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Complex manifolds modeled on a
complex Minkowski space

By

Tadashi Aikou

§0. Introduction

In the present paper, we investigate the differential geometry of complex
Finsler manifolds. The main purpose is to introduce a connection on a com-
plex Finsler manifold as the transversal connection constructed by the same
method as used in [3], and to discuss some properties of complex manifolds
modeled on a complex Minkowski space, which is a complex version of the notion
due to Ichijyo [8].

We denote by C” the complex vector space of n-tuples of complex num-
bers. A function f(&) defined on C” is said to be a Finsler metric if it satis-
fies the following properties:

(i) (&) =0, the equality holds if and only if £= (&', ..., £") =0,

(ii) (& is C* on C™- {0}, and continuous on C”,

(iii)  f(2&) =A|%(&) for VAEC,

(iv) f(&) is strictly plurisubharmonic outside of the origin O, that is, the
Hermitian matrix (0%/0£%0 £#) is positive-definite.

The condition (iv) is equivalent to the strict pseudoconvexity of the in-
dicatrix I= {E€C™ f(&) <1}. Conversely, if a complete proper circular domain
I in C" with smooth boundary is strictly pseudoconvex, the Minkowski func-
tional of I defines a Finsler metric on C” whose indicatrix becomes the given [
([13]). Any Hermitian metric on C” belongs to the class of Finsler metrics,
and is characterized by one of the following three equivalent conditions (see
Corollary 3.2 in [13]):

(1) The indicatrix I is biholomorphic to the unit ball in C".
(2) The function f(&) is C™ at the origin O.

n n
(3) The function f(§) is expressed as f(£) :Z\ ZA;E’”\Z for 3 (4)) €

i=1 m=1
GL(n, C).
In the present paper, following to Ichijyo [9], we call a Finsler metric f on C”
a complex Minkowski metric on C", and the pair (C”, f) a complex Minkowski
space.

Communicated by Prof. K. Ueno, May 9, 1994



86 Tadashi Aikon

In the similar way a Finsler metric F of a complex vector bundle 7: E—M
is generally defined as a function on its total space E (§1). We find many
papers on the complex differential geometry of complex manifolds with a Fins-
ler metric ([2], [6], [14], [16], [24], etc.). In the real case, Bao-Chern [4],
Chern [5] and Shen [18] have recently developed the theory of connections in
Finsler geometry by using the projective bundle, and obtained some results.
On the other hand, if a real Finsler metric F is given on a C* manifold M, then
its tangent bundle TM admits a natural Sasaki-type metric, and has the struc-
ture of foliated Riemannian manifold. Suggested by these facts, in the pre-
vious paper [3] the author has introduced a connection on a real Finsler man-
ifold (M, F), and given some characterization of special Finsler manifolds.
The connection in [3] was defined as the transversal Levi-Civita connection
which plays an important role in differential geometry of foliated Riemannian
manifolds ([20]).

On a complex Finsler manifold (M, F), that is, a complex manifold M with
a complex Finsler metric F, a connection is introduced in the same way (§2).
Based on this connection, we treat a complex manifold modeled on a complex
Minkowski space (83, 84, §5).

The author wishes to express his sincere gratitude to Professor Dr.
Makoto Matsumoto and Professor Dr. Yoshihiro Ichijyo for the invaluable
suggestions and encouragement.

§1. Finsler metrics on complex vector bundles

Let M be a connected C* manifold, and m: E—M a C* complex vector bun-
dle of rank E =7 If we fix a local frame field s = Is1, -, s,/ of E over a

neighborhood U of M, we have the identification 77 (U) U X C”. 1f we put &
= Zéasa, the component (&!, .., &”) defines the complex fibre coordinate of
a

771 (U). We denote a point of 772 (U) by (x, §), where xEU and £EEC(".

Definition 1.1. A function F (x, §) on E is said to be a complex Finsler
metric if satisfies the following conditions:
(1) F(x, & =0, the equality holds if and only if £=0,
(2) F(x, &) is C* on E- {zero sections}, and continuous on E,
(3) Flx, 28) =|21?PF (x, &) for YAEC,
(4)  the following Hermitian matrix (Faﬁ) is positive-definite:

0’F

Fatr O = e

If a complex Finsler metric F (x, &) is given on E, each fibre E, is consi-
dered as a complex Minkowski space (C7, ||‘||p) with the norm function ||E||§:=
F(p, &). Given E€C”(E), the norm of £(x) is defined by [|E(x) B=F (x, £(x)),
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where C*(E) denotes the linear space of all C* sections of E.
For later discussions, we fix any point p € M and denote by G the
isometric group of the norm on E:

GC=WEGL(r,C); F(p.g&) =F(p, &) for VEEE,| .

