
I
gt( P2c 2 + P2 ) -F aax„( P2c 2 ± P2vk)=°

k=1

3

2

0
c
2 ± P V  a  (  PC

2 +p
v  v"  

+ 0 , k ) = 0 ,  i = 1 , 2 , 3  .gt 'c2 —v2  V '
) a X  k  c — v2 

3

J. Math. Kyoto U niv . (JMKYAZ) 105
35 - 1 (1995) 105-114

Local smooth solutions of the relativistic
Euler equation

By

Tetu MAKINO and Seiji UKAI

1. Introduction

The motion of a relativistic perfect fluid in the Minkowski space-time is gov-
erned by

k=1

Here c denotes the speed of light, p  the pressure, (v 1,v2,v3) the velocity of the
fluid particle, p  the mass-energy density of the fluid (a s  measured in units of
mass in a reference flame moving with the fluid particle) and v2

= v 1 2 + 1 , 2 2 ± v 3 2 .

We assume the equation of state of the form

(1.2) p = a 2 p ,

where a, the sound speed, is taken to be constant so that 0 < a< c. In particu-
lar, a =c/4 arises in several important physica l con tex ts . For detailed dis-
cussions of this setting, see J. Smoller and B. Temple [6].

Under the assumption (1.2), we can write the equation (1 .1) as

(1 .3)

where
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c 4d_ a 2v 2 c2d_a2
WO= 

c 2  ( c  —2 1)2)' W i=  2 PV i
(1 .4 ) C  — V2

J1=wivk±a 2 P5ik , i,k=1,2,3 .

W e shall solve the  equation (1 . 3) for 0 and x = (x1, x2, x3) E  R3 together
with the initial conditions

{

Pit-4) —  Po (x)

vilt=o=voi (x), i -= 1,2,3 .

F o r  th e  one-dimensional motions, Smoller an d  T em p le  [6 ]  constructed
global weak solutions, using Glimm's m ethod [1]. However, no  resu lts  have
been known so far about the full-dimensional e x is te n c e . Thus the aim of the
present paper is to  establish the existence of local smooth solutions of (1.3)
and  (1.5).

W e note that in  the  limit c—)00, the system  (1 .3 ) reduces formally to the
non-relativistic Euler equation

laaPt +E aaxk (rfrvo —0
k=1

a , ,
3 aw kpvi) + E  n _  ( Pv/vk - Fa2 p5,k) =0, i=1 ,2 ,3  .

k=i ' k

It is well known that this system  can be transform ed to a  symmetric hyperbo-
lic system to which the Friedrichs-Lax-K ato existence theory of local smooth
solutions is  applicable, see, fo r example, Majda [4, §1 .3]. Actually, several
symmetrizers a re  know n to  (1.6), ([1], [2], [4], [5]), w hich lead to the local
existence theorems in different function spaces.

In  th is  paper, w e w ill show tha t a  symmetrizer exists also for the  relati-
vivtic case (1.3) which results in the

Theorem 1.1. Suppose that the initial data po an d  (voi, 1)02, vo3) belong

to the uniformly local Sobolev space TIL1= Hi'a  (R 3 ) , .s.. 3, and  that there exist a
positive constant 5(<1) such that

(1.7) ô p, vg=d1+142 - Fv63 ( 1 —  5) c

Then, the system (1 .3 ) has a unique solution

(1.8) (p,v1.v2,v3) eC ( [0,7 ]  ;1170c) n CI (  [ 0,7 ] ;11V )

with p> 0 and v2 <c 2 . Here T> 0 depends only on 5 and the H 1 -norn of the ini-
tial data.

(1.5)

3

(1 .6)

To construct symmetrizers, instection is enough fo r  th e  non-relativistic
case  (1.6), but it does not seen to work well for the  present ca se  (1 .3 ) .  In-
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{ U ° ( c . 2  v 2) 1/2P

e3

-° ± C 2 ± a2
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stead, we shall follow the  idea due to  Godunov [1] which relies on the exist-
ence o f  a  convex  en tropy  function . Such  a n  entropy function w ill be con-
structed in  §3 and  the  symmetrization f o r  (1 .3) using this entropy function
w ill be show n in  § 2 . In  §4 , the convergence is estab lished  of solutions of
the relativistic  (1.3) to those of the non-relativistic  (1.6) as the light speed c
tends to infinity.

