Affine lines on Q-homology planes

By
R. V. Gurjar and A. J. Parameswaran

1. Introduction

An algebraic surface X defined over \mathbf{C} is called a \mathbf{Q} (respectively \mathbf{Z})-homology Plane if $H_{i}(X, \mathbf{Q})=0$ (resp. $H_{i}(X, \mathbf{Z})=0$) for all $i>0$. By a result of T. Fujita, a \mathbf{Q}-homology plane is an affine surface. $\mathbf{Q}^{-h o m o l o g y ~ p l a n e s ~ o c c u r ~}$ naturaily and "abundantly" as follows. Let Z be a smooth rational surface and D a simply connected curve on Z whose irreducible components generate $H_{2}(Z ; \mathbf{Q})$ freely. Then $X:=Z-D$ is a $\mathbf{Q}^{-h o m o l o g y ~ p l a n e ~(c f . ~ L e m m a ~} 5$).

Following results about the existence of contractible algebraic curves on Q-homology planes are known.
(i) If $\bar{\kappa}(X)=-\infty$, then there is a morphism $\phi: X \rightarrow B$ where B is a nonsingular curve, such that a general fibre of ϕ is isomorphic to \mathbf{C}, and hence there are infinitely many contractible curves on X (cf. [M], Chapter I, Theorem 3.13).
(ii) If $\bar{\kappa}(X)=1$, then X contains at least one and at most two contractible curves (cf. [M-S], Lemma 2.15). If X is a \mathbf{Z}-homology plane with $\bar{\kappa}(X)=1$, then X contains a unique contractible curve and it is smooth (cf. [G-M]).
(iii) If $\bar{\kappa}(X)=2$, then X contains no contractible algebraic curve (cf. [M-T2]).
In this paper we complete the picture by proving the following (somewhat unexpected) result. For the terminology used in the statement of the theorem, see §1.

Theorem. Let X be a \mathbf{Q}-homology plane with $\bar{\kappa}(X)=0$. Then the following assertions are true.
(i) If X is not NC-minimal, then X contains a unique contractible curve C. Moreover C is smooth with $\bar{\kappa}(X-C)=0$.
(ii) If X is $N C$-minimal and not the surface $H[k,-k]$ in Fujita's classi. fication, then X has no contractible curves.
(iii) If X is $N C$-minimal and is isomorphic to $H[k,-k]$ with $k \geq 2$, then there is a unique contractible curve C on X and it is smooth. Further, $\bar{\kappa}(X-C)=0$.
(iv) The surface $X=H[1,-1]$ has exactly two contractible curves, say C
and L. Further, both the curves are smooth, $\bar{\kappa}(X-C)=0$ and $\bar{\kappa}(X-$ $L)=1$. The curves C and L intersect each other transversally in exactly two points.

It should be remarked that by a beautiful result of Fujita, there does not exist a Z-homology plane X with $\bar{\kappa}(X)=0$. This follows from the complete classification of NC-minimal \mathbf{Q}-homology planes with $\bar{\kappa}(X)=0$ due to Fujita (cf. $[\mathrm{F}, \S 8.64]$). A direct and short proof of this was recently found by the first author and M. Miyanishi. In this paper we use this classification of Fujita in a crucial way.

Combining the results in this paper with the earlier known results, we get the following.

Corollary. A Q-homology plane with three contractible curves is of logar. ithmic Kodaira dimension $-\infty$.

2. Notations and preliminaries

All algebraic varieties considered in this paper are defined over the field of complex numbers \mathbf{C}.

For any topological space $X, e(X)$ denotes its topological Euler characteristic.

Given a connected, smooth, quasiprojective variety $V, \bar{\kappa}(V)$ denotes the logarithmic Kodaira dimension of V as defined by S. Iitaka (cf. [I]).

By a $(-n)$-curve on a smooth algebraic surface we mean a smooth rational curve with self-intersection $-n$. By a normal crossing divisor on a smooth algebraic surface we mean a reduced algebraic curve C such that every irreducible component of C is smooth, no three irreducible components pass through a common point and all intersections of the irreducible components of C are transverse. For brevity, we will call a normal crossing divisor an n.c. divisor. Let D be an n.c. divisor on a smooth surface. We say that D is a minimal normal crossing divisor if any (-1)-curve in D intersects at least three other irreducible components of D. A minimal normal crossing divisor will be called an m.n.c. divisor for brevity.

Following Fujita, we call a divisor D on a smooth projective surface Y pseudo-effective if $H \cdot D \geq 0$ for every ample divisor H on Y.

For the convenience of the reader, we now recall some basic definitions which are used in the results about Zariski-Fujita decomposition of a pseudo-effective divisor (cf. [F], $\S 6 ;[\mathrm{M}-\mathrm{T}]$, Chapter 1).

Let (Y, D) be a pair of a nonsingular surface Y and a normal crossing divisor D. A connected curve T consisting of irreducible curves in D (a connected curve in D, for short) is a twig if the dual graph of T is a linear chain and T meets $D-T$ in a single point at one of the end points of T; the other end of T is called a tip of T. A connected curve R (resp. F) in D is a club (resp. an abnormal club) if R (resp. F) is a connected component of D and the
dual graph of $R($ resp. F) is a linear chain (resp. the dual graph of the exceptional curves of a minimal resolution of singularities of a non-cyclic quotient singularity). A connected curve B in D is rational (resp. admissible) if each irreducible component of B is rational (resp. if none of the irreducible components of B is a (-1)-curve and the intersection matrix of B is negative definite). An admissible rational twig T is maximal if T is not contained in an admissible rational twig with more irreducible components.