By using the condition (3) in Definition 1.1 and the continuity of the norm,

we can prove the following lemma by the same method as Wang [22] or Yano
[26].

Lemma 1.1. The isometric group G is a compacl Lie group.

We denote by J the given complex structure on E, that is, J is an auto-
morphism of E satisfying /= —1g. A connection V: C”(E)—C* (EQTM*)
of E is said to be complex if it satisfies VJ=0. Generalizing the method in
[19] to our case, we have

Theorem 1.1. Let E be a C” complex vector bundle over M with a complex
Finsler metric F(x, §). We suppose that E admits a complex connection V. on E
which preserves the norm invarianl undev the pavallel displacement. Then there
exists a Hermitian metvic h on E such that V is a metvical connection of (E, h).

Proof. Since M is connected, we denote by H the holonomy group of
V with reference point p € M. By hypothesis, H is a subgroup of G. Then
we define an inner product <,), on Ej by

& 9= 0E 99)dg |

where (,) is an arbitrary Hermitian inner product on Ej and dg is the
bi-invariant Haar measure on G. Then we have

Y& 19,= [ 68 U9 as=[ 68, I g))dg
= [ Wt ap)as=<& 9>, |

that is, {.>» is a Hermitian inner product on E,. By the construction, ), is
G-invariant, and furthermore, it is also H-invariant.

Using the parallel displacement with respect to V, we can extend {2, to
a Hermitian metric h of E. Let x be an arbitrary point of M, and ¢ (t) (0<¢
<1) a C~ curve such that ¢(0) =p and ¢ (1) =x. For V& ¢EE,; we define

h (& ¢):=<LP'E PIIYY,

where P E,— E, is the parallel displacement with respect to V along ¢ (t).
Since £, is H-invariant, this definition is independent on the choice of ¢ ()
on M, and by VJ=0 the metric h is a Hermitian metric. In this way, we can
define a Hermitian metric & on E. By the construction of k, we have easily

dh (& ¢)=h(VE ¢)+h(E V)
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for V& ¢€C”(E). Hence, V is metrical with respect to h. Q.E.D.

Remark 1.1. In Theorem 1.1, if M is a complex manifold and V is of
(1, 0) -type, then V is the Hermitian connection of (E, h).

From the discussions in [26], it follows that if a suitable basis is chosen,
all elements of G are orthogonal. Hence, all elements of G are contained in
U(r)=0(2y) NGL(r, C). In the proof above, we have constructed an Hermi-
tian metric on K, which is invariant under the action of G. We shall use this
fact in §4.

§2. Complex Finsler manifolds and Finsler connections

Let M be a connected complex manifold of dim.cM =n, and m: TM—M its
holomorphic tangent bundle. The total space TM is a complex manifold of
dim.cTM = 2n. We denote by {z '(U). (2, ")} (1 <i <u) the canonical
covering of TM induced from a covering by the system of complex coordinate
neighborhoods 1{U, (z')} on M. Suppose that a complex Finsler metric
F(z, 1) is given on TM. Then we call the pair (M, F) a complex Finsler man-
ifold. By the condition (4) in Definition 1.1, the following Hermitian matrix
(F.) is positive-definite:

0%F

2.1 F.- = .
(2.1) (2 m) T

In the following, we put (F’) = (F,j.)"l.

Complex Finsler metrics include the following important classes which
will be characterized in terms of a connection in the later:

(1)  Hermitian metries: F (z, 1) :Zh,j (2)n' 77,

i
(2)  locally Minkowski metrics: F=F (n', -, ") by taking a suitable system of
complex coordinate neighborhoods {U, (z*) on M.