2. Symmetrization

Theorem 1.1 can be concluded if there is a change of variables

(2.1) z = (p,v1,v2,v3) — '(uo,ui,u2,u3)

which reduces the system  (1.3) to a  system of the form

3

(2.2) A° (u) k (U) a x k = 0  ,
aTt 

k=1

whose coefficent matrices A ° (u) and A k (u), k = 1,2,3 satisfy the condition

(2 )
(i) they are all read symmetric and smooth u

.3
(ii) A

°
 (u) is positive definite .

The system  (2.2) satisfying (2.3) is called a symmetric hyperbolic system.
We claim that one of such changes of variables is given by

a
2

( 2 .5 ) 0— + a 2

W e sh a ll check  the  cond ition  (2 .3 ).  F irs t, no te  th a t  th e  m a p  (2 .1 ) with
(2.4) is  a  diffeomorphism from Qz = lp>0 , V2 < c 2 o n t o  S2u = 1740<c2 a+u 2  =

(u1 )  2  ±  ( u 2 )  2  ±  ( u3 ) 2  <  (uo
 e 2

 a 2) 2/ c 2) By a  straight bu t tedious computa-
tion , w e  can  find  the coefficients A

° (u) = (A °
 a ) A "

 ( u ) k c o )

a/ 3 = 0 ,1 ,2 ,3 , k= 1,2,3, as follows:

(2. 6)
{

Ago= A 4)0 + 1 , A gi= A 70= A 2p i v i

A ì; = A 3p f ) -"v iv;  +A 4p ' 150 , i, j =1,2,3 ,
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(2.7)

where

(2.8)

IA0=A2p6 + 1

i l l
oci =A k

0 =A 3p 1v iv k+ A4p 6 + 1 5ik

A lb — A 3pe + l v iv ivk+A4136 + 1  (vid;k+v i5i k
- f - v k 5  , i , j — 1 ,2 ,3

1 c4±3a2v2c 4 + 2 a 2 c , 2 ± a 2 v 2
A  1 =  

6,30 (c, c, 2  v 2) 3/2, A 2 =

A3 —  ,  A 4 =

CO (C
2 — v 2 )  3 / 2

c2 ±3a 2c
2

— a
2

C (C2-1)2) 1/2

These coefficents can be calculated by the chain rule and the formula

(2.9) lap A 4  n a+,
au, a21.-

ay :  ,  = A 5 ,081,ono

Op A 4  8+1—  p  
au 2./ a
aVi2 0,3pi5p i,cm; j = 1,2,3 ,

with

(2.10) A  5 ,  c -3 ( c,2 v 2) 1/2

C learly , (2 .6 )  a n d  (2.7) show  th a t the m atrices A
°
 (u )  and A

°
 (u )  are

real symmetric and smooth in Q .  L e t  u s  s h o w  that A
° (u) is positive definite

LetE= (eo, ) E R 4 b e  a  4 -v e c to r  w ith  E R3 and 112-11= I V +  • We should
calculate the inner product

(2.11) (A° (u) _pe+ij

where

(2.12) J=A1V - F2A2Wv10 d- A3 (v1) 2 - FA4V

A ; being those in  (2.8). It is sufficient to show that

(2.13) KIIE112

with some positive constant K. First, we write

Since

0 +  AA :  ( v i
)

y 1 (A2
31

—A A  )  (v i ) 2 - FA4 2 .A i2  

1 (c,2 ± a 2 ) 4a2c2  _ a 2v 2)
A 6  A

/ A
( M  A i A 3 )  =

c ( c 2 — v 2 )
1 / 2 ( c 4 + 3 a 2 v 2 )  >0

I

and by Schwarz' inequality (VI-4

A ) V2 2
,  we get
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(2.14) ,

with

(c 2 —v 2) 1/2 (c 4 a 2v 2)
KI=A 4 — A6v2 = >0 .

