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Lévy flows on manifolds
and Lévy processes on Lie groups

By

David AppLEBAUM and HIrRosH1I KUNITA

1. Introduction

The main concern of this paper is to construct stochastic flows of diffcomor-
phisms of manifolds by solving stochastic differential equations (SDE’s) driven
by Lévy processes. In two earlier papers of Fujiwara-Kunita ([2]) and Fujiwara
([1]), existence and uniqueness of the solutions of such equations were established
in the first place on R? and in the second place when the manifold (M) was
compact. Herein we will not restrict ourselves to compact manifolds and will
aim to find some natural classes of SDE’s whose solutions take values in the
diffecomorphism group of the manifold. In fact we will aim to generalize the
well known result for flows driven by Brownian motion wherein the solution
consists of diffeomorphisms (almost surely) provided each of the vector fields
driving the equation is deterministically complete and the Lie algebra which they
generate is finite dimensional (see [6] Theorem 4.8.7).

We note that in [1] and [2] it was shown that the solutions of the stochastic
differential equations described therein define Lévy processes (i.e. cadlag processes
with independent increments) on G, and G7 respectively where G, (G7) is the
topological semigroup comprising continuous maps (C™ maps) from R? or M
into itself. Furthermore, it is shown in [5] that under some additional conditions,
the solution in [2] defines a Lévy process on G™ where G™ is the topological
group of C™-diffeomorphisms of R% However the latter argument cannot be
applied in this case since it depends critically on the global properties of Euclidean
space. Hence we develop a completely different method. A major difference
between this paper and its predecessors is that we restrict our Lévy process
driving the SDE to possess finitely many degrees of freedom so that in particular
the Poisson random measure component of the process is itself defined on the
finite dimensional manifold N. We construct two distinct classes of Lévy flows
in this paper which are obtained as follows.

(i) N =R‘ and the vector fields driving the SDE satisfy the condition on the
Lie algebra described in the first paragraph above.

(i) N is a finite dimensional Lie group and the vector fields driving the SDE
belong to the Lie algebra of N.
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We note that class (i) seems to be the simplest class of Lévy flows which
contains flows driven by a finite number of independent Brownian motions or
Poisson processes. Class (ii) arises naturally through the representation of a
Lévy process on a Lie group when the group acts as diffeomorphisms on the
manifold. We obtain an explicit decomposition for such processes by utilizing
Hunt’s formula for the infinitesimal generator of Markov semigroups associated
to the weakly continuous convolution semigroups of probability measures on N
which describe the law of the process. This generalizes a result obtained by
Holevo [3], in the case where N is a matrix Lie group.

The organization of this paper is as follows. We split the paper into two
sections to describe each class of flows. In the first of these (Sect. 2), after
describing some preliminaries in Sect. 2.1, we proceed to construct the class (i)
flows in Sections 2.2 and 2.3. In fact Sect. 2.2 is devoted to solving the “canonical
extension” [7] of our equation in local coordinates. We recall that this extension
generalizes the role of the Stratonovich integral for Brownian motion in providing
a form for the equation which is invariant under changes of local coordinates. In
Sect. 2.3 we use the result of Sect. 2.2 to construct our required flow on a
manifold. In Sect. 3 we construct the class (ii) flows by means of our representa-
tion for Lévy flows on Lie groups as described above.

Notation. We use Finstein summation convention throughout this paper.
Diff(M) denotes the group of all C*-diffeomorphisms of smooth manifold M. A
stochastic process with values in M is cadlag if it is right continuous and the
left limits always exists. If S is a topological space, %4(S) denotes the g-algebra
generated by the Borel sets in S.

Acknowledgement. Most of this work was carried out while D. A. was
visiting Kyushu University on a study visit under the auspices of the Royal
Society. D. A. would like to thank both Kyushu University and the Royal
Society for generous financial support.

2. Stochastic differential equations driven by Lévy processes and Lévy flows
on manifolds

2.1. Preliminaries. Let X = ((X!(t),...,X"(t)),t > 0) be an R"-valued Lévy
process defined on some probability space (2, #, P) and having the following
Lévy-1té6 decomposition,

t+
X (t) = b*t + o} B'(t) + J
(4]

t+
J x*N(dudx) + f J x*N(dudx) (2.1)
|x|=1 0 x]<1

for each teR*, 1 <k<n Here b=(',...,b")eR", o= (0}) is a real n x m
matrix with m < n, B = (B!,...,B™) is an m-dimensional standard Brownian mo-
tion. N is a Poisson random measure (independent of B) on R* x (R" — {0})
with intensity measure dtdv(x), where v is a Lévy measure on R" — {0} satisfying
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J Ix[2/(1 + |x|*)dv(x) < o and x = (x!,...,x") e R" — {0}. Further, N is the
R"-{0}

compensator defined by N(dtdx) = N(dtdx) — dtdv(x).

Let M be a finite dimensional connected paracompact smooth manifold. Let
& ={P,;0<s<t< oo} bea family of measurable maps from M x 2 - M and
define for each weQ, ®2: M —-+M by &, =&, (-,w). We say that & is a
(forward) Lévy flow of diffeomorphisms of M if the following conditions are
satisfied
(i) @2 e Diff(M) for all t>s and a.a. we Q.
(i) PP, 0@ =@, for all s<t<u and ®J(p)=p for all 0 <s< o0, peM,
for a.a. we Q.
(iii) The map t — @2, from [s, c0) into Diff(M) is cadlag for any s > 0 and a.a.
we Q.
(iv) For each positive integer N, 0 <t; <t, < ** < ty4 < 00, the random vari-
ables &, , for 1 <i< N are independent.

Our aim in this section is to construct such Lévy flows described by stochas-
tic differential equations driven by the Lévy process (2.1).