Let $\left\{T_{\lambda}\right\}$ (resp. $\left\{R_{\mu}\right\}$ and $\left\{F_{\nu}\right\}$) be the set of all admissible rational maximal twigs (resp. admissible rational maximal clubs and admissible rational maximal abnormal clubs). Then there exists a decomposition of D into a sum of effective \mathbf{Q}-divisors, $D=D^{\#}+B k(D)$, such that $\operatorname{Supp}(B k(D))=\left(U_{\lambda} T_{\lambda}\right) \cup$ $\left(\cup_{\mu} R_{\mu}\right) \cup\left(U_{\nu} F_{\nu}\right)$ and $\left(\left(K_{Y}+D^{*}\right) \cdot Z\right)=0$ for every irreducible component Z of Supp $(B k(D))$. The divisor $B k(D)$ is called the bark of D, and we say that $K_{Y}+D^{\#}$ is produced by the peeling of D. For details of how $B k(D)$ is obtained from D, see [M-T].

The Zariski-Fujita decomposition of $K_{Y}+D$, in case $K_{Y}+D$ is pseudo -effective, is as follows:

There exist \mathbf{Q}-divisors P, N such that $K_{Y}+D \approx P+N$ where, \approx denotes numerical equivalence, and
(a) P is numerically effective (nef, for short). If $\bar{\kappa}(Y-D)=0$, then P ≈ 0 by a fundamental result of Kawamata (cf. [Ka2]).
(b) N is effective and the intersection form on the irreducible components of N is negative definite
(c) $P \cdot D_{i}=0$ for every irreducible component D_{i} of N.
N is unique and P is unique upto numerical equivalence. If some multiple of $K_{Y}+D$ is effective, then P is also effective.

The following result from [F, Lemma 6.20] is very useful.
Lemma 1. Let (Y, D) be as above. Assume that all the maximal rational twigs, maximal rational clubs and maximal abnormal rational clubs of D are admissible. Let $\bar{\kappa}(Y-D) \geq 0$. As above, let $P+N$ be the Zariski decomposition of $K_{Y}+D$. If $N \neq B k(D)$, then there exists a (-1)-curve L, not contained in D, such that one of the following holds:
(i) L is disjoint from D
(ii) $L \cdot D=1$ and L meets an irreducible component of $B k(D)$
(iii) $L \cdot D=2$ and L meets two different connected components of D such that one of the connected components is a maximal rational club R_{ν} of D and L meets a tip of R_{ν}

Further, $\bar{\kappa}(V-D-L)=\bar{\kappa}(Y-D)$.
Following Fujita, we will say that a smooth affine surface V with $\bar{\kappa}(V) \geq$ 0 is $N C$-minimal if it has a smooth projective completion \bar{V} such that $D:=\bar{V}-$ V is an m.n.c. divisor and $N=B k(D)$, where $P+N$ is the Zariski-Fujita decomposition of $K \bar{v}+D$.

The following results proved by Kawamata will be used frequently.
Lemma 2. (cf. [Kal]). Let Y be a smooth quasi-projective algebraic sur. face and $f: Y \rightarrow B$ be a surjective morphism to a smooth algebraic curve such that a general fibre F of f is irreducible. Then $\bar{\kappa}(Y) \geq \bar{\kappa}(B)+\bar{\kappa}(F)$.

Lemma 3, (cf. [Ka2]). Let Y be a smooth quasi-projective algebraic surface with $\bar{\kappa}(Y)=1$. Then there is a Zariski-open subset U of Y which admits a morphism $f: U \rightarrow B$ onto a smooth algebraic curve B such that a general fibre of f is isomorphic to either \mathbf{C}^{*} or an elliptic curve.

We call such a fibration a \mathbf{C}^{*}-fibration or an elliptic fibration respectively.

Similarly, we can define a \mathbf{C}-fibration and a \mathbf{P}^{1}-fibration on a smooth projective surface.

As mentioned in the introduction, the next result follows from R . Kobayashi's inequality and plays an important role in the proof of the theorem.

Lemma 4. (cf. [M-T2]). Let V be a smooth affine surface with $e(V)$ ≤ 0. Then $\bar{\kappa}(V) \leq 1$.

We begin with some properties of \mathbf{Q}-homology planes.
Let X be a smooth affine surface and $X \subset Z$ be a smooth projective compactification with $D:=Z-X$.

Lemma 5. Assume that the irregularity $q(Z)=0$. Then X is a Q-homology plane if and only if the irreducible components of D generate $H_{2}(Z ; \mathbf{Q})$ freely and $H_{1}(D ; \mathbf{Q})=0$.

Proof. We use the long exact cohomology sequence with \mathbf{Q}-coefficients of the pair (X, D). By Poincaré duality, $H^{i}(Z, D ; \mathbf{Q})=H_{4-i}(X)$. Hence $H_{i}(X)$ $=0$ for $i>0$ if and only if the restriction map $H^{i}(Z ; \mathbf{Q}) \rightarrow H^{i}(D ; \mathbf{Q})$ is an isomorphism for $i<4$. Since $H_{1}(Z ; \mathbf{Q})=H_{3}(Z ; \mathbf{Q})=0$ by assumption, it follows that X is a \mathbf{Q}-homology plane if and only if $H_{1}(D ; \mathbf{Q})=0$ and the irreducible components of D generate $H_{2}(Z ; \mathbf{Q})$ freely.

Now let X be an affine surface with either a \mathbf{C}-fibration or a \mathbf{C}^{*}-fibration, $\phi: X \rightarrow B$. For a suitable smooth compactification $X \subset Z$ we get a \mathbf{P}^{1}-fibration $\Phi: Z \rightarrow \bar{B}$, where \bar{B} is a smooth compactification of B. We will need the following result due to Gizatullin.