Let (M, F) be a complex Finsler manifold. For studying Finsler geomet-
ry, we introduce a connection which is a natural generalization of real case
([3]). We denote by VTM the holomorphic tangent bundle of the fibres of
TM. Since VTM is a holomorphic sub-bundle of TTM, we have the following
exact sequence of holomorphic vector bundles:

i <>

0 VTM TTM Q 0,

where @ is the quotient bundle TTM/VTM. Since @ is naturally identified
with 77'TM, the natural frame [0/0z't (1<i<n) of TM over U may be consi-

dered as a local holomorphic frame field of @ over #=*(UU). Then we intro-
duce a Hermitian metric ¢ on @ by
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0o 0
(2.2) h ( ) =F,(z.n) .
Nozi oz n)
As a connection of (@, hq), it is natural to use the Hermitian connection, but
we use a transversal connection of (Q, hg) which is defined as follows.
First we introduce a C* splitting 0: @ = TTM of the exact sequence above
by

0)\_ 0 m 0
"(EZ>_az"_ ~ N o™’

where Ni (1<i, j<u) are C* functions on 7 '(U) defined by

(2.3) Ni(z, n): ZF"GF”” "

Then the tangent bundle TTM has a C* decomposition TTM = VTM®HTM,
where we put HTM=0(Q). Putting X;:=0(0/0z°) and Y;:=0/07", then {Xi
and 1Y} (1<i<n) define a local frame field on 7=} (U) of HTM and VTM re-
spectively. In the dual frame field ldz', 6} (1<i<n) of {X;, Y, we intro-
duce a Hermitian metric hry on TM by

(2.4) hru= ZFinz"®dzj+ZFij0"® 6,
i,j ij

where we put 0i:=d7}i+ZNindz"’. This is a natural metric from the stand-

m

point of the geometry of tangent bundles ([17]). Then (TM, hryu) has the
structure of foliated Hermitian manifold, and @ is the transversal distribution
in TM.

We denote by V¥ the Hermitian connection of (TM, hry). For V EE
C=(Q), there exists a unique X €C” (HTM) such that {X¢ is the natural pro-
jection of X¢ to the quotient bundle . Now we introduce a connection on (@,
hq) as follows:

Definition 2.1. The (1, 0) -type connection V on (Q, hg) defined by

z, x> ifzec>(VTM)

(2 5) Vzgi=
(ViMx> i 2eC*(HTM)

is called the Finsler connection of (M, F).

Since the complex structure of @ is given by w~' J for J of TM, it is ob-
vious that V satisfies VJ=0. Corresponding to the decomposition TTM =
VTM@ HTM, the differential operator d on functions and the Finsler connec-
tion V are decomposed as d =dy+dv and V= V¥ + V" respectively. We
also decompose dy and dy into (1, 0) -part and (0, 1) -part as dg =0+ 0 n,
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dy=0v+ 0y respectively, where we put
511/'=Z(me)dzm, avf=Z(me) o™

for a C* function f(z, n) on TM.
By the definition, it is obvious that V is not always metrical with respect
to hq, but we have

Proposition 2.1. The Finsler connection V of (M, F) satisfies
(2.6) duhg (& ¢) =ho(VHE ¢) +hq (& VEY)
for & ¢gEC™(Q).

Proof. From (2.2) and (2.4) we have hg (§ ¢) = hry (X¢, Xy). Since
V ™ is the Hermitian connection of (TM, hry), we have

dhq (& ¢) =hru (V™™Xe, Xy) +hrm (Xe, VIVX,) |
whose restriction to the transversal part implies (2.6). Q.E.D.

For YEEC*(Q), we have Vy,E={[Y: Xe]> =0vE(Y:), and since the con-
nection is (1, 0) -type, we have V'=dy. Furthermore, the connection form of

V is written as w§=ZF§mdz’". So, by (2.6) we get

SIFINNER TX}

which is written as OnF,+ 5HF.‘;:ZF”.;‘U?”+ZFW,‘DJ’”- Hence we have
m

m

dHFU.:hQ(
m

g

w;: ZFuHaHF

The coefficients in w! are given by Fi (z, 1) :ZFWX"FW from which we get
m

Niof (2.3) as

@7 N=Y "

m

Defining a section eEC*(Q) by

m_0
ez, m) =EY] Py

we have V#e=0 from (2.7). By using the property hq (e, €) =F (2, ), we
get from (2.6) the identity:
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(2.8) dyF=0 .
Then we have

Theorem 2.1. (1) A Finsler metric F on M is Hermitian if and only if
its Finsler connection V is metrical.
(2) A Finsler metric F on M is locally Minkowski if and only if its Finsler con-
nection V is flat.

Proof. Since F is Hermitian if and only if avFU-,:O, the first statement is
obvious from (2.6). It is shown from (2.7) that the metric F is locally
Minkowski if and only if OuF ;=0 on a suitable coordinate system {U, (')} on
M. Hence the connection form of V vanishes identically on such a coordinate
system, and so V is flat. Thus the second statement has been proved. Q.E.D.