c3 0 (c 4 + 3a2v2 )

On the other hand, decomposition = (171 ) ±  ( 15- 1 ) 2 w here F=v/IvIE
S2 gives

J=A1V+2A20( -F17- W ( 1 3 + 1 4 4
2 ) ( F V - F A a —  (FW 1 7)12

1,4 2 1 v 1 0  
 )2+  (AA  22v 2

(14 3/) 2 ± A  (
A3V2 +A 4A 3 v 2 + A 4

where

A k 2  ( c 2  ± a 2) ( c 2 _ v 2) 1/2 (c 4 _ a 2v 2)
K2 = A1 >  0  .

A3V 2 +A 4 c5 (c 2a 2+  ( c 2 2 a 2) v 2)

T his and  (2.14) now given

(ic1 2+K'2 2) .

This shows that (2.3) (ii) is also astisfied, and hence, the
Friedlichs-Kato-Lax th e o ry  w o rk s  f o r  th e  sy s te m  (2 .2 ) . Since th e  map
(2 .1 ) w ith  (2 .4 ) defines a  diffeomorhism, w e then conclude Theorem  1.1.
W e can say more, how ever. G iven 5 E  (0,1) and c>0, put

(2.15)Q  ( 6 , c )  = p  5 ' , 1 , 2 (1—  5) cl

It is seen that, for any 5E  (0,1) and c0>0, ic 1 and  K'2 are bounded and bounded
away from 0 uniformly for c co as well as for z = (p ,v i,v 2 ,v 3 ) E  (5 ,c0 ) • Also,
A " (u )  and any of their derivatives are uniformly bounded both for (. . co and z
E [2 (5 ,c 0 ) . Hence, we have a strengthen version of Theorem 1.1.

Theorem 2.1. For any  num bers ao, co> 0  an d  50 E  (0 ,1 ) , there exist
posi-tiv e constants C and T  such that for each initial data zo= (po,voix02,v03) E H '
satisfying

Zo E (50,Co) for all x  ER 3

and for each c co ,  the Cauchy problem  (1 .3 )  w ith  (1.5) posasses a unique solu-
tion z= (p,v i,v2,v3) belonging to the c lass (1.8) and satisfy ing

(2.16) ilz (t) C , z (t) E  (50/2,c 0 ) for all x E R 3 ,

for all t E  [0,T ].
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3. Strictly convex entropy function

Let us consider the system of conservation laws

(3.1)W t + ( f k  ( W ) ) x i c
= 0

, W
=

 (W1,W2,—,Wm)

A  scalar function 17 i (w ) is called  an  entropy function to  (3 .1) if there ex-
ist scalar functions, (lc (111) , N, satisfying

(3.2) Do? (w)D wf k (w) =D w qk  .

H ere a n d  in  th e  sequel, Dw h, is  taken  a s  a  row  vector in  case  h  is  a  scalar
function and is the Jacobi matrix case h is a  vector valued function.

According to Godunov [1], (see also Kawashima-Shizuta [3] ), if a  strict-
ly convex entropy function exists, then the transformation

(3.3) w,u=Diun (w)

is well-defined and  reduces the  sy stem  (3 .1 )  to  a  symmetric hyperbolic sys-
tem of the form  (2.2) w hose coefficients

(3.4)
A° (u) =13.w= (Db7) - 1

A k (74 )  _  D uf k  D wfk  D u w

satisfy the condition (2.3).
In our case , (1 .3 ) is of the form  (3.1) w ith

(3.5)w= (wo,w ,,w2,w 3) , f" (w ) = (w  kit ,

where wo, wk, (i,k = 1,2,3) a re  those i n  ( 1 . 4 ) .  Recall z  = ( p  v i ,  y2, y3).
The map z w  is  a diffeomorphism from ,Qz= Ip>0, v2 < c 2 o n to  ,Q = Iwo >0,

w2, w3) R 3 . Specifically, using the formula,

(3.6)
aP —ma w i2  vj

av 
aw ;

where

(3.7)

c 2 (6,2 ± v 2 ) 2C2 c2 (6,2 — v 2)

