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Smooth projective varieties with the ample vector

bundle A Tx in any characteristic
By

Koj1 CHO and EncHl SATO
In the pr.esent paper we determine the structure of smooth projective
varieties with the ample vector bundle /KTX . If X is a projective space or
smooth hyperquadric, i\Tx is an ample vector bundle. We consider the con-
verse and obtain the following:

Main Theorem. Let X be an n-dimensional smooth projective variety de-

fined over an algebraically closed field whose characteristic is arbitrary. Assume
that /KTX ts ample. Then we have the following:

1) if n=5, then X is isomorphic to a projective space or a hyperquadric. (see
Theorem 6.12 and Theorem 7.11)

2) if the characteristic of the base field is zero and n=3, then the same conclu-
sion as in 1) holds. (see Corollary 4.5 and Theorem 5.6).

Mori [Mo2] proved that a smooth projective variety with the ample tan-
gent bundle is a projective space in any characteristic. Siu-Yau [S-Y] inde-
pendently proved Frankel conjecture that an n-dimensional compact Kaehler
manifold of positive bisectional curvature is biholomorphic to the projective
space. Here we must notice that the positivity of bisectional curvature im-
plies the ampleness of the tangent bundle over the complex number field.

An interesting problem to consider next is to determine the structure of
variety with semi-ample tangent bundle. In differential geometry Mok [Mok]
showed that if X is a compact complex manifold carrying a kaehler metric
with non-negative bisectional curvature, then the universal covering is a pro-
duct of C*, projective space and Hermitian symmetric manifold of rank= 2.
Here we must have in mind that the non-negative bisectional curvature im-
plies the semi-ampleness of the tangent bundle. In this meaning it seems to
us that our Main theorem is of significanse as the next step for the study of
manifold with semi-ample tangent bundle.

Concerned with the subject stated above we have an attempt to determine
the structure of Fano varieties by means of the quantity of rational curves of
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the minimal degree. For a Fano variety X, length (X) is defined to be min
{(— Kx*C) |C is a rational curve in X} . Then the length of P” and
n-dimensional hyperquadric are n + 1 and »n respectively. In case of n =3
Wisniewski proved the converse over the field of complex numbers in [W1].

Now we state the proof of Main theorem. One of the key of the proof is
to show that the family {4,},cy of rational curves of the minimal degree has
the following property: there is a point x in X which is at worst an ordinaly
singular point of each curve ¢, through the point x as stated below:

(5.1) Let X be a smooth projective variety. Assume that ATx is am-
ple and length X=dim X+1. Then S % is a proper set in X. (See € and S %
for §2 and 85 respectively.)

Thus in characteristic zero we get the desired conclusion by virtue of
Kobayashi-Ochiai's theorem. But effecient theorems in characteristic zero
(Kodaira’s vanishing theorem, Lefschetz’'s Theorem, Sard’s Theorem,
Kobayashi-Ochiai’s Theorem and so on) do not hold in positive characteristic.
Therefore there are several problems we must solve as stated in §6 and §7.
For example, for lack of Lefschetz's Theorem, it is very troublesome to deal
with the hyperquadric case as in §6 and in the absense of Sard’s theorem an
unusual case is treated as in (#) of 7. 2.

Recently we learned that the first author and Y. Miyaoka [CM] showed
the following conjecture in characteristic zero: An n (= 2) -dimensional Fano
variety X of the length n or n+1 is isomorphic to a hyperquadric or a projec-
tive space respectively. But our theorem holds for any characteristic and
hyperquadric case is discussed in entirely different way.

This paper consists of the following sections:

8 1. Preliminaries.

§ 2. The property of the singular curve 4,.

§ 3. Fano varieties X with v*Tx=0(2) D0 (1) *DO*,
and the morphism g: Z—— P(Q}).

§ 4. Hyperquadrics (in characteristic zero).

§ 5. Projective spaces (in characteristic zero) .

§ 6. Hyperquadrics (in positive characteristic) .

§ 7. Projective spaces (in positive characteristic) .

In §1 we study the basic property of rational curves ¢, of minimal degree
in X. First we construct the parameter space Y of such rational curves ¥, in
X and its (modified) universal space Z which is P'-bundle Z—— Y. Next
we investigate the property of the singular curve in {4} ,cy in §2. For the
purpose we define two subsets &' and € of Y which consists of nodal curves
and cuspidal curves (see (2.1)) respectively. To deal with hyperquadric
case in characteristic zero, we get in §3 that Z is naturally contained in
P (2x) as a divisor by virtue of Theorem due to Fulton-Hansen. Moreover
we show that the locus consisting of these rational curves in question through
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a point in X becomes a divisor and particularly it is a cone over an (n —2)
-dimensional smooth hypersurface in P""!. Therefore we get Theorem 4.5.
To prove Main Theorem in characteristic zero, we estimate the dimension of
S¥. Then the facts 5.2.1 ~5.2.6 are available not only in characteristic zero
but in positive characteristic. In §6 and §7 we deal with the positive charac-
teristic cases, though the lack of Kobayasi-Ochiai’s Theorem and Lefschetz's
Theorem in positive characteristic causes complicated arguments. Moreover
Wisniewski's Theorem A about Picard group of Fano varieties in [W2] is im-
portant for our proof.