Remark 2.1. Finsler geometry is sometimes studied by using the pro-
jective bundle PM instead of TM ([4], [5], [10]. [18]). The following

Hermitian form @y on 7' (U) is invariant by replacing n by An for VA€ C-
{0 :

0,=) (L YEEN) g

ij I.m

Furthermore, it is easy to show that @y = @y on 7 *(U) N 7~ (V). Hence
{@yl defines a global form @ on PM. Then we define a Hermitian metric hpy
by

hm=ZF,.jdz"®dzf+d>
i
instead of (2.4) ([21]). Since the bundle PM has also a natural foliation
VPM and the exact sequence of holomorphic vector bundles 0— VPM—TPM—
Q—0, we can define a Hermitian metric hg on the quotient bundle @ and a

connection V on (Q, hg) by (2.5). In this case, we can do the discussions
similar to the above.

The section € € C*(Q) defines a holomorphic line bundle L over PM.
Kobayashi [10] showed that a Hermitian metric on L defines Finsler metric
on M, and vice-versa. Furthermore he showed that the negativity of L, which
is equivalent to the negativity of the tangent bundle TM, implies the
positive-definiteness of (F,,j). As to the existence of Finsler manifolds with
negative tangent bundle, see [24].

§3. Kahler condition of a complex Finsler manifold

In this section, we shall state some remarks on the Kahler condition of a
complex Finsler manifold (M, ). First we note that around V PE€ TM we
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can always take a coordinate neighborhood 17~'(U), (z', n')l which is
semi-normal at P, that is, a neighborhood satisfying

(3.1) e=—F;

at P. In fact, for a given complex coordinate system {U, (z')| on M, we de-
fine a new coordinate system {U, (z')} on M by

2= g — ) P (P) (—2h) (Fak) |

ik

where we put P= (2, nj). Then it is easily seen that the coordinate system
on TM induced from {U, ()} satisfies the condition (3.1) at P. Furth-

ermore, if a semi-normal coordinate system {7 '(U), (2, °)| at P is said to
be normal if the following condition is satisfied:

F’](P):éu and F;k(P)ZO

If the Finsler connection V of (M, F) is the transversal Levi-Civita con-
nection of (Q, hq) in the sense of Tondeur [20], we say (M, F) satisfies the
Kdhler condition. A Finsler manifold (M, F) satisfies the Kihler condition if

and only if the coefficients Fj's satisfies the symmetry

If we put ®=,-1 ZFUdz"/\dz‘j, it is directly shown that this condition is
i.j
equivalent to dg®=0. Then, from (3.1) and (3.2) we have
Theorem 3.1 ([2]). A complex Finsler manifold (M, F) satisfies the

Kdhler condition if and only if avound any point P of TM theve exists a complex
coordinate system which is normal at P.

The functions Ni(z, p) in (2.3) are also found in [14]. From (2.7) we
get easily Fiy =0N;j/0z*. Hence the Finsler connection V coincides with the
one introduced in [14]. The function Ni(z, 1) are derived from the variation-
al problem as follows.

Let ¢(t) be a C* curve on a complex Finsler manifold (M, F). The
Euler-Lagrange equation with respect to F is given by

o) =50

For an arbitrary point (z, & in TM, there exists a holomorphic map ¢:
A(r)—M satisfying ¢ (0) =z, ¢x(0):= ¢ ((8/00) o) = &, where A(¥) is the
disk in C of radius » centered the origin. We give on 4 (#) the Poincaré met-
ric g
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’,2
=1

Now we assume Royden's condition in [14]:

gr=—d {dl .

“for any (z, &) €TM, there exists a holomorphic map ¢: 4 (r)—M such

(3.3) that ¢(0) =z, ¢%(0) =€ and the curve 7(t) =¢ ¥~"%) in (M, F) is a
geodesic tangent to the common complex line C+& at z for each 6ER",

that is, the disk ¢ (4 (r)) is the union of such geodesics. Then, corresponding
(16) and (Ks) of [14], we have from the Euler-Lagrange equation

é"+ZN;i (z, £)E1=0

ZF,',;. (Fix—Fly) §8m=

ij,m

where we put ¢= (¢, —, ¢"), and & =0d¢'/dL, € =E'/DL for the coordinate
Cof A(r). The first equation is a differential equation for geodesics, and the
second is an algebraic condition. The second equation is satisfied if (M, F)
satisfies the Kahler condition.

