Local smooth solutions of the relativistic Euler equation

By

Tetu MAKINO and Seiji UKAI

1. Introduction

The motion of a relativistic perfect fluid in the Minkowski space-time is governed by

(1.1)
$$\begin{cases} \frac{\partial}{\partial t} \left(\frac{\rho c^2 + p}{c^2 - v^2} - \frac{p}{c^2} \right) + \sum_{k=1}^3 \frac{\partial}{\partial x_k} \left(\frac{\rho c^2 + p}{c^2 - v^2} v_k \right) = 0 , \\ \frac{\partial}{\partial t} \left(\frac{\rho c^2 + p}{c^2 - v^2} v_i \right) + \sum_{k=1}^3 \frac{\partial}{\partial x_k} \left(\frac{\rho c^2 + p}{c^2 - v^2} v_i v_k + p \delta_{ik} \right) = 0, \quad i = 1, 2, 3 \end{cases}$$

Here *c* denotes the speed of light, *p* the pressure, (v_1, v_2, v_3) the velocity of the fluid particle, ρ the mass-energy density of the fluid (as measured in units of mass in a reference flame moving with the fluid particle) and $v^2 = v_1^2 + v_2^2 + v_3^2$.

We assume the equation of state of the form

(1.2)
$$p = a^2 \rho$$
,

where *a*, the sound speed, is taken to be constant so that 0 < a < c. In particular, $a = c/\sqrt{3}$ arises in several important physical contexts. For detailed discussions of this setting, see J. Smoller and B. Temple [6].

Under the assumption (1.2), we can write the equation (1.1) as

(1.3)
$$\begin{cases} \frac{\partial w_0}{\partial t} + \sum_{k=1}^3 \frac{\partial w_k}{\partial x_k} = 0 \\ \frac{\partial w_i}{\partial t} + \sum_{k=1}^3 \frac{\partial f_i^k}{\partial x_k} = 0, \quad i = 1, 2, 3 \end{cases}$$

where

Communicated by Prof. Takaaki Nishida, May 25, 1994

Tetu Makino and Seiji Ukai

(1.4)
$$w_0 = \frac{c^4 + a^2 v^2}{c^2 (c^2 - v^2)} \rho , \quad w_i = \frac{c^2 + a^2}{c^2 - v_2} \rho v_i ,$$
$$f_i^k = w_i v_k + a^2 \rho \delta_{ik} , \qquad i,k = 1,2,3 .$$

We shall solve the equation (1.3) for $t \ge 0$ and $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ together with the initial conditions

(1.5)
$$\begin{cases} \rho|_{t=0} = \rho_0(x) ,\\ v_i|_{t=0} = v_{0i}(x) , \quad i = 1,2,3 \end{cases}$$

For the one-dimensional motions, Smoller and Temple [6] constructed global weak solutions, using Glimm's method [1]. However, no results have been known so far about the full-dimensional existence. Thus the aim of the present paper is to establish the existence of local smooth solutions of (1.3) and (1.5).

We note that in the limit $c \rightarrow \infty$, the system (1.3) reduces formally to the non-relativistic Euler equation

(1.6)
$$\begin{cases} \frac{\partial \rho}{\partial t} + \sum_{k=1}^{3} \frac{\partial}{\partial x_{k}} (\rho v_{k}) = 0\\ \frac{\partial}{\partial t} (\rho v_{i}) + \sum_{k=1}^{3} \frac{\partial}{\partial x_{k}} (\rho v_{i} v_{k} + a^{2} \rho \delta_{ik}) = 0, \quad i = 1, 2, 3 \end{cases}$$

It is well known that this system can be transformed to a symmetric hyperbolic system to which the Friedrichs-Lax-Kato existence theory of local smooth solutions is applicable, see, for example, Majda [4, \$1.3]. Actually, several symmetrizers are known to (1.6), ([1], [2], [4], [5]), which lead to the local existence theorems in different function spaces.

