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On the extremality for Teichmiiller mappings

By

HUANG XinZhong

1. Introduction

The universal Teichmiiller space T (1) is  the totality of quasicircles with
suitable norm alization. This space T (1) is universal in  the  sense that it con-
tains the Teichmtiller space of an arb itrary  Riemann surface. There are sever-
a l usefu l rea liza tion  o f  T (1). A m ong them  th e  following B e rs  embedding
method is now standard.

Consider T ( 1 )  a s  th e  s e t  o f  conformal mappings o f  th e  u n it  d isk  E =
lIzl< 11 onto dom ains surrounded by quasicircles, a n d  take  the Schwarzian

derivatives of them. Then we can show tha t T (1) , which is now considered as
the  se t o f those Schw arzian derivatives, is a  bounded domain in the Banach
space B2 consisting of all yo holomorphic on E with the norm

(1.1) I s A 2L s u p  ( z )  2 (  )  - 2 1<c°
ZEE

where A' (z) Idz I 2 i s  the Poincaré m etric on E .  F o r th e  relationship between
quasicircles and Schwarzian, w e  re fe r to  th e  w orks of N ehari [21], A hlfors
and W eill [2] , Gehring and Pom m erenke [8] , and the author's recent work
[ 1 5 ] .  More detail reference for Teichmfiller space, one can consult w ith, for
instance , L eh to  [19], G ard iner [6 ], N ag  [20 ], and  Im ayoshi and  Taniguchi
[18]

The above representation te lls us tha t for describing the  whole universal
Teichmtiller space, we need only those holomorphic functions on  E  w ith  the
order estimate

(1 . 2)
 

I ( z ) I = 0 ( ( i
 1 1, 1  ) 2 )  .

Because we know that the  essential data for holom orphic quadratic differen-
tia ls  is  the  geometric structure  of tra jec tories (o r topologically, the foliation
structure of them), we can assert that whole universal Teichmtiller space can
be controled by geometric structures of holom orphic functions cp on E  satis-
fying the above order estimate.

T h is  m ay  lead  u s  to  the concept of the "Teichm tiller m odel" of T  (1),
which is the L - -theory originated from Teichmtiller, and whose main tool is a
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spec ia l k ind  of extrem al quasiconform al mappings called Teichmfiller map-
pings. (See the definition below.)

Teichmtiller a sse rted  th a t, in  case  of a  com pact R iem ann surface , the
Teichmtiller space of it can be embedded in  the  space of holomorphic quadra-
tic differentials by using, not the Schwarzian derivatives, but the Teichmtiller
mappings. A Teichmfiller mapping is locally affine mapping in a sense, whose
stretch direction can be controled rather directly by the geometric structure of
the corresponding differential.

Even in case of the universal Teichmtiller space, it is natural to consider
that the complexity of the space can be represented by Teichmfiller mappings
and their geometric structures can be controled again by an order estimate of
the  corresponding differentials. B ut in  general, a Teichmfiller mapping need
not be ex trem a! (as Example 1 below show s), and even basic problems such
as whether T (1 ) can be represented in  a  space consisting of Teichmfiller map-
p ings still rem ain  unse ttled . W e w ill investiga te  in  th is  p a p e r  su c h  basic
problems and give several contributions.

B efore sta ting our m ain resu lt, w e  first g ive  a  h istorical survey of the
problems and then discuss several fundamental conjectures.

Consider a quasiconformal mapping f  = f  o f the  un it disk E  onto itself.
The supperscript denotes the complex dilatation of the mapping f. Such an
f  induces a homeomorphism of the boundary aE onto itself. Let Q f  be the class
of all quasiconformal self-mappings of E w ith the  same boundary values as f.
In Q f ,  there is a function fo with smallest maximal dilatation Ko. (Namely,

(1.3) K o=  inf K g  .
g e & If

Here K f  denotes the maximal dilatation of f. Set k o = (K 0 - 1 )  / (K0 + 1 ) .  Then
this is equivalent to

(1.4) ko= inf kg

g e Q t

where we se t kg=- 114 -  for every g = g x .) Such a  mapping fo is called extremal
in the class Q f ,  or more sim ply, extrem al. An extremal mapping will be called
uniquely extremal if there is only one extremal mapping in  Q f .