To this end let (Y;,...,Y,) be complete smooth vector fields on M and let
% be the Lie algebra which they generate. We will assume throughout that &
has finite dimension, so that in particular every member of & is itself a complete
smooth vector field. Let X 4(t) be the “vector-field valued Lévy process” defined
by

X t) = XY, 22

so that X 4(t) has the Lévy-It6 decomposition

t+ t+
X o(t) = b*Y,t + 6 Y, B'(t) + J j x*Y, N (dudx) + J J x*Y, N (dudx) .
0 |x|=>1 0 lx[<1
(2.3)

To simplify the notation, we will in the sequel write Z, = b*Y, and Z, =Y,
for 1<i<m
To construct Lévy flows we might consider trying to solve SDE’s of the form

AP, = dX »(1)(Ps,-) (2.4)

(where we have slightly adapted the notation of [2]). When we try to use (2.4)
directly to construct &, through its paths we find that it has the disadvantage
of failing to be invariant under changes of co-ordinates. To overcome this diffi-
culty, we replace (2.4) by its canonical extension in the sense of [7] (see also
the discussion in Section 5 of [1]) which is the equation

t

D.,.(p)=p+ f Zy(®,.-(p))du + J Z(®,,-(p)) © dB'(u)

s s

N J f Y@, - (P)) N (dudx)
|x|>1

s
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t+ -
+ J j x*Y,(®;,,-(p)) N (dudx)
s x| <1

+ 2 {lW)(@,u-(p) — Py (p) — T W V(D5 (P))} . (2.5)
s<u<t
where the integrals by Brownian motions are Stratonovich integrals, £(x) denotes
the diffeomorphism Exp(x'Y;) and n(t) is the point process 4X(t). A little alge-
braic manipulation shows that (2.5) can be written as

t

&, (p)=p+ f Zy(D,,,-(p) du + j Z(Ds.,—(p) o dB'(u)

s s

i+

+ J (E(x)(Ds,4-(P) — D5 (P))N (dudx)
|x|>1

JSs

i+

+ f (E(xX) (D, u—(p)) — P, ,—(p)) N (dudx)
x| <1

JSs
ft

+ fu (XN Py u-(P) — Py u-(p) — X YD, (P)))V(AX)du . (2.6)

Js

A more precise interpretation of (2.6) is that for each fe C*°(M), pe M we
have

ft t

f((ps,t(p)) = f(p) + ZOf(¢s,u—(p)) du + j Zlf‘((ps,u—(p)) © dBl(u)

Js s

+ . (f(E(x) o D, ,-(P)) — f(Ps,-(P)))N(dudx)
Js  Jlx|=21
ft+
+ . (f(&(x) 0 Dyu_(p)) — f(Ps,.-(p))) N (dudx)
Js  Jx[<1
+ (fE(x) © Dy - (P) = [(Ps,-(P) — X* Y f(D,,—(P)))V(dx)du .

Js  Jixi<1

(2.7

We will call the above equation (2.6) or (2.7) a stochastic differential equation
driven by X ,(t). In the next subsection we will solve it in the case where M
is a Euclidean space and in Section 2.3 in the case of a more general manifold.

2.2. The canonical extension in R%. In this subsection we take M = R%. We
write, for pe R% Y, (p) = ai(p)d, 1 <k <n and denote yi(p) = b ai(p), 7i(p) =
ofai(p) for 1<l<m, 1<i<d Let (((x),teR) denote the one parameter
subgroup of Diff(R?) given by Exp(tx*Y,) and define a smooth function &(x):
R x R S RY by

cx)( p) = &(x)(p) (2.8)
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where p = (p',...,p*) € R%. We note that &(x) is the unique solution of the system
of differential equations given by

d . ;
7 ¢ p) = x“a (E(X)(L, ),

2.9
¢(x)(0, p) = p*,
for 1 <i<d Hence for 0 <t <1, we have
E(x)(t, p)=p' + f x*ai(&(x)(s, p))ds . (2.10)
0

We write &(x)(p) = E(x)(1, p). We define an L2-martingale Y,(q) = (Y,}(g),...,
Y4q)); teR* for ge R by

t+

Y/(q) = v{(q)B'(t) + f

0

f (E(xY(q) — ¢/)N(dudx) (2.11)
x| <1

and a process of bounded variation C,(q) = (C}!(g),...,Cl(q));t € R* by

; i ; . . QL : .
Glg) = J JI | (&(x)(q) — q’)N(dudx) + {vé(q) ) ’Zl @:y)(a)7 (@)
x|> 1 =

0

+ Jl [£(xV(@) — ¢’ — x*ai(q)] V(dx)}t , (212
x| <1

for 1 <j<d. Then (2.6) takes the form

t+ t+

dY,(®;.-) + j dC(P,,.-) - (2.13)

s

D, (p)=p + J
We will show that there exists a unique solution to (2.13) by demonstrating that
the conditions of Theorem 2.1 of [2] are satisfied.

We note first of all that, using the notation of [2] p. 82, we have for
I <ij<d, p qeR (Yi(p), Yig)) = t4Y(p, q) where

A¥(p, q) = ; % (Pl () + Jl () (p) — P)EXY(9) — ¢))v(dx) . (2.14)
x|<1

We write 7(p, q) = (t¥(p, q)) to denote the (d x d) matrix given by y(p)y(q)T. We

also write {(x)(p) = &(x)(p) — p and define d(p) via (2.12) by

td(p)=C,(p)—f0 J {(x)(p)N(dudx) . (2.15)
|x|21

It follows then from [2], that (2.13) has a unique solution provided the following
conditions hold

(i) t(p,q) is bi-Lipschitz continuous.

(i) d(p) is Lipschitz continuous.

