Local smooth solutions of the relativistic Euler equation

By
Tetu Makino and Seiji Ukai

1. Introduction

The motion of a relativistic perfect fluid in the Minkowski space-time is governed by

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}}-\frac{p}{c^{2}}\right)+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{k}\right)=0, \tag{1.1}\\
\frac{\partial}{\partial t}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{i}\right)+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\frac{\rho c^{2}+p}{c^{2}-v^{2}} v_{i} v_{k}+p \delta_{i k}\right)=0, \quad i=1,2,3 .
\end{array}\right.
$$

Here c denotes the speed of light, p the pressure, $\left(v_{1}, v_{2}, v_{3}\right)$ the velocity of the fiuid particle, ρ the mass-energy density of the fiuid (as measured in units of mass in a reference flame moving with the fluid particle) and $v^{2}=v_{1}{ }^{2}+v_{2}{ }^{2}+v_{3}{ }^{2}$.

We assume the equation of state of the form

$$
\begin{equation*}
p=a^{2} \rho \tag{1.2}
\end{equation*}
$$

where a, the sound speed, is taken to be constant so that $0<a<c$. In particular, $a=c / \sqrt{3}$ arises in several important physical contexts. For detailed discussions of this setting, see J. Smoller and B. Temple [6].

Under the assumption (1.2), we can write the equation (1.1) as

$$
\left\{\begin{array}{l}
\frac{\partial w_{0}}{\partial t}+\sum_{k=1}^{3} \frac{\partial w_{k}}{\partial x_{k}}=0 \tag{1.3}\\
\frac{\partial w_{i}}{\partial t}+\sum_{k=1}^{3} \frac{\partial f_{i}^{k}}{\partial x_{k}}=0, \quad i=1,2,3
\end{array}\right.
$$

where

$$
\begin{align*}
& w_{0}=\frac{c^{4}+a^{2} v^{2}}{c^{2}\left(c^{2}-v^{2}\right)} \rho, \quad w_{i}=\frac{c^{2}+a^{2}}{c^{2}-v_{2}} \rho v_{i} \tag{1.4}\\
& f_{i}^{k}=w_{i} v_{k}+a^{2} \rho \delta_{i k}, \quad i, k=1,2,3
\end{align*}
$$

We shall solve the equation (1.3) for $t \geq 0$ and $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}$ together with the initial conditions

$$
\left\{\begin{array}{l}
\left.\rho\right|_{t=0}=\rho_{0}(x), \tag{1.5}\\
\left.v_{i}\right|_{t=0}=v_{0 i}(x), \quad i=1,2,3
\end{array}\right.
$$

For the one-dimensional motions, Smoller and Temple [6] constructed global weak solutions, using Glimm's method [1]. However, no results have been known so far about the full-dimensional existence. Thus the aim of the present paper is to establish the existence of local smooth solutions of (1.3) and (1.5).

We note that in the limit $c \rightarrow \infty$, the system (1.3) reduces formally to the non-relativistic Euler equation

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\rho v_{k}\right)=0 \tag{1.6}\\
\frac{\partial}{\partial t}\left(\rho v_{i}\right)+\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}}\left(\rho v_{i} v_{k}+a^{2} \rho \delta_{i k}\right)=0, \quad i=1,2,3
\end{array}\right.
$$

It is well known that this system can be transformed to a symmetric hyperbolic system to which the Friedrichs-Lax-Kato existence theory of local smooth solutions is applicable, see, for example, Majda [4, §1.3]. Actually, several symmetrizers are known to (1.6). ([1], [2],[4],[5]), which lead to the local existence theorems in different function spaces.

