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Lévy flows on manifolds
and Lévy processes on Lie groups

By

D avid A P P L E B A U M  and  H IR O S H I KU N ITA

1. Introduction

The main concern of this paper is to construct stochastic flows of diffeomor-
phisms of manifolds by solving stochastic differential equations (SDE's) driven
by Lévy processes. In  two earlier papers of Fujiwara-Kunita ([2]) and Fujiwara
([1]), existence and uniqueness of the solutions of such equations were established
in  th e  first place  on  Rd  and  in  the  second  p lace  when the m anifold (M ) was
com pact. Herein we will not restrict ourselves to compact manifolds and will
aim to find some natural classes of SDE's whose solutions take values in the
diffeomorphism group o f th e  m an ifo ld . In  fact we will aim to generalize the
well known result fo r flows driven by Brownian m otion wherein the solution
consists of diffeomorphisms (almost surely) provided each o f  th e  vector fields
driving the equation is deterministically complete and the Lie algebra which they
generate is finite dimensional (see [6 ] Theorem 4.8.7).

We note that in  [1] and [2] it was shown that the solutions of the stochastic
differential equations described therein define Lévy processes (i.e. cddldg processes
with independent increments) o n  G , a n d  G'T respectively where G.,. (G7) is the
topological semigroup comprising continuous maps (C m  maps) from Rd o r  M
into itself. Furthermore, it is shown in [5] that under some additional conditions,
the  so lu tion  in  [2] defines a  L évy  process o n  Gm where Gm  is  th e  topological
group of Cm-diffeomorphisms of Rd . However the  la tter argum ent cannot be
applied in this case since it depends critically on the global properties of Euclidean
space. Hence we develop a  completely different method. A  m a jo r difference
between this paper a n d  its predecessors is that we restrict our Lévy process
driving the SDE to possess finitely many degrees of freedom so that in  particular
the Poisson random measure component of the  process is itself defined on the
finite dimensional manifold N .  We construct two distinct classes of Lévy flows
in  this paper which are obtained a s  follows.
(i) N  = Rd a n d  th e  vector fields driving the  SD E  satisfy the condition on the
Lie algebra described in  the  first paragraph above.
(ii) N  is a  finite dimensional Lie group and  the  vector fields driving the SDE
belong to the L ie algebra of N.
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W e note that class (i) seem s to be the  simplest class o f Levy flows which
contains flows driven by a  finite number o f independent Brownian motions or
Poisson processes. C lass (ii) arises naturally through th e  representation o f a
Lévy process o n  a  L ie  group when the  group acts as diffeomorphisms on the
m anifold . W e obtain a n  explicit decomposition for such processes by utilizing
Hunt's formula for the infinitesimal generator of Markov semigroups associated
to  the weakly continuous convolution semigroups of probability measures o n  N
which describe th e  law  o f the  p rocess . T h is  generalizes a  result obtained by
Holevo [3], in  the case where N  is  a  matrix Lie group.

The organization o f this paper is a s  follow s. W e split the  paper into two
sections to  describe each class o f  f lo w s. In  th e  first o f  these (Sect. 2), after
describing some preliminaries in Sect. 2.1, we proceed to construct the  class (i)
flows in Sections 2.2 and 2.3. In fact Sect. 2.2 is devoted to solving the "canonical
extension" [7] of our equation in local coordinates. W e recall that this extension
generalizes the role of the Stratonovich integral for Brownian motion in providing
a form for the equation which is invariant under changes of local coordinates. In
Sect. 2.3 w e  u se  th e  result of Sect. 2 .2  to  construct our required  flow  on  a
m anifold. In Sect. 3 we construct the class (ii) flows by means of our representa-
tion for Lévy flows on  L ie  groups a s  described above.

Notation. W e use Einstein summation convention throughout this paper.
Diff(M) denotes the group of all C'-diffeomorphisms of smooth m anifold M . A
stochastic process with values in  M  is cddldg if  it is right continuous and the
left limits always exists. If  S  is a  topological space, .4(S) denotes the a-algebra
generated by the Borel sets in S.

Acknowledgement. M o st o f  th is w ork  w as carried  o u t  w h ile  D . A . was
visiting Kyushu U niversity  on  a  study visit under the auspices of the Royal
Socie ty . D . A . w ou ld  like  to  thank  bo th  K yushu  University and the Royal
Society for generous financial support.

2. Stochastic differential equations driven by Lévy processes and Lévy flows
on manifolds

2.1. Preliminaries. L et X  = ((X i  (t), , X "(t)) , t 0 ) be  an W-valued Lévy
process defined o n  some probability space (Q, P)  a n d  having th e  following
Levy-I tô decomposition,

t+ t +  •
X k (t) = b k t + B l (t) + f  f  x 'N  ( d u d x )  +  ( d u d x )  (2.1)

JO f o  J i x t < 1

for each  t e 11+ , 1  <  k  < n. H e r e  b = (b l , , b " )  e  1 2 , a = (ol) is a  real n x m
matrix with m < n, B = (13', ,  k r )  is an m-dimensional standard Brownian mo-
tion. N  is  a  P oisson  random measure (independent o f  B ) on R+ x (R" — {0})
with intensity measure dtdv(x), where v is a Lévy measure on  R" — {0} satisfying
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I x12 /(1 + x1 2 )dv(x) < co and x = (x 1 , , x") e R" —  {0}. Further, Ai-  is  the
R"-{O}

compensator defined by Si(dtdx) = N(dtdx) — dtdv(x).
Let M be a  finite dimensional connected paracompact smooth manifold. Let

0  = O < s < t col be a family of measurable maps from M  x  Q  M  and
define fo r  each  w e 0, M  M  b y  0Z, = c o ) .  W e  sa y  th a t 0  i s  a
(forward) L év y  f low  o f  diffeomorphisms o f  M  if  th e  following conditions are
satisfied
(i) E Diff(M) for a ll t > s  and  a.a. w  E Q.
(ii) o r  0 =  oz , fo r a ll s t  u  a n d  C :s (p) p  fo r a ll 0 < s < oo, p e M,
for a.a. w E Q.
(iii) The m ap t O f, from  Es, cc) in to  Diff(M) is cddldg for any s > 0  and a.a.
W e ll.
( iv )  F or each positive integer N ,  0  t ,  < t 2  < • • • < < co, the  random vari-
ables fo r  1 < i < N  are  independent.

Our aim in this section is to construct such Lévy flows described by stochas-
tic differential equations driven by the  Lévy process (2.1).