Next, a quasiconformal mapping f (z ) of E is called a Teichmtiller mapping
if, for almost everywhere on E, the complex dilatation K' of f  is of the form

(1.5)

w here  0< k< 1  and ço is holomorphic on E.
Then a  general question is the  following: For a holom orphic function cp,

when is the corresponding Teichmtiller mapping extremal o r  uniquely extrem-
al?

The origin of the problem goes back to

GrOtzsch extremal problem ( [9] ) . Show that if a schlicht and sing-
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le valued branch of J  A /9  (z) dz can be chosen which maps E onto a rectangle,
then any Teichmfiller mapping corresponding to 9 is uniquely extremal.

However, a Teichmfiller mapping need not be extremal, o r  may be extremal
and yet not uniquely extremal as the following examples show.

Example 1. L e t  0  map E conformally onto the  upper half plane and
let F (z) = Kx + iy , K  > 1 . It follows that f=  0 - 1 0  Fo 0 is  a Teichmtiller map-
ping corresponding to 9 =  0 2 w hich is not extrem al, fo r  if  w e se t G (z) = Kz
then g=  0 - 1 0 G0  0 is conformal and agrees with f  on 5E.

Example 2 (Strebel's chimney region [30]).L e t  R = ilm z <01 U
ilRe z I <1} , the  mapping F (z) = Kx + iy minimizes the maximal dilatation in

the class of all mappings of R onto S =F (R ) that agree w ith F  on the bound-
a ry  S R . If  0  and P  are  conformal mappings of E  onto R  and S respectively,
then f =  T - 1 0 F 0  0  is  a Teichmtiller m apping corresponding to 9 = 0' w hich
is extremal in Q .f. However, if

G (z) =
f F (z )  for Im

Kz for Im z<0

the  mapping g =TT - ' 0 G 0 0  also  has the m axim al dilatation K  and g  agrees
with f  on 5E.

The problems of determining conditions on 9  in  o rder tha t a  correspond-
ing Teichmtiller mapping f  is extremal is seen to be one possible interpretation
of the general problem s stated by Teichm filler [32]. Main problems made by
Teichmfiller a r e  to  d e te rm in e  h o w  re g u la r  t h e  boundary correspondence
should be in  order to  be continuable  a t a ll to  a quasiconformal mapping and
furthermore to be continuable to an extremal mapping which is a Teichm011er
mapping.

The necessary and  sufficient condition tha t the  boundary correspondence
be continuable to a quasiconformal mapping is given by Beurling and Ahlfors
[3], but the second part of the problem is still unsolved, which we shall res-
tate as Conjectures 1 and 2.

Actually, Teichmtiller asked whether the condition  f  JE 1Ç91 dxdy <0 0  i s
sufficient in  o rder tha t a  corresponding Teichm filler m apping is extrem al. In
1962, K. Strebel [30] succeeded in giving a  partia l answ er to  th is question as
well a s  to  the case where the  integral is infinite. In  a  later w ork [31] Strebel
succeeded in giving affirmative answ er to this q u e s t io n . However, Example 2
a lso  show s that not every quasisym m etric boundary correspondence can be
extended to a Teichmfiller mapping with finite norm.

Now, in view of the above remarks, we are interested in the following

Extremality Conjecture 1. If  9  belongs to B2, then every Teichmfi-
ller mapping corresponding to cp is extremal.
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This conjecture has partially solved by m any authors including Sethares
[29], Reich and Strebel [28], and Hayman a n d  R e ic h  [1 2 ] . W e w ill give in
Theorem 1 a m ore general, bu t s till partia l answ er for th is  co n jec tu re . Also
see Added in proof.

A s for a possible characterization of ço, meromorphic in the closure of E,
such that the corresponding Teichmtiller mappings are extremal, Sethares [29]
showed that, if  0  has at m ost double poles on 5E, then a  corresponding Teich-
'Willer mapping f  is extrem al. H ow ever, fo r every integer n> 2, there exists
such a  go, w ith an  n -th  order pole a t z= 1, for which a  corresponding f  is not
extremal. Based on these evidences, he m ade in [29] the following conjecture

Sethares conjecture [29]. For a Teichmüller mapping corresponding
to holomorphic quadratic differential go, which is meromorphic in  a  neighbour-

hood of E, is extrem al if and only if e ith e r  (i) cp has a double pole or (ii)
has no pole of order exceeding two.

T h e  if-p a rt o f  th is  conjecture w as proved by Sethares him self, and the
only-if-part is considered to be true, but have not been proved yet. A  natural
generalization of Sethares conjecture is Conjecture 1 and the following Conjec-
ture 2. It is rather surprising that w e can give a counterexample to Conjecture
2. See Examples 4 and 5 at the end of the section 3.