{ M 1 =  M2.= —
C

4
— a

2
V

2  ,
C

4  
—a

2
1)

2  , c4 _ a y

20 (c 2  — v 2 ) (c2-112) 
M 4  —  4  2  2 M 5  —C  — S  V c2±a2

we see that the Jacobi matrix Dw z  is nonsingular with
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1 c 2 ( c 2 — v2)4 (3.8)d e t ( D z ) > 0
p3 ( c 2 +a 2 ) ( c 4 — a2v2 )

Rewrite ( 3.2) as

(3.9) D z llBk=D z qic, k 1,2,3

where

(3.10) Bk=DwzDfI= (b)a'O,1,2,3

are computed using (3.5) and (3.6) as

boko = B l vk , bokj=B2pô kf

(3.11)b , = B 3 p ' v k v j + B 4 p ' ô k j

b =B5vjôkj+vk&j

with

c2  (c2— a2)B 2 =  C (c 2 +a 2 ) B 1 =
c4 —a2v2 ' c 4 —a2v2

(c2 +a 2
)  (c4 — a2v2 )

(3.12) B a2 (c 2  — a 2 ) (c 2  — L' 2 ) 

-  a 2  (c2— v2)B k  =
 a 2 (c 2 — v 2 ) B,—

 c 2 +a 2' c 4 —a2v2

We shall solve (3.9) assuming that our entropy pair
 ( 7 1 , q k )

 is of the form

(3.13)= H ( p , v 2 ) ,  q k = Q  ( p , v 2 ) v k

Then, setting y =  y2 , the condition (3.9) reduces to the following set of  equa-
tians for the functions H and Q.

H = Q ,

B 1H + 2  (B 5y+B 4 ) H = Q

B 2 pH0 + 2 B y H = Q .

From (3.14), there should exist a function G G (p ) o f p  only such that H=
Q (p,y) +  G  (p ). On the other hand, eliminating  pH 0 from (3. 15) a n d  (3. 16),
and using (3.14), we have

(3.17)( c 2 + a 2 )  p Q  -  (c 2 — a2 ) Q 2a2 (c2 — y) Q

T his and  (3.15) then yield

(3.18)p G 0 =
 c 2 —   (Q c2+a2  
c2+a2\2
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or putting g = (c 2 —y) Q ,

(3.19) (1—  q —  pqp= c 2pG,0 .

Since the right hand side is a  function of p  only, g  must be of the form

(3.20) q= p l -  [g (p) +h (y)]

where g  and h are arbitrary functions. Substituting (3 .20 ) in to  (3 .17) or

(3.21) pq p  q  =  20 (c,2 y) q y

we get, with a constant Ko,

(3.22) (P) — eg (p) = 012 (C 2 -  y) (y )  +h  (y )  = - 0 K 0

whose solutions are

(3.23) g(p) =K 2pe ±K o , h (y) =K i(c 2 — y) 1 1 2 — K ,

K 's  b e in g  arb itray constants. N ow , substitution of (3 .2 3 ) in to  (3 .2 0 ) and
then into (3 .19) yields

(3.24) G= —
K 2 0

pH- K 3 .
C

-

Thus we get

 -e 2(3.25) ( 1  
7) -= II=

 2 2  1 / 2 V
n i  +K 2 2

 C  
2 ) P  ± K 3

K1 K2  

(3.26) Q = 
( 6 .2  v2 ) 1 / 2

, 0 1 - e +

C2 
—v

2 P

F o r  th e  la te r  purpuse, w e w ish to  choose the constants K ,, j = 1,2,3, so
t h a t  ( 3 .2 5 )  converges, as  0 0  ,  t o  t h e  e n tro p y  fu n c tio n  fo r  th e
non-relativistic case  (1 .6 ) given by