The discussions for geodesics in complex Finsler manifolds are also found
in Abate-Patrizio [1]. It is noted that the second condition above is equiva-
lent to the Kahler condition in the case where the metric is a Hermitian metric:

F(z, n) :Zh'f (2) pin’.

ij

§4. Complex manifolds modeled on a complex Minkowski space

Another important class of Finsler metrics is the one whose Finsler con-
nection V is basic: Fj/x=F;'x(z). This property is, of course, independent on
the choice of complex coordinate system on M. In this case, V of (Q. hQ) is
considered as the pull-back of an (1, 0) -type connection of TM. It is obvious
that any Hermitian metric and locally Minkowski metric belong to this class.

Now, assume that V is basic, and we consider V as a connection on TM.
Let ¢ (t) be a C* curve on M. We denote by & the parallel displacement of §
€ TyM along ¢ (t) with respect to V. The norm [|& |y of & is given by

”5:":(1)— ), &). Then we have

Proposition 4.1. If V is basic, IElcry is invariant under the parallel dis-
placement with vespect to V , that is, d"ét"c(f)/dlzo.

Proof. 1f we put §,=Z$m<a/az'"), & satisfies
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+Z <dt)§m =0

Then we have

d"%??mz Mv_&)_&m_}_ OF(cb). &) dE + (conj.)

0z" dt a m

m

Z( F,,f’) + (conj.)
Z( ZN”’ aaF > + (conj.)

—aHF+a,,F—dHF( (1), &) .

Hence, our assertion is derived from (2.8). Q.ED.

Proposition 4.1 means that if the Finsler connection of (@, hq) is basic,
there exists a (1, 0) -type connection V on TM which preserves the norm
€ llecer invariant under the parallel displacement. Hence, by Theorem 1.1, we
have

Theorem 4.1. Let (M, F) be a complex Finsler manifold whose Finsler con-
nection V is basic. Then theve exisls a Hermilian melvic hy on M such that
V is the pull-back of the Hermitian connection of hy.

Since the parallel displacement gives a complex linear isomorphism be-
tween tangent spaces, Proposition 4.1 says that if the Finsler connection V is
basic, each tangent space is isometric to a fixed complex Minkowski space
(C*, f) with f(&) =F (p, §). In the real case, such a manifold belongs to the
class of manifolds modeled on a Minkowski space due to Ichijyo [8]. In the fol-
lowing, we shall consider the notion in the case of complex manifolds.

We state some terminology. Let G be a Lie group. We say that a C”
manifold M admits a G-structure if there exists a covering |{Ul with local
frame fields leyl such that the transition functions {gyyt are all G-valued
function. Such a frame leyl is said to be adapted. A linear connection D is
called a G-connection of the G-structure if the connection form with respect to
an adapted frame leyl takes its values in the Lie algebra of G.

Let f(§) be a complex Minkowski metric on C”, and G the isometric group
of f(&) (cf. Lemma 1.1). Let led (1<i<n) be a frame of TM, which we ex-

press as ei=ZA§” (0/0z™). where Al U—=GL (n, C) (1<4,j<n) are C* func-

m

tions. For V 77=Z§”’em=27)’”(6/62”’), we define a function F: 7' (U)—
m n

by
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4.1 Fln):=rE) =) Bun™) |

where B= (B}) is the inverse of A = (A). The function F (z, ) is defined
globally on TM and becomes a Finsler metric, if and only if M has a
G-structure and lej is an adapted frame of the G-structure.

Definition 4.1. A complex Finsler manifold (M, F) is said to be a com-
plex manifold modeled on a complex Minkowski space (C", f) if M admits a
G-structure and the metric F is written in the form of (4.1).

Let (M, F) be a complex manifold modeled on a complex Minkowski space
(C™ ). So, in the following we always assume that M admits a G-structure,
and le;l is an adapted frame of this G-structure. With respect to le;l, each
tangent space of (M, F) may be considered as the given Minkowski space

cnr).
Let D be a G-connection of the G-structure. We put De; = Z@,’”em.
m

Since the matrix @= (®}) is a 1-form which values in the Lie algebra of G,
we get

Proposition 4.2. Let (M, F) be a complex manifold modeled on a complex
Minkowski space (C", f). The Finsler connection V of (M, F) is given by the
(1, 0) ~part of @= (D!, and so V is basic.