Lemma 6. Let F be a scheme-theoretic fibre of Φ. Then we have;
(1) $F_{\text {red }}$ is a connected normal crossing divisor all whose irreducible components are isomorphic to \mathbf{P}^{1}.
(2) If F is not isomorphic to $\mathbf{P}^{\mathbf{1}}$, then $F_{\text {red }}$ contains $a(-1)$-curve. If a (-1)-curve occurs with multiplicity 1 in F, then $F_{\text {red }}$ contains another (-1)-curve.

Note that from (1) it follows that a (-1)-curve in $F_{\text {red }}$ meets atmost two other irreducible components of F.

Let $\phi: X \rightarrow B$ be a \mathbf{C}^{*}-fibration and $\Phi: Z \rightarrow \bar{B}$ be an extension as above. Then D contains either one or two irreducible components which map onto \bar{B} by Φ. We will call these components as horizontal. All other irreducible components of D are contained in the fibres of Φ. An irreducible component of D will be called a D-component for the sake of brevity. We say that ϕ is twisted if there is only one horizontal D-component (in [F], such a fibration is called a gyoza). Otherwise we say that ϕ is untwisted (in [F], such a fibration is called a sandwitch). In the untwisted case the horizontal D-components are cross-sections of Φ and in the twisted case the horizontal D-component is a 2 -section.

The next result follows by an easy counting argument using the fact that the irreducible components of the divisor at infinity in a smooth compactifica-

Lemma 7. (cf. [G-M], Lemma 3.2). Let $\phi: X \rightarrow B$ be a \mathbf{C}^{*}-fibration on a \mathbf{Q}-homology plane X. Then we have;
(1) If ϕ is twisted, then $B \cong \mathbf{C}$, all the fibres of ϕ are irreducible, there is a unique fibre F_{0} of ϕ such that $F_{0 r e d}$ is isomorphic to \mathbf{C} and all other fibres are isomorphic to \mathbf{C}^{*}, if taken with reduced structure.
(2) If ϕ is untwisted and $B \cong \mathbf{P}^{\mathbf{1}}$, then all the properties of the fibres of ϕ are the same as (1) above.
(3) If ϕ is untwisted and $B \cong \mathbf{C}$, then ϕ has exactly one fibre F_{0} with two irreducible components and all the other fibres are isomorphic to \mathbf{C}^{*}, if taken with reduced structure. Either both the components of F_{0} are isomorphic to \mathbf{C} which intersect transversally in one point or they are disjoint with one isomorphic to \mathbf{C} and the other one isomorphic to \mathbf{C}^{*}.

In order to avoid repetitive arguments in the proof of the theorem, we give detailed proof of the next result and use such arguments without details later on.

Lemma 8. Let X be a Q-homology plane with $\bar{\kappa}(X)=0$ and $\phi: X \rightarrow B$ be a \mathbf{C}^{*}-fibration. Let F_{0} be the reducible fibre of ϕ (cf. lemma 7) which contains a contractible irreducible curve C. Consider a smooth completion $Z \supset X$ with $D:=Z$ $-X$ an n.c. divisor and $\Phi: Z \rightarrow \mathbf{P}^{1}$ a \mathbf{P}^{1}-fibration which extends ϕ.
(1) Suppose ϕ is twisted.

If $\bar{\kappa}(X-C)=0$, then the morphism $X-C \rightarrow \mathbf{C}^{*}$ has no singular fibres. If $\bar{\kappa}$ $(X-C)=1$, then the morphism $X-C \rightarrow \mathbf{C}^{*}$ has at least one multiple fibre.

In both the cases, the fibre over the point $p_{\infty}:=\mathbf{P}^{1}-B$ can be assumed to have the dual graph

and the horizontal component D_{h} intersects the (-1)-curve transversally in a single point.
(2) Suppose ϕ is untwisted and $B \cong \mathbf{C}$.

Then the fibre F_{∞} over p_{∞} is a regular fibre of Φ and the two horizontal D-components meet this fibre in two distinct points. The morphism $X-C \rightarrow \mathbf{C}$ has at least one multiple fibre.
(3) Suppose ϕ is untwisted and $B \cong \mathbf{P}^{1}$.

If $\bar{\kappa}(X-C)=0$, then $\phi^{\prime}: X-C \rightarrow \mathbf{C}$ has at least one and at most two multiple fibres. If ϕ^{\prime} has two multiple fibres, then their multiplicities are 2 each. If $\bar{\kappa}(X$ $-C)=1$, then ϕ^{\prime} has at least two multiple fibres.

Proof. (1) Let $\phi^{\prime}=\left.\phi\right|_{X-c}$. Suppose ϕ^{\prime} has a multiple fibre, say $m_{1} F_{1}$, with $m_{1} \geq 2$. Denote by p_{0}, p_{1} the points $\phi(C), \phi\left(F_{1}\right)$ respectively. Using lemma 9 , we can construct a finite ramified covering $\tau: A \rightarrow \mathbf{C}$, ramified only over p_{0}, p_{1} such that the ramification index over p_{i} is m_{i} for $i=0,1$, where m_{0} is a large integer. Then the normalization of the fibre product $A \times c X$ contains a Zariski-open subset U which is a finite étale covering of $X-C$. Since $\bar{\kappa}(A)$ $=1$ for large m_{0}, by lemma $2, \bar{\kappa}(U)=1$. But then $\bar{\kappa}(X-C)=1$, since $\bar{\kappa}$ does not change under finite étale coverings by a result of Iitaka (cf. [I]). This contradiction shows that ϕ^{\prime} has no multiple fibre, if $\bar{\kappa}(X-C)=0$. Hence ϕ^{\prime} has no singular fibre.