In this paper, we will show that a symmetrizer exists also for the relativivtic case (1.3) which results in the

Theorem 1.1. Suppose that the initial data ρ_{0} and $\left(v_{01}, v_{02}, v_{03}\right)$ belong to the uniformly local Sobolev space $H_{u l}^{s}=H_{u l}^{s}\left(\mathbf{R}^{3}\right), s \geq 3$, and that there exist a positive constant $\delta(<1)$ such that

$$
\begin{equation*}
\delta \leq \rho, v_{0}^{2}=v_{01}^{2}+v_{02}^{2}+v_{03}^{2} \leq(1-\delta) c^{2} \tag{1.7}
\end{equation*}
$$

Then, the system (1.3) has a unique solution

$$
\begin{equation*}
\left(\rho, v_{1}, v_{2}, v_{3}\right) \in C\left([0, T] ; H_{l o c}^{s}\right) \cap C^{1}\left([0, T] ; H_{l o c}^{s-1}\right) \tag{1.8}
\end{equation*}
$$

with $\rho>0$ and $v^{2}<c^{2}$. Here $T>0$ depends only on δ and the $H_{u l}^{s}$-norn of the initial data.

To construct symmetrizers, instection is enough for the non-relativistic case (1.6), but it does not seen to work well for the present case (1.3). In-
stead, we shall follow the idea due to Godunov [1] which relies on the existence of a convex entropy function. Such an entropy function will be constructed in $\S 3$ and the symmetrization for (1.3) using this entropy function will be shown in $\S 2$. In $\S 4$, the convergence is established of solutions of the relativistic (1.3) to those of the non-relativistic (1.6) as the light speed c tends to infinity.

2. Symmetrization

Theorem 1.1 can be concluded if there is a change of variables

$$
\begin{equation*}
z=\left(\rho, v_{1}, v_{2}, v_{3}\right) \rightarrow\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \tag{2.1}
\end{equation*}
$$

which reduces the system (1.3) to a system of the form

$$
\begin{equation*}
A^{0}(u) \frac{\partial u}{\partial t}+\sum_{k=1}^{3} A^{k}(u) \frac{\partial u}{\partial x_{k}}=0 \tag{2.2}
\end{equation*}
$$

whose coefficent matrices $A^{0}(u)$ and $A^{k}(u), k=1,2,3$ satisfy the condition
(i) they are all read symmetric and smooth u,
(ii) $A^{0}(u)$ is positive definite .

The system (2.2) satisfying (2.3) is called a symmetric hyperbolic system.
We claim that one of such changes of variables is given by

$$
\left\{\begin{array}{l}
u_{0}=-\frac{c^{3}}{\left(c^{2}-v^{2}\right)^{1 / 2}} \rho^{-\theta}+c^{2}+a^{2} \tag{2.4}\\
u_{j}=\frac{c}{\left(c^{2}-v^{2}\right)^{1 / 2}} \rho^{-\theta} v_{j}, \quad j=1,2,3
\end{array}\right.
$$

where

$$
\begin{equation*}
\theta=\frac{a^{2}}{c^{2}+a^{2}} \tag{2.5}
\end{equation*}
$$

We shall check the condition (2.3). First, note that the map (2.1) with (2.4) is a diffeomorphism from $\Omega_{z}=\left\{\rho>0, v^{2}<c^{2}\right\}$ onto $\Omega_{u}=\left\{u_{0}<c^{2}+a^{2}, u^{2}=\right.$ $\left.\left(u_{1}\right)^{2}+\left(u_{2}\right)^{2}+\left(u_{3}\right)^{2}<\left(u_{0}-c^{2}-a^{2}\right)^{2} / c^{2}\right\}$. By a straight but tedious computation, we can find the coefficients $A^{0}(u)=\left(A^{0}{ }_{\alpha \beta}\right)_{\alpha, \beta=0,1,2,3}, A^{k}(u)=\left(A^{k}{ }_{\alpha \beta}\right)$ $\alpha \beta=0,1,2,3, k=1,2,3$, as follows:

$$
\left\{\begin{array}{l}
A_{00}^{0}=A_{1} \rho^{\theta+1}, \quad A_{0 i}^{0}=A_{i 0}^{0}=A_{2} \rho^{\theta+1} v_{i} \tag{2.6}\\
A_{i j}^{0}=A_{3} \rho^{\theta+1} v_{i} v_{j}+A_{4} \rho^{\theta+1} \delta_{i j}, \quad i, j=1,2,3
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
A_{00}^{k}=A_{2} \rho^{\theta+1} \tag{2.7}\\
A_{0 i}^{k}=A_{0}^{k}=A_{3} \rho^{\theta+1} v_{i} v_{k}+A_{4} \rho^{\theta+1} \delta_{i k} \\
A_{i j}^{k}=A_{3} \rho^{\theta+1} v_{i} v_{j} v_{k}+A_{4} \rho^{\theta+1}\left(v_{i} \delta_{j k}+v_{i} \delta_{i k}+v_{k} \delta_{i j}\right), \quad i, j=1,2,3
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
A_{1}=\frac{c^{4}+3 a^{2} v^{2}}{c^{3} \theta\left(c^{2}-v^{2}\right)^{3 / 2}}, \quad A_{2}=\frac{c^{4}+2 a^{2} c^{2}+a^{2} v^{2}}{c^{3} \theta\left(c^{2}-v^{2}\right)^{3 / 2}} \tag{2.8}\\
A_{3}=\frac{c^{2}+3 a^{2}}{c \theta\left(c^{2}-v^{2}\right)^{3 / 2}}, \quad A_{4}=\frac{c^{2}-a^{2}}{c\left(c^{2}-v^{2}\right)^{1 / 2}}
\end{array}\right.
$$

These coefficents can be calculated by the chain rule and the formula

$$
\begin{cases}\frac{\partial \rho}{\partial u_{0}}=\frac{A_{4}}{a^{2}} \rho^{\theta+1}, & \frac{\partial \rho}{\partial u_{j}}=\frac{A_{4}}{a^{2}} \rho^{\theta+1} v_{j}, \tag{2.9}\\ \frac{\partial v_{i}}{\partial u_{0}}=A_{5} \rho^{\theta} v_{i}, & \frac{\partial v_{i}}{\partial u_{j}}=c^{2} A_{5} \rho^{\theta} \delta_{I j}, \quad i, \quad j=1,2,3\end{cases}
$$

with

$$
\begin{equation*}
A_{5}=c^{-3}\left(c^{2}-v^{2}\right)^{1 / 2} \tag{2.10}
\end{equation*}
$$

Clearly, (2.6) and (2.7) show that the matrices $A^{0}(u)$ and $A^{0}(u)$ are real symmetric and smooth in Ω_{u}. Let us show that $A^{0}(u)$ is positive definite Let $\Xi=\left(\xi_{0}, \xi\right) \in \mathbf{R}^{4}$ be a 4 -vector with $\xi \in \mathbf{R}^{3}$ and $\|\Xi\|=\sqrt{\xi_{0}^{2}+\xi^{2}}$. We should calculate the inner product

$$
\begin{equation*}
\left(A^{0}(u) \Xi \mid \Xi\right)=\rho^{\theta+1} J \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
J=A_{1} \xi_{0}^{2}+2 A_{2} \xi_{0}(v \mid \xi)+A_{3}(v \mid \xi)^{2}+A_{4} \xi^{2} \tag{2.12}
\end{equation*}
$$

A_{j} being those in (2.8). It is sufficient to show that

$$
\begin{equation*}
J \geq \kappa\|\Xi\|^{2} \tag{2.13}
\end{equation*}
$$

with some positive constant κ. First, we write

$$
J=A_{1}\left(\xi_{0}+\frac{A_{2}}{A_{1}}(v \mid \xi)\right)^{2}-\frac{1}{A_{1}}\left(A_{2}^{2}-A_{1} A_{3}\right)(v \mid \xi)^{2}+A_{4} \xi^{2}
$$

Since

$$
A_{6} \equiv \frac{1}{A_{1}}\left(A_{2}^{2}-A_{1} A_{3}\right)=\frac{\left(c^{2}+a^{2}\right)\left(c^{4}+4 a^{2} c^{2}-a^{2} v^{2}\right)}{c\left(c^{2}-v^{2}\right)^{1 / 2}\left(c^{4}+3 a^{2} v^{2}\right)}>0
$$

and by Schwarz' inequality $(v \mid \xi) \leq v^{2} \xi^{2}$, we get

$$
\begin{equation*}
J \geq \kappa_{1} \xi^{2} \tag{2.14}
\end{equation*}
$$

with

$$
\kappa_{1}=A^{4}-A_{6} v^{2}=\frac{\left(c^{2}-v^{2}\right)^{1 / 2}\left(c^{4}-a^{2} v^{2}\right)}{c^{3} \theta\left(c^{4}+3 a^{2} v^{2}\right)}>0 .
$$