Conventions and Notations. We work over the algebraically closed
field of any characteristic in general. But in §4 and 5, it is supposed that the
characteristic of the base field is zero. We use the customary terminology of
algebraic geometry. O (a) denotes the line bundle 0, (1)®% on P! For a
vector bundle E on a scheme S, EV denotes the dual vector bundle of E.

§ 1. Preliminaries

Throughout this paper let X be an n-dimensional smooth Fano variety.
(1.1)  Let length (X) be min {(C, —Kyx)|C is a rational curve in X} and Co a
rational curve with (Co,, — Kx) = length (X) = m. Take the normalization
¢@: PP— Co. Then we let H be an irreducible component of the Hilbert
scheme Hom (P!, X) containing the morphism ¢ where dimH = x (P!, ¢*Tx) =
m~+dimX by virtue of Proposition 3 in [Mo2].

(1.1.1) Throughout this paper it is supposed that the above H and Hp, H; de-
fined hereafter are normal varieties.

Let G be Aut P'. Since the natural action of G on Hom, (P!, X) induces
the action o of G on the connected component containing H and, consequently,
on H:

0:GXH— H, o(g,v)x=v(g™'x), gEGC, vEV, xrEP?,
G also acts on HX P! as follows:
T:GXHXP'— HX P! (g, v, x) = (6(g, v), gx).

Let Chow“X be the Chow variety parametrizing 1-dimensional effective cycles
C of X with (C.—Kx) =d. Then we have a morphism a: H—— Chow™X
with (v (P') « —Kx) =m for vEH.

The following proposition can be proved in the same way as Lemma 9 in

[Mo2].
Proposition 1.2. 1) ois a free action.
2) (Y, 1) is the geometric quotient of H by G in the sense of [Mu] where Y ——

a(H) is the normalization of the closure a(H) of a(H) (CChow™X) in the field
k(H)C of the G-invariant rational function on H.



4 Koji Cho and Etichi Sato

Thus H is a principal fiber bundle over a normal projective variety Y with the
group G. Moreover dim Y=y (P!, ¢*Tx) —3=m+dim X —3.

The following argument can be found before the claim 8. 2. in [Mo2].
(1. 2.1) Under the above notations, we have a G-invariant morphism:

F:HXP'— YXX,F,x)=T"@),v(x)), vEH, xEP.
Let Z=Specyxx [ (FxOuxp') ¢]. Then Z is the geometric quotient H X P!/G
and is a P!-bundle g: Z—— Y in the étale topology. Moreover let p: Z——
X be a natural projection.
Hereafter we use the morphisms p, ¢ very often.

(I.1.P) In 1.1, we fixed the rational curve Co on X and studied a fami-
ly of rational curves on X to which Cp belongs.

Next we fix a point P at which the curve Cy is smooth. This condition is
effectively used when the geometric quotient of Hp by G, stated below is con-
structed, as shown in Lemma 9 of [Mo2]. We let ¢: 0o—— P(€X) be a map
with a point o in P! and take an irreducible component Hp of the Hilbert
scheme Hom (P!, X : ¢) containing the morphism ¢ where Hom (P!, X: ¢) is
closed subscheme {v € Hom (P, X) |v(0) =P} of Hom (P!, X). By Proposi-
tion 3 in [Mo2] we can show that

(1.1. 1. P) Hpis a closed subscheme of H and dim Hp=>dimy (P!, ¢*Tx&
0(—1)).

Let Go={vEAut PYv(0) =0}. In the same way as in 1. 2, we get an ac-
tion gp: Gy X Hp— Hp induced by the action o.

Proposition 1. 2. P. Let us maintain the notations of 1. 1. P. Then,
1) opis a free action, and
2) (Y(P), I'p) is the geometric quotient of Hp by Go in the sense of [Mu] where

I'p: Y (P)— a(Hp) is the normalization of the closure a(Hp) of a (Hp) (C
Chow™X) in the field k(Hp)® of the Go-invariant rational functions on Hp.
Thus Hp is a principal fiber bundle over a normal projective variety Y(P) with
group Go.  Moveover dim Y (P) 2dimy (P!, ¢*Tx®0O(—1)) —2=m—2.