Tameness Conjecture 2. Suppose th a t  a  T eichm aller mapping cor-
responding to holomorphic quadratic differential g9 is  e x tre m a l. T h e n  go be-
longs to B2.

Finally, a s  fo r uniqueness of Teichmfiller mappings, the  following conjec-
ture  is modest, but still unsettled.

Uniqueness Conjecture 3. If  0  and  0 belong to B2, then Teichmtiller
m appings corresponding to 0 and 0 concide w ith each other if  only if  0  =  (,b
up to multiplication by a positive constant.

The uniqueness problem have been investigated by many mathematicians.
There are several w ays to attack this problem . First, by using Hamilton [11]
an d  R e ich -S treb e l's  [2 7 ] necessary  a n d  sufficient conditions for extrem al
quasiconformal mappings, Reich and Strebel proved the following:

Let K  be an extrem al complex dilatation for w hich no Hamilton sequence
is  degenera te . T hen  eve ry  w eak ly  convergent Hamilton sequence tends in

(E ) to the unique holomorphic quadratic differential 0 and

(1.6) Ic=11d1

Next, considering the argument or the image domain for an extremal com-
plex dilatation, Ortel and Smith [23], Huang [14], Huang and Taniguchi [17]
also obtain the same assetion stated above.

Also by assuming various order estimates of 0, the uniqueness conjecture
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has been partially proved by Sethares [29], Hayman and Reich [12].
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2. Preliminaries and main results

L et B  (E ) denote th e  c la ss  o f  functions cp (z) holomorphic in  E  which
satisfy that

(2.1) 11(P (z)11= E l(P (z)Ididy < co , z = x  - Fiy .

F or a  Teichmiiller mapping f (z) of E with the complex dilatation (1.5), a
necessary and sufficient condition (see [11] a n d  [28]) under which f  is an ex-
tremal mapping among th e  c la ss  o f  quasiconformal mappings o f  E  w ith  the
same boundary values as f  is that there  exists a  so-called IIamilton sequence,
namely, a sequence 1 1 i n  B (E), such that

f r ( z )  
J  J  E  19  (2 ) 

çOn(z) d xd y

119n (z)
If go (z) E B (E), then gon (z ) =  (z ) , n=1,2,... constitutes a Hamilton sequence,
so the problem to determine whether a Hamilton sequence exists o r not is non-
trivial only when II(P(z)11= co . F u rtherm ore , if a  Hamilton sequence igonl does
exist, such a  sequence can be realized in  term s o f  a  sequence of "polygonal"
Teichmiiller mappings f n which agree with f  at finitely m any boundary points
(see  [28], Theorem 6 ) .  However, these fn's are obtained by a  highly noncon-
structive process, hence the relationship between the  properties of the corres-
ponding sequence  1 i p 1  a n d  t h e  properties o f  g o  is  q u ite  o b sc u re . I n  [26]
Reich considered the question whether a Hamilton sequence, if one does exist,
can be obtained in a more direct m a n n e r . In particular, he considered the fol-
lowing: I f  IRnl is  a  sequence of num bers such that 0<R  <1 for every n and
limn--R n =1, d o es igo (Rn constitute a Hamilton sequence? He showed

Theorem A. Suppose that 9 (z) is holomorphic in a neighbourhood of E
except for a finite number of Poles on ilz1= 11. Then

f f E
9  ( z )  9 (Rz)dxdy9(z)

(2. 2) li m

(2 .3) lim =1,119 (Rz)II
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if  and only if ça (z ) has poles of at most order 2 on I z i  1 .

From the  work of Sethares [29], Theorem A  is equivalent to the  follow-
ing

Theorem A'. Suppose that ça (z) is  holomorphic in  a neighbourhood of E
except f or a f inite num ber of Poles o n  d z i=1 I  .  T hen , I9 (Rnz)1 is  a  Hamilton
sequence f or any  sequence IRn I  as  above if and only  if  th e  Teichmnller mapping
w ith dilatation (1.5) is uniquely extremal.

In  th e  work o f  Sethares [29], he obtained extremality a n d  uniqueness
theorems fo r Teichmilller mappings with 11911= cx)  under assumptions on the
growth o f  supl z i=, I o (z ) I. O n  th e  other h a n d , in  [28], R eich  and  Strebel
obtained th e  following extremality theorem under a  growth assumption on

Ii
1 ,

,(P) =
f 21r,

—

2 n -
 0

lre i " ) id  .