(3.27)
1 22ri = p v  ± a  plogp

w hich can be obtained exactly  in  th e  sam e w a y .  T h e  right choice is then
found to be

(3.28) Ki = —c (c2 a+ 2 ), K 2 —c4—a4, K3 0

with which (3 .25) becomes

C (C2 H- a 2 )( c 2 + a 2 )  ( c 4 ± a 2v2 ) (3.29) ni-o+
P •7) = ( c 2 v 2 ) 1 / 2 V

C2 (C 2  - 1/2 )

T h e  ch an g e  o f  v a riab le s  (2 .4 )  w a s d e r iv e d  f ro m  th is  r i v i a  (3 .3 ) , using
( 3 .6 ) .  T his i7 is strictly convex due to  (3 .4 ) since A ° (u ) is  positive definite
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as was seen in the previous section.

4. Non relativistic limit

Now for the non-relativistic case  (1.6), the symmetrizing variables associated
with the entropy function (3.27) are

(4.1)
1 2 2ITto

= —
y  + a  logp+a 2

j =--1,2,3

and the resulting system is

3

(4.2) A °(u )v t,±  A k (u)u.r k =0 ,
k=1

with

(4.3)
Ago-=a-2p, A81 =AY 0 =a - 2 pv ;

A7j =a - 2 pvivi+p5i ;  ,

and  s o  on . T he  cond ition  (2 .3) can  be  easily  checked  to  hold, so  th a t  the
Friedlichs-Kato-Lax th e o ry  a p p lie s  a ls o  to  t h e  s y s te m  (4 .2 ) a n d , a s  a
conse-quence, to the non-relativistic Euler equation (1.6).

Let z = (p,vi,v2,v3) and z = (p,v1,v2,v3) be the solutions t o  (1.3) a n d  (1.6),
repectively, both for the  sam e initial data zo= (Po,voi.v02,v03). Let zo b e  as in
Theorem 2 .1 . Then, we may conclude that z  exists on the same time interval
[0,T] as z ,c>c o , belongs to the sam e class (1.8) and enjoys the same estimate
(2.16). W e shall show the

Theorem 4.1. A s c—“Do, z converges to z  uniformly o n  [0,7] in  111:0-
c

0 for
any E>0.

Proof. It suffices to prove the theorem for the solutions u t o  (2.2) and u
to  (4 .2 ).  Put 0 =u — u7. Subtracting (4.2) from  (2.2), we have

(4.4) A ° (u) E L I A  (14) 0.rk =

A ° (u) —  A
°
 (14,—)1 Vt— t E 3

k=1 k  (u ) —A k (TO Ttx ,  .

First, we know from the remark made above that the uniform estimates

1174 (t) 11K,, 14 (t)11,,,,,, I (t) L T. co
(4.5) A° (u (t) 31 ) , (A ° (I)) SIE) ,

z (t) , ( t )  E Q(50/ 2,c0) for all x ER 3

hold for all c co and  fo r all tE [0,7], with some constants Co , K0 > 0 .  On the
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other hand, it is easily seen that the  maps u =u (z )  defined by (2.4) and u=
u (z ) b y  (4.1) satisfy

(4.6) u (z) =u—  (z) +0 (c - 2 )

whereas

(4.7)A ° (14 (z) ) a ( -171 (z)) + 0  (c - 2 ) , a = 0,1,2,3

and similarly for their derivatives, as c—oo, where the remainders 0 (c - 2 )  are
all uniform for zeQ(50/2,c0). Owing to (2.16), (4.5), (4.6) a n d  (4.7), the
L2 no rm  of the  righ t hand  side  o f  (4.4) is  majorized b y  C (11011v ±c - 2 )  with
some positive constant C, uniformly for c co , and, hence, (4.4) gives, by in-
tegration by parts and using Gronwall's inequality,

HO ( O i ly =  (c - 2 )

which then yields, after interpolation with (4.5),

ikb (t) Ilus-8= 0 (c - 2 5 )

with any e > O . T h u s  w e  are done.
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