If ϕ^{\prime} has no multiple fibre, then $X-C$ has a 2 -sheeted étale cover which is isomorphic to $\mathbf{C}^{*} \times \mathbf{C}^{*}$. Hence $\bar{\kappa}(X-C)=0$.

The assertion about the fibre F_{∞} is proved by Fujita in [F], lemma $7.5(2)$.
(2) The assertion about F_{∞} is proved in [F], lemma 7.6(1). If ϕ^{\prime} has no multiple fibre, then $X-C$ is isomorphic to $\mathbf{C} \times \mathbf{C}^{*}$, contradicting the assumption that $\bar{\kappa}(X)=0$.
(3) Suppose $\bar{\kappa}(X-C)=0$. If ϕ^{\prime} has no multiple fibre, then $X-C$ is isomorphic to $\mathbf{C} \times \mathbf{C}^{*}$, a contradiction. If ϕ^{\prime} has two multiple fibres $m_{1} F_{1}, m_{2} F_{2}$, then letting p_{i} be the points $\phi\left(F_{i}\right)$ for $i=0,1,2$, we can construct a finite galois covering $\tau: A \rightarrow \mathbf{P}^{1}$ which is ramified only over p_{i} and the ramification index at any point over p_{i} is m_{i} for $i=0,1,2$. If one of the m_{1}, m_{2} is strictly bigger than 2 , then for large m_{0}, A is non-rational. But then we see that $\bar{\kappa}(X-C) \geq 1$. Hence $m_{1}=m_{2}=2$.

The proof for the case $\bar{\kappa}(X-C)=1$ is similar.
The next result follows from R. H. Fox's solution of Fenchel's conjecture (cf. [Fo] and [C]).

Lemma 9. Let a_{1}, \ldots, a_{r} be distinct points in \mathbf{P}^{1} with $r \geq 3$ and m_{1}, \ldots, m_{r} be integers ≥ 2. Then there is a finite Galois covering $\tau: B \rightarrow \mathbf{P}^{1}$ such that the rami-
fication index at the point a_{i} is m_{i} for $1 \leq i \leq r$. There is also a similar assertion if $r=2$ and $m_{1}=m_{2}$.

Lemma 10. Let C_{1}, C_{2} be two distinct contractible curves on a \mathbf{Q}-homology plane X with $\bar{\kappa}(X) \geq 0$. Then $C_{1} \cap C_{2} \neq \phi$ and if the intersection is a single point then it is transverse.

Proof. Since $e\left(X-C_{1}\right)=0$, by lemma $4 \bar{\kappa}\left(X-C_{1}\right) \leq 1$. Clearly, $\bar{\kappa}(X-$ $\left.C_{1}\right) \geq 0$.

Consider the case $\bar{\kappa}\left(X-C_{1}\right)=0$. Since Pic (X) is finite, there exists a regular function f of X such that $(f)=m C_{1}$ for some integer m. We can assume that the morphism given by $f: X-C_{1} \rightarrow \mathbf{C}^{*}$ has connected general fibres. Then by lemma 2, a general fibre of this morphism is isomorphic to \mathbf{C}^{*}. Thus, X has a \mathbf{C}^{*}-fibration such that C_{1} is contained in a fibre. Suppose C_{1} $\cap C_{2}=\phi$. Since C_{2} does not contain any non-constant units, the image of C_{2} is a point. This contradicts lemma 7.

Suppose $\bar{\kappa}\left(X-C_{1}\right)=1$. If $C_{1} \cap C_{2}=\phi$, then $e\left(X-\left(C_{1} \cup C_{2}\right)\right)=-1$ and hence by lemma $4, \bar{\kappa}\left(X-\left(C_{1} \cup C_{2}\right)\right)=1$. Then by lemma 3 we see that $X-\left(C_{1}\right.$ $\cup C_{2}$) has a C^{*}-fibration. Since X does not contain any complete curves, this morphism extends to a \mathbf{C}^{*}-fibration on X. Then C_{1} and C_{2} are mapped to points, otherwise the fibration is a \mathbf{C}-fibration. Again by lemma 7, both C_{1}, C_{2} lie in the same fibre and hence C_{1}, C_{2} intersect transversally in a single point by part (3) of lemma 7 .

Now we know that $C_{1} \cap C_{2} \neq \phi$. Suppose $C_{1} \cap C_{2}$ is a single point. Then $e\left(C_{1} \cup C_{2}\right)=1, e\left(X-C_{1} \cup C_{2}\right)=0$, and hence $\bar{\kappa}\left(X-C_{1} \cup C_{2}\right) \leq 1$ by lemma 4. Arguing as above, we see that X admits a \mathbf{C}^{*}-fibration such that $C_{1} \cup C_{2}$ is contained in a single fibre and hence they intersect transversally in a single point, again by lemma 7 .

3. Fujita's clssification

In this section we describe the classification of NC-minimal \mathbf{Q}-homology planes with $\bar{\kappa}=0$ due to Fujita (cf. [F], 8.64). There are four types of such surfaces. We also describe Fujita's surfaces $H[-1,0,-1]$, which are NC-minimal surfaces with $\bar{\kappa}=0, e=0$ and $b_{1}=1$.

$$
\text { Type } 1 \text { (cf. [F], §8.26). } H[k,-k] \text { with } k \geq 1
$$

The dual graph of the divisor D at infinity for an m.n.c. compactification is given by

Here $B_{1}^{2}=k, B_{2}^{2}=-k$ and $T_{i}^{2}=-2$ for all i. There is a (-1)-curve E_{1} meeting the tips T_{1}, T_{2} transversally in a single point and no other point of D. Similarly, there is a (-1)-curve E_{2} meeting T_{3} and T_{4} transversally in a sing. le point and no other point of D. The divisor $F_{1}=T_{1}+2 E_{1}+T_{2}$ is a fibre of a \mathbf{P}^{1}-fibration Φ on \bar{X} and $F_{2}=T_{3}+2 E_{2}+T_{4}$ is another fibre of Φ. The curves B_{1} and B_{2} are cross sections of Φ. Let F_{0} be the fibre of Φ through $B_{1} \cap B_{2}$. Clearly $C:=F_{0}-\left(B_{1} \cap B_{2}\right) \cong \mathbf{C}$, hence C is a contractible curve in X.