Theorem B. Suppose that 9  is holomorphic in E, and

(2.4) (r jp) = 0(1 1
 r ), r 1  .

T hen the Teichmnller mapping with dilatation (1 .5 ) is  extremal f or its boundary
values.

Later, in [12], Hayman and Reich showed

Theorem C. Suppose that ça is holomorphic in E, and

I  (r ,g9) = 0( 1
1

r ), r 1  .

T hen th e  Teichmnller m apping w ith d ilatation  (1 .5 )  is uniquely  extremal and
1ça (Rn z )I is a Hamilton sequence for any sequence as before.

The following example shows that extremality of f  is no longer implied if
(1—r) - 1  in  the  right-hand o f  (2 .4) is replaced by (1 — r) - 1 - 5

,  for any positive
5.

Example. Let 9 (z) = 2 (z) , where C= P(z ) maps E onto an angular
domain, Iarg CI <  5n14 , 0  < 5  < 2 . The horizontal stretching by a factor K > 1
and  subsequent conformal mapping o f th e  streched angular domain onto the
unit disk lead to a  quasiconformal self-mapping of the unit disk with complex
dilatation (z) =kg° (4/kg (41, which is not extremal [30]. In this case, up to
an irrelevant multiplicative constant,

1 (2.5) 9 (z) =
(1—z) 2 + 6  (1 +z) 2 - 6

The order of / 1 (r,9) fo r  (2 .5) is the same as that of
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1 1 
d 0 =( r )  =

f_7,11—reier+5 f-2, (1-2r cos0-Fr2 ) i4
dO

0  0 0  irSince sin T.L. for we get that

1-2r cos0±r2 = (1 — 7) 2 + 4r sin
2
—
o  

(1 —r) 2 ±
- 4 r

02
2 7r2 '

Thus, for r> -1

— 2'

7r 1 1 r o  

cle
- it M - 7)2+ 2 7 -202 (1—r) + I °

0
 

- 0

0

 (1+27 - 2 t2) i+1
dt .

The last integral is convergen t. Therefore,

(r, (p) =0( ( 1 _
1
r) 1 + 5 ) r

I n  t h i s  p a p e r , w e  w il l  p r o v e  a n  extremality theorem  under grow th
assumptions on I  (r, (p) and on

A (r, 9) -= 1
2 f r  o (rele)Irdrde .o 

W e know, from H ardy's convexity theorem  (see [4], Theorem 1.5), th a t  I  (r,
9 ) is a  non-decreasing function of r, and

A (r, yo) .1.1.(r. 9) sup 19 (z)1 •
1z1=r

Our results can be stated as follows.

Theorem 1. Suppose that (p (z) is holomorphic in E,

1  
log

(2.6) lim —0 ,
r-■1 A (rW)

and that

(2.7) I  (r = log 1
1
 r ) ' 1 •

T hen the TeichmAller m apping w ith dilatation (1.5) is ex trem al for its boundary
values, and there exists a sequence of num bers R ,J such that O<T in <1, lim a  fir

n=1, and Iço(R nz)I i s  a Hamilton sequence.

Sethares proved in  [29] the following

Theorem D. For a holomorphic function go, if Ice (z) I = 0 (1/ (1— )  as
121=r —> 1, then the Teichm iiller m apping w ith dilatation (1.5) is extremal for its
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boundary values.

Corresponding to Theorem D, from Theorem 1, we obtain the following

Corollary 1. Suppose that q)(z) is holomorphic in E, and that

11  
sup lgo(z)I=0( i _ r log i _ r ),  r —* 1 .
1z1=r

Suppose further that

log
1 —r lim = 0A (r,yo)

T hen the Teichmaller mapping with dilatation (1.5) is  extremal f or its boundary
values, and there exists a sequence of num ber ikn I such that 0 < < 1, limn - -  kn

=1, an d  19 (Rn z )I  is  a Hamilton sequence.

Also correponding to  the Theorems B and C . w e have the following

Corollary 2. Suppose that ço (z) is  holomorphic in E, and that

I  (r ,9 ) = 0 ( 1
1

r  log 1
 1

 r ),

If  Hair-1(1 - 7)1.i (r,9) =  œ , then  the Teichmfaler mapping with dilatation (1.5)
is  extremal an d  iço (Rn z) is  a Ham ilton sequence f or an y  IRn I  such that 0 <Rn
<1  and lim ,  R n -=1.