T o th is end le t (Y1 , . . . , Y ) be complete smooth vector fields on M  and let
be the Lie algebra which they generate. W e will assume throughout that y

has finite dimension, so that in  particular every member of .29 is itself a  complete
smooth vector field. L e t  X ( t )  b e  the "vector-field valued Lévy process" defined
by

X ( t )  = X ic(t)Y, , (2.2)

so  tha t X y (t) has the  Lévy-Itô decomposition
t+ t+

X y (t) = b k )7,,t + KB' (t) + 17,,x ' N (dudx ) + f f x k Y,:1■7(dudx) .
fo o 1.1<

(2.3)

To simplify the notation, w e w ill in  th e  sequel write Z , = b'Y , a n d  Z, =
fo r 1 < 1 < m.

To construct Lévy flows we might consider trying to solve SDE's of the form

= dX  y (t)(0,,,_) , (2.4)

(where we have slightly adapted the notation of [ 2 ] ) .  W hen w e try to use (2.4)
directly to construct 0  through its paths w e find that it has the  disadvantage
of failing to be invariant under changes of co-ordinates. To overcome this diffi-
culty, we replace (2.4) by its canonical extension in the sense o f  [7 ]  (see also
the discussion in Section 5  o f [1 ]) which is the equation

0 ,,t(P) = P + Zo(Os,u - (P))d u  + f  Z i ( ( P ) )
 0  dB 1(u)

+ ft+
xkYk(Os,„_(p))N(dudx)

Js
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t+
+ xkY k(Os,„_(p))1i (dudx)

5 N.<

+ E  { (7 r (u ) ) (0 s ,u — (p ))— — irk (14) Yk(0 5,,(P))1  , (2 .5 )

where the integrals by Brownian motions are Stratonovich integrals, (x) denotes
the diffeom orphism  Exp(x) and n(t) is  the point process A X (t). A  little alge-
braic manipulation shows that (2.5) can be written as

O s,t(P )=  P  + Z0(0 5.,(1 4 )  du + Z1(0 5.5-(1))). d 131 (u)

f
+

st
 f ( (x)( 0 5.,(1 ) ) )  —  s ,„_(p))N (dudx)

( (x )(0 5 (p)) — r(dudx)
fki <1

+ t( ( x ) ( 0 5 . . _ ( p ) )  — — x k Yk (Os (p)))v (dx )du . (2.6)
,s 1.1<

A more precise interpretation of (2.6) is  tha t for each f  e  C (M ) , p  e  M we
have

f ( 0 5,t(Pn = f(p) + Z of ( 0 .54,-( 0 + j r Zif  ( 0 u- (13)) d13 1(u)

+ 1t +  

(f.x). os,u_.) _ f ( 0 5 -(PM N (dudx)s  

+

t +  

f l x 1  <  

f ( (x) ° 5,-(P)) —  f (0s,u-(14))A 7 (dudx)
Js 

t ++ Li <  i (fW x ). os,u-(P))—  f (os,u-(p))—  x k Y kf(Os,.-(P)))v(dx)du
Js •

(2.7)

W e w ill call the above equation (2.6) or (2.7) a  stochastic dif ferential equation
driven by  X y (t). In the next subsection we will solve it in the case where M
is a Euclidean space and in Section 2.3 in the case of a more general manifold.

2.2. The canonical extension in Rd . In this subsection we take M = R d . W e
write, for p e Rd , Yk(P) = ak (p)a„ 1 k n  and denote y ( p )  = b ka,(p), y l(p) =
crPa,(p) fo r  1 1 < m , 1  < i < d. Let ( ,(x), t E R )  denote  the one parameter
subgroup o f Diff(Rd )  given by Exp(tx k Yk )  and define a  sm ooth function (x):
R x R d R d by

(x)(t, = 1(x)(14 (2.8)
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where p = (p',..., p d ) e Rd . W e  note t h a t  (x) is the unique solution of the system
of differential equations given by

{

wic i P )  = x kak((x)(t, 13 )) ,

(x)'(0 , 14 = p ',

fo r 1 < i <  d. Hence for 0 < t < 1, we have

(x) i (t, p) = p i + f t x k ak((x)(s, p))ds .o (2.10)

We write (x)(p) = (x)(1, p). We define an L 2 -martingale y(q) = (Y ,' (q),
Y,d (q)); t E R+ for q e Rd by

t+
Y/(q) = yl(q)131(t) + f ( (x)-i(q) — qi)g(dudx)

o 1..1<1

...

(2.11)

a n d  a  process of bounded
t+

variation C 1(q) = (C,1 (q),..., 0q)); t e  R+ by

C (q) = g(x)i(q) —  qi)N(dudx) + ty(q) + (eiy1)(q)yii(q)
J o L 1=1

+ f U(x)i(q) — qi — x'al(q)]y(dx)}t , (2.12) 

fo r 1 < j  < d. Then (2.6) takes the  form
t+ t+

Os,t(P) = P + J dY.(0
s , . - )  + JdC u(O s,u - ) (2.13)

We will show that there exists a unique solution to  (2.13) by demonstrating that
the conditions of Theorem 2.1 o f [2 ]  are satisfied.

W e no te  first o f  a ll th a t, u sing  the  no ta tion  o f [ 2 ]  p .  82, w e  have for
1 j d, p, q e Rd , < V(p) ;i(q)> = tA ii(p , q) where

q) = y/(p)y/(q) +

x' < 1

g(x) i (p) — p l )g(x)i(q) — qi)y(dx) . (2.14)
J  

We write t(p, q) = (T ii(p, q)) to denote the (d x d ) matrix given by y(p)y(q)T . We
also write C(x)(p) = (x)(p) —  p and define d(p) via (2.12) by

t+
td(p) = C1(p) — ((x)(p)N(dudx) . (2.15)

o
It follows then from [2 ], that (2.13) has a unique solution provided the following
conditions hold
(i) t(p, q) is  bi-Lipschitz continuous.
(ii) d(p) is  Lipschitz continuous.
(iii) fixi< (x)(P) — c(x)(q)I 2 v(dx) LIP — q12 f o r  some L > 0 and  fo r a ll p, q e
R".

(2.9)
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To establish (i) to  (iii) we make the following assumptions.
Condition ( A ) .  alc ,  a (a ) and  010; (a ) are  bounded functions o n  Rd f o r  1 j,
I < d , 1 < k < n.

W e can now  verify (i) immediately by a  standard  use  o f the  m ean value
theorem . To establish (ii) and (iii) we need Lemmata 2.1 and 2.2 below . First
we introduce one further piece of notation and write for 0 < t < 1, p e R d ,  x e
R" — {0}

C(x)1t, 1)1 (-3c)(t, — p . (2.16)

Lemma 2.1. There exist constants C1 , C2 > 0  such that

0C(x) i

a p i (P)

f o r all 1 j  d, p E Rd ,  X E R n — {0}.

