1f(s, *) + z2[fit, •) — in f  f is , ) — TU(t, ) — f(s, • )1111:
T E R

+ zzl œ in f  f(t, •) — tfis,
T E R

C 2 fIZ f ( S I  • ) 11: + 211 11fit, • ) f(S, • )11:1



Certain self-similar processes 59

whenever 0 < t —  s < 6, for some 6. Thus

e - (s, • ) + z2C f(t,•) —  f (s, • )111: <  e — C 2 {Iz i I' Ilf(s. • ):+1z21°11f(t, •) — f (s, • )11:}

which is equivalent to
(s)+z2(x(r)-x(s»)Ee i(z ix <  E e i ( c  212"z ix(s)Ee(C212)ii.z2(x(r)-x(s))

By Fourier inversion formula and the symmetry of (X (s), X (t)), we have

4  1/'
sup p(s, t; x, y) p(s, t; 0, 0) p(s; 0)p(t — s; O).
x,y

Letting x = y, lx1 a  in the above display and using the notations in §2, we have

sup p(s, t; x, 0) Re2f
4 )1/Œ 

isxiu

 p ( s ;  0 )1  

o-(s, t; O).
IxiSa p(s; x)]

The quantity in the above bracket is a positive finite number whenever 0 < c <
s < T , since p(s; x) = s - H p(1; s - H  x ) a n d  p(1; • ) is continuous a n d  everywhere
positive.

From those general ideas and arguments firstly appeared in Berman [3 ] and
later elaborated by P it t  [16], Geman-Horowitz [8 §§24-26] an d  N olan [15,
Lemma 2.2], it is now well-known that local nondeterminism is  the  essential
technique leading to the existence of jointly continuous local times. Thus, using
Proposition 4.1 and the arguments in the proofs of [3, Theorem 8.1], [16, Theo-
rem 2 ] and [15, Theorem 4.2], we can prove that

Theorem 4.3. W hen 1 < a < 2  and 0 < H  < 1 , the  linear f ractional stable
process A H ,„(a, b) has jointly continuous local times cp(x, t). M oreov er, cp a.s. has
the follow ing Holder continuities. L e t 0  <  <  T  <  o o ,  K  R  b e  compact and

c [e, T] be any  interval w ith rational endpoints, then
(i) Icp(x, 1) — (p(y, 1)1 C i lx — y all x, y  e  K ,  w h e re  y: 0 < y <

min(1, (1 — H)/2H), and
(ii) supx , K cp(x, I) C2 1116 ,

where 6 : 0 < ô < 1  —  H . In  th e  above C i = K , s, T ) are a.s. f inite positive
random variables.

We mention that it would be interesting to improve Theorem 4.3 (ii) so that
the conclusions also relate to  the stability parameter Œ.

Applying Theorem 4.3 (ii) and Berman [2, pp 76-78], we have the following
uniform dimension result for level sets.

Theorem 4.4. W hen 1 < a < 2 and 0 < H < 1, the following holds with proba-
bility  one: for any  interv al I c [0, T],

dim It E 114,,„(a, b; t) = 1 — H,

f o r all x  such that (p(x , 1) > O.
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W e should also mention that, in case H >  1 /a  it is  know n tha t the paths
X(, co) are continuous, while in case H  <1 /a Maejima [12] has shown that the
paths X(, co) are nowhere bounded and hence everywhere discontinuous. How-
ever, Theorem 4.4 is  applicable in both  c a se s . Although in  [2 , p  77] Berman
required the  continuity of paths, yet his argument can be m odified to hold for
measurable paths, cf. Geman-Horowitz [8, Theorem (13, 4)].

5. Differentiability of local times in the space variable for certain ss processes

Let X (t) again be a  real-valued measurable H -ss si process. In  this section,
w e shall prove that, under certain conditions, the small value of H  can imply
the smoothness of local time (p(x, T) in x, for each fixed T, up to some differenti-
ability order. W e begin w ith a n  elementary result.

Theorem 5.1. L et X  (t) be H-ss, si. L e t  O(0) be the characteristic function
of  X (1), i.e. OM  = E[exp i0X(1)], 9  E R .  Suppose that f or some nonnegative inte-
ger r

(5.1) .1012'10(0)1(10 < co , and

(5.2) H  < 1/(2r + 1) .

T hen, the local time 9(x , T ) of  X (t) exists and 9"(x , T ), the k -th  derivatives of
9(x , T ), also exist up to k  =  r.  Moreover yo(k ) (x, T, co) e L2 (R x 0).

P roo f. Consider the  integral

f o o f f 0 < s < t < T

1012r[e ie • (" ) - x ( s)) dsdtd0 .

By H -ss and si, it is dominated by

CO

f  f  0 < s <  S T  — co

CO

1012 '100 • (t — sp) Ide

=  f  f  0 < s < t < T

dsdt co
1012 (0)1d0 ,( t _  sy2H-nx

w hich is fin ite  by (5.1) a n d  (5.2). Then, the conclusions follow from  Fourier
inversion formula, cf. Berman [1, Lemma 5.1] with p  there is now  2r.

Remark. Theorem 5.1 extends Kôno-Maejima [11, Theorem 6.1] from r = 0
to  r>  0. Note that, in case r = 0 it only asserts the existence of square-integrable
local times, while for r > 0  it only asserts the existence of continuous yom(x, T)
u p  to  k  = r — 1.

Now, we im pose on the following assumption concerning the  "approximately
independent increments" property of characteristic functions. For symmetric sta-
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ble processes, it is essentically the local nondeterminism of the process, see Nolan
[14, Theorem 3.2].