Lemma 11. $\bar{\kappa}(X-C)=0$.
Proof. The \mathbf{C}^{*}-fibration $\phi: X-C \rightarrow \mathbf{C}$ has exactly two multiple fibres corresponding to $2 E_{1}$ and $2 E_{2}$. Let $p_{i}=\Phi\left(F_{i}\right)$ for $i=0,1,2$. Using lemma 9 we can construct a degree 2 galois covering $\tau: B \rightarrow \mathbf{P}^{1}$ such that the ramification index over p_{i} is 2 for each i. By Riemann-Hurwitz formula, $B \cong \mathbf{P}^{1}$. Then $\overline{X \times{ }_{\mathbf{P}} B} \rightarrow B$ is a \mathbf{C}^{*}-fibration and $\overline{X \times{ }_{\mathbf{P}} B}-\tilde{\tau}^{-1}(C)$ is an étale cover of $X-C$ isomorphic to $\mathbf{C}^{*} \times \mathbf{C}^{*}$. Hence $\bar{\kappa}(X-C)=0$.

Types 2,3 and 4 are denoted by $Y[3,3,3], Y[2,4,4]$ and $Y[2,3,6]$ respectively by Fujita ($\S 8.37,8.53,8.54,8.59,8.61$). The dual graphs of each of these have a unique branch point. There are three maximal twigs T_{1}, T_{2} and T_{3} for each of them and $\sum_{i=1}^{3} 1 / d\left(T_{i}\right)=1$, where $d\left(T_{i}\right)$ is the absolute value of the determinant of the intersection matrix of T_{i}.

Fujita has shown that $\pi_{1}(X)$ is a finite cyclic group for any NC-minimal Q-homology plane with $\bar{\kappa}(X)=0$. This result will be used effectively in the next section.

Now we will describe the surfaces $H[-1,0,-1]$ (cf. [F], §8.5).
The dual graph of an m.n.c. divisor at infinity is given by

Here, $B_{1}^{2}=B_{2}^{2}=-1, D_{0}^{2}=0$ and $T_{i}^{2}=-2$.

4. Proof of the Theorem (Non NC-minimal case)

Let X be a \mathbf{Q}-homology plane with $\bar{\kappa}(X)=0$. In this section we prove the following.

Proposition. Suppose X does not have an NC-minimal compactification, then X contains a unique contractible curve.

Proof. Suppose L is a contractible curve in X. Then $\bar{\kappa}(X-L) \leq 1$ and there is a \mathbf{C}^{*}-fibration $\phi^{\prime}: X-L \rightarrow B^{1}$ which extends to a \mathbf{C}^{*}-fibration $\phi: X \rightarrow B$
and $\phi(L)$ is a point (cf. proof of lemma 10). We choose a smooth compactification $X \subset Z$ such that $D:=Z-X$ is a normal crossing divisor and ϕ extends to a \mathbf{P}^{1}-fibration $\Phi: Z \rightarrow \mathbf{P}^{1}$. We now consider the three cases given by lemma 7.

Case 1. ϕ is twisted. By lemma $7(1), B \cong \mathbf{C}$ and every fibre of ϕ is irreducible. The fibre $F_{\infty}:=\Phi^{-1}\left(p_{\infty}\right)$ has the dual graph as described in lemma 8 (1) and the 2 -section D_{h} meets the (-1)-curve in F_{∞} transversally in a sing. le point.

First consider the case $\bar{\kappa}(X-L)=0$. The surface $X-L$ has the following properties.
(i) $X-L$ is affine
(ii) $\bar{\kappa}(X-L)=0$
(iii) $e(X-L)=b_{2}(X-L)=0$ and $b_{1}(X-L)=1$
(iv) $X-L$ is NC-minimal.

The property (iii) follows from the long exact cohomology sequence with compact support of the pair (X, L) and duality. The property (iv) follows from the observation that if $X-L$ is not NC-minimal, then by lemma $1, X-L$ contains a curve $C \cong \mathbf{C}$. But then C is closed in X and disjoint from L, contradicting lemma 10.

Now the surface $X-L$ is isomorphic to $H[-1,0,-1]$. Let F_{0} be the fibre of Φ containing L. We may assume that any (-1)-curve in D contained in F_{0} meets at least two other D-components in F_{0}. Since D is a connected tree of \mathbf{P}^{1} s, either $F_{0 \text { red }}=\bar{L}$ or the horizontal component D_{h} meets an irreducible component D_{0} of D which occurs with multiplicity 2 in F_{0} (observe that $F_{0}-\bar{L}$ is connected). Suppose $D_{1} \subset D$ is a (-1)-curve in F_{0} which is disjoint from D_{h}. Then by lemma 6 (1), D_{1} meets at most two other D-components contained in F_{0}. Hence we can contract D_{1} to a smooth point and get another compactification Z_{1} which satisfies the same properties as Z. Repeating this argument we can assume that \bar{L} and D_{0} are the only possible (-1)-curves in F_{0}. Moreover, if D_{0} is a (-1)-curve then it meets two other D-components. We claim that D_{h} is not a (-1)-curve. Otherwise, the m.n.c. divisor obtained from $D \cup \bar{L}$ by succession of contractions of (-1)-curves cannot be of the type described by Fujita. Now we see that D is an m.n.c. divisor.