(il) fq<1 1Cx)(P) — L(x)(g)I*v(dx) < L|p — q|* for some L >0 and for all p, ge
RY.
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To establish (i) to (iii) we make the following assumptions.
Condition (A). aj, d{a;) and 0,0;(a;) are bounded functions on R? for 1 < i, j,
I<d, 1<k<n

We can now verify (i) immediately by a standard use of the mean value
theorem. To establish (ii) and (iii) we need Lemmata 2.1 and 2.2 below. First
we introduce one further piece of notation and write for 0 <t <1, peRY xe

— {0}

C0x)(t, p) = &(x)(t, p) — p. (2.16)

Lemma 2.1. There exist constants C,, C, > 0 such that

max o )(p)' < C,|x|eCM 2.17)

1<i<d

for all 1<j<d, peR% xeR"—{0}.
Proof. By (2.10) we obtain
oL (x)"

—C(x) ¢t p) = j 05"‘ x)(s ,P))—a’T(s, p)ds

= [ ot s+ [ 20 s, 0, s

C (X)

Write y;(t, x, p) = max; .;,

—— (& p)].

inequality and condition (A), we may assert the existence of C; and C, such that

Then by repeated use of the Schwarz

t
yi(t, x, p) < |x|Cit + |x]|C, f 7;(s, X, p)ds
0

The required result then follows from Gronwall’s inequality upon putting ¢t = 1.
For each peR% xeR" — {0}, t € [0, 1] define
$(x)'(t, p) = E(x)'(t, p) — p' — tx*ai(p) (2.18)
and write ¢(x){(p) = ¢(x)'(1,p) for 1 <i<d.

Lemma 2.2. There exist constants D,, D, > 0 such that

max
1<i<d

for all 1 <j<d, peR% xeR"— {0}.

aﬁg)l(M‘ < Dy|x%e" (2.19)

Proof. Arguing as in Lemma 2.1, we obtain

0 c( X
o = f aém(é( %)(s, p)

=1, + 1,1,

(s, p)ds — tx —(p)
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where
rt a a
no= | w2 i m ™ 6 pas
1,(t) = ”'x"?—(i(é(x)(s ) 5"‘+sx ) |ds — tx "—"‘
20T T o o op’
ft d i
= voX"(%}(é(X)(s, )= 5 (p))ds+f sx'xt aém ( )ds
for 1<i, j<d.
Let F»‘(s, xX,p)=x (a—é](é(x)(s p)) — —(p ) Then by the Schwarz inequal-

ity, the mean value theorem and Condltlon (A), we find

n l' 2
|Fi(s, x, p)I* < |x|? Z (a—é,(é(X)(S p)) — ( ))

d 2
< |)€|20t}'<l§1 1£()'(s, p) — p’l) ,

where
azai 2

—(p)

O( = hn max sup ap’apl

1sl<d peRd
1<k<

By (2.10) and the Schwarz inequality again, we obtain

. . d n s ] 2\1/2\ 2
|Fi(s, x, p)I* < a}IXI“(I; <k; (L ax(¢(x)(z, P))dT> > > -

Hence by Condition (A), there exists a constant E; such that
|Fi(s, x, p)| < Eys|x/|*.

Returning to I, and making further use of the Schwarz inequality and Condition
(A) we see there exists a constant D, such that

IL,(t)] < Dy £2|x|2.

Similarly we find

t

I, ()| < D;|x| | max
0 1<i<d

0g(x)’
W(S, p)| ds
and the result now follows by Gronwall’s inequality as in Lemma 2.1.

Theorem 2.3. Under Condition (A), there exists a unique solution to (2.13).

Proof. We verify (iii). By the mean value theorem and Lemma 2.1, we
find that
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2

(p)] v(dx)

a i
f 1Lx)(p) — () (@)*v(dx) < d|p — qI2J~ max sup i
Ix|<1

|x|<1 1<i,j<d pe R4 op’

<Clp —ql? f 2C2¥) x 2y(dx)

Ixl<1
<Llp—gql?,
since v is a Lévy measure. (ii) is verified similarly by use of Lemma 2.2.

2.3. Construction of flows on manifolds. We now return to the general case
of a manifold M and show that under the conditions of Section 2.1, we can
construct a Lévy flow of diffeomorphisms satisfying (2.6) (or alternatively the
equivalent form (2.7)). We note that in the case where v =0, the problem was
solved in [5], Theorem 4.8.7 (p. 194-5).

Instead of the stochastic differential equation (2.7) on the manifold M, we
shall consider the stochastic differential equation on a certain Lie transformation
group of M. It is known (Palais [8]) that associated to £ there exists a Lie
group G with properties (i)—(iii) below.

(i) G is a Lie transformation group of M, i.e., there exists a C*-map y: G x M —
M such that (e, -) = identity and yY(ta, -) = ¥(o, ¥(1)), where e is the identity
of G.

(i) The map t — ¥(r) is an isomorphism from G into Diff(M).

(iii) Let g be the Lie algebra of G (left invariant vector fields on G). For any
X of & there exists X of g such that

X(fo )@ = XfW(, p) (2.20)

holds for all f of C*(M). Here f o, is a C*-function on G such that f o (1) =

foylwp). A
Now let Y,, ..., Y, be elements of g determined by Y, ..., Y, through (2.20),
respectively. Define the g-valued process

t+ t+
X, () = Zot + Z,B'(t) + J J x*¥, N (dudx) +J f x*Y,N(dudx), (2.21)
0 |x|]>1 0 x| <1

where Zo = b"ﬁ and Z, =o*Y,. We consider a stochastic differential equation
on G driven by X,(t):

o) = fle) + j Zof(y(u—))du +f Z,f(y(u—)) - dB' ()

s

" (Fu—)E() — f(u—)))N(dudx)
Js Jixi>21
A Fu—)E() — fr(u—)) N(dudx)

Js  JIx|<1
re+ [

+ (fw—)E() — fru—)) — x* T fpu—))vdx)du, (222)

Js  Jixi<1
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where &(x) = exp(x"?,() and exp(tx*X,) is the one parameter subgroup of G gener-
ated by x*X, eg.

If y,(t) is a solution of the above equation, then Y (y(t), p) = D, ,(p) satisfies
2.7).

Theorem 2.4. Given the initial data s = 0, the stochastic differential equation
(2.22) has a unique global solution y(t), 0 <t < oo. Further the solution y(t) is
measurable with respect to the o-field a(X,(s);0 <s <t) for any t > 0.