Assumption (B O . Fo r som e p > 2 , there ex ists A p  an d  C f ,  j  = 1 , 2 , .. . , p,
such that

l E [ e i D =
, oj a(ti )- xo, <  A ,  ni, ,  E r  e ici oi a(tp-

J= 1 I  L

f o r all 0 = to < t 1 < • • • < t,„ T  and all (9i  E R.

As we have seen in §4, it may happen the occasion that we need to consider
time interval [e, T ] with E > O. A ls o  note that, in case X (t) are  symmetric (B2 )
is essentially equivalent to the  assumption (B) in  §2  with e = 0  there.

Theorem 5.2. L e t X (t)  be  H -ss, s i an d  satisfy (B p )  f o r so m e  e v e n  p  2.
Suppose that f o r some nonnegative integer r,

(5.3)
L .  

1 0 1 2 r + 2 / p + t
Itii(0)1d0 < co, f o r some E > O,a n d

(5.4) H  < 1/(2r + 2/p + 1),

where O(0) denotes again the characteristic function o f  X (1 ) . Then the local time
9(x , T ) is o f  class Cr in  x  and  in  f ac t 9 (r) (x , T ) is Holder continuous of certain
order.

Remark 1. From th e  proof, we see that th e  assumptions o f Theorem 5.2
can be weaken to

(i) Ee i e '
( X 0 ) - X ( s 0

E e '' (" )" ( 1 ) ,  and
(ii) (Bp ) holds when (t„,—  t 1 ) is small enough.

Remark 2. W hen (Bi, )  holds fo r  all even p > 2 , fo r  example th e  linear
fractional stable processes in  §4, then certainly (5.4) can be replaced by

(5.5) H < 1/(2r + 1).

The cases r = 0 a n d  1 a re  deserved to be mentioned explicitely. (i) r = O. I t
asserts that 9(x , T ) is Holder continuous when 0 < H  < 1 .  T his is  consistent
with Theorem 4.3 (i) for linear fractional stable processes. (ii) r  =  1 .  It asserts
that 9' (x , T) is Holder continuous when 0 < H  < 1/3. This corresponds to  the
"unproved" Gaussian case in  Geman-Horowitz [8, Theorem (28.5.a)].

To prove the  theorem, we need the following

Lemma 5.3 (Kôno [9, Theorem 1]). L et X (u) be a real separable stochastic
p ro c e ss . I f  there ex ist p> 1, nonnegativ e integer r, an d  a continuous function
Oh) such that

E[14+1)X (u)1P]IP o ( h )  , and

10+ 

h - ( 1  + r  + 1/ p )17 (h)h -  d h  < co f o r some y : 0 <y  < 1 .
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Then X (u) is o f  class Cr in  u  an d  X (u )  is Holder continuous o f  order 7. In
the above, .4 r "  denotes the  r + 1  iterates of  (4,f )(x ) f (x  + h) —  f (x ), h > 0
and x  e R.

The proof of Theorem 5.2 is based on an application of Lemma 5.3 to "the
process" x  c p (x , T ) .  To estimate

(5.7) E[14+1)49(x, T)I P ]

w e find that the arguments in B erm an [3, p 92] can be adapted to our need.
Note that

A(hr+l)eiOx = e10x{e10N or+ 1

Thus, in  view of [3, (8.2) and (8.7)], (5.7) is dominated by

(5.8) (Const.), eixv1 Hp
—  i r i d0; f l  dt;

0 < t i ‹ . . . <  p < T  RP
j=1 i=1 j=1

Using an elementary inequality: le' — fl < kW for all u E R  and all (5, 0 < < 1,
w e see that (5.8) is dominated by

(5.9)

(Const.) p hofr+ 1 )

0 < t i ‹ . . . <  p  <T

1" t i ) 1 1 1 9 1  le rr+1 ) }t I E fl dOi

j=1 j=1 j=1

Using the transformation: Oi  =  v — vi + 1 , j  = 1, p — 1 and Op = v p , we see that

IEe i° J  "  =  l E e t a i
v i ( X ( t i ) - X ( t i _ i ) ) 1 ,

to  = 0

< A
P

 n  lEe icivi(XV-X(ii-t)) 1
 j=1

A P Hp  1 0 (
Cf(

tj ti-1 )H V A
j=1

where kfr ( )  again denotes the characteristic function of X(1) as tha t in Theorem
5.1. In the above, we have used (Bp ) and the H-ss si for the last two inequalities.
Berman has argued that ny=1 10i 16" "  can be dominated by a  sum of 2P- 1  terms,
each term is of the form 115= 1

i k i 3 ( r + 1 )  

with k;  = 0, 1 or 2. Using the transforma-
tion  Ci (ti  — ti _I )H vi  = w ;  a n d  (5.3), w e have

E [14 + 1 ) 9(x, T)IP] (Const.) p  • h P 6 ( r + 1 )  • (I 101260+1)

f...f
1 

10000)P
28H(r+1)+H}

0<t i <•••<t p ST

d t;
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The last integral is finite whenever

(5.10) 2011(r + 1) + H  <1 , and

(5.11) 26(r + 1) <2r + 2/p + e .

On the other hand, if we require that

h- (1 + r +11p)e r  + 1 ) .  -n Y dh < oo

for some y:0 <  y < 1, then it is necessary and sufficient that

(1 + r + b(r + 1) <1

or equivalently

r + 1/p 6

<r + 1  •

When (5.4) holds, we can always find 0:0  < (5 <1 so  tha t a ll the (5.10) (5.11)
and (5.12) h o ld . Thus, Lemma 5.3 is actually applicable with a(h)= e r + 1 ) ;  this
completes the proof of Theorem 5.2.
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