From  these , w e see  that fo r  th e  holomorphic functions ce sa tisfy ing  the
assumptions made in Corollary 1 o r 2, the Extremality Conjecture 1 is true.

Remark. In  the case of — r) /1 (r,9) = a *  00, th e  result had
been proved in  [28]. Thus corollary 2 treats the case which is not included in
Theorem B.

3 .  Proofs of Theorem 1 and Corollaries

In  order to  prove Theorem  1, first w e derive som e relation between the
mean growth of a  holomorphic function and  th a t o f its  deriva tive . S uch  re-
su lts  a re  related to  the Theories of HP spaces and of univalent functions and
interesting in  them se lves. T he following Proposition is  a  counterpart of the
results made by D uren [4], o r  by  Reich [24], and the resu lt made by Hallen-
beck and MacGregor [1 0 ]. Some of other applications can also be seen from
their works, hence are omitted here.

Proposition. Suppose that 9 (z ) is  holomorphic on E, 0 <p < 0 0  and 13>
0. Further suppose that
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1 27r 1
(2 .8 )I  (r, fyo) (rei6)11 d 191P = 0 (

(1 )
log,

1

 r ), r - - > 1Ln-— r "

then, for every positive integer n,

77 1 (2.9) (r, ) =1 1 f  2 19 (n) (reze)li'dO1P1
(1 — r)"

=- 0( + 
n

l o g
1 -1 r ) '  

r—>1.27c 

Proof of Proposition. F irs t  le t 1 p  <00, and assum e th a t  (2 .8 ) holds. B y
the Cauchy formula

9 , ( r e i e \1  
27 , f iz i=R

9 (z) f  2 r ( R e " ± c ) )  ei(0-6»
cl(1)

(z — re i6) 2 
d

R
z  = 0

Lat 0 =0 (Rei° —r) 2

(1+r) 1 where R = 2 Suppose there exist M > 0 such  that iJ (r,9)
(1— W

log
1 -

1

r
. Minkowski's inequality (in continuous form ) then gives

1f  27r I P  (R
'
9 )  

4  ( r '9 '  —  2n- J0=0 R2 —2Rr cosçb+r2

_IJ(R,ço)  < 1  
r n 1 ° g 1 —RR2 —r2( 1  — R)" (R 2 —  )

= 0 ( 1 log, r—> 1( 18 + 1 —r '

Suppose now that 0<p<1, and that

1  (r,yo)
(1 —r)"

l o g
 1  — r

If (z ) has no zeros in E, let F (z ) = [9 (z )] P is  holomorphic and

M0   ( 1 1  

(1 — r) \ °g . 1 —r

1
With R = -

2
(1+0, this implies

I i(r,F') I 'F) <  M 1  (
l o g  

2  y
R2 — r2( 1  — r ) " + 1 1 —r

where M1 >0 is  a  constan t. O n the  other hand, since

(z) [F (z )]i --1 F' (z)

Holder's inequality gives
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1 1  1 .- 1
I: (r,go") —

p i f ( r ,F )  II (r,F')

1  < {  M P ( l o g 1- 1
M 1

)P1-15
y

( 1  — r )  s p + 1  (
1

log 1 r
P  ( 1 — r)SP 1-- r

i=01 --- .(
(1—r) s+1

lo g
1— r , r 1

If ça (z) has a zero, we need the following Lemma due to  P.L. D uren [4].

Lemma. A ny function f  E HP (0  < p  c o )  can be expressed in the form
f (z) = f i  (z) + f 2  (z), where f i and f2 are nanvanishing HP functions such that lifdip

. 2 1f lp for each i. 

In  th is  case, w e fix  R, 0 GR < 1 ,  and  according to th e  above Lemma, we
can write that

9 (Rz) = 91(z) ± g0 2 (Z )

where qh and g02 a re  nonvanishing functions such that
1 2 M  Ip (r,y0i)

(1—R)8log 1 1 R '  
i =1,2.

Hence, by the same but more simple argument as in the first paragraph of this
proof,

1
M2

1 1 91  
(r,goi

r)
(1 - R )1 0 k,3 —R 1—r'

where M2>0 is a suitable constant. Since

RP I9' (Rz) IP 2 P [191 (z) V+192' (Z ) I

it follows that

4 (R2,g0') m3
3 1

(1—R) 5 1  og 1—R

where M3 >0 is also a  suitable constant. This easily gives (2 .9 ).  This proves
Proposition with n=1.