Proof. Before constructing the solution, we make a preliminary observation
on X,(t). We will rewrite it using a basis of g. Let {L,,...,L,, Lysy....,Ls}
be such a basis. We define ¥, =0 for n < k <d so that there exists a (d x d)
orthogonal matrix C such that

Yo=ClL, for1<k<d.

Let % =(x!,...,x"0,...,0) (d-vector) and define % = XCT so that exp(z*Y})=
exp(%’L;) and % is a canonical co-ordinate for G. Now define beR? and 6 ¢
M,(R) by b = (b,,...,b,,0,...,0) (d-vector) and

4 of ifl<k<nl<l<m
0 ifn<k<dm<i<d

and let ¢ = 6CT and b = bCT, then clearly (2.21) is invariant under the transforma-
tions £ » %, b—b, 6 ¢ and Yo L.

In the sequel, to save on notation, we will assume (without loss of generality)
that 171, ..., Y extend to a basis of g so that we may take x (which we iden-
tify with X) as a canonical co-ordinate for G. Write X, (t) = Xi(t) + X5(t) for
0<t< oo where

t+
Xi(t) = Zot + Z,B'(t) + J J x*¥, N(dudx) ,
0 x| <ef2

t+
X5(t) = J J x*Y, N (dudx) .
o £/2<|x|

We first consider the equation driven by X;(t). We denote the solution of this
equation starting at s =0 (when it exists) by y*(t). To show that y°(¢) exists,
we work in a canonical co-ordinate neighborhood of ee G given by U, =
{g € G;|x(g9)| <¢}. Denote by ¢, the homeomorphism between U, and an open
set in R? which we denote by U,. We can extend the functions aj(x) from U,
onto the whole of R? so that Condition (A) of Section 2.2 is satisfied. We hence
obtain the solution of (2.13) on R% Let &%, be the solution starting from 0 at
time s. Set

oy =inf{t >0, @5, ¢ U}, ..., o, =inf{t >0, ;0% ¢U,,}.

Then, the sequence of random variables a,, 0, — 0y, ..., 6, — 0,_;, ... are indepen-
dent and identically distributed, whose expectations are positive. Then by the
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law of the large numbers, lim, . 0, = c© as.. (See Theorem 4.8.7 of [5]). Note
that &; € U, for 6,_, <t <0, Then we can define y(t) as follows. For 0 <
t < o, define y(t) = ¢, ' (®§,). For 6, <t < 0,, define y(t) = y*(a,)¢, ' (P, ,) and
so on inductively: for o, <t < 6,,; y°(t) = y°(0,)¢, (). Then y*(t) is defined
on G for all t >0. For s <t, we write y%(s, t) = y(s) "1y%(2).

Now the solution y(t) driven by X,(t) is constructed as follows. For te
[0,0) such that 4X2(t) #0, we set m () = 4X5(t). We denote by {B;, B, ...}
the domain of m,(f). For 0<t<p,, y(t)=y%(t). For t=p,, y()=7(B, —)é(n,(B,))
For B, <t <y, y(t) = y(B)y*(B1,1). For t=B,, y(t) = y(B,—)é(m,(B,)) and we
continue this inductively. The explosion time of y(f) is infinite a.s. by a similar
reasoning as the above.

Next we shall prove the uniqueness of the solution. Suppose that j(t) be
any solution driven by X,(t) with the initial data s=0 and p=e. For ¢>0
given above, we define §%(t) as follows. For 0 <t < B, () = (t). For t = B,
70 = 7(B)EEB) . For By <t < By 70) = F(BI(B) '50). For 1= Py,
75(t) = 75(B,)E(m(B,))™* and we continue thus inductively. Then 7°(t) is a solu-
tion of the equation driven by Xj(t). Set 5f=¢c()7‘(t)) for t < 6, = inf{t > 0;
7°(t) ¢ U,,}. Then 5,‘ satisfies an equation of the form (2.13). Since it has a
unique solution, @; = @§, holds for t < &,, or equivalently, y*(t) = $*(t) holds for
t <6, =0,. We can prove inductively that y*(t) = $%(t) holds for ¢, <t < g,
for all n. Then the equality holds for all t. Recall how y(t) and j(t) are con-
structed from y°(t) and $%(t), respectively. Then y(t) = §(t) holds for all t.

Finally in view of the method of constructing the solution, it is obvious
that y(¢) is measurable with respect to the o-field o(X,(s); 0 < s <1).

Let ¢, t e R* be a stochastic process continuous in probability with values
in G. It is called a Lévy process on the Lie group G if it satisfies (a), (b) below.
(@) ¢, is cadlag and ¢, = e as.
(b) For any 0=t,<t, < <t,, {¢; 4,;k=1,...,m} are independent.

ti-y

Corollary to Theorem 2.4. The solution y(t) of equation (2.22) is a Lévy
process on the Lie group G.

Proof. 1t is sufficient to prove that y(t) has independent increments (property
(b)). Let p be any element of G and let L, be the left translation defined by
L,f(e) = f(pos). Apply L, to equation (2.}2) by setting s = 0. Since Zj are left
invariant vector fields, we have L,Z;f = Z;L,f. Therefore dividing the integrals
over the interval [0, t] into the integrals over two intervals [0, s] and [s, t], we
obtain

Sf(py(®) = f(py(s)) + J Zof(py(u—))du + j Z,f(py(u—)) - dB(u)

s

+J j|(ﬂww—ﬁun—ﬂww—mNuwn
s Ix|=1
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* f ﬁ <1 (f(py(—=)E(0) — f(py(u—)) N(dudx)

+ f f (f(py(u—)E(x) — f(py(u—)) — x* Y f(py(u—)))v(dx)du .
s x|<1
(2.23)

The above formula is valid even if we set p = y(s)”", since y(s) is independent
of the future o-field %, = o(X,(u) — X,(s);s <u <t). This means that y(s) " 1y(2),
te[s, T] is a solution of equation (2.22) (starting from e at time s). Therefore
it is measurable with respect to the above o-field &%,. Since X, (t) is a Lévy
process on the Lie algebra g, %, and %, are independent for any 0 <s <t
Therefore y(s)”'y(¢) is independent of %,,. Consequently y(t) has independent
increments.