Since X is not NC-minimal and D is m.n.c., there exists a (-1)-curve \bar{C} given by lemma 1. Let $C=\bar{C} \cap X$. If $\bar{C} \neq \bar{L}$ then \bar{C} is horizontal as it has to meet L. Hence \bar{C} meets one of the tip components T_{i} of F_{∞}. As above, $X-C$ is also of the type $H[-1,0,-1]$. By contracting C and then the image of T_{i}, we obtain a compactification divisor of $X-C$ which is not of type $H[-1,0$, $-1]$. Hence $C=L$.

By lemma $8(1), \bar{\kappa}(X-L)=1$ if and only if ϕ has at least one multiple fibre other than L. Now assume that $\bar{\kappa}(X-L)=1$. Then we can see that D_{h}
meets at least three D-components and hence D can be assumed to be m.n.c. as above. By lemma 1, there is a (-1)-curve \bar{C} in Z satisfying the properties stated there. We arrive at a contradiction as above by first contracting C and then T_{i}.

Case 2. ϕ is untwisted and $B \cong \mathbf{C}$. Now ϕ has a unique fibre which contains two irreducible components, say L and L^{\prime}. Any other fibre of ϕ is isomorphic to \mathbf{C}^{*}, if taken with reduced structure. The fibre F_{∞} is a smooth fibre of ϕ and the two horizontal components of D meet F_{∞} in distinct points. The divisor D may not be m.n.c., but it is obtained from an m.n.c. divisor by successive blow-ups. By lemma 8 (2), the morphism $X-L \rightarrow \mathbf{C}$ has at least one multiple fibre. From this we can see as above that D can be assumed to be m.n.c. Again since X is not NC-minimal, we get a (-1)-curve $\bar{C} \cong \mathbf{P}^{1}$ on Z which meets only a twig component of D. If $\bar{C} \neq \bar{L}$, then we get a contradiction as above.

Case 3. ϕ is untwisted and $B \cong \mathbf{P}^{1}$. Then every fibre of ϕ is irreducible. Any fibre of ϕ other than L is isomorphic to \mathbf{C}^{*}, if taken with reduced structure. By lemma 7.6 of [F], we can assume that every fibre of Φ other than the fibre F_{0} containing L is a linear chain such that the two horizontal components of D meet the tip components of the fibre. From the connectivity of D we see that the union of D-components in F_{0} is connected. Denote by D_{1}, D_{2} the horizontal components. Let D_{0} be a D-component contained in F_{0} which meets D_{1} or D_{2}. Then D_{0} occurs with multiplicity 1 in F_{0}. If D_{0} is a (-1) curve it can meet at most one more D-componet in F_{0}. Hence we can contract D_{0} to get a smaller compactification of X. Consequently we can assume that \bar{L} is the unique (-1)-curve in F_{0}.

Now $\left(K_{z}+D\right) \cdot \bar{L}=0$. On the other hand, if $K_{z}+D \approx P+N$ is the Zariski-Fujita decomposition then $P \approx 0$ by the properties of the Zariski decomposition. Hence $N \cdot \bar{L}=0$. From the assumption that X is not NC-minimal, we know that there exists a curve $C \subset X$ such that $C \cong \mathbf{C}$ and its closure \bar{C} occurs in N. But by lemma 10 if $L \neq C$ then $L \cdot C>0$.

If $\bar{\kappa}(X-L)=1$, then by lemma 8 , the morphism $X-L \rightarrow \mathbf{C}$ has at least two multipe fibres. Then both D_{1} and D_{2} are branch points for the dual graph of D and hence D is m.n.c. The curve $\overline{\mathrm{C}}$ above can be assumed to be a (-1)-curve. Since $\bar{C} \cdot \bar{L}>0$, the intersection form on the subspace of Pic $Z \otimes$ ${ }_{z} \mathbf{Q}$ generated by \bar{C} and \bar{L} is not negative definite. Hence \bar{L} does not occur in N and $N \cdot \bar{L}>0$ as $\bar{C} \subset N$, a contradiction. If $\bar{\kappa}(X-L)=0$, then we have a morphism $X \rightarrow \mathbf{C}$ with one fibre $m L$ and general fibre isomorphic to \mathbf{C}^{*}, as in the proof of lemma 10 . This is a twisted fibration by lemma 7. Then we are reduced to the case 1 and hence L is the unique contractible curve. This completes the proof of the proposition.

5. Proof of the Theorem (NC-minimal case)

We begin with the following general result.
Lemma 12. Let Γ be a connected normal crossing divisor on a smooth projective surface Y. Assume the following conditions.
(i) Every irreducible component of Γ is isomorphic to \mathbf{P}^{1}.
(ii) The dual graph of Γ has at most one branch point.
(iii) If the dual graph has a branch point, then Γ has exactly three maximal twigs T_{1}, T_{2} and T_{3} and $\sum 1 / d\left(T_{i}\right)>1$.
(iv) Γ supports a divisor G with $G \cdot G>0$.