Finally, applying th e  re su lt w ith  n  =  1 inductively , w e can obtain  the
assertion for every n.

As a special case when p=n=j3=1, the above Proposition turns out to be
the following

C orollary  3. Suppose that 9  (2 ) is  holomorphic on E, and

(2.10) /1 (rw )  = 0 ( 1
1

r log 1
 r ),

then
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(2.11) II (rw )  = 0 (
 ( 1 -

1

r )  2

l o g
1  —

1

r

)

'

Proof of Theorem 1. In order to prove Theorem 1, first we note that, for
every R  with O<R<1,

a (R ) = f  f
r l < R ) .40 Rz , (z) ,dxdy

R  

rdr 
f 2 r  

d O  r r
J R

 o -112rI 

= 2 7 r f rdr f r( t,cp')dt .OR r

Hence, by using (2.11), the assumption implies that

a (R) 21117-c f 0 rd r fR
r

r( 
1 

0 . _ I.) 2 lo g  
1

 t  d t

1So' (lei e )idt

(2.12)

r

21117J cl ( 1  —  21°g  1r  (f R
r
r dt)rdr

2M7t. (1 — R) .f0 (1—r) 2 10gTL. r  dr= 2M r (1—  R) f  log d  
1R  1  1

—1—r 1—r
R  1  

1  , 1 R i 1 7r R ,=2Mrc (1— R) [1 — e g l— R  1 —R 1 _2/1// logi

with a  suitable M. Next, set

27r f l
iS(R) = f f (Rz)Idxdy = f  c 1 0 (Rtei )It dt

R
1  f 27=

2 o  
d O i

R
Iga( u e l e) ludu= ,(p) dr .R2 R- JR2

Again by the assumption, we obtain that

1 2Mr f R  1  i1
R2

)3 (1 ?)  _ <2 7 r f
R2 .1.

R  M  
I log d r=  R2R 2  log 1  — r dlogr— r —r

(2.13) =  
M7r 

 lo g  ( 1  ± R )  l o g
1 

R2( 1 — R ) 2 ( 1 ± R )

•
21U2c

l o g  
1 

R2

with a suitable M.
Now, w e prove that there exists a  sequence of numbers

< i< 1 , Z =1 , and

f v:0 ((
2
z )) , (k „ z )dx dy

urn -1 .
n — .0 0 11(P (1-?n Z)

First, we can write

such that 0



Tp (z) [9 (Rz) — 9 (z)] dxdyço ( z)

f f E -99 ((: )) 9(zz)dxdy
119(n Z)11Urn

n - 0 0

= 1 .
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f fE  199((zz))9 (R z ) dxdy f  
IzI<R

(z) 
—R2+Rza

( Z ) ] d x d y

119 (Rz)Il f(z)z [919(R(zz))1dxd

vo(z)
i < R

+ R 2 i ? < i z i . ( 1  9 (z)I9 ■-n- axay

ff,z,„19 (z)Idxdy

B y (2.12) a n d  (2.13) we have

ffz l<R 19  (z )Idxdy

a (R)  < 2 M 7 r
 lo g  

1

1

—  R 
zR 2A (R,9) n-R2A (R,9)

(2.14)

and

 

2M 2r 1  

log 
S(R) <   R 21 — R

n-122 A (R n-R2A (R ,)(2.15) f '<lzl<110((zz)
9  ( R z )  d x d y

f f z,< E I9(z),did y

1 

O n the  o ther hand, since lim , 1 A
g

( r
1

, 9 T 0, th e re  ex is ts  a  sequence of

numbers such that O</Z<1, 1imk n =  1, and

l o g  
1

—

lim
1 

=0  .
n-■.= A (Rn,9

Therefore, combining (2.14) and  (2.15), we deduce that

Thus, the Teichmtiller mapping with d ila ta tion (1 .5 )  is  extremal and the
sequence i(i9 (ii,  41 is  a  H am ilton sequence. T he  proof of the  Theorem 1 is
complete.

Since the proof of Corollary 1 can be easily deduced from Theorem 1, we
will only prove Corollary 2.