On the other hand, decomposition $\xi^{2}=|\xi-(\widetilde{v} \mid \xi) \widetilde{v}|^{2}+(\widetilde{v} \mid \xi)^{2}$ where $\widetilde{v}=v /|v| \in$ S^{2} gives

$$
\begin{aligned}
J & =A_{1} \xi_{0}^{2}+2 A_{2} \xi_{0}(\widetilde{v} \mid \xi)+\left(A_{3}+\frac{A^{4}}{v^{2}}\right)(\widetilde{v} \mid \xi)^{2}+A_{4}|\xi-(\widetilde{v} \mid \xi) \widetilde{v}|^{2} \\
& \geq\left(A_{3} v^{2}+A_{4}\right)\left((\widetilde{v} \mid \xi)+\frac{A_{2}|v| \xi_{0}}{A_{3} v_{2}+A^{4}}\right)^{2}+\left(A_{1}-\frac{A_{2}^{2} v^{2}}{A_{3} v^{2}+A_{4}}\right) \xi_{0}^{2} \\
& \geq \kappa_{2} \xi_{0}^{2} .
\end{aligned}
$$

where

$$
\kappa_{2}=A_{1}-\frac{A_{2}^{2} v^{2}}{A_{3} v^{2}+A^{4}}=\frac{\left(c^{2}+a^{2}\right)\left(c^{2}-v^{2}\right)^{1 / 2}\left(c^{4}-a^{2} v^{2}\right)}{c^{5}\left(c^{2} a^{2}+\left(c^{2}+2 a^{2}\right) v^{2}\right)}>0 .
$$

This and (2.14) now given

$$
J \geq \frac{1}{2}\left(\kappa_{1} \xi^{2}+\kappa_{2} \xi_{0}^{2}\right)
$$

This shows that (2.3) (ii) is also astisfied, and hence, the Friedlichs-Kato-Lax theory works for the system (2.2). Since the map (2.1) with (2.4) defines a diffeomorhism, we then conclude Theorem 1.1. We can say more, however. Given $\delta \in(0,1)$ and $c>0$, put

$$
\begin{equation*}
\Omega(\delta, c)=\left\{\delta \leq \rho \leq \delta^{-1}, v^{2} \leq(1-\delta) c^{2}\right\} \tag{2.15}
\end{equation*}
$$

It is seen that, for any $\delta \in(0,1)$ and $c_{0}>0, \kappa_{1}$ and κ_{2} are bounded and bounded away from 0 uniformly for $c \geq c_{0}$ as well as for $z=\left(\rho, v_{1}, v_{2}, v_{3}\right) \in \Omega\left(\delta, c_{0}\right)$. Also, $A^{\alpha}(u)$ and any of their derivatives are uniformly bounded both for $c \geq c_{0}$ and z $\in \Omega\left(\delta, c_{0}\right)$. Hence, we have a strengthen version of Theorem 1.1.

Theorem 2.1. For any numbers $a_{0}, c_{0}>0$ and $\delta_{0} \in(0,1)$, there exist posi-tive constants C and T such that for each initial data $z_{0}=\left(\rho_{0, v}, v_{01}, v_{02}, v_{03}\right) \in H^{s}$ satisfying

$$
\left\|z_{0}\right\|_{H_{u l}^{s u}} \leq a_{0}, \quad z_{0} \in \Omega\left(\delta_{0, c_{0}}\right) \text { for all } x \in \mathbf{R}^{3} .
$$

and for each $c \geq c_{0}$, the Cauchy problem (1.3) with (1.5) posesses a unique solution $z=\left(\rho, v_{1}, v_{2}, v_{3}\right)$ belonging to the class (1.8) and satisfying

$$
\begin{equation*}
\|z(t)\|_{H_{\tilde{L}_{1}}} \leq C, z(t) \in \Omega\left(\delta_{0} / 2, c_{0}\right) \text { for all } x \in \mathbf{R}^{3} \tag{2.16}
\end{equation*}
$$

for all $t \in[0, T]$.