(1. 2. 1. P) In the next place we consider a Go-invariant morphism Fp:
HpXx P'—— Y (P) X X. Then we get the geometric quotient Z (P) and cano-
nical projections pp: Z(P) — X and ¢gp: Z(P) — Y (P) in the same man-
ner as in 1. 2. 1,

We state several properties about H and H and Hp.

Proposition 1. 3. Under the above notations we have the following prop-
erties:

1) Let ¢ be as in 1.1. Assume that ¢*Tx is generated by global sections.
Then X is swept out by rational curves of H.

2)  For every point x in X, dim gp~' (x) Zm—2. For each irreducible component
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D of ¢7'gp™* (x), a canonical morphism D —p~' (x) —— X induced by the morph-
ism p is quasi-finite.

3) If HY (P, v*Tx) =0 for every v in H, H is smooth and therefore Y in Proposi-
tion 1.2 is smooth.

4)  Assume that H' (P, v*Tx@0 (—1)) =0 for every point v in Hp. Then Hp
1S smooth.

Proof. 1), the former part of 2), 3) and 4) are trivial. For the proof of
2) assume that we can choose a point A in p(D) — {x} and an irreducible pro-
jective curve C in D so that p(C) =A and C is not contained in D—p~ ' (x).
Then for every point ¢ in a projective curve g (C) each rational curve pg~* (¢)
passes through two points x and A. It is shown by Theorem 4 in [Mo2] that
such a family of rational curves has an element which is a sum of b rational
curves with b= 2, which contradicts the assumption that each rational curve

pq 1 (c) is of the minimal degree with respect to the ample line bundle —Kj.

Corollary 1. 3. 1. Let P be a point in X and y a point in gp~* (x) .

Assume that the curve pg~* (y) is smooth at the point P. Then there is a canonic-
al morphism j : Y (P) —— Y which is finite and of degree 1.

Proof. Note that Y (P) is defined by 1. 1. P. The action 6: G XH——H
in 1.1 induces the one 0p: Go X Hp— Hp canonically. By Proposition 1. 2. a
natural morphism Hp——Y is a Go-invariant morphism. Thus we get a
canonical morphism Y(P) —— Y. Moreover by Proposition 1. 2 and Proposi-
tion 1. 2P it suffices to show that the morphism Y (P) (K) — Y (K) between
sets of k-rational points is generically injective. But it is trivial. g. e d.

To show that every Fano manifold is algebraically simply connected we
show

Proposition 1. 4. Let Z and U be smooth projective varieties and f: U
—— Z an étale finite morphism. Assume that x (U, Oy) =1. Then, f is an iso-
morphism.

Proof. The assumption says that f*Tz = Ty. Thus, Hirzebruch Atiyah-
Singer Riemann-Roch theorem implies that deg f X x (Z, 0z) = x (U, Oy) =1.
Hence f is an isomorphism. q. e. d.

Corollary 1. 4. 1. Any smooth projective Fano variety Z defined over the
complex number field is algebraically simply connected.

Proof. Let f: U—— Z be a finite étale morphism from an algebraic
scheme U to Z. Then we see that U is a smooth projective variety. Since
f*Kz;=Ky, U is a Fano variety. By virtue of Kodaira’s vanishing Theorem,
we get H'(Z, 0z) =0 for 1<i<dim Z, hence x (Z, @z) =1. Thus, Proposition
1. 4 asserts that f is an isomorphism. q. e. d.
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Now under an additional assumption let us study the property of the
morphisms p, ¢ which is important in §.3.

Proposition 1.5. Let us assume that for every point v in H v¥Tx is
generated by global sections. Then the morphism p: Z —— X is smooth and fac-

tors as Z'p—> X— X where P’ is a smooth morphism to a smooth variety X and
all the fibers are irreducible and where j is finite and ¢dtale. Finally assume addi-
tionally that the chavacteristic of the base field is zevo. Then the morphism j 1s
an isomorphism.

Proof. By Proposition 1. 2 and 1) of Proposition 1. 3, it suffices to show
that the canonical morphism s: P! X H—— X is smooth, namely the induced

homomorphism sk : Tpixg — s*Tx is surjective. Since v*Tx is generated by
global sections for every point v in H, the canonical isomorphism between

HY(P', v*Tx) and the Zariski tangent space Ty, provides us with the surjec-
tivity sx on P*X {v }, which yields the desired fact. Hence since p: Z—— X
is smooth, take the Stein factorisation j :Specx px O;,— X of p and set
Specx px Oz as X. Then we see easily that X is smooth and j is étale and fi-
nite. In characteristic zero since X is a Fano variety, the morphism p’ is an
isomorphism one by Corollary 1.4.1. q.e. d.