Proof. 1f we denote by 8= (6}) the (1, 0) -part of ®= (®}), the 1-form 6

takes the value in the Lie algebra of G. Thus the equality f((exp t8) &) =£(&)
holds for VtER. Differentiating this equation at t =0, we get

(4.2) Zagf §m+zag fLEm=0

l,m I,m

We express 0 by w= (wi) with respect to the natural frame field 19/0z'l,
where we put w}::ZI}’}n (z)dz™. Then we have 8=BdA +BwA =B0A +BwA

_ m
+ B0OA, where we used the matrix notation. Substituting this into (4.2), we
get

(4.3) Z 55%3;,(%{1+Zr;’m )51+ Zgégl %1_5 0

i.lom jlom

We define the function Ni(z, ) in (2.3) by Ni(z, n) ZZFmi; (z2)p™.  Us-

m

ing n’:ZAin(z) &™ and §i=ZBi,, (z) n™, we can show 0gF=0. In fact, we

have
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oF a
F=2— ) N
XF azl Z anﬂl

T ) D B D

Tl S+ g b= (L))

=- Z {in OAL e +<Zrk’",~B£n>Ak&'—f—+—LBkaA' s’]

kdr o¢' o' ¢
- L (5 Brane- T antire

which is equal to zero from (4.3). Furthermore, from 3% (X,F) /dn'on’ =0
we get a)j:———ZFWGHFM, which shows that the connection V defined by Ve;=

Z@;’”em is the Finsler connection of (M, F). Q.E.D.

m
Therefore we have proved

Theorem 4.2. A complex Finsler manifold (M, F) is modeled on a complex
Minskowski space if and only if the Finsler connection (M, F) is basic.

Let (M, F) be a complex manifold modeled on a complex Minkowski space
(C™ f), and le;} an adapted frame of the G-structure. Since any element of
G is given by a unitary matrix with respect to le;l, we can define a Hermitian
metric iy on M by

@) hlee) =8y or (o )= @) = pr@BrG)

We call hy the associated Hermitian metric to (M, F). Since G is a subgroup
of U(n), the connection form 6= (6}) of V in Proposition 4.2 satisfies 6+ 6
=0, and so V is the Hermitian connection of hy. Therefore the pull-back of
the Hermitian connection of Ay defines the Finsler connection of (M, F). The

associated Hermitian metric hy is a metric whose existence is asserted in
Theorem 4.1.

Proposition 4.3. Let (M, F) be a complex manifold modeled on a complex
Minkouski space. The Finsler connection of (M, F) is given by the Hermitian con-
nection of the associated Hevmitian metric hp.

Furthermore, from this proposition and the Kahler condition (3.2), we
get
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Proposition 4.4. Let (M, F) be a complex manifold modeled on a complex
Minkowski space. (M, F) satisfies the Kdihler condition if and only if the associ-
ated Hermitian metvic hy is a Kdhler metvic on M.

Let (M, F) be a complex manifold modeled on a complex Minkowski space
(C* f). 1In (C" f), the indicatrix /= {EEC™; f(£) <1} is bounded and strict-
ly pseudoconvex, and there exists a unique Euclidian sphere S centered at the
origin inscribed about the indicatrix I. We may assume S is the unit sphere

<ss»=2k%=1.

which is the boundary of the indicatrix in T,M of the associated Hermitian
metric hy. The associated Hermitian metric hy defines a function fy on TM
by

@5 ful)=)h @0

The definition (4.4) yields the following inequality:
(4.6) fulz, m) =F(z, ) .
Then we can show

Theorem 4.3. Let (M, F) be a complex manifold modeled on a complex
Minkowski space (C", f). F is a Hermilian metric on M if and only if the
isometric group G acts transitively on the boundary 0l at each point.

Proof. Let & be an element such that f(§) =1=<§, &£),. and ¢ another ele-
ment with unit norm: f(¢) =1. If the isometric group G of f acts on 0l tran-
sitively, there exists §E€G with ¢ =g (€). Since the imner product {, is also
invariant under ¢ €G, we get

(@) =1=(§ &,=49(8).9(8) =X, ¢, .

Thus the point ¢ lies on S, and the boundary 0/ coincides with S. The con-
verse is also true. Q.E.D.

Example 4.1 (Complex parallelisable manifolds). Let M be a complex pa-
rallelisable manifold, e.g., M is a complex multi-torus. Then, its holomorphic
tangent bundle admits a globally defined holomorphic frame field led (1 <i
<n), that is, M admits a {1} -structure ([7]). In this case, the function
Bi: U—GL (n, C) are holomorphic. Since the curvature is given by 2] =

Zé(hmahj,ﬁ), the Hermitian connection of the associated Hermitian metric Ay
m
of (4.4) is of zero-curvature, and so the Finsler connection of (M, F) con-

structed in Proposition 4.3 is flat. Such a complex Finsler manifold (M, F)
is locally Minkowski. Therefore it is possible to introduce a locally Mink-
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owski metric on any complex parallelisable manifold.