Pro o f . By (2.10) we obtain

p) = x k k ( (x)(s, p)) .
y 

(s, p)dsOp' 0 0p)
0 aoc,

=
0  x

k.( (x)(s, p))ds + Xk k ( (x)(s, p)) . (s, p)ds .
0 a nzO p i

t k a a ia t e O C ( X r

OCi (X)
W rite 'Mt, x, p) = max 1 < 1 <  (t, p) Then by repeated use of the Schwarz

Opi
inequality and condition (A) we may assert the existence of C1 and  C2 such that

x, p) . 1x1Ci t +1x1C2 y i (s, x, p)ds .
Jo

The required result then follows from Gronwall's inequality upon putting t =  1.

F or each p e Rd ,  X e Rn —  101, t e [0 , 1 ] define

0(x) i (t, p) = (x) i (t, p) — p i — tx k aL(p) (2.18)

and write q(x) 1(p) = Ø(x) i (1, p) fo r 1 i < d.

Lemma 2.2. There exist constants D I, D 2  >  0  such that

00(x)'
(13 1 < Dilx126,1321x1 (2.19)apJ

f o r all 1 < jj _._ d, p e Rd ,  X E R n  — {0}.

Proo f . Arguing a s  in  Lemma 2.1, we obtain

ac,b(xy t k aai (x). a '.  (t, p) = i .  X  k ( (x)(s, p)) . (s, p)ds — tx k  a k .(p)
OpJ o an' apd Opi

= 1 1 (t) + 1 2 (t) ,

max
1<i.çd

< C 1 x e 1( 2 . 1 7 )

max
1 sisd



Lévy processes 1109

where

aak ao(x)-f1 1 (t) = xk ( (x)(5
a p '

., p )) • ( s , p )d s ,
0 

aa ia m aak
12 (0  = f

o

 x  ( (x)(s, p))(51" + 5 x 1 ( p ) ) d s tx k .(p)
Op'

ia i aal aam
= x k  ( a a

a
( (x)(s, p)) — wi (p))ds+ 0  sx i x k

 a r nic ( (x)(s, p)) (p)ds ,
o

fo r 1 < j ,  j < d.
aai aai

Let Fi
t (s, x, p) = x k ( k.( (x)(s, p)) k

i
. ( p )  .  Then by the Schwarz inequal-

a .) ap
ity, the  mean value theorem and Condition (A), we find

:_,' aa ia a i 2
1Fji (S, X, p)I 21  X 1 2 L

k  (
(X)(S, /3 ) )  — (PO

= 1  a i api

2
IX12 4 (it  (X)1(S, P11)

where

ŒJ = n max sup
(324 2

( P )ap l api

obtain

15_15d peRd
1 <lt n

By (2.10) and the Schwarz inequality again, we

d n 2 ) 1 1 2 ) 2

x, t 4
k 

( f  aV (x)(T, p))dt
)

i=1 =1 0

Hence by Condition (A), there exists a constant E l  such  that

x, P)I

Returning to /2 and making further use of the Schwarz inequality and Condition
(A) we see there exists a  constant DI  such that

112(01 t2 I x12 •

Similarly we find

I/1(01 D2 1x1 f  max
o

&hoc),
o p ;  ( s ,  p) ds

  

and the  result now follows by Gronwall's inequality a s  in  Lemma 2.1.

Theorem 2.3. Under Condition (A), there ex ists a unique solution to  (2.13).

Pro o f . W e verify (iii). B y th e  m ean value theorem a n d  Lemma 2.1, we
find that



2

v (dx)2

m a x  s u p
mxy

a p i  ( p )
fixi< 1 ixl<1 1 p  R d

K(x)(p) — C(x)(q)1 2 v(dx) dlp — ql

< 1i t +J s
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f< el l)  _  (112 e2C21x1,x,1 12 y(dx)
I x l <  1

L ip — (112 ,

since y is  a  Lévy m easure . (ii) is verified similarly by use of Lemma 2.2.

2.3. Construction of flows on manifolds. W e now return to the general case
of a  m anifold M  and show  tha t under the conditions of Section 2.1, we can
construct a  Lévy flow  of diffeomorphisms satisfying (2.6) (o r  alternatively the
equivalent form (2.7)). W e note tha t in the case where y = 0, the  problem was
solved in  [5], Theorem 4.8.7 (p. 194-5).

Instead o f the  stochastic differential equation (2.7) on the manifold  M , w e
shall consider the stochastic differential equation on a certain Lie transformation
group o f  M .  It is know n (Palais [8]) that associated  to  2  there  exists a Lie
group G with properties (i)—(iii) below.
(i) G is a Lie transformation group of M, i.e., there exists a C '- m a p  : G x M —■
M  such  tha t tl (e, • ) = identity and  ili(rcr, •) = k(a, OITA where e  is  th e  identity
of G.
(ii) The map OW is  a n  isomorphism from G in to  Diff(M).
(iii) Let g  be the L ie algebra of G (left invariant vector fields on G). F or any
X  of 2  th e re  ex is ts  Î  of g  such that

Î(fotlip)(T)= X  f (OT, P)) (2.20)

holds for all f  of C ( M ) .  Here f  ° tfr p is a  C'-function on G such that f  ° p(r) =
f o  tl p)

Now let 471 , . . . , 17„ be elements of g  determined by Y1 , Y„ through (2.20),
respectively. Define the  g-valued process

t+ t+
X 9 (t) = 2 0 t + 2,B (t) +

x' 1 X

k fj,N(dudx) + Xkl"„gi(dudx) , (2.21)
0 I 13 Ixt<1

where 2 o = bk f„ and  2, = 0-,k f .  W e consider a  stochastic differential equation
o n  G driven by X g (t):

f (y (t)) = f (e) + f  2 0 f(y(u— ))du + 2 1 f (y(u — )) o  d Bl (u)

t +
+ ( f (y(u (x)) — f(y(u —)))N(dudx)

s

(f(y(u — ) '(x)) — f(y(u —)))R (dudx)

± f̀s
+

(f(y(u —) '(x)) — f(y(u —)) — X k  f,f(y(u —)))v(dx)du , (2.22)
flx 1 < 1



X I  =  20 t Z O (t) f Xk fkg(dUdX ) ,
O ixl<

X ( t )  = f Xk fN(dudx) .
+

I

t

D 0 2  Ix'

t +
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where 4(x) = exp(x k fk ) and exp(tx k Xk ) is the one parameter subgroup of G gener-
ated by x k X k  e g.