Proof of Corollary 2. Suppose that (49 (z ) satisfies the conditions of Corol-
lary 2. Since lim , 1 (1 - 0/ 1 (r ,9 ) =  œ, using  L'Hôpital's rule, we derive



log
1 — r  lim -=lim

r-1 Irr2A (r,y9) r-.1

linl
r-1

1
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1 
io g i_ r 

f o r
r  (f0 27 I  40 (re 16) Id 6)dr

1 

(1 — rf 27r kp ( r e )  Id 0 

= 0

0

Thus by the proof of Theorem 1, we can see that the Teichmaller mapping
w ith  d ila ta tion  (1 .5 ) is  extremal and  the  sequence Iyo (R. i s  a Hamilton
sequence for every R, as b e fo re . The proof of the Corollary 2 is complete.

Finally, we give an example to show that Theorem 1 really treats the case
not included in  Theorem B. It should be stressed that this exam ple is also a
counterexample for Tameness Conjecture 2.

Example 4. Set

log
1 z  yo(z)=

( 1 - 4 2

on E . Then the Teichmüller mapping f  (4  with the dilatation kyo (z) /kp (z)I, 0
<k<1, is  extremal for its boundary values.

In this case, we have

1
1 r 2 - 1- rei e 1

2
1— r l o g  1 1 7,d 0 ‹27 Jo l(P  (re  )  id 19 12 n -2 E  0  1 1 - 0 2- -

11 —re"1 - r ) I 
On the other hand, because of (1 r )

r 1

/ 027r
ko (re )ld

f:1 -r)
1 

log
1 — re

16

c l O C 2 (
1 -

1

r

l o g

1
1

r ) '11 — rei812

where Ci ans C2 are positive constants. Therefore, there exists a  constant C3>

0 such that

A (r ) =
1 r r  r z ir 1

TCT2 j ° j ° 11 — re i° 12
1 log

1— rate rdrc/O C3 (log i
 it 7 ) 2, r - 1  .

 

log
1 

1
— r T hus limr-1 A (r )  = 0 ,  and hence, by Theorem 1, th e  Teichmtiller map-,y()

ping f (z) with the dilatation k (z) /ko (z)1 is extremal for its boundary values.
But ço (z ) does not satisfy the conditions in Theorem B.

Remark. Consider the conformal mapping
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0(z) =t log 1
2 e

z )4

of E. A simple computation shows that f  (z ) is  a Teichmtiller mapping corres-
ponding to

1) ( z ) 0 ,2 ( z )  1  ( 10  2 e   )(
(1 2 g  1 —z

Then by Example 4, we conclude that

f (z) =KReao (z) - F i lm  (z)

is an extremal Teichmtiller mapping for every positive K >  1.

Example 5. By using Example 4, we can further construct a  less ob-
vious example, that is, a holomorphic function cp (z) on E which satisfies all of
the following conditions.

i) Any Teichmtiller mapping corresponding to yo is extremal;
ii) ço (z )  h a s  0E a s  its natural boundary; (N am ely, there a re  n o  V (z ),

holomorphic on a domain containing E  a s  a  proper subset, which is
coincident with yo (z ) on E.)

iii) For every ( E  aE and every neighbourhood V of ( ( i n  C) ,

sup (1 — izi) 2140 (4 1  =  c °  •
zeV

, n '2=First, fix  a  se q u e n c e  a ,  1 ,  where every an E  0E and U 1i s  dense in
0E. Choose positive converging sequence isni ,7=1 so that

2c,m, 
Ck

k=n+1

for every n, where C1, C2 are the same constants as in Example 4 and M 2 > 1  is
a suitable positive constant. Let

(z) = E k 1 
_ log 

1 
- -

a k z(1— akz) 2

on E. Then cp (z) satisfies the conditions. In fact, by  th e  same estimate as in
Example 4, it is easy to see that

CO

I i ( r , (P ) Ek 1
1
 r log 1

 1
 r  .

k=1

And we have

I ,(,0) ' C21. 1
1

r  log 1
 1  r

k=1



X  lE
d
k

 k z . ) 2 log i _ akz
k > N
<141(11 Ek) z ) 2 g _ T Ti z10

k>N

< M 1 C  2 6 N
 (1 2121)21° 1-1-  Z

1
2M2C1 

<- EN 1  1 
— 2 (1— IA) 2 ''̀ ) g  1 —
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CO