In this paper, we will show that a symmetrizer exists also for the relativivtic case (1.3) which results in the

Theorem 1.1. Suppose that the initial data ρ_0 and (v_{01}, v_{02}, v_{03}) belong to the uniformly local Sobolev space $H^s_{ul} = H^s_{ul}(\mathbf{R}^3)$, $s \ge 3$, and that there exist a positive constant $\delta(<1)$ such that

(1.7)
$$\delta \leq \rho, v_0^2 = v_{01}^2 + v_{02}^2 + v_{03}^2 \leq (1-\delta)c^2$$
.

Then, the system (1.3) has a unique solution

(1.8)
$$(\rho, v_1, v_2, v_3) \in C([0,T]; H^s_{loc}) \cap C^1([0,T]; H^{s-1}_{loc})$$

with $\rho > 0$ and $v^2 < c^2$. Here T > 0 depends only on δ and the H_{ul}^s -norm of the initial data.

To construct symmetrizers, instection is enough for the non-relativistic case (1.6), but it does not seen to work well for the present case (1.3). In-

106

stead, we shall follow the idea due to Godunov [1] which relies on the existence of a convex entropy function. Such an entropy function will be constructed in §3 and the symmetrization for (1.3) using this entropy function will be shown in §2. In §4, the convergence is established of solutions of the relativistic (1.3) to those of the non-relativistic (1.6) as the light speed *c* tends to infinity.

2. Symmetrization

Theorem 1.1 can be concluded if there is a change of variables

(2.1)
$$z = (\rho, v_1, v_2, v_3) \rightarrow (u_0, u_1, u_2, u_3)$$
,

which reduces the system (1.3) to a system of the form

(2.2)
$$A^{0}(u)\frac{\partial u}{\partial t} + \sum_{k=1}^{3} A^{k}(u)\frac{\partial u}{\partial x_{k}} = 0$$

whose coefficient matrices $A^{0}(u)$ and $A^{k}(u)$, k=1,2,3 satisfy the condition

(2.3) (i) they are all read symmetric and smooth u, (ii) $A^{0}(u)$ is positive definite.

The system (2.2) satisfying (2.3) is called a symmetric hyperbolic system.

We claim that one of such changes of variables is given by

(2.4)
$$\begin{cases} u_0 = -\frac{c^3}{(c^2 - v^2)^{1/2}} \rho^{-\theta} + c^2 + a^2 , \\ u_j = \frac{c}{(c^2 - v^2)^{1/2}} \rho^{-\theta} v_j, \quad j = 1, 2, 3 , \end{cases}$$

where

$$(2.5) \qquad \theta = \frac{a^2}{c^2 + a^2}$$

We shall check the condition (2.3). First, note that the map (2.1) with (2.4) is a diffeomorphism from $\Omega_z = \{\rho > 0, v^2 < c^2\}$ onto $\Omega_u = \{u_0 < c^2 + a^2, u^2 = (u_1)^2 + (u_2)^2 + (u_3)^2 < (u_0 - c^2 - a^2)^2/c^2\}$. By a straight but tedious computation, we can find the coefficients $A^0(u) = (A^0_{\alpha\beta})_{\alpha,\beta=0,1,2,3}$, $A^k(u) = (A^k_{\alpha\beta})_{\alpha\beta=0,1,2,3}$, k=1,2,3, as follows:

(2.6)
$$\begin{cases} A_{00}^{0} = A_{1} \rho^{\theta+1}, & A_{0i}^{0} = A_{i0}^{0} = A_{2} \rho^{\theta+1} v_{i}, \\ A_{ij}^{0} = A_{3} \rho^{\theta+1} v_{i} v_{j} + A_{4} \rho^{\theta+1} \delta_{ij}, & i, j = 1, 2, 3 \end{cases},$$

Tetu Makino and Seiji Ukai

(2.7)
$$\begin{cases} A_{00}^{k} = A_{2}\rho^{\theta+1} , \\ A_{0i}^{k} = A_{3}^{k}\rho^{\theta+1}v_{i}v_{k} + A_{4}\rho^{\theta+1}\delta_{ik} , \\ A_{ij}^{k} = A_{3}\rho^{\theta+1}v_{i}v_{j}v_{k} + A_{4}\rho^{\theta+1}(v_{i}\delta_{jk} + v_{i}\delta_{ik} + v_{k}\delta_{ij}), \quad i, j = 1, 2, 3 , \end{cases}$$

where

.