If  ys (t) is  a  solution of the above equation, then tfr(ys (t), p) 0 1 (p) satisfies
(2.7).

Theorem 2.4. Given the initial data s = 0, the stochastic differential equation
(2.22) has a unique global solution y(t), 0  t < a). Further the solution y(t) is
measurable with respect to the 6-field cr(Xg (s); 0  s t )  f o r any t > O.

P roo f. Before constructing the solution, we make a  preliminary observation
o n  X g (t). W e w ill rewrite it u sing  a  basis o f  g. L e t {L 1 ,...,L„, Ld}
be such a  basis. W e define f k =  0  for n < k < d  so that there exists a  (d x d)
orthogonal matrix C  such that

= C L f o r  1 k < d

L e t  i  = (x 1 , . . . ,x ,  0 ,. . . ,0 )  (d-vector) and define = ACT  s o  t h a t  exp(i k  fk) =
exp(»L i )  and  X' is a  canonical co-ordinate fo r G .  Now define g e Rd a n d  er
M d (R ) by  g = 0 ,...,0 ) (d-vector) and

0.1k if 1 < k < n, 1 < 1 < m-k =
0 if n < k < d, <  1  <  d

and let 6 = acT and 6 = gcT , then clearly (2.21) is invariant under the transforma-
tions i 6, if 6  and —> L.

In the sequel, to save on notation, we will assume (without loss of generality)
th a t  f i , f g  extend to a  basis of g  so  that w e m ay take x  (which we iden-
tify w ith A) a s  a  canonical co-ordinate fo r  G .  W rite X g (t) =- X (t )  + X ( t )  for
0 < t < co where

We first consider the equation driven by X l( t) . W e denote the solution of this
equation starting at s =  0 (when it exists) by y'(t). T o  show  that y ( t )  exists,
w e  w o rk  i n  a  canonical co-ordinate neighborhood o f  e e G g iv e n  b y  U, =
1g E  G;Ix(g)1 < el. D e n o te  b y  0 , the  homeomorphism between II, and an open
se t in  Rd w hich w e denote by U .  W e can extend the  functions aj(x) from  (7,
onto the whole of Rd so that Condition (A) of Section 2.2 is satisfied. We hence
obtain the solution of (2.13) o n  Rd . Let be  the solution starting from 0  at
time s. Set

u i  = inf{t > 0; 0,S 0 174 2 }, ag = inf{t > ug _i ; C/k/2} .

Then, the sequence of random variables a i , 0 2  — , • • • , a  — •  •  •  are indepen-
dent and  identically distributed, whose expectations a re  positive . T hen  by  the
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law of the large numbers, lim an = co  a.s.. (See Theorem 4.8.7 of [5 ]).  Note
that e CJ, for ag _, < t < an . Then we can define  y (t)  a s  fo llow s. For 0 <
t a i  define ye(t) = 0,- 1 (0,S .,). For c i  < t a ,  define y(t) = Y s (0 . 1)0 1 (C ,,,) and
so  o n  inductively: for o  <  t an+1 y(t) = y'(ag )0,- 1 ( ,). Then ye(t) is defined
o n  G  for a ll t > O. F o r s t , we write y€(s, t) = y'(s) - l y'(t).

N ow  the solution y (t) driven by X g (t ) is constructed a s  fo llow s. F o r  t e
[0, cc) such that  4 X ( t )  0 0, w e set nE ( t)  = t lX ( t) . W e denote  by  {fl i , $2 , ...}
the domain of irE(t). F or 0  t y (t)=y E(t). F or t = # 1 , y (t)=y (# 1 —)4(ne ([31 )).
F o r [3, < t < # 2 , y(t) = y([3 1 )yE(131 , t). F o r  t = # 2 , Y (t) = Y (132— )4(gc( 62)) a n d  we
continue this inductively. The explosion time of y(t) is infinite a.s. by a  similar
reasoning as the  above.

Next we shall prove th e  uniqueness of the solution. Suppose tha t jj(t) be
any solution driven by X ( t )  w ith the in itia l data  s = 0 and  p  = e .  F o r  e > 0
given above, we define r ( t )  as fo llow s. For 0  t  < $ ,  7w= ji(t). F or t = #,,
710 = j'- '($1)4( 1En116 0) - 1 . For f1  <  t <  fl2 , 7 (0  =  r (61) ($1)- 1 )7 (0. F o r  t 162 ,
r(t) = 7(f2)4( 7r(fi2)) and  we continue thus inductively. Then ijc(t) is  a  solu-
tion  o f  th e  equation driven by Xl(t). Set = 0 (7 4 )) fo r  t < inf { t > o;
no u,12 }. Then satisfies a n  equation o f the  form  (2.13). Since it has a
unique solution, =  0  holds for t < d i , o r equivalently, yc(t) = 7 (t)  holds for
t < = a , .  W e can prove inductively that ye(t) = 7 ( t)  holds for o.„ t  <  an + 1

for a ll n. Then the  equality holds for a ll t. Recall how y(t) and )7(t)  are  con-
structed from  y ( t )  and  7 (0 , respectively. Then y(t) = ,"(t) holds for a ll t.

Finally in  view o f  th e  m ethod o f  constructing the solution, it is obvious
tha t y(t) is measurable with respect to  the  a-field a(X g (s); 0  s t).

Let 0„ t e R+ b e  a  stochastic process continuous in  probability with values
in G .  It is called a Lévy process on the Lie group G if it satisfies (a), (b) below.
(a) 0, is cddldg and  00  = e  a.s.
(b) F o r any 0 = t, < t < • • • < k  = 1, ..., ml are  independent.

Corollary to Theorem 2.4. T he solution y (t) of  equation (2.22) is  a L évy
process on the L ie group G.

Pro o f . It is sufficient to prove that y(t) has independent increments (property
(b)). Let p  be any elem ent o f  G  and  le t L p  b e  th e  left translation defined by
L p f (c) = f (po-). Apply L p  to  equation (2.22) by setting s = O. S in c e  2 . ; a r e  left
invariant vector fields, we have L p 2i f  = 2i L p f. Therefore dividing the integrals
over the interval [0, t ] in to  the integrals over two intervals [0, s ] and [s, t], we
obtain

f(py(t)) = f(py(s)) + f t 20f(py(u —))du + f (Py(u —)). d 13' (u)

+ f (f (py(u — )4(x)) — f (py(u — )))N(dudx)
J,
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t+

,s xl <1 
(f(py(u —)4(x)) — f(py(u —))) .g (dudx)

t+

• <  
(f (py (u— )4(x )) — f(py(u —)) — x k  f (py(u —)))v(dx)du

(2.23)

The above formula is valid even if w e set p = y(s) 1 ,  since 7(s) is independent
of the future a-field =  o- (X g (u) — X g (s); s u  t ) .  This m eans that y(s) - i y(t),
t e [s , T ] is a solution of equation (2.22) (starting from e a t tim e s). Therefore
it is m easurable w ith respect t o  the above a-field Since X g (t ) is  a Lévy
process on the L ie algebra g , F e  a n d are independent for any 0 < s < t.
Therefore y(s) 1 y(t) is independent o f  < 9 .  Consequently -y(t) has independent
increments.