Then $\bar{\kappa}(Y-\Gamma)=-\infty$.
Proof. Suppose that $\bar{\kappa}(Y-\Gamma) \geq 0$. We will give the proof when Γ has a branch point. Then $K_{Y}+\Gamma$ has a Zariski-decomposition $P+N$. First assume that (Y, Γ) is NC-minimal. Then $N=B k(\Gamma)$. Let C_{1}, C_{2} and C_{3} be the irreducible components of the maximal twigs T_{1}, T_{2} and T_{3} respectively meeting C_{0}, the Γ-component corresponding to the branch point. By lemma 6.16 of [F], the coefficients of C_{i} in $B k(\Gamma)$ are $1 / d\left(T_{i}\right)$. Hence $P=K_{Y}+C_{0}+\sum_{i=1}^{3}(1$ $\left.-\frac{1}{\mathrm{~d}\left(\mathrm{~T}_{i}\right)}\right) C_{i}+\ldots$. . But then $P \cdot C_{0}=-2+\sum\left(1-1 / d\left(T_{i}\right)\right)<0$, contradicting the fact that P is nef.

If (Y, Γ) is not NC-minimal, by lemma 1 we can reduce to the case when there is a (-1)-curve E on Y which occurs in N, E is not contained in Γ and $E \cdot \Gamma=1$, where E meets a component of $B k(\Gamma)$. Then $\bar{\kappa}(Y-\Gamma)=\bar{\kappa}(Y-\Gamma \cup$ $E)$. By contracting E and any (-1)-curves in the maximal twigs successively we reduce to the situation when either the image of Γ becomes linear or a maximal twig has a vertex with non-negative weight or the NC -minimal case occurs. If a maximal twig has a vertex with non-negative weight then by lemma 6.13 of [F], we get $\bar{\kappa}(Y-\Gamma)=-\infty$, a contradiction. This proves the result.

Let X be an NC-minimal \mathbf{Q}-homology plane with $\bar{\kappa}(X)=0$. Then $\pi_{1}(X)$ is a finite cyclic group by Fujita.

Lemma 13. Assume that X contains a contractible curve C. Then X is of type $H[k,-k], k \geq 1$.

Proof. As before, there is a \mathbf{C}^{*} fibration $\phi: X \rightarrow B$ with $\phi(C)$ a point and $B \cong \mathbf{C}$ or $\mathbf{P}^{\mathbf{1}}$. We consider the three cases depending on the type of ϕ.

Case 1. ϕ is twisted.
Then $B \cong \mathbf{C}$ and all the fibres of ϕ are irreducible. We claim that ϕ has at most one multiple fibre. Let p_{1}, \ldots, p_{r} be the points in B corresponding to the multiple fibres and $p_{\infty}=\mathbf{P}^{1}-B$. If $r \geq 2$, then we can construct a suitable non-cyclic covering $A \rightarrow \mathbf{P}^{1}$, ramified over $p_{1}, \ldots, p_{r}, p_{\infty}$. Then we get a connected étale cover $\widetilde{X} \rightarrow X$ with non-cyclic galois group. This is not possible.

Hence $r \leq 1$.
As before, ϕ extends to a \mathbf{P}^{1}-fibration $\Phi: Z \rightarrow \mathbf{P}^{1}$ on a smooth compatification Z of X. Let $D:=Z-X$. As in lemma 8 , we see that $\bar{\kappa}(X-C)=0$ if the morphism $X-C \rightarrow \mathbf{C}^{*}$ has no multiple fibre. Let F_{0} be the fibre of Φ containing C.

Using the lemma 12 , we now see that the dual graph of D has at least one branch point. But the fibre F_{∞} has the form

by lemma $8(1)$. Hence by lemma 12 again D has at least two branch points and D is obtained from an NC-minimal divisor of the form $H[k,-\mathrm{k}]$ for $k \geq 1$.

If the morphism $X-C \rightarrow \mathbf{C}^{*}$ has a multiple fibre with multiplicity $m>1$ and $F_{0} \neq C$ then the divisor D is m.n.c and the 2 -section D_{h} meets at least four other curves in D. This contradicts Fujita's classification. Hence either the morphism $X-C \rightarrow \mathbf{C}^{*}$ has no multiple fibre or $\bar{C}=F_{0}$. In the later case, $X-$ $C \rightarrow \mathbf{C}^{*}$ has one multiple fibre by lemma 12 and $\bar{\kappa}(X-C)=1$. Further, D_{h} is a branch point of D.

Case 2. ϕ is untwisted and $B \cong \mathbf{C}$.
We claim that this case does not occur. First we observe that the fibre F_{∞} is a regular fibre of Φ and the two horizontal components meet F_{∞} in two distinct points. It is easy to see that D cannot be obtained from any of the surfaces Fujita has described by a finite succession of blowing-ups.

Case 3. ϕ is untwisted and $B \cong \mathbf{P}^{1}$
The fibration ϕ has at most two multiple fibres by lemma 8. The curve $F_{0}-\bar{C}$ is connected. The morphism $\phi^{\prime}: X-C \rightarrow \mathbf{C}$ has at least one multiple fibre by lemma 8 (3). If ϕ^{\prime} has only one multiple fibre, then $X-C$ contains $\mathbf{C}^{*} \times \mathbf{C}^{*}$ as a Zariski open subset and hence $\bar{\kappa}(X-C)=0$. Suppose ϕ^{\prime} has two multiple fibres. Then D is m.n.c. and we see that the horizontal D-components D_{1} and D_{2} intersect in a point on \bar{C}. This shows that X is of type $H[k,-k]$. Further, the multiple fibres have multiplicity 2 each (otherwise D cannot be of type $H[-1,0,-1]$) and $\bar{\kappa}(X-C)=0$, as in the proof of lemma 8(3).

Next we prove the following.
Lemma 14. Let X be of type $H[k,-k]$ and X contains a contractible curve L with $\bar{\kappa}(X-L)=1$. Then $k=1$.