(2.8)
$$\begin{cases} A_1 = \frac{c^4 + 3a^2v^2}{c^3\theta(c^2 - v^2)^{3/2}} , \quad A_2 = \frac{c^4 + 2a^2c^2 + a^2v^2}{c^3\theta(c^2 - v^2)^{3/2}} \\ A_3 = \frac{c^2 + 3a^2}{c\theta(c^2 - v^2)^{3/2}} , \quad A_4 = \frac{c^2 - a^2}{c(c^2 - v^2)^{1/2}} . \end{cases}$$

These coefficents can be calculated by the chain rule and the formula

(2.9)
$$\begin{cases} \frac{\partial \rho}{\partial u_0} = \frac{A_4}{a^2} \rho^{\theta+1} , & \frac{\partial \rho}{\partial u_j} = \frac{A_4}{a^2} \rho^{\theta+1} v_j , \\ \frac{\partial v_i}{\partial u_0} = A_5 \rho^{\theta} v_i , & \frac{\partial v_i}{\partial u_j} = c^2 A_5 \rho^{\theta} \delta_{Ij}, \quad i, \quad j = 1, 2, 3 , \end{cases}$$

with

$$(2.10) A_5 = c^{-3} (c^2 - v^2)^{1/2}$$

Clearly, (2.6) and (2.7) show that the matrices $A^0(u)$ and $A^0(u)$ are real symmetric and smooth in Ω_u . Let us show that $A^0(u)$ is positive definite Let $\Xi = (\xi_0, \xi) \in \mathbf{R}^4$ be a 4-vector with $\xi \in \mathbf{R}^3$ and $\|\Xi\| = \sqrt{\xi_0^2 + \xi^2}$. We should calculate the inner product

(2.11)
$$(A^{0}(u) \Xi | \Xi) = \rho^{\theta+1} J$$

where

$$(2.12) J = A_1 \xi_0^2 + 2A_2 \xi_0 (v|\xi) + A_3 (v|\xi)^2 + A_4 \xi^2$$

 A_j being those in (2.8). It is sufficient to show that

(2.13) $J \ge \kappa \|\Xi\|^2$,

with some positive constant κ . First, we write

$$J = A_1 \left(\xi_0 + \frac{A_2}{A_1} (v|\xi) \right)^2 - \frac{1}{A_1} (A_2^2 - A_1 A_3) (v|\xi)^2 + A_4 \xi^2$$

Since

$$A_{6} \equiv \frac{1}{A_{1}} (A_{2}^{2} - A_{1}A_{3}) = \frac{(c^{2} + a^{2})(c^{4} + 4a^{2}c^{2} - a^{2}v^{2})}{c(c^{2} - v^{2})^{1/2}(c^{4} + 3a^{2}v^{2})} > 0$$

and by Schwarz' inequality $(v|\xi) \leq v^2 \xi^2$, we get

108

 $(2.14) J \ge \kappa_1 \xi^2 ,$

with

$$\kappa_1 = A^4 - A_6 v^2 = \frac{(c^2 - v^2)^{1/2} (c^4 - a^2 v^2)}{c^3 \theta (c^4 + 3a^2 v^2)} > 0 \ .$$

On the other hand, decomposition $\xi^2 = |\xi - (\tilde{v} | \xi) \tilde{v}|^2 + (\tilde{v} | \xi)^2$ where $\tilde{v} = v/|v| \in S^2$ gives

$$J = A_{1}\xi_{0}^{2} + 2A_{2}\xi_{0}(\widetilde{v}|\xi) + \left(A_{3} + \frac{A^{4}}{v^{2}}\right)(\widetilde{v}|\xi)^{2} + A_{4}|\xi - (\widetilde{v}|\xi)\widetilde{v}|^{2}$$