Again by use of the technique of Theorem 4.8.7 of [6], we see that our
required flow on M is given by

D, .(p) = Y((s)"'y(2), p)

for 0<s, t<T, peM. Indeed it is a Lévy flow of difftomorphisms by the
above Corollary and it satisfies (2.9). The uniqueness of the solution of equation
(2.7) with fixed p can be verified by the similar argument as in the proof of
Theorem 2.4. Hence we have the following:

Theorem 2.5. Assuming that dim(%) < oo, there exists a unique Lévy flow
of diffeomorphisms of M which satisfies the SDE (2.7).

3. Representations and constructions of Lévy processes on Lie groups

3.1 Preliminaries. Let G be a connected Lie group of dimension d with
identity e and let g be the Lie algebra of left invariant vector fields on G. A
basis {X,,..., X;} of g will be fixed through this section. Let C be the set of
all bounded continuous functions f on G such that lim,_,, f(p) exists, where oo
is the infinity (one point compactification of G). It is a Banach space by the
supremum norm. Let C, be the set of all functions f of C such that Xf, X;Xf,
i, j=1, ..., d exist and belong to C. In the following we will choose functions
x', ..., x? of C, which satisfy

xi(e)=0, X;xi(e)=9¢/,

and a function h of C, which is strictly positive on GU {c0} — {e} and behaves
near e like ) ,(x')%. The existence of such functions is shown in [4].

Let {v,,0 <t < oo} be a family of probability measures on G with the semi-
group property vy, = v,*v,, s, t >0. Here the convolution of two measures v,
and v, is defined by

v, % v(E) = J v(do)v(c™'E), for Ee BG).
G
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We assume that lim, o v,(E) = 1 holds for any neighborhood E of e. Then the
semigroup of measures {v;0 <t < oo} gives a strongly continuous semigroup
{S;;0 <t < oo} of linear operators on C by setting

5f(x) = J S(zo)v,(do). (3.1
G

Hunt [4] has shown that the infinitesimal generator of {S;;0 <t < o0} is defined
at least on C, and it is represented by

Af(5) = X, f(0) + aUX, X,f0)
+ J;_{ } {f(zo) — f(z) — Xif(r)xi(o)}y(dg) . (3.2)

Here a' are real constants, (¢¥) is a symmetric nonnegative definite matrix and
# is a positive measure on G — {e} for which the integral [ h(r)u(dr) is finite.
The matrix (a) and the measure pu are uniquely determined from the convolu-
tion semigroup, but the constants a' may depend on the choice of the functions
xt o, x4

Now, on a certain probability space (2, #, P) we can define a Lévy process
¢, on the Lie group G such that the law of ¢;'¢, coincides with v,_; for any
t>s>0. Itis called a Lévy process associated with the semigroup of measures
{v;0<t <o} We will show in Sect. 3.2 that any Lévy process on a Lie
group G can be represented as a solution of a stochastic differential equation
driven by a Brownian motion on the Lie algebra g and a Poisson random
measure on G — {e}. The equation is a certain generalization of the equation
driven by a g-valued Lévy process which is discussed in the previous section.
Then the result will be applied to show that a Lévy flow on a manifold can
be represented as a solution of a stochastic differential equation driven by a
Brownian motion on a Euclidean space and a Poisson random measure on a
finite dimensional subgroup of Diff(M), provided that the Lévy flow takes values
in a finite dimensional subgroup. In Sec. 3.4 we will prove that any Lévy
process on a Lie group can be constructed by solving a stochastic differential
equation driven by a g-valued brownian motion B and a Poisson random measure
on G — {e}.

3.2. Representation of Lévy processes. Let {#;0 <t < o} be a Lévy pro-
cess on a connected Lie group of dimension d with infinitesimal generator A
represented by (3.2). Set

F=0(p:s<1). (3.3)

Theorem 3.1. There exists an %,-adapted time homogeneous Brownian motion
B(t) = (B'(t), ..., B%(t)) with mean O and cov(B'(t), B/(t)) = 2ta”, and an %,-adapted
time homogeneous Poisson random measure N((s,t] x E) on R* x (G — {e}) with
the intensity measure dtdu(c) independent of B(t), for which @, satisfies the following
stochastic differential equation for any f e C,:
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f(8) = fle) + I X:f(¢,-) o dB'(w) + a' L X f(@,-)du

+ J J (f(@u-0) — f($,-))N(dudo)
0 G—{e}

0

+ Jl _[ { }(f(¢u—0) — f($.2) — Xif ($,-)x'(0))u(do)du,  (3.4)
G-le

where N((s, {] x E) = N((s, t] x E) — (t — S)u(E) for E € B(G — {e}).
Further the pair of the Brownian motion B(t) and the Poisson random measure
N satisfying (3.4) is uniquely determind by ¢,. It satisfies

F, =0a(B(s), N((5,t] x E);; 0<s<t,Ee B(G — {e})). (3.5)

Remark. It is sometimes convenient to rewrite equation (3.4) in the following
way

f(¢,)=f(e)+J Xif($.-) © dBi(u) + &' L Xif(9.-)du

100, (f(u-0) — f($,-))N(dudo)

. (f($.-0) — f($,-))N(dudo)

+ (f(Bu-0) — f($,-) — Xif($,-)x (o)) u(do)du , (3.6)
JO JU

where U is a neighborhood of e with compact closure and 4’ = a’ — J x'(o)u(do).

c

Note that the above is valid for any twice continuously differentiable function
f which is not necessarily bounded together with its derivatives.