Proof. From the proof of lemma 10, we know that there is a twisted \mathbf{C}^{*}-fibration $\phi: X \rightarrow \mathbf{C}$ with $\phi(L)$ a point. Further, ϕ^{\prime} has exactly one multiple fibre, where $\phi^{\prime}: X-L \rightarrow \mathbf{C}^{*}$ is the restriction. The horizontal component D_{h} is a branch point for D and the fibre F_{∞} has the dual graph,

\bar{L} is a reduced fibre of ϕ by the proof of case 1 of lemma 13 . Using lemma 6 repeatedly we see that \bar{L} can be assumed to be the full fibre of ϕ. From Fujita's description of D, we see that $k=1$ because the branch points intersect and one of them is a (-1)-curve.

To complete the proof of the theorem, it remains to prove the following result.

Lemma 15. (1) On the surface X of type $H[k,-k]$, there is a unique contractible curve C with $\bar{\kappa}(X-C)=0$.
(2) On $H[1,-1]$ there is a unique contractible curve L with $\bar{\kappa}(X-L)=1$.
(3) If $k=1$ and C and L are the contractible curves as above then $C \cdot L=2$ and they meet transversally.

Proof. (1) Let C be a contractible curve on X with $\bar{\kappa}(X-C)=0$. There is a \mathbf{C}^{*}-fibration $\phi: X \rightarrow \mathbf{C}$ such that for some $m \geq 1, m C$ is a fibre of ϕ. Then ϕ is a twisted fibration. Let $X \subset Z$ be a smooth projective compactification such that ϕ extends to a \mathbf{P}^{1}-fibration $\Phi: Z \rightarrow \mathbf{P}^{1}$. By lemma 8 (1) there is no multiple fibre for the map $X \rightarrow C \rightarrow \mathbf{C}^{*}$. The fibre F_{∞} has the dual graph,

and D_{h} meets the (-1)-curve in F_{∞}. Let F_{0} be the fibre of ϕ containing \bar{C} and D_{0} be the D-component of F_{0} that meets D_{h}. We claim that D_{0} meets only one other D-component in F_{0}. If not, D_{0} is a branch point of D and from Fu jita's classification, we deduce that D_{h} is a (-1)-curve and after contracting D_{h}, we get an NC-minimal completion of X. But this is not of type $H[k,-k]$ with $k \geq 1$. Hence we may even assume that D_{0} is not a (-1)-curve.

As before, we may assume that \bar{C} is the only (-1)-curve in F_{0}. Since an NC-minimal completion of X is obtained from contracting suitable (-1)-curves in D, we conclude that D_{h} is a (-1)-curve. Then D_{0} is a (-2)-curve. By repeating this argument, we infer that the dual graph of \bar{C} $U D$ is

By successive contractions of (-1)-curves starting with D_{h}, we get an m.n.c. compactification divisor of X such that the dual graph of the image of $\bar{C} \cup D$ looks like $H[k,-k]$, with the image of \bar{C} passing through the intersection of the two branching curves. From this it is easy to see that the curve C is unique.
(2) Let L be a contractible curve on X with $\bar{\kappa}(X-L)=1$. By the proof of case 1 of lemma 13 and lemma 14, we can assume that $\bar{L} \cup D$ looks like

Clearly, \bar{L} is a full fibre of the \mathbf{P}^{1}-fibration on Z given by the linear system $\left|T_{2}+2 B_{2}+T_{4}\right|$. Therefore L is unique.
(3) We have seen that \bar{C} passes through the intersection of B_{1} and B_{2} and meets transversally with both. Hence $\bar{C} \cdot \bar{L}=2$. Now by lemma $10, C \cap L$ consists of 2 distinct points as \bar{L} does not pass through $B_{1} \cap B_{2}$. This completes the proof of the theorem.

> School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005 , India
> E-Mail: gurjar@tifrvax. bitnet
> \quad param@tifrvax. bitnet

References

[C] T. C. Chau, A note concerning Fox's paper on Fenchel's conjecture, Proc. A. M. S., 88 (1983), 584-586.
[Fo] R. H. FOX, On Fenchel's conjecture, Math. Tidsskr. B, 61-65, 1952.
[F] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, 29 (1982). 503-566.
[G-M] R. V. Gurjar, M. Miyanishi, Affine surfaces with $\bar{\kappa} \leq 1$. Alegebraic Geometry and Commutative Alegebra, Kinokuniya, 1987, 99-124.
[I] S. Iitaka, On logarithmic Kodaira dimension of Algebraic varieties, Complex analysis and algebraic geometry. Iwanami Shoten, Cambridge Univ. Press, 1977.
[Kal] Y. Kawamata, Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension 1, Proc. Internat. Symp. on Algebraic geometry, Kyoto 1977, 207-217, Kinokuniya, 1978.
[Ka2] Y. Kawamata. On the classification of non-complete algebraic surfaces Lecture Notes in Math.

732, Springer, 1979, 215-232.
[Ko] R. Kobayashi, Uniformization of complex surfaces, Adv. Stud. Pure Math. 18 (1990).
[M] M. Miyanishi, Non-complete Algebraic Surfaces, Lecture Notes in Math 857, Springer, 1981.
[M-S] M. Miyanishi, T. Sugie, Homology planes with quotient singularities, J. Math Kyoto Univ, 31 (1991), 755-788.
[M-T1] Miyanishi, S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with non-connected boundaries at infinity, Japan. Journal. of Math., 10-2 (1984). 195-242.
[M-T2] Miyanishi, S. Tsunoda, Absence of the affine lines on the homology planes of general type. J. Math. Kyoto Univ., 32-3 (1992), 443-450.