$$\geq (A_{3}v^{2} + A_{4})\left((\widetilde{v}|\xi) + \frac{A_{2}|v|\xi_{0}}{A_{3}v_{2} + A^{4}}\right)^{2} + \left(A_{1} - \frac{A^{2}_{2}v^{2}}{A_{3}v^{2} + A_{4}}\right)\xi_{0}^{2}$$

$$\geq \kappa_{2}\xi_{0}^{2},$$

where

$$\kappa_{2} = A_{1} - \frac{A_{2}^{2}v^{2}}{A_{3}v^{2} + A^{4}} = \frac{(c^{2} + a^{2})(c^{2} - v^{2})^{1/2}(c^{4} - a^{2}v^{2})}{c^{5}(c^{2}a^{2} + (c^{2} + 2a^{2})v^{2})} > 0$$

This and (2.14) now given

$$J \ge \frac{1}{2} (\kappa_1 \xi^2 + \kappa_2 \xi_0^2)$$

This shows that (2.3) (ii) is also astisfied, and hence, the Friedlichs-Kato-Lax theory works for the system (2.2). Since the map (2.1) with (2.4) defines a diffeomorhism, we then conclude Theorem 1.1. We can say more, however. Given $\delta \in (0,1)$ and c > 0, put

(2.15)
$$\Omega(\delta,c) = \{\delta \le \rho \le \delta^{-1}, v^2 \le (1-\delta)c^2\}$$

It is seen that, for any $\delta \in (0,1)$ and $c_0 > 0$, κ_1 and κ_2 are bounded and bounded away from 0 uniformly for $c \ge c_0$ as well as for $z = (\rho, v_1, v_2, v_3) \in \Omega(\delta, c_0)$. Also, $A^{\alpha}(u)$ and any of their derivatives are uniformly bounded both for $c \ge c_0$ and $z \in \Omega(\delta, c_0)$. Hence, we have a strengthen version of Theorem 1.1.

Theorem 2.1. For any numbers $a_0, c_0 > 0$ and $\delta_0 \in (0,1)$, there exist posi-tive constants C and T such that for each initial data $z_0 = (\rho_{0,v_{01},v_{02},v_{03}}) \in H^s$ satisfying

 $\|z_0\|_{H^s_{ul}} \leq a_0, \quad z_0 \in \Omega(\delta_{0,C_0}) \text{ for all } x \in \mathbf{R}^3$.

and for each $c \ge c_0$, the Cauchy problem (1.3) with (1.5) possesses a unique solution $z = (\rho, v_1, v_2, v_3)$ belonging to the class (1.8) and satisfying

(2.16)
$$||_{z(t)}||_{H^{s}_{ul}} \leq C, z(t) \in \Omega(\delta_0/2,c_0) \text{ for all } x \in \mathbf{R}^3$$
,

for all $t \in [0,T]$.

3. Strictly convex entropy function

Let us consider the system of conservation laws

(3.1)
$$w_t + \sum_{k}^{N} (f^k(w))_{xk} = 0, \quad w = (w_1, w_2, ..., w_m)$$
.

A scalar function $\eta = \eta(w)$ is called an entropy function to (3.1) if there exist scalar functions, $q^{k}(w)$, k = 1, 2, ..., N, satisfying

$$(3.2) D_w \eta (w) D_w f^k (w) = D_w q^k$$

Here and in the sequel, $D_w h$ is taken as a row vector in case h is a scalar function and is the Jacobi matrix case h is a vector valued function.

According to Godunov [1], (see also Kawashima-Shizuta [3]), if a strictly convex entropy function exists, then the transformation

$$(3.3) w \rightarrow u = D_w \eta (w) ,$$

is well-defined and reduces the system (3.1) to a symmetric hyperbolic system of the form (2.2) whose coefficients

(3.4)
$$\begin{cases} A^{0}(u) = D_{u}w = (D_{w}^{2}\eta)^{-1} , \\ A^{k}(u) = D_{u}f^{k} = D_{w}f^{k}D_{u}w , \end{cases}$$

satisfy the condition (2.3).