— C I X  r log i _
1

r

k=2
C 2  1 1  > l o g—r—  2 1 1 — r 1 — r

Hence

A (r,9) r)2

and as in Example 4, we conclude that i )  holds.
Next, since i i )  follows from  iii), w e w ill show  th a t  i i i )  holds. F o r  this

purpose, fix E OE and a neighborhood V of arbitrarity. Then there is an aN

in  V n OE. Here we may assume that a i i$ V n OE for every j  G N .  Then

19 (41 EN 1 log —
(1 —eeN z) 2 1  -  aNz

 

-X I
_E E _

; 
 log —

j<N

i> N  

(1 — ) 2 1

(1— afz) 2 1

_ log 1—_—a,z

1 

The second term  in  the  right hand side of the above inequality is bounded on
CMV n E and we choose M2 >1, s o  t h a t  2 i <1,< 1  then
CiM2

T h u s  (1 - 14  2 19 (z) I tends to  +0 0  w hen z tends to  FIE a long the l in e  largz=
aN i , which shows di).

4. Application of Theorem 1

To describe the  characteristic o f extremal Teichmtiller mappings from a
variational point of view, it is natural to consider quasiconformal selfmappings
of a domain which are equal to the identity on the boundary.

Let Qi  b e  the class of quasiconformal mappings f  of the  unit disk E onto
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itself with f (e 8) =e i° , 0 < 2 7 r . W e w rite  g o th e  se t of the complex dilata-
tions o f all f  E Qi. U s i n g  th e  m etric ig (z) Ildz 12 a r is in g  fro m  a  holomorphic
quadratic differential g (z) dz2 with finite norm, Reich and Strebel [27] derived
a  necessary integral condition for tt E go, which is now called Main Inequality
and  p lays a  fundam ental role in  th e  theory  o f Teichnifiller spaces. F o r  inst-
ance, from  this inequality one can easily  derive a  uniqueness theorem which
states that a  Teichmtiller mapping f  which belongs to a  quadratic differential
cp of finite norm is uniquely extremal w ith the  c lass of mappings which coin-
cide with f  on aE.

F o r  o ther re la ted  resu lts , a lso  re fer th e  w orks o f  E arle  a n d  Eells [5],
Gehring [7], Reich [25] and Huang [13].

Because of the im portance of the class of Teichmtiller mappings it is de-
sirab le  to  estim ate  th e  grow th o f  those quadratic  d ifferentia ls 9  fo r  which
there exists a  k > 0  such that k9/I91 C g o .  In th is case it is easy to know that

A simple example is the following

Example 6. 1+z 
L e t 0 (z ) = w hich m aps E  conformally onto  the1—z '

right half plane, and  let F (z) = Kx + iy, , K >  1 . Then f  (z) = -
1 0 1 0  0  is  a

Teichmtiller mapping corresponding to 9 =  0' 2. It is easy  to  see that f (z ) E

Q1. Furthermore, we have that 191=0(
( 1 - 0

1

4
 )  and / 1 (r,9) o ( ( 1 ) 3 ) .) .

19_(z)As Reich showed in [24] that, if f E Qt, and tt (z) — T \ then by af, 9 z)i_
theorem of Seth ares [29], we have

lim (1 —0 sup l(P (z) I = cx)

1z1=r

and by a  theorem of Reich [24], we also have

lim (1 —0 / 1 (r,9) = co

Using Theorem 1, we can derive that either the growing order for I  (1%9) must
1 1 

be faster than log as is the case in example 6, or I i ( rw ) and A (r,9)

must satisfy some conditions. Namely, we get the following

Theorem 2. Suppose that f  E Q , and

(z) —  —
(1%

where 9 (z) is holamorphic in E. Also suppose that

I  ( r  '9 )  = ° (1 1 r i ° g  1— r) ' r 1
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Then A (r,(p) = o (log 1
 1

 r ) , r 1, a n d  (hence lim r -4  — (r,9 ) =  œ, but)

(1 — (r,9) = a t  00.

Proof of Theorem 2. First w e assume that

A (r,ço) = 00 ,
r - 1  lo g

1 — r

which is equivalent to

1
log

According to Theorem 1, the  Teichmaller mapping f  w ith  the  complex dilata-
.tion extremal for any positive le ( <1 ) , bu t it is obvious that in the(z)

c lass o f Q1 t h e  extremal mapping m ust b e  th e  conformal mapping g  (z) = z.

This contradiction proves that A  (r,ço) =0(log 1
-

1
r ) •

Next suppose tha t if limr - 1 (1 — r)/i (r,ço) = co. Then by the  Corollary 2, f
must be extremal, which is again impossible.
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