§5. Holomorphic sectional curvature

In this section, we shall treat a complex Finsler manifold (M, F) and its
holomorphic sectional curvature. We denote by £ the curvature form of the
Finsler connection V of (M, F). £ is a C*(QQQ*)-valued 2-form on TM,
and by direct calculations we have

Q=0w+dvw .

Therefore the holomorphic sectional curvature H (z, &) at (z, £ € TM defined
in [10] is written as

H(z &) =2hQ('Q(Xf- Xe) & £)

F(z, 8)°*
Then, by direct calculations, we get a local expression of H(z, §) as follows:
mxaF\,,, aF” azF\
60 HeO=rg L (LS ka',)sss&'
k.l,s,t i,m

where we used (2.3). It is noted that if the given metric F is a Hermitian
metric on M, H (z, ) is just the holomorphic sectional curvature in the usual
sence ([25]).

On the other hand, for an arbitrary point (z, §) € TM there exists a holo-
morphic map ¢: 4 (r) =M satisfying

(5.2) 0(0) =z, ¢x(0)=¢ .

Then, for the given Finsler metric F(z, ), a Hermitian metric ¢* F on 4(7) is
introduced by

O*F=E () d(®d

where we put E({) =F (¢ ({), ¢x({)). The Gauss curvature of ¢*F is de-
fined by

¢=0 '

and, according to Wong [23], the holomorphic sectional curvature K (z, &) of
(M, F) at (z, & is defined by

K (z, &):=sup K (¢*F)} ,

where ¢ ranges over all holomorphic maps satisfying (5.2).
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In the following, we assume that [|E[2=F (z, &) =1, for simplicity. Then
we may always choose a coordinate system on A4 (r) satisfying (9E/0() ¢=o=0
and (0E/0() (=o=0. Hence, in such a coordinate system on A4(r), K (z, £) can
be written as

K(z, &) =2 SUPK— ;;gé)c:o] :

By direct calculations, using (2.3) and (5.1) we get

(%>C=°:Z{£%@” ), (NhE™) +F f,v(;N;,sm) G+ F,6i%)

— ZF*?' (¢6+ZN£,,§'") W —H(z, &) ,

from which we have

0
0z}

2
H &) =K (*F) +2] ) (g4+ ) Nue™)

i m ¢
where we put @b = (02¢'/0(%) ¢=o. This yields the inequality H (z, §) =
sup [K (¢*F)}. Royden [14] showed that sup {K (¢*F)!| attains to the max-
imum when ¢ is a complex line in the semi-normal coordinate system at P=
(2, £). The equality above shows that the maximum is given by the previous

H (z, €). In fact, in a semi-normal coordinate system at P= (z, £), we get
from (2.3) and (3.1)

Y Ninle, O 6= ) Fin(z, 86" =0 .

ILm

Therefore we have proved

Proposition 5.1. The holomorphic sectional curvature K (z, &) coincides
with the one H (2, &) constructed from the curvature 82 of the Finsler connection

Vo MF).

In the case of Hermitian metric on M, this fact is well-known ([25]).

Now, we suppose that H (z, £) is bounded above by a negative constant
—k (k>0). Proposition 5.1 implies that K (¢*F) <—k for an arbitrary ¢.
Then we have the following Schwartz-type lemma ([15]).

Proposition 5.2. Let ¢: A(r)—M be a holomorphic map of a small disk
into a complex Finsler manifold with holomorphic sectional curvature at most —k.
Then we have

(5.3) 4(72_7|C[2>2|v|22kF(<p(C),go*(v)) for v=1(3¢). €T )
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For an arbitrary (z, § € TM, we take a holomorphic map ¢: 4(r)—M
satisfying (5.2). Then, by Proposition 5.2 we have

e 4 )
4 (12—|0l2)2_r22kF((p(0)' 0x(0)) =kF (2, §) |

from which we get the following inequality:
4Fuz ©%=4linf 1) 24P (2, §) |
where Fy is the Kobayashi melric on M:

Ful(z, &) :=inf }%; ¢: A(r)—M is a holomorphic map satisfying ¢ (0) =z,
Ox (0) =E} .
Hence we have

Theorem 5.1. Let (M, F) be a complex manifold whose holomorphic section-
al curvature H(z, &) is bounded above by a negative constant —k. Then we have

AF% 2 kF .