In our case, (1.3) is of the form (3.1) with

(3.5)
$$w = (w_0, w_1, w_2, w_3), f^k(w) = (w_k f_1^k, f_2^k, f_3^k)$$

where w_0 , w_k , f_i^k , (i,k = 1,2,3) are those in (1.4). Recall $z = (\rho, v_1, v_2, v_3)$. The map $z \to w$ is a diffeomorphism from $\Omega_z = \{\rho > 0, v^2 < c^2\}$ onto $\Omega_w = \{w_0 > 0, (w_1, w_2, w_3) \in \mathbb{R}^3$. Specifically, using the formula,

(3.6)
$$\begin{cases} \frac{\partial \rho}{\partial w_0} = M_1 , & \frac{\partial \rho}{\partial w_j} = M_2 v_j , \\ \frac{\partial v_i}{\partial w_0} = M_3 \rho^{-1} v_i , & \frac{\partial v_i}{\partial w_j} = M_4 \rho^{-1} v_i v_j + M_5 \rho^{-1} \delta_{ij} \end{cases}$$

where

(3.7)
$$\begin{cases} M_1 = \frac{c^2 (c^2 + v^2)}{c^4 - a^2 v^2} , & M_2 = -\frac{2c^2}{c^4 - a^2 v^2} , & M_3 = -\frac{c^2 (c^2 - v^2)}{c^4 - a^2 v^2} \\ M_4 = \frac{2\theta (c^2 - v^2)}{c^4 - s^2 v^2} , & M_5 = \frac{(c^2 - v^2)}{c^2 + a^2} , \end{cases}$$

we see that the Jacobi matrix D_{wz} is nonsingular with

110

(3.8)
$$\det(D_{wz}) = \frac{1}{\rho^3} \frac{c^2 (c^2 - v^2)^4}{(c^2 + a^2)^3 (c^4 - a^2 v^2)} > 0$$

Rewrite (3.2) as

$$(3.9) D_z \eta B^k = D_z q^k, \ k = 1, 2, 3 ,$$

where

(3.10)
$$B^{k} = D_{w} z D_{z} f^{k} = (b^{k}_{\alpha\beta})_{\alpha'\beta=0,1,2,3}$$
,

are computed using (3.5) and (3.6) as

(3.11)
$$\begin{cases} b_{i0}^{k} = B_{1}v_{k}, \ b_{0j}^{k} = B_{2}\rho\delta_{kj} ,\\ b_{i0}^{k} = B_{3}\rho^{-1}v_{k}v_{i} + B_{4}\rho^{-1}\delta_{ki} ,\\ b_{ij}^{k} = B_{5}v_{i}\delta_{kj} + v_{k}\delta_{ij} ,\end{cases}$$

with

(3.12)
$$\begin{cases} B_1 = \frac{c^2 (c^2 - a^2)}{c^4 - a^2 v^2} , \quad B_2 = \frac{c^2 (c^2 + a^2)}{c^4 - a^2 v^2} , \\ B_3 = -\frac{a^2 (c^2 - a^2) (c^2 - v^2)}{(c^2 + a^2) (c^4 - a^2 v^2)} , \\ B_j = \frac{a^2 (c^2 - v^2)}{c^2 + a^2} , \quad B_k = -\frac{a^2 (c^2 - v^2)}{c^4 - a^2 v^2} \end{cases}$$

We shall solve (3.9) assuming that our entropy pair (η,q^k) is of the form (3.13) $\eta = H(\rho,v^2), \quad q^k = Q(\rho,v^2)v_k$.

.

Then, setting $y = v^2$, the condition (3.9) reduces to the following set of equations for the functions *H* and *Q*.

$$(3.14) H_y = Q_y ,$$

(3.15)
$$B_1H_{\rho} + 2(B_{3y} + B_4)\frac{1}{\rho}H_y = Q_{\rho}$$
,

$$(3.16) \qquad B_2 \rho H_{\rho} + 2B_5 y H_y = Q \; .$$

From (3.14), there should exist a function $G = G(\rho)$ of ρ only such that $H = Q(\rho, y) + G(\rho)$. On the other hand, eliminating ρH_{ρ} from (3.15) and (3.16), and using (3.14), we have