A gain by use of the technique of Theorem 4.8.7 o f [6 ], w e see that our
required flow on M  is given by

Os,t(P) tfr (Y(s)- 1 Y(t), P)

for 0 < s, t < T, p e M .  In d e e d  it  is  a Lévy flow of diffeomorphisms b y  the
above Corollary and it satisfies (2.9). The uniqueness of the solution of equation
(2.7) with fixed p  can be verified by the  similar argument a s  in  th e  proof of
Theorem 2.4. Hence we have the following:

Theorem 2.5. A ssum ing that dim(Y) < co, there ex ists a unique Lévy flow
o f  diffeomorphisms o f  M  which satisfies the SD E (2.7).

3. Representations and constructions of Lévy processes on Lie groups

3.1 Preliminaries. Let G  b e  a  connected Lie group of dimension d  with
identity e and let g  be  the Lie algebra of left invariant vector fields on G .  A
basis IX 1 , X a l  of g  will be fixed through this section. Let C  b e  the set of
all bounded continuous functions f  on G  such that limg „  f (p ) exists, where co
is  the infinity (one point compactification of G ) .  I t  is  a Banach space by the
supremum norm. Let C 2  be the set of all functions f  of C such that 'Cif ,  X i Xi f,

j = 1, . . . , d  exist and belong to C .  In the following we will choose functions
x l ,x d  o f C2 which satisfy

(e) = O,X i x i (e) =

and a function h  of C 2  which is strictly positive on G U {co} — {e} and behaves
near e like E i (x i )2 . The existence of such functions is shown in [4].

Let {y„ 0 < t <  co} be a  family of probability measures on G with the semi-
group property v s + , = vs *y„ s, t > O. H e r e  the convolution of two measures v,
and 1,,  is defined by

* v(E ) = f y s (da)y,(o- 'E )
G

for E e .4(G) .
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W e assume that limt i o  v ,(E) = 1 holds for any neighborhood E  of e. Then the
semigroup o f  measures {v1; O <  t < col g ives a  strongly continuous semigroup
{S,; 0 < t < co}  of linear operators o n  C  by setting

St f (r) = f  f (ra)v ,(do -). (3.1)
G

H unt [4] has shown that the infinitesimal generator of {St ; 0 < t < oo}  is defined
at least o n  C , and it is represented by

A f(r) = a iX ,f (r)+ a iiX ,X ; f (r)

+ I{ f ( w )  —  ( r)  —  X  if (r)x i (o)} kt(do-) . (3.2)
G— {e}

Here a i a r e  real constants, (a ii)  is  a  symmetric nonnegative definite matrix and
f t  is  a positive measure on  G  — ( e l  fo r which the  integral her)/2(c/r) is finite.
The matrix (a ii)  and  the  measure ft are  uniquely determined from the convolu-
tion semigroup, but the constants a i m ay depend on the choice of the functions

1X  ,  .  .  .  ,  x '
1

.

Now, on a certain probability space (Q, P) we can define a  Lévy process
th, on  the  L ie  group G  such that the  law  of coincides with vt _s f o r  any
t > s > O. I t  is  c a l le d  a  Lévy process associated with the semigroup of  measures
tv,; O <  t  < c o l. W e  w ill show  in  Sect. 3.2 th a t  a n y  Lévy process o n  a  L ie
group G  can be represented a s  a  so lu tio n  o f  a  stochastic differential equation
driven  by  a  Brownian m o tio n  o n  th e  L ie  algebra g  a n d  a  P o isso n  random
measure o n  G  —  f el. T he equation is a  certa in  generalization o f the  equation
driven by a  g-valued Lévy process which is discussed in  th e  previous section.
Then the  result w ill be applied to  show th a t a  Lévy flow  on a m anifold can
be represented a s  a  so lu tio n  o f  a  stochastic differential equation driven by a
Brownian m o tio n  o n  a  Euclidean space and  a  P o isson  random measure on  a
finite dimensional subgroup of Diff(M), provided that the Lévy flow takes values
i n  a  finite dim ensional subgroup. I n  Sec. 3.4 w e w ill p ro v e  th a t an y  Lévy
process o n  a  L ie  group can be constructed by solving a  stochastic differential
equation driven by a g-valued brownian motion B and a Poisson random measure
o n  G — {e}.

3.2. Representation of Lévy processes. L et 10,; 0 t  < col be  a  Lévy pro-
cess o n  a  connected L ie  group of dimension d  with infinitesimal generator A
represented by (3.2). Set

o-(0,; s t) . (3.3)

Theorem 3.1. There exists an . -adapted time homogeneous Brownian motion
B(t)= (B 1 (t),..., B d (t)) with mean 0 and cov(k(t), B i(t))= 2ta ii, and an „Ft -adapted
time homogeneous Poisson random  m easure N ((s, t] x  E) on  R+ x  (G —  { 6) with
the intensity measure dtdtt(c) independent of  B (t), for which IS, satisfies the following
stochastic differential equation f o r any  f  E C2:
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f(0,) = f(e) + X if(O u _)0 dB i (u) + a f
X if (O u_)du

.1 0 Jo
t+

fo (f(0,4 _(;) — f(04)g(dudo - )
/G - { e }

(f(Ou-0-)— f(Ou-) —  x ifO u -)x i (0-));((do-)du
I

(3.4)
JO a- {e}

where 1■7((s, t] x E)= N ((s, t] x E) — (t — s)tt(E) f o r E e .4(G — {e}).
Further the pair of  the Brownian motion B(t) and the Poisson random measure

N  satisfying (3.4) is uniquely determind by Or. It satisf ies

= o- (B(s), N((s, t] x E); 0 s <_ t, E E .4(G — {e})). (3.5)

Remark. It is sometimes convenient to rewrite equation (3.4) in the following
way

f(0,) = f(e) +  f  X if(O u _)c dB(u) + d i j i X if(0„_)du
Jo o

t+
fo 1.(O( fu _ c r )  — f(0.4)1■7 (dudor)

t+

0

t+

(fO u _cr) — f(Ou _))N(dudo-)
U .