3. Strictly convex entropy function

Let us consider the system of conservation laws

$$
\begin{equation*}
w_{t}+\sum_{k}^{N}\left(f^{k}(w)\right)_{x_{k}}=0, \quad w=\left(w_{1}, w_{2}, \ldots, w_{m}\right) \tag{3.1}
\end{equation*}
$$

A scalar function $\eta=\eta(w)$ is called an entropy function to (3.1) if there exist scalar functions, $q^{k}(w), k=1,2, \ldots, N$, satisfying

$$
\begin{equation*}
D_{w} \eta(w) D_{w} f^{k}(w)=D_{w} q^{k} . \tag{3.2}
\end{equation*}
$$

Here and in the sequel, $D_{w} h$ is taken as a row vector in case h is a scalar function and is the Jacobi matrix case h is a vector valued function.

According to Godunov [1], (see also Kawashima-Shizuta [3]), if a strictly convex entropy function exists, then the transformation

$$
\begin{equation*}
w \rightarrow u=D_{w} \eta(w), \tag{3.3}
\end{equation*}
$$

is well-defined and reduces the system (3.1) to a symmetric hyperbolic system of the form (2.2) whose coefficients

$$
\left\{\begin{array}{l}
A^{0}(u)=D_{u} w=\left(D_{w}^{2} \eta\right)^{-1} \tag{3.4}\\
A^{k}(u)=D_{u} f^{k}=D_{w} f^{k} D_{u} w
\end{array}\right.
$$

satisfy the condition (2.3).
In our case, (1.3) is of the form (3.1) with

$$
\begin{equation*}
w=\left(w_{0}, w_{1}, w_{2}, w_{3}\right), f^{k}(w)=\left(w_{k} f_{1}^{k}, f_{2}^{k}, f_{3}^{k}\right), \tag{3.5}
\end{equation*}
$$

where $w_{0}, w_{k}, f_{i}^{k}, \quad(i, k=1,2,3)$ are those in (1.4). Recall $z=\left(\rho, v_{1}, v_{2}, v_{3}\right)$. The map $z \rightarrow w$ is a diffeomorphism from $\Omega_{z}=\left\{\rho>0, v^{2}<c^{2}\right\}$ onto $\Omega_{w}=\left\{w_{0}>0\right.$, $\left(w_{1}, w_{2}, w_{3}\right) \in \mathbf{R}^{3}$. Specifically, using the formula,

$$
\begin{cases}\frac{\partial \rho}{\partial w_{0}}=M_{1}, & \frac{\partial \rho}{\partial w_{j}}=M_{2} v_{j} \tag{3.6}\\ \frac{\partial v_{i}}{\partial w_{0}}=M_{3} \rho^{-1} v_{i}, & \frac{\partial v_{i}}{\partial w_{j}}=M_{4} \rho^{-1} v_{i} v_{j}+M_{5} \rho^{-1} \delta_{i j}\end{cases}
$$

where
(3.7) $\begin{cases}M_{1}=\frac{c^{2}\left(c^{2}+v^{2}\right)}{c^{4}-a^{2} v^{2}}, & M_{2}=-\frac{2 c^{2}}{c^{4}-a^{2} v^{2}}, \\ M_{4}=\frac{2 \theta\left(c^{2}-v^{2}\right)}{c^{4}-s^{2} v^{2}}, & M_{5}=-\frac{\left(c^{2}-v^{2}\right)}{c^{2}+a^{2}},\end{cases}$
we see that the Jacobi matrix $D_{w} z$ is nonsingular with

$$
\begin{equation*}
\operatorname{det}\left(D_{w} z\right)=\frac{1}{\rho^{3}} \frac{c^{2}\left(c^{2}-v^{2}\right)^{4}}{\left(c^{2}+a^{2}\right)^{3}\left(c^{4}-a^{2} v^{2}\right)}>0 . \tag{3.8}
\end{equation*}
$$