Let (M, F) be a complex manifold modeled on a complex Minkowski space
(C™, f). By Proposition 4.3, the holomorphic sectional curvature H (z, &) of
(M, F) is given by the one of the associated Hermitian metric hy. If H(z, §)
is bounded above by a negative constant —k, the following inequality is
well-known ([25]):

(5.4) 4F% > kfy .

Thus Theorem 5.1 is a generalization of this estimate. Then, from (4.6) and
(5.4) we get

Theorem 5.2. Let (M, F) be a complex manifold modled on a Minkowski
space (C", f). If its holomorphic sectional curvature H(z, &) is bounded above by
a negalive constant —k, we have

AF% > kfy > kE .

Next, we are interested in the class of complex Finsler manifolds whose
holomorphic sectional curvature H (z, &) is constant. In Hermitian geometry,
the following result is well-known (Chapter IX of [11]):

A simply connected and complete Kahler manifold of constant holomor-
phic sectional curvature ¢ is holomorphically isometric to the following three
classes according to (i) ¢<0, (ii) ¢=0 or (iii) ¢>0:

(i) the open unit ball D, in C" with the metric
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a —Zz"z"‘) (Zdz" dz*) + (Zz"‘dz") (szdz‘)
(5.5) ds?= _g k P P -

(1—) z*z)?
(ii) the space C" with the metric

(5.6) dSZZZdz"dz"‘ ,
k

(iii) the complex projective space P"(C) with the metric

) (1+Zz"z”‘) (Zdzkdz"‘) - (Zz‘kdzk) (szdz’k)

P P P
¢ (l-l-Zz"z"‘)2
k

(5.7) ds?=—

On the other hand, Pang [12] has shown the following proposition.

Proposition 5.3. If a complete complex Finsler manifold (M, F) of constant
holomorphic sectional curvature H(z, &) = —4 satisfies the property (3.3), then the
Finsler metric F coincides with the Kobayashi metric Fy.

Now, we shall consider an application of these results to a simply con-
nected and complete complex manifold (M, F) modeled on a complex Minkows-
ki space (C™, f). Suppose that (M, F) satisfies (3.2) and (3.3). Then, by
Proposition 4.4, the associated Hermitian manifold (M, hy) is a simply con-
nected and complete Kahler manifold. Moreover, if (M, F) is of constant
holomorphic sectional curvature ¢, (M, hy) is also of constant holomorphic
sectional curvature c.

First we consider the case of ¢ <0. Then Proposition 5.3 and Theorem
5.2 show that the given Finsler metric F, the function fi defined by (4.5)
from hy and Kobayashi metric Fy on M coincide with each other, that is, (M,
F) is a simply connected and complete Kahler manifold of negative constant
holomorphic sectional curvature. Hence (M, F) is holomorphically isometric
to the unit open ball D, in C" with the metric (5.5).

In the case of ¢ =0, (M, hy) is holomorphically isometric to C" with the
metric (5.6). So the curvature of the Finsler connection V of (M, F)
vanishes identically. Thus (M, F) is locally Minkowski, and holomorphically
isometric to the complex Minkowski space (C”, f).

As to the case of ¢>0, the associated Hermitian manifold (M, hy) is holo-
morphically isometric to the complex projective space P" (C) with the metric
(5.7). Consequently we get

Theorem 5.3. Let (M, F) be a simply connected and complete complex man-
ifold modeled on a complex Mikowski space (C”, f). Suppose that (M, F) salisfies
the Kdhler condition (3.2) and the property (3.3), and furthermove, (M, F) is of



102 Tadashi Aitkou

constant holomorphic sectional curvalure c.
(i) If ¢<0, (M, F) is a Kdhler manifold which is holomorphically isometric to
the open unit ball Dy in C" with the metric (5.5):

4 (1= )29 ()6 69 + () 46" () 2 €Y

[4 (I_szz-k)z

k

F(z &)

(ii) if c=0, (M, F) is a locally Minkowski space which is holomorphically
isometric to the complex Minkowski space (C", f) with the metvic

Fe =7 <) JeH? |

(iii)  if ¢ >0, the following inequalily holds:

(14 ) 224) () £48) — () #6%) () 248

k

(1+Zz"z‘k)z

F(z, §) <—
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