( f (O u -a ) f(Ou-)— Xtf(Ou-)x i (a))12 (d(r)du (3.6)
0 U

where U is a neighborhood of e with compact closure and ai = ai — f 
u.

x i (c),u(do- ).

N ote th a t the  above is valid fo r any twice continuously differentiable function
f  which is not necessarily bounded together with its derivatives.

F o r  th e  proof o f  th e  theorem, we shall introduce several martingales and
discuss their properties. W e se t 0(p) = pO s

- . 1  0, fo r  0 < s < t < oo a n d  p e G.
Then if s < t < u,

EU0s,u(P))1,Ft] = Su-tf(Os,t(P))

ho lds. T here fo re  {0(p); s  t  <  co}  is a  M arkov p ro c e ss  w ith  semigroup
{St ; 0 < t < oo} starting from p at time s. For fixed f e C 2 , s 0, p E G, define

Ms,tf(P) = f(s,t(p)) — f(P)— Af(5,u(p))du , t > s .( 3 . 7 )

It is an L2 -martingale for any f  E C2 , s > 0 and p e G .  Now consider the product
of two such if-martingales M s ,,f(p ) and M,,,g(q) where g E  C 2 and q E G .  There
exists a  unique continuous (.. )-measurable process o f bounded variation lAs(t);
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s t  <  co} such that M,,,f(p)M,,,g(g) — A s (t) is  a m artingale in view of Meyer's
decomposition. W e denote As (t) b y  <Ms ,,f(p), M,g(g)> and  ca ll it the  bracket
process of M ,f(p ) and  M,,,g(g). It coincides with the joint quadratic variation
EMs,tf(P), Ms,t9(q)] of two martingales Mm f(p) and M s ,,g(g) if these are continuous
processes. If these are not continuous processes, Ems,,f(p), ms,,q(q)] — <114s,,f(P),
M ,g(g)> is  a  nontrivial martingale of bounded variation.

Lemma 3.2. F o r  any  f ,  g  e C2 and  p, g e G,

B(f, g)(p, g) 20X 1f(p)X i g(g) + (f(po-) — f(p))(g(go-) — g(g))p(do-) (3.8)
G— {e}

is w ell def ined. It g iv es a  symmetric a n d  nonnegative def inite bilinear form  on
C2. Fu rth e r,

<M,,,f(p), Ms ,,g(g)> = B(f, g)(0,, u (p), 0.,,u (g))du (3.9)

holds f o r  all f, g e C2 , 0 s  t  <  co and  p, g e G.

Pro o f . A direct computation yields

A( f 2 )(P) — 2f(P)Af(P) = B (f, f )(p, <

Indeed, the  inequality (f(a-p) — f(p)) 2  c h (o -)  holds with som e positive constant

c  b y  [4 , p . 2 7 2 ]. Therefore I (f(o-p) — f(p)) 2 p(do-) < co  h o ld s . T h en  B(f, g )  is

also well defined for all f ,  g  e C, by the polarization identity.
W e shall first g ive  th e  proof o f  (3.9) in  ca se  f  g  a n d  p = g  =  e . Set

Ms ,,f(e) = M, a n d  05 ,,(e) = 0,. Since f(0,) = f(e) + M, + Af(Ou )du i s  a  semi-
s

martingale, we have by  It6's formula
r+

f(0,) 2  — f(e) 2 =  2 f(0,44dM u + 2 f(0.)Af(O„)du + [M „ .

Therefore,

Ms,t(i 2 )(e) = f(Ot) 2 — f(e) 2 — Af 2 (0u)du

t+
= 2 f(Ou-)dM + [M„ M t] — <M„ Mt>

+  <M„ M,> + 2 f(0.)Af(O u )du — t A( f 2 )(0.)du} .

Note that M s ,,(f 2 )(e), f(O u _ )dM. and [M, M], — <M, M>, are martingales and

th e  last te rm  {. • • } is  a  continuous process o f  bounded varia tion . Hence the
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latter is identically O. Therefore we have

<M„ M t > =  f t (A (f 2 ) — 2fAf)(0 u )du = f B(f, f)(0 u , )d u .
s

This proves (3.9) in the case f  =  g  and p = g = e.
N ote the polarization identity

<Ms,tf(e), Ms,t9(0>

= i(<Ms,t(f + g)(e), M(f + g)(e)> — <M,,,(f — g)(e), M,(f — g)(e)>).

Then we get (3.9) in  the  case  f  0  g  and  p = g =  e .  Finally let L p  b e  th e  left
translation defined by L p f(a ) =  f(p a ). Since L p ilf = AL p f  is satisfied we have
m f (p )  = M L p f(e). W e  h a v e  further B(L p f, L u g)(o-, t) = B(f, g)(po -, qt) since
L p Xf(o -) = XL p f(o -) is  sa tisfied  f o r  a n y  le f t  invariant vec to r f ie ld  X .  Con-
sequently,

<M,,,f(p), M s ,,g (g )>  =  <M L p f(e), M s ,,L u g(e)>

= ft B(L p f, L u g) (0,,,,(e), Ou,„(e))du
s

= ft B(f, g)( (p), k u (g))du .
s

< • • • < t„ < • • •1 of [0, co), we define a processFor a partition a =  {0 = t o <  ti
{Y,6 f(p); 0  t < co} by

,

V  f(P) = E 4 ,, , , , ,„,f ( p )  . (3.10)

Since M f (p )  is  an  L 2 -martingale, IT,' f (p ) is  a lso  an L 2 -martingale. Set 1(51 =
max k (t„, —  tk ). W e can prove sim ilarly  a s  in  [ 2 ,  L em m a 3.2] th e  following
lemma.