Rewrite (3.2) as

$$
\begin{equation*}
D_{z} \eta B^{k}=D_{z} q^{k}, k=1,2,3 \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
B^{k}=D_{w} z D_{z} f^{k}=\left(b_{\alpha \beta}^{k}\right)_{\alpha^{\prime} \beta=0,1,2,3}, \tag{3.10}
\end{equation*}
$$

are computed using (3.5) and (3.6) as

$$
\left\{\begin{array}{l}
b_{00}^{k}=B_{1} v_{k}, b_{0 j}^{k}=B_{2} \rho \delta_{k j}, \tag{3.11}\\
b_{i 0}^{k}=B_{3} \rho^{-1} v_{k} v_{i}+B_{4} \rho^{-1} \delta_{k i} \\
b_{i j}^{k}=B_{5} v_{i} \delta_{k j}+v_{k} \delta_{i j}
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
B_{1}=\frac{c^{2}\left(c^{2}-a^{2}\right)}{c^{4}-a^{2} v^{2}}, \quad B_{2}=\frac{c^{2}\left(c^{2}+a^{2}\right)}{c^{4}-a^{2} v^{2}}, \tag{3.12}\\
B_{3}=-\frac{a^{2}\left(c^{2}-a^{2}\right)\left(c^{2}-v^{2}\right)}{\left(c^{2}+a^{2}\right)\left(c^{4}-a^{2} v^{2}\right)}, \\
B_{j}=\frac{a^{2}\left(c^{2}-v^{2}\right)}{c^{2}+a^{2}}, \quad B_{k}=-\frac{a^{2}\left(c^{2}-v^{2}\right)}{c^{4}-a^{2} v^{2}} .
\end{array}\right.
$$

We shall solve (3.9) assuming that our entropy pair $\left(\eta, q^{k}\right)$ is of the form

$$
\begin{equation*}
\eta=H\left(\rho, v^{2}\right), \quad q^{k}=Q\left(\rho, v^{2}\right) v_{k} . \tag{3.13}
\end{equation*}
$$

Then, setting $y=v^{2}$, the condition (3.9) reduces to the following set of equations for the functions H and Q.

$$
\begin{equation*}
H_{y}=Q_{y} \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
B_{1} H_{\rho}+2\left(B_{3} y+B_{4}\right) \frac{1}{\rho} H_{y}=Q_{\rho} \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
B_{2} \rho H_{\rho}+2 B_{5} y H_{y}=Q . \tag{3.16}
\end{equation*}
$$

From (3.14), there should exist a function $G=G(\rho)$ of ρ only such that $H=$ $Q(\rho, y)+G(\rho)$. On the other hand, eliminating ρH_{ρ} from (3.15) and (3.16), and using (3.14), we have

$$
\begin{equation*}
\left(c^{2}+a^{2}\right) \rho Q_{\rho}-\left(c^{2}-a^{2}\right) Q=2 a^{2}\left(c^{2}-y\right) Q_{y} . \tag{3.17}
\end{equation*}
$$

This and (3.15) then yield

$$
\begin{equation*}
\rho G_{\rho}=\frac{c^{2}-y}{c^{2}+a^{2}}\left(Q-\frac{c^{2}+a^{2}}{c^{2}} \rho Q_{\rho}\right) . \tag{3.18}
\end{equation*}
$$

or putting $q=\left(c^{2}-y\right) Q$,

$$
\begin{equation*}
(1-\theta) q-\rho q_{\rho}=c^{2} \rho G_{\rho} \tag{3.19}
\end{equation*}
$$

Since the right hand side is a function of ρ only, q must be of the form

$$
\begin{equation*}
q=\rho^{1-\theta}[g(\rho)+h(y)] . \tag{3.20}
\end{equation*}
$$

where g and h are arbitrary functions. Substituting (3.20) into (3.17) or

$$
\begin{equation*}
\rho q_{\rho}-q=2 \theta\left(c^{2}-y\right) q_{y}, \tag{3.21}
\end{equation*}
$$

we get, with a constant K_{0},

$$
\begin{equation*}
\rho g^{\prime}(p)-\theta g(\rho)=\theta\left\{2\left(c^{2}-y\right) h^{\prime}(y)+h(y)\right\}=-\theta K_{0} . \tag{3.22}
\end{equation*}
$$

whose solutions are

$$
\begin{equation*}
g(\rho)=K_{2} \rho^{\theta}+K_{0}, h(y)=K_{1}\left(c^{2}-y\right)^{1 / 2}-K_{0}, \tag{3.23}
\end{equation*}
$$