(3.17)
$$(c^2 + a^2) \rho Q_{\rho} - (c^2 - a^2) Q = 2a^2 (c^2 - y) Q_y .$$

This and (3.15) then yield

(3.18)
$$\rho G_{\rho} = \frac{c^2 - y}{c^2 + a^2} \left(Q - \frac{c^2 + a^2}{c^2} \rho Q_{\rho} \right) \; .$$

or putting $q = (c^2 - y) Q$,

$$(3.19) \qquad (1-\theta)q - \rho q_{\rho} = c^2 \rho G_{\rho} \ .$$

Since the right hand side is a function of ρ only, q must be of the form

(3.20)
$$q = \rho^{1-\theta} [g(\rho) + h(y)]$$

where g and h are arbitrary functions. Substituting (3.20) into (3.17) or

(3.21)
$$\rho q_{\rho} - q = 2\theta (c^2 - y) q_y$$
,

we get, with a constant K_0 ,

$$(3.22) \qquad \rho g'(p) - \theta g(\rho) = \theta \left\{ 2 (c^2 - y) h'(y) + h(y) \right\} = -\theta K_0 ,$$

whose solutions are

(3.23)
$$g(\rho) = K_2 \rho^{\theta} + K_0, h(y) = K_1 (c^2 - y)^{1/2} - K_0,$$

 K_i 's being arbitray constants. Now, substitution of (3.23) into (3.20) and then into (3.19) yields

$$(3.24) \qquad G = -\frac{K_2\theta}{c^2}\rho + K_3 \quad .$$

Thus we get

(3.25)
$$\eta = H = \frac{K_1}{(c^2 - v^2)^{1/2}} \rho^{1-\theta} + K^2 \left(\frac{1}{c^2 - v^2} - \frac{\theta}{c^2}\right) \rho + K_3$$

(3.26)
$$Q = \frac{K_1}{(c^2 - v^2)^{1/2}} \rho^{1-\theta} + \frac{K^2}{c^2 - v^2} \rho$$

For the later purpuse, we wish to choose the constants K_j , j = 1,2,3, so that (3.25) converges, as $c \rightarrow \infty$, to the entropy function for the non-relativistic case (1.6) given by

(3.27)
$$\overline{\eta} = \frac{1}{2}\rho v^2 + a^2 \rho \log \rho ,$$

which can be obtained exactly in the same way. The right choice is then found to be

(3.28)
$$K_1 = -c (c^2 + a^2), \quad K_2 = c^4 - a^4, \quad K_3 = 0$$
,

with which (3.25) becomes

(3.29)
$$\eta = -\frac{c (c^2 + a^2)}{(c^2 - v^2)^{1/2}} \rho^{1-\theta} + \frac{(c^2 + a^2) (c^4 + a^2 v^2)}{c^2 (c^2 - v^2)} \rho .$$

The change of variables (2.4) was derived from this η via (3.3), using (3.6). This η is strictly convex due to (3.4) since $A^{0}(u)$ is positive definite

as was seen in the previous section.

4. Non relativistic limit

Now for the non-relativistic case (1.6), the symmetrizing variables associated with the entropy function (3.27) are

(4.1)
$$\begin{cases} \overline{u}_0 = -\frac{1}{2}v^2 + a^2\log\rho + a^2 \\ \overline{u}_j = v_j, & j = 1, 2, 3 \end{cases}$$

and the resulting system is

(4.2)
$$\overline{A}^{0}(\overline{u})\overline{u}_{t} + \sum_{k=1}^{3} \overline{A}^{k}(\overline{u})\overline{u}_{xk} = 0$$

with

(4.3)
$$\begin{cases} \overline{A}_{00}^{0} = a^{-2}\rho, \ \overline{A}_{0j}^{0} = \overline{A}_{j0}^{0} = a^{-2}\rho v_{j} \\ \overline{A}_{ij}^{0} = a^{-2}\rho v_{i}v_{j} + \rho \delta_{ij} \end{cases},$$

and so on. The condition (2.3) can be easily checked to hold, so that the Friedlichs-Kato-Lax theory applies also to the system (4.2) and, as a conse-quence, to the non-relativistic Euler equation (1.6).