Lemma 3.3. Yf f(p) --=- limo i _o  V  f(p ) exists in L 2 -sense f o r any f  e C2, p e G
and t > 0. It is  a  Lévy process with v alues in I11 ,  i.e., Y f(p ) —  y k f(p), k =
0 , 1 , ... are independent f o r any to < t 1 < • • • < t. T he bracket process o f  Y f(p)
and yg(g) is given by

<Y,f(p), Y,g(g)> = tB(f, g)(p, q).( 3 . 1 1 )

Furthermore, M,,,f(p) is represented by the nonlinear integral of  Os  by Yu f(p), i.e.,

Msaf(P) = I . '  dY.f( (P)). (3.12)
J

N ow  le t  17
1f  =  YU + Y;d f  b e  the unique decomposition such that Y,cf(p) is

a  continuous L 2 -martingale a n d  Yt
d f (p ) is  a  discontinuous L 2 -martingale. W e

claim:
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Lemma 3 .4 .  (i) Define

= Y ,c(x 1)(e), i = 1, d.( 3 . 1 3 )

Then (B 1 (t),..., B d (t)) is a d-dimensional Brownian motion whose covariance is given
by Cov(k(t), Bi(t))=  2ta 1i. Further, f (p )  is represented by

Ytc f (P) = X if (P)k (t) (3.14)

f or any f  E  C 2  and p E G.
(ii) Define

N ((s, t] x  E )= #  {14 e (s, t]; Ou
- 0„ E E}. (3.15)

Then it is a Poisson random measure on R+  x  (G —  lel) with intensity measure
dtdp. Further, Yt

d f (p )  is represented

t+

by

V f(P )= (f(pa)—  f(P))IZI(duda) (3.16)
0 JG —{e)

where fs7((s, t] x E) = N ((s, t] x  E) — (t — s)p(E).

Proof. W e shall first consider (ii). Set 4 (0  = N((0, t] x  E). It is  a  time
homogeneous process with values in  {0, 1, 2, ...} increasing with jump 1  only.
Further Z E (t i ) — Z E (t i _,), i = 1, n  — 1 are independent for any t o <  t, < • • • <
t„, since (A has independent increments in the Lie group G .  Hence it is a Poisson
process with parameter til(E) E [ Z E (t)]. This shows that N  is a Poisson random
measure with intensity measure d td a .  W e shall prove /2 = p  later.

Now consider th e  /2-martingale M f ( p ) .  It is decom posed a s  111 f (p )=
Msc,tf(14 + Msd,tf (P), where M sc. ,f (p), s <  co is a  continuous /2 - martingale and
M s

d,,f (p), s < t < oo is a discontinuous L2 -martingale. The latter is represented by
t+

114 1 f(P )= ( f ( (p)(7) — f (& , -(P)))1■1(duda),
.y G—{e}

where I'/((s, t ] x E) = N ((s, t] x  E) — (t — s)/2(E). F o r a  p a rtitio n  6 = {0 = t , <
• • • < t ,, < • • • } of [0, co), we set
converges in L2 t o  Yt

d  f (p) as

V f(P )=

161 —
t+

O

Y ,"f(p) =k a s  before. Then it
O. The limit is represented by

( f(p a )—  f(p ))R (du d o ) (3.17)
G— {e}

We shall prove = o r  equivalently # = It. N ote that
<yt f ( p ), yt g (q) > < yt C ytC g(q) > < ytd f p yid g (q)> (3.18)

holds since Y ,cf(p) and f (p ) are orthogonal. The last term is given by

<yt d f(p) , yttj g (q) > f (f( p ) p)) (g (qu) 0 0 )  /I w o )  5 (3.19)
G— {e}

in  view of (3.17). Therefore we have from (3.8), (3.11), (3.18) and (3.19)
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<ycf(p) }Tcg(q)> -  2ta1 X f(p )X g (q )

= t  Ç( f ( p )  -  f ( p ) ) ( g ( q )  -  g ( q ) ) (  - ( 3 . 2 0 )
JG —{e}

Set B ( f , g)(p q) =  <ycf( p ) ycg(q)> W e can show sim ilarly as in [1] that  B ( f , g)
is a symmetric bilinear form on C2 and satisfies the derivation property:

B(f1f 2 , g) = f1 B(f2 , g) + f2 B(f1 , g).

The same derivation property is valid for the bilinear form  2ta Xf(p)Xg(q).  O n
the other hand, the derivation property is not valid for the right hand side of
(3.20) unless -  =  0. W e have thus proved the assertion (ii) of the lem m a
and the formula (3.16).

We shall next consider  (i). W e have show n above the equality
< y 1 cf ( p )  ycg(q)> = 2ta X f(p )X g (q ). ( 3 . 2 1 )

In particular, the continuous martingales  B(t), j = 1, ..., d satisfies <B(t), B(t)> =
2ta 1 . T herefore  B(t) is an d-dimensional Brownian motion with covariance  2t(a t )

by Lévy's characterization of a B row nian m otion. D efine the right hand side
of (3.14) by i f ( p ) .  By (3.21), we have the following equalities.

<}Cf(p) ycf(p)> = 2ta X f(p )X f(p ),

<} C f(p) c f (p )>  = Xf(p)<1Ç'f(p), B(t)> = 2ta X f(p )X f (p ),

<Çcf(p) Ecf(p)> = X.f(p)Xf(p)<B 1(t), B(t)> = 2ta1 X 1f (p )X f(p ).

These three equalities imply  <Yff(p ) -  C f ( p )  Yr
C f(p ) -  cf(p)> = 0. T herefore

we have C f (p )  =  Cf(p) for any p.

Remark. Equality (3.14) tells us that B 1(t) defined by (3.13) does not depend
on  the  cho ice  o f the  func tion  x . Indeed , le t  b e  a n o t h e r  f u n c t io n  o f  C2

satisfying (e) =  O and X ( e )  = o]. Then Y c ( ) (e )  = B(t) holds by (3.14).

Proof of Theorem 3.1. W e have defined Brownian m otion  (B 1 (t)..... Bd (t))
by (3.13) and Poisson random measure  N((s, t ]  x  E) by  (3.15). These are (z)-
measurable, obviously. Further by Lemma 3.4,  f ( p )  is represented by

1' f(p ) = XJ(p)B1(t) + f f( f ( p a )  -  f(p))](dudtr).
Jo J G —le)

Then from Lemma 3.3, we have

r
M of(e ) =  I

 X . f ( q _ ) d B i ( u )

 + I I( f ( q i _ )  -  f(q_))IS(dudr)
Jo JO J G —{e}
( ' t ( 'r +  f'

=  f X . f (q _ )  o dB1(u) + f f( f ( i )  -
Jo Jo J G —{e}

-  a 1 Ç  X 1X f ( ) d u .
Jo
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fW e have further ' A f(Ou ) d u  = t A f(Ou _)du since the discontinuous times of 0,
Jo Jo

are at m ost countable. Then by (3.7), the  above is equivalent to (3.4).
Conversely suppose th a t  a  Lévy process 0 , is represented by (3.4) with

a  Brownian m otion B '(t) an d  a  P o isso n  random  m easure N ' which a re  mu-
tually  independent. Then N  = N ' holds because o f  (3.17). Further, Yi cf(p) =
X if(p)B i (t) = X i f(p)B' l (t) holds because o f  th e  definition o f  17,̀  f ( p ) .  Therefore
B(t) = B'(t) holds.