K_{j} 's being arbitray constants. Now, substitution of (3.23) into (3.20) and then into (3.19) yields

$$
\begin{equation*}
G=-\frac{K_{2} \theta}{c^{2}} \rho+K_{3} . \tag{3.24}
\end{equation*}
$$

Thus we get

$$
\begin{align*}
& \eta=H=\frac{K_{1}}{\left(c^{2}-v^{2}\right)^{1 / 2}} \rho^{1-\theta}+K^{2}\left(\frac{1}{c^{2}-v^{2}}-\frac{\theta}{c^{2}}\right) \rho+K_{3} . \tag{3.25}\\
& Q=\frac{K_{1}}{\left(c^{2}-v^{2}\right)^{1 / 2}} \rho^{1-\theta}+\frac{K^{2}}{c^{2}-v^{2}} \rho .
\end{align*}
$$

For the later purpuse, we wish to choose the constants $K_{j}, j=1,2,3$, so that (3.25) converges, as $c \rightarrow \infty$, to the entropy function for the non-relativistic case (1.6) given by

$$
\begin{equation*}
\bar{\eta}=\frac{1}{2} \rho v^{2}+a^{2} \rho \log \rho \tag{3.27}
\end{equation*}
$$

which can be obtained exactly in the same way. The right choice is then found to be

$$
\begin{equation*}
K_{1}=-c\left(c^{2}+a^{2}\right), \quad K_{2}=c^{4}-a^{4}, K_{3}=0, \tag{3.28}
\end{equation*}
$$

with which (3.25) becomes

$$
\begin{equation*}
\eta=-\frac{c\left(c^{2}+a^{2}\right)}{\left(c^{2}-v^{2}\right)^{1 / 2}} \rho^{1-\theta}+\frac{\left(c^{2}+a^{2}\right)\left(c^{4}+a^{2} v^{2}\right)}{c^{2}\left(c^{2}-v^{2}\right)} \rho . \tag{3.29}
\end{equation*}
$$

The change of variables (2.4) was derived from this η via (3.3), using (3.6). This η is strictly convex due to (3.4) since $A^{0}(u)$ is positive definite
as was seen in the previous section.

4. Non relativistic limit

Now for the non-relativistic case (1.6), the symmetrizing variables associated with the entropy function (3.27) are

$$
\left\{\begin{array}{l}
\bar{u}_{0}=-\frac{1}{2} v^{2}+a^{2} \log \rho+a^{2}, \tag{4.1}\\
\bar{u}_{j}=v_{j},
\end{array} \quad j=1,2,3,\right.
$$

and the resulting system is

$$
\begin{equation*}
\bar{A}^{0}(\bar{u}) \bar{u}_{t}+\sum_{k=1}^{3} \bar{A}^{k}(\bar{u}) \bar{u}_{x k}=0 \tag{4.2}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\bar{A}_{00}^{0}=a^{-2} \rho, \bar{A}_{0 j}^{0}=\bar{A}_{j 0}^{0}=a^{-2} \rho v_{j} \tag{4.3}\\
\bar{A}_{i j}^{0}=a^{-2} \rho v_{i} v_{j}+\rho \delta_{i j}
\end{array}\right.
$$

and so on. The condition (2.3) can be easily checked to hold, so that the Friedlichs-Kato-Lax theory applies also to the system (4.2) and, as a conse-quence, to the non-relativistic Euler equation (1.6).

Let $z=\left(\rho, v_{1}, v_{2}, v_{3}\right)$ and $\bar{z}=\left(\bar{\rho}, \bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right)$ be the solutions to (1.3) and (1.6), repectively, both for the same initial data $z_{0}=\left(\rho_{0}, v_{01}, v_{02}, v_{03}\right)$. Let z_{0} be as in Theorem 2.1. Then, we may conclude that \bar{z} exists on the same time interval $[0, T]$ as $z, c>c_{0}$, belongs to the same class (1.8) and enjoys the same estimate (2.16). We shall show the

Theorem 4.1. As $c \rightarrow \infty, z$ converges to \bar{z} uniformly on $[0, T]$ in $H_{l o c}^{s-\varepsilon}$ for any $\varepsilon>0$.