For the proof of the theorem, we shall introduce several martingales and
discuss their properties. We set ¢, ,(p) = pd;'¢, for 0<s<t<oo and peG.
Then if s<t<u,

E[f(@su(P)IF] = Suzif(5,4(P))

holds. Therefore {¢,(p);s <t< oo} is a Markov process with semigroup
{S,; 0 < t < oo} starting from p at time 5. For fixed f e C,, s >0, p € G, define

M, f(p) = f(8s,:(p) — f(p) — f Af(@s(p)du,  t=s. (3.7

It is an L2-martingale for any fe C,, s >0 and pe G. Now consider the product
of two such L2-martingales M;,f(p) and M;,g(q) where g€ C, and g€ G. There
exists a unique continuous (%)-measurable process of bounded variation {A(?);
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s <t < oo} such that M, f(p)M,,g(q) — A((t) is a martingale in view of Meyer’s
decomposition. We denote A(t) by {M,,f(p), M,g(q)> and call it the bracket
process of M, f(p) and M;,g(q). It coincides with the joint quadratic variation
[M,,f(p), M;,,g(q)] of two martingales M,,f(p) and M;,g(q) if these are continuous
processes. If these are not continuous processes, [ M, f(p), M;,q(q)] — {M;, f(p),
M;,g(q)> is a nontrivial martingale of bounded variation.

Lemma 3.2. For any f, ge C, and p, q € G,

B(f, 9)(p, 9) = 24X, f(p)X;9(q) + j

G—{e

| (f(po) — f(P)(9(q0) — g(@))u(do) (3.8)

is well defined. It gives a symmetric and nonnegative definite bilinear form on
C,. Further,

{M;, f(p), M;,9(q)) = j B(f. 9)(45..(P), ¢s..(q))du (3.9)

holds for all f, ge C,, 0<s<t< o and p, q€G.
Proof. A direct computation yields
Af*)(p) = A (p)Af(p) = B(f, f)(p.p) < 0 .
Indeed, the inequality (f(op) — f(p))* < ch(s) holds with some positive constant
¢ by [4, p. 272]. Therefore f(f(ap)—f(p))zy(da) < oo holds. Then B(f,g) is

also well defined for all f, g € C, by the polarization identity.
We shall first give the proof of (3.9) in case f=g and p=g=-e Set
t

M;,fle)y=M, and ¢,,(e) = 4. Since f(4,)=fle) + M, + j Af(@.)du is a semi-

N
martingale, we have by It6’s formula

f@)* = fle)* = ZJ f(@.-)dM, +2 j fB)Af(p)du + [M,, M,] .

Therefore,

M, (f*)(e) = f()* — fle)® — I Af*(¢,)du

_2 J " G )dM, + (M, M, — (M, M,

t

+ {(Mn M) +2 J'f(¢.‘)Af(¢.,)du - J A(fz)(¢u)du} :

s

t
Note that M,,(f?)(e), f f(¢.-)dM, and [M, M], — {M, M), are martingales and

the last term {---} is a continuous process of bounded variation. Hence the
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latter is identically 0. Therefore we have

(M, M, = f (A(f?) = 2fAf)($,)du = j B(f, f)($u> pu)du .

This proves (3.9) in the case f =g and p=g =e.
Note the polarization identity

(M, fe), My,g(e))

= 2({M (f + g)(e), M, (f + g)(e)> — <M, (f — g)(e), M, (f — g)(e))).

Then we get (3.9) in the case f#g and p=gq =e Finally let L, be the left
translation defined by L,f(c) = f(po). Since L,Af = AL,f is satisfied we have
M, f(p) = M, ,L,f(e). We have further B(L,f, L,g)(o, t) = B(f, g)(po, qt) since
L,Xf(o) = XL,f(0) is satisfied for any left invariant vector field X. Con-
sequently,

<Ms,1f(p)9 Ms.rg(q)> = <Ms,tLpf(e)7 Ms,tng(e)>

= j B(L,f, L,9)(4;..(€), 45..(e))du

= f B(f, 9)(&s,u(P), #5,.(q))du .

For a partition d = {0 =t, <t, <--- <t, <} of [0, 00), we define a process
{Y?f(py; 0 <t < oo} by

-

Y;of(P) = ; Mt/\tk,u\r“.f(p) . (310)

Since M, f(p) is an L?-martingale, Y’f(p) is also an L*-martingale. Set |6 =
max,(t,+; — t,). We can prove similarly as in [2, Lemma 3.2] the following
lemma.

Lemma 3.3. Y,f(p) = limy_o Y;*f(p) exists in L*-sense for any fe C,, pe G
and t>0. It is a Lévy process with values in R', ie, Y, f(p)— Y, f(p), k=
0, 1, ... are independent for any ty <t, <+ <t,. The bracket process of Y, f(p)
and Y,g(q) is given by

<Y Sf(p), Yig(@)> = tB(f, 9)(p. 9) . (.11)
Furthermore, M, ,f(p) is represented by the nonlinear integral of ¢, by Y,f(p), i.e.,

M,.f(p) = J dY,f(¢s..-(p)) . (3.12)

Now let Y,f = Y°f + Y%f be the unique decomposition such that Y f(p) is
a continuous L2-martingale and Yf(p) is a discontinuous LZ-martingale. We
claim:
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Lemma 3.4. (i) Define

Bi(t) = Y (x')(e), i=1,..,4d. (3.13)

Then (B!(t), ..., BX(t)) is a d-dimensional Brownian motion whose covariance is given
by Cov(Bi(t), B(t)) = 2ta". Further, Y f(p) is represented by

Y f(p) = X:f(p)B(1) (3.14)

for any feC, and peG.
(i) Define

N((s,t] x E) = #{ue(s t); ¢, ¢, € E}. (3.15)

Then it is a Poisson random measure on R* x (G — {e}) with intensity measure
dtdu. Further, Y?f(p) is represented by

“fip) = J f U0 = Sp)N (dudo), (3.16)

G
where N((s, 1] x E) = N((s, t] x E) — (t — s)u(E).

Proof. We shall first consider (ii). Set Zg(t) = N((0,t] x E). It is a time
homogeneous process with values in {0, 1,2,...} increasing with jump 1 only.
Further Zg(t;) — Zg(t;—,), i =1, ..., n — 1 are independent for any t, <t, < <
t,, since @, has independent increments in the Lie group G. Hence it is a Poisson
process with parameter tfi(E) = E[Zg(t)]. This shows that N is a Poisson random
measure with intensity measure dtdi. We shall prove g = u later.