Let $z = (\rho, v_1, v_2, v_3)$ and $\overline{z} = (\overline{\rho}, \overline{v}_1, \overline{v}_2, \overline{v}_3)$ be the solutions to (1.3) and (1.6), repectively, both for the same initial data $z_0 = (\rho_0, v_{01}, v_{02}, v_{03})$. Let z_0 be as in Theorem 2.1. Then, we may conclude that \overline{z} exists on the same time interval [0,T] as $z, c > c_0$, belongs to the same class (1.8) and enjoys the same estimate (2.16). We shall show the

Theorem 4.1. As $c \to \infty$, z converges to \overline{z} uniformly on [0,T] in $H_{loc}^{s-\varepsilon}$ for any $\varepsilon > 0$.

Proof. It suffices to prove the theorem for the solutions u to (2.2) and \overline{u} to (4.2). Put $\psi = u - \overline{u}$. Subtracting (4.2) from (2.2), we have

(4.4)
$$A^{0}(u) \phi_{t} + \sum_{k=1}^{3} A^{k}(u) \phi_{xk} = - \{A^{0}(u) - \overline{A}^{0}(\overline{u})\} \overline{u}_{t} - \sum_{k=1}^{3} \{A^{k}(u) - \overline{A}^{k}(\overline{u})\} \overline{u}_{xk}$$

First, we know from the remark made above that the uniform estimates

(4.5)
$$\begin{cases} \|u(t)\|_{H^{s}_{ul}}, \|\overline{u}(t)\|_{H^{s}_{ul}}, \|\overline{u}(t)\|_{H^{s-1}_{ul}} \leq C_{0} \\ A^{0}(u(t)\Xi|\Xi), (\overline{A}^{0}(\overline{u}(t))\Xi|\Xi) \geq \kappa_{0}\|\Xi\| \\ z(t), \overline{z}(t) \in \mathcal{Q}(\delta_{0}/2, c_{0}) \text{ for all } x \in \mathbf{R}^{3} \end{cases},$$

C

hold for all $c \ge c_0$ and for all $t \in [0,T]$, with some constants C_0 , $\kappa_0 > 0$. On the

other hand, it is easily seen that the maps u = u(z) defined by (2.4) and $\overline{u} = \overline{u}(z)$ by (4.1) satisfy

(4.6)
$$u(z) = \overline{u}(z) + O(c^{-2})$$
,

whereas

(4.7)
$$A^{\alpha}(u(z)) = \overline{A}^{\alpha}(\overline{u}(z)) + O(c^{-2}), \alpha = 0, 1, 2, 3$$
,

and similarly for their derivatives, as $c \to \infty$, where the remainders $O(c^{-2})$ are all uniform for $z \in \Omega(\delta_0/2, c_0)$. Owing to (2.16), (4.5), (4.6) and (4.7), the L^2 norm of the right hand side of (4.4) is majorized by $C(\|\psi\|_{L^2} + c^{-2})$ with some positive constant *C*, uniformly for $c \ge c_0$, and, hence, (4.4) gives, by integration by parts and using Gronwall's inequality,

 $\|\psi(t)\|_{L^2} = O(c^{-2})$,

which then yields, after interpolation with (4.5),

 $\|\psi(t)\|_{H^{s-\varepsilon}} = O(c^{-2\varepsilon}) \quad ,$

with any $\varepsilon > 0$. Thus we are done.

DEPARTMENT OF LIBERAL ARTS OSAKA SANGYO UNIVERSITY DEPRTMENT OF INFORMATION SCIENCE TOKYO INSTITUTE OF TECHNOLOGY

References

- S. K. Godunov, An interesting class of quasilinear systems, Dokl. Acad. Nauk SSSR, 139 (1961), 521-523.
- [2] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.
- [3] S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tôhoku Math. J., 40 (1988), 449-464.
- [4] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Appl. Math. Sci., 53), Springer, 1984.
- [5] T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de l'équation d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249-257.
- [6] J. Smoller and B. Temple, Global solutions of the relativistic Euler equations, Commun. Math. Phys., 156 (1993), 67-99.