Proof. It suffices to prove the theorem for the solutions u to (2.2) and \bar{u} to (4.2). Put $\psi=u-\bar{u}$. Subtracting (4.2) from (2.2), we have

$$
\begin{align*}
A^{0}(u) \psi_{t}+ & \sum_{k=1}^{3} A^{k}(u) \psi_{x k}= \tag{4.4}\\
& \quad-\left\{A^{0}(u)-\bar{A}^{0}(\bar{u})\right\} \bar{u}_{t}-\sum_{k=1}^{3}\left\{A^{k}(u)-\bar{A}^{k}(\bar{u})\right\} \bar{u}_{x_{k}}
\end{align*}
$$

First, we know from the remark made above that the uniform estimates

$$
\left\{\begin{array}{l}
\left\|_{u}(t)\right\|_{H_{u l}^{s},}\|\bar{u}(t)\|_{H_{u}^{s},}\|\bar{u}(t)\|_{H_{u \bar{u}}^{s-1}} \leq C_{0} \tag{4.5}\\
A^{0}(u(t) \Xi \mid \Xi),\left(\overline{A^{0}}(\bar{u}(t)) \Xi \mid \Xi\right) \geq \kappa_{0}\|\Xi\| \\
z(t), \bar{z}(t) \in \Omega\left(\delta_{0} / 2, c_{0}\right) \text { for all } x \in \mathbf{R}^{3}
\end{array}\right.
$$

hold for all $c \geq c_{0}$ and for all $t \in[0, T]$, with some constants $C_{0}, \kappa_{0}>0$. On the
other hand, it is easily seen that the maps $u=u(z)$ defined by (2.4) and $\bar{u}=$ $\bar{u}(z)$ by (4.1) satisfy

$$
\begin{equation*}
u(z)=\bar{u}(z)+O\left(c^{-2}\right), \tag{4.6}
\end{equation*}
$$

whereas

$$
\begin{equation*}
A^{\alpha}(u(z))=\bar{A}^{\alpha}(\bar{u}(z))+O\left(c^{-2}\right), \alpha=0,1,2,3 \tag{4.7}
\end{equation*}
$$

and similarly for their derivatives, as $c \rightarrow \infty$, where the remainders $O\left(c^{-2}\right)$ are all uniform for $z \in \Omega\left(\delta_{0} / 2, c_{0}\right)$. Owing to (2.16), (4.5), (4.6) and (4.7), the L^{2} norm of the right hand side of (4.4) is majorized by $C\left(\|\psi\|_{L^{2}}+c^{-2}\right)$ with some positive constant C, uniformly for $c \geq c_{0}$, and, hence, (4.4) gives, by integration by parts and using Gronwall's inequality,

$$
\|\phi(t)\|_{L^{2}}=O\left(c^{-2}\right) .
$$

which then yields, after interpolation with (4.5),

$$
\|\psi(t)\|_{H^{s-\varepsilon}}=O\left(c^{-2 \varepsilon}\right)
$$

with any $\varepsilon>0$. Thus we are done.

> Department of Liberal Arts
> Osaka Sangyo University
> Deprtment of Information Science
> Tokyo Institute of Technology

References

[1] S. K. Godunov, An interesting class of quasilinear systems, Dokl. Acad. Nauk SSSR, 139 (1961). 521-523.
[2] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.
[3] S. Kawashima and Y. Shizuta. On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tôhoku Math. J., 40 (1988), 449-464.
[4] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Appl. Math. Sci., 53). Springer, 1984.
[5] T. Makino. S. Ukai and S. Kawashima. Sur la solution à support compact de l'équation d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249-257.
[6] J. Smoller and B. Temple, Global solutions of the relativistic Euler equations, Commun. Math. Phys., 156 (1993), 67-99.