Now consider the L*-martingale M,,f(p). It is decomposed as M, f(p) =
M¢, f(p) + MZ, f(p), where ME,f(p), s <t < oo is a continuous L2-martingale and
M¢, f(p), s <t < oo is a discontinuous L2-martingale. The latter is represented by

M. f(p) = J f S@u-(P)0) — [ (5.~ (P))N(dudo),
where N((s, t] x E) = N((s, t] x E) —(t — s)A(E). For a partition 6 = {0 =

<t, <} of [0,00), we set Y,*2f(p) =Y, M2, .. ~.f(p) as before. Then it
converges in L? to Y?f(p) as |§| > 0. The limit is represented by

Yf(p) = f f { }(f(pa) — f(p))N(dudo) . (3.17)
0 G—{e

We shall prove N = N or equivalently 2 = 4. Note that
<Yf(p), Yig(@)) = <Y f(p), ¥a(@)) + <YSf(p), Y'g(q)> (3.18)

holds since Y f(p) and Y f(p) are orthogonal. The last term is given by

<YA(p), Yig@a)) = L_{ }(f (po) — f(p))(g(g0) — g(q))/i(do) (3.19)

in view of (3.17). Therefore we have from (3.8), (3.11), (3.18) and (3.19)
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CYEf(p), Yfg(q)) — 2ta” X, f(p) X;9(q)
=t L_{ } (f(pa) — f(pP))(g(g0) — 9(9)) (1 — ) (do) . (3.20)

Set B{(f, 9)(p, 9) = <Y f(p), Y g(q))>. We can show similarly as in [1] that B(f, g)
is a symmetric bilinear form on C, and satisfies the derivation property:

Bi(/1f2.9) = f1Bi(f2. 9 + f2Bi(f1, 9) -

The same derivation property is valid for the bilinear form 2ta“X;f(p)X;g(g). On
the other hand, the derivation property is not valid for the right hand side of
(3.20) unless u — i =0. We have thus proved the assertion (ii) of the lemma
and the formula (3.16).

We shall next consider (i). We have shown above the equality

<Y f(p), Yog(a)> = 2ta" X, f(p)X;9(q) - (3.21)

In particular, the continuous martingales Bi(t), i = 1, ..., d satisfies (Bi(t), B/(t)> =
2ta’. Therefore B(t) is an d-dimensional Brownian motion with covariance 2t(a")
by Lévy’s characterization of a Brownian motion. Define the right hand side
of (3.14) by Y°f(p). By (3.21), we have the following equalities.

CYf(p), YEf(p)) = 2ta" X f (D) X;f(p) ,
Y)Y f(p)) = Xif (D) YA (p), BI(1)) = 20a"X,f () X;£(p),
Fef ), Yef(p)) = Xif (D) XA (D)<B'(@), BU(t)) = 2ta" X, f(p) X, f(p) -

These three equalities imply (Y f(p) — Y<f(p), Yf(p) — Yf(p)> = 0. Therefore
we have Y f(p) = Y f(p) for any p.

Remark. Equality (3.14) tells us that Bi(t) defined by (3.13) does not depend
on the choice of the function x’. Indeed, let %' be another function of C,
satisfying X'(e) =0 and X;%(e) = d;. Then Y (X)(e) = B(r) holds by (3.14).

Proof of Theorem 3.1. We have defined Brownian motion (B'(¢), ..., B%(t))
by (3.13) and Poisson random measure N((s,t] x E) by (3.15). These are (%)-
measurable, obviously. Further by Lemma 3.4, Y,f(p) is represented by

t+

0

Y.f(p) = X.f(P)B'(t) + f L_{ }(f(PU) — f(p))N(dudo) .

Then from Lemma 3.3, we have

Mo.f(e) = f XSG B + L f oo, Um0 = S0, dudo)
=J Xif(¢.-) o dB'(u) +j J (f($u-0) — f(¢,-))N(dudo)
0 0 JG—{e}

~ i f X X,f (b )du.
0
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t t
We have further j Af(d,)du =j Af(¢,_)du since the discontinuous times of ¢,
(4] 0

are at most countable. Then by (3.7), the above is equivalent to (3.4).
Conversely suppose that a Lévy process ¢, is represented by (3.4) with
a Brownian motion B'(t) and a Poisson random measure N’ which are mu-
tually independent. Then N = N’ holds because of (3.17). Further, Y f(p) =
X.f(p)B'(t) = X,f(p)B'(t) holds because of the definition of Y f(p). Therefore
B(t) = B'(t) holds.
The last statement of the theorem will be proved at the end of this section.

Example. Suppose that G is a matrix group of dimension n and let g be
its Lie algebra. We can identify the basis {X,,..., X,} of g as matrices. Let
f(0) = (f{(s)) be a smooth function with values in matrices such that f/(o) = d,
where af is the (i, j)-element of the matrix . Then ¢, is represented as a solution
of the stochastic differential equation:

6 =1+ j 6._X; 0 dB(u) + f oA X du
0 (4]

+ JH f ¢._(0 — I)N(dudo) + J” f ¢,_(6 — I)N(dudo)
U 0 Uec

o

+ JH j $._(0 — I — X;x'(0))duu(do) , (3.22)
0 U

where (x!,..., x") is the canonical cordinate in U. A representation similar to

the above is obtained by Holevo [3].

3.3. Representation of Lévy flows. Let M be a connected orientable para-
compact manifold of dimension n. Suppose that we are given a Lévy flow
{®,,;0 <s< oo} of difftomorphisms of M. We will show that it is obtained
by solving a stochastic differential equation of jump type, assuming that @,
takes values in a finite dimensional transformation group acting on M.

We assume that there exists a Lie group G with properties (i)—(ii) mentioned
in Section 2.3 and the following
(iv) The Lévy flow @, takes values in the subgroup ¥(G) = {¥/(g, '); g € G} of
Diff(M).