The last statement of the theorem will be proved at the end of this section.

Example. Suppose th a t G  is  a  matrix group of dimension n and le t g  be
its  L ie algebra. W e can identify the  basis { X1 , X „ }  of g  as m atrices. Let
f (a) = ( (a)) be a  smooth function with values in matrices such that 4' (o) = ,
where al is the (i, j)-element of the matrix a. Then 0, is represented as a solution
of the  stochastic differential equation:

= I  +  O._ X  o dB(u) + Ou _d'Xi du
Jo Jo

+ ft+
Ou _(cr — 1)IZI(duda) + j

r +  f Ou _(0' — I)N(dudcr)
0 U

t+
+ Ou_(a — I  — X i x i (o-))dup(do.) , (3.22)

0 J o

where (x' ..... x") is  the  canonical cordinate in  U .  A  representation similar to
the  above is obtained by Holevo [3].

3.3. Representation of Lkvy flow s. L et M  be a  connected orientable para-
com pact m anifold of dim ension n. Suppose th a t  w e  a re  given a  Lévy flow
{Om; 0 < s < co}  o f  diffeomorphisms o f  M .  W e w ill show  that it is obtained
by solving a  stochastic differential equation of ju m p  type, assuming that O s ,
takes values in  a  finite dimensional transformation group acting on M.

We assume that there exists a L ie group G with properties (i)—(ii) mentioned
in Section 2.3 and  the  following
(iv) T h e  Lévy flow 0  takes values in the subgroup t/i(G) = {0(g, •); g G  G}  of
Diff(M).

L et 0, be  a  right continuous stochastic process o n  G  such that 0(0„ p) =
0 ,,,(p ) . Then 111(0,- 1 0„ p) = =  0 , , ( p )  holds. Therefore 0, is  a  Lévy
process o n  G  and  hence the assertions of Theorem 3.1 are valid.

Corollary to Theorem 3.1. T he Lévy .flow Om  is obtained as a solution of
the stochastic dif ferential equation
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f (0,,,(p)) = f(p) + X 1f (0 5 , (p)) o dB i (u) + a i

 J
t X i f(l),,._(p))du

s G—{e}f ( f (u 5,.-(P)) — s.“ -(0)1■1(duda)

+ f ( f ( 0 -s ,u -(P))  —  f  (0 (p)) — xr(a)x ( u-(p)))1i(do- )du
J s G — { e }

W e rem ark that Fujiwara-Kunita [2] proved that a  Lévy flow defined on
GT. is represented by a  so lu tion  o f a  stochastic differential equation similar to
the above, and Fujiwara [1 ] proved the similar fact fo r a  Lévy flow defined on
G+ ,  in  th e  c a se  where M  i s  a  Euclidean space a n d  i s  a compact manifold,
respectively.

3.4. Construction of Lévy processes. Suppose th a t  w e  a re  given a  time
homogeneous d-dimensional Brownian motion B(t) ( 1 3 1 (t), ,  ( t ) )  with mean
0 and cov(B i (t), Bi(t)) = 2ta 1i, an d  a  time homogeneous Poisson random measure
N  o n  R+  x  (G — {e}) w ith  th e  intensity measure dtdp(o-)  w hich a re  mutually
independent. Consider th e  stochastic differential equation (3.6) o n  G . I t  i s  a
certain generalization o f  stochastic differential equation considered in Section
2. Indeed, the stochastic differential equation (2.22) can be written as (3.6). We
will show that equation (3.6) has also a unique solution.

Theorem 3.5. The stochastic differential equation (3.6) has a unique solu-
tion. The solution is a Lévy process on the Lie group G. Further the solution
is measurable with respect to the a-fields:

A = o- (B(s), N((s, t] x E); 0 s t, E e .4(G — {e})) . (3.23)

Proof . Let x = (x 1 , x d )  be a  canonical coordinate in  a  coordinate neigh-
borhood U  o f  e. Then every a  o f  U  is represented by a = exp(x i X i ), where
xi = O a ) .  In  th e  sequel w e set (x) = exp(xiX i ). S e t U, = fa- e G; 1 x(a)1 < el .
Define a Poisson random measure ii and its intensity measure y  on R+  x  {x e Rd ;
1x1 < 02 } by

R((s, t] x E) = N((s, t] x { (x); x e E}) , v(E) = p.(R(x); x e El)

Then equation (3.6) is written as

f(Or ) = f ( e )  + t X i f ( 0 . )  o dk(u) + 61 1 i t X i f ( )du

+ fot+

f (f((bu_ (x)) — f(0,44)(R(dudx) — duv(dx))
Ix' <e/2

t+ f (f (Ou _ (x)) — f(0,4 ) —  X ,f(0_)x i )v(dx)du ,
JO< e / 2

ft+ (f(Ou_ — f(O u _))N(ducla) ,

+  f
t +

O

(3.24)
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We first consider the equation in the case where the last term  of the above
is identically 0, i.e., N(t, 14.12 ) = O. The equation is of the same form as equation
(2.22). Hence it has a unique solution by Theorem 2.4. W e denote it by
Let ite (t) be  a Poisson point process o n  G associated with the Poisson random
measure Ne(t, E) = N(t, U fl E ) a n d  le t  {/3,, $ 2 , ... } b e  i t s  d o m a in . We define
OW a s  in  th e  proof o f  Theorem 2.4 replacing yE(t) b y  th e  above O t ) .  Then
this OW is  a solution of equation (3.6). Further in  view of the  method of the
construction of the solution, OW is measurable with respect to  the driving pro-
cesses B  and  N .  Therefore OW is measurable with respect to  (3.23).

W e can show similarly a s  in  th e  proofs of Theorem 2.4 and  its Corollary
tha t the solution is  unique and it  is  in  fact a  Lévy process.

Proof  o f  Theorem 3.1, continued. W e shall prove (3.5). Let and  i t b e
a-fields defined by (3.3) a n d  (3.23), respectively. Then the inclusion property
A is obvious since both B (t) and  N  are  ,Ft -measurable. Conversely 0 , is
measurable with respect to  A a s  is show n in  Theorem 3.5. Therefore we get
the equality (3.5).
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Added in  proof: After submitting this paper, the  attention of the au thors w as draw n to  the
following work: A . Estrade, Exponentielle stochastique et intégrale multiplicative discontinues, Ann. Inst.
Henri Poincaré, Probabilités et S tatistiques, 28 (1992), 107-129. Results similar to our Theorem 2.3
are obtained in the paper.