Let ¢, be a right continuous stochastic process on G such that y(4,, p) =
@,,(p). Then Y(d; ' ., p) = o, Poi(p) = D, ,(p) holds. Therefore ¢, is a Lévy
process on G and hence the assertions of Theorem 3.1 are valid.

Corollary to Theorem 3.1. The Lévy flow @, is obtained as a solution of
the stochastic differential equation
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t

f(@,(p) = f(p) + J Xif(®,,-(p) 0 dB'(u) + @’ J Xif(Ps,.-(p))du

s

+ J‘ J (f(O' ° ¢s u—(p)) - f((ps u—(P)))N(d“dO')

J J (f(o 0 @, _(p)) = f(Psu-(p)) — X(@) X f(Py.—(P))1t(do)du

We remark that Fupwara-Kumta [2] proved that a Lévy flow defined on
G7 is represented by a solution of a stochastic differential equation similar to
the above, and Fujiwara [1] proved the similar fact for a Lévy flow defined on
G,, in the case where M is a Euclidean space and is a compact manifold,
respectively.

3.4. Construction of Lévy processes. Suppose that we are given a time
homogeneous d-dimensional Brownian motion B(t) = (B'(¢), ..., B%()) with mean
0 and cov(Bi(r), B(t)) = 2ta, and a time homogeneous Poisson random measure
N on R* x (G — {e}) with the intensity measure dtdu(c) which are mutually
independent. Consider the stochastic differential equation (3.6) on G. It is a
certain generalization of stochastic differential equation considered in Section
2. Indeed, the stochastic differential equation (2.22) can be written as (3.6). We
will show that equation (3.6) has also a unique solution.

Theorem 3.5. The stochastic differential equation (3.6) has a unique solu-
tion. The solution is a Lévy process on the Lie group G. Further the solution
is measurable with respect to the o-fields:

%, =o(B(s), N((s,t] x E,0<s <t EeBG — {e})). (3.23)

Proof. Let x = (x',..., x) be a canonical coordinate in a coordinate neigh-
borhood U of e. Then every o of U is represented by ¢ = exp(x‘X;), where
x' = xi(6). In the sequel we set é(x)—cxp(x‘X) Set U, = {o € G;|x(0)| < ¢}.
Define a Poisson random measure N and its intensity measure v on R* x {x e R
|x| < ¢/2} by

N((s,] x E)y= N((s, ] x {&(x): x€ E}),  v(E) = u({&(x); x € E}).

Then equation (3.6) is written as

f(¢,)=f(e)+f Xif(4,-) o dB'(w) + &' L Xif (.- )du

ft+

+ (f(@u—E(x)) — f($,-))(N(dudx) — duv(dx))

JO  Jlx|<e/2
+ N - (f(u-¢(x)) — f(@u-) — Xif ($,-)x:)v(dx)du
J J x| <e/

+ (f(4u-0) — f(¢.-))N(dudo) (3.24)

Jo JUZ:
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We first consider the equation in the case where the last term of the above
is identically 0, i.e., N(t, U;,) = 0. The equation is of the same form as equation
(2.22). Hence it has a unique solution by Theorem 2.4. We denote it by ¢%(t).
Let n,(t) be a Poisson point process on G associated with the Poisson random
measure N.(t, E)= N(t, U'NE) and let {B,,B,,...} be its domain. We define
#(t) as in the proof of Theorem 2.4 replacing y*(t) by the above ¢°(t). Then
this ¢(t) is a solution of equation (3.6). Further in view of the method of the
construction of the solution, ¢(f) is measurable with respect to the driving pro-
cesses B and N. Therefore ¢(t) is measurable with respect to (3.23).

We can show similarly as in the proofs of Theorem 2.4 and its Corollary
that the solution is unique and it is in fact a Lévy process.

~

Proof of Theorem 3.1, continued. We shall prove (3.5). Let & and % be
o-fields defined by (3.3) and (3.23), respectively. Then the inclusion property
%, < &, is obvious since both B(f) and N are %-measurable. Conversely ¢, is
measurable with respect to %, as is shown in Theorem 3.5. Therefore we get
the equality (3.5).

DEPARTMENT OF M ATHEMATICS
STATISTICS AND OPERATIONAL RESEARCH
NOTTINGHAM TRENT UNIVERSITY

DEPARTMENT OF APPLIED SCIENCE
FACULTY OF ENGINEERING
KyusHU UNIVERSITY

References

[1] T. Fujiwara, Stochastic differential equations of jump type on manifolds and Lévy flows, J.
Math. Kyoto Univ., 31 (1991), 99-119.

[2] T. Fujiwara and H. Kunita, Stochastic differential equations of jump type and Lévy processess
in diffeomorphisms group, J. Math. Kyoto Univ., 25 (1985), 71-106.

[3] A.S. Holevo, An analog of the Ito decomposition for multiplicative processes with values in
a Lie group, Quantum probability and applications V, ed. by Accardi and von Waldenfels, Lec-
ture Notes in Math. 1442 (1990), 211-215.

[4] G. A. Hunt, Semigroups of measures on Lie groups, Trans. Amer. Math. Soc., 81-2 (1956),
264-293.

[5] H. Kunita, Convergence of stochastic flows with jumps and Lévy processes in diffeomorphisms
group. Ann. Inst. Henri Poincaré, 22 (1986), 287-321.

[6] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Univ. Press, 1990.

[7] S. I Markus, Modeling and approximation of stochastic differential equations driven by semi-
martingales, Stochastics, 4 (1981), 223-245.

[8] R. S. Palais, A global formulation of the Lie theory of transformation groups, Memoir of
Amer. Math. Soc., 22 (1957).



Lévy processes 1123

Added in proof: After submitting this paper, the attention of the authors was drawn to the
following work: A. Estrade, Exponentielle stochastique et intégrale multiplicative discontinues, Ann. Inst.
Henri Poincaré, Probabilités et Statistiques, 28 (1992), 107-129. Results similar to our Theorem 2.3

are obtained in the paper.