Next when M is an n-dimensional smooth projective variety,

det/z\TM= — (mw—1)Ky. Thus if /Z\TM is ample, M is a Fano variety. Thus
we have

Proposition 1. 6. Let X be a smooth Fano variety with the ample vector

2
bundle ATx. Then length (X) =n or n+1. Moreover let C be a rational curve
om X with (—Kx+ C) =length (X) and v: P*—— C the normalization of C.

Assume that n=>3. Then v¥Tx is one (#) of the following.
(This v is said to be ¥ -type when # is one of a, B, v and o as stated below.)

If deg v¥*Tx=n+1,
a-type) 0 (2)D0O (1)
B-type) 0 (2)*D0 (1)*-*.D0.
7-type) 0 (3)DO(1)*"2D0..
As exceptional cases
0(2)%B0 (—1) (only in case n=4),
0 (3)%2B0 (—2) or O(3)DO(2) DO (—1) only in case n=3).
If deg v*Tx=n,
d-type)  0(2)D0O(1)**D0.

As an exceptional case,

02)%*P0 (—1) (only in case n=3)
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Proof. Letting v*Tx= @0 (a;) with a;=a2>"+->a, we have a;=>2. Not-
ing v*}\Tx =2 0(a;+a;) and it is ample, we see a;+a; is positive. By vir-
i<j
tue of Theorem 4 in [Mo2], deg v*Tx<n+1. Thus we get the desired fact.
q.e. d.

Corollary 1.7. Let the assumption and notations be as above and as in

1.6.  Then for each point y in Y, p*Tx g1 is one (#) of the types as in Proposi-
tion 1.6. (Hereafter the point y is said to be # -type).

§2. The property of singular curves ¢,

Throughout in this section we let X be a Fano variety and we maintain
notations Co, H, Hp, Z, Y, p, ¢ and m (=length X) in 8.1 and set pg~*(y) as 4,.

In this section we study how many curves in the set {4,|y €Y} of rational
curves of minimal degree on X are singular and what the type of the singular-
ity is.

First let us begin with the definition of singular curves which we treat
here.

(2.1) A nodal (or, cuspidal) curve means the rational curve dominated by a
plane curve C of degree 3 with only one node (or cusp) point P via a biration-
al morphism v. Moreover the point v (P) of the curve v (C) is said to be nodal
(or, cuspidal) point respectively.

Let N be the set {y €Y| 4, is a nodal curve} and € the set {y Y|4, is a
cuspidal curve}. Moreover let NE be NN E.

Now a point y in Y is said to be a-type if p*Tx,;, is isomorphic to 0 (2) D
0 (1)*@0° with b=>1 and ¢ =0.

Proposition 2.1.1. 1) The set N U is a closed subset in Y and € is
closed.

2)  Assume that /Z\Tx is ample, dim X=>4 and deg v¥Tx=n-+1 (see Proposition
1.6). Then € is equal to the image of the set {v €H|vis 7-type} via the morph-
ism ' H—>Y.

Proof. 1) is trivial. For 2) we state an easy
Fact: Let w: P'—— M be a non-constant morphiam to a smooth variety M
and o a point of P!, Then the following two conditions are equivalent to each
other :

1) the homomorphism wx: Tp— wxTy induced by the morphism w is injec-
tive as a vector bundle.
2) w(P?') is not a cuspidal curve.

Thus noting that the vector bundle v*Tx of 7-type has no line bundle € (2)
as a direct summand from Proposition 1.6, we complete the proof. q. e. d.
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Next we show

Theorem 2. Let the notations be as above.

(2. A)  Set {xEX|there is a point y in Y so that &, is smooth at the point x}
as Xo. Assume that for a general point v in H, v*Tx is generated by global sec-
tions and the characteristic of base field is zevo. Then there is an open subset X,
in Xo so that for each point x in X, theve is a point y of a-type in gp~* (x) .
Moreover for x in X, the set {y€pg~" (x)|y is a-type} is open in gp~ (x).

(2. B)  For every point x in X, the set {y € Ylx is a nodal point in 4,} is at
most a finite set.

(2. C) Assume that dimN =n. Then € is not empty and intersects with the
closure N of N in Y.

(2. C')  Suppose that € is empty. For each point x in X, the set of nodal
curves in Y passing throuth x is at wmost finite set. Moreover dimN <n — 1.

Nawmely, there is a open subset V in X such that for every y in Y, €, is smooth in
V.

For the above properties, we need several propositions.

(2.2) Let E be a direct sum of line bundles L;¥L, on a projective curve C.
Set P(E) as S and the section P(L;) as Ci. Now let ¢ be a morphism from S
to a variety so that a fiber of a canonical projection 7w : S—— C is mapped to
a curve via ¢. The we have

Lemma 2.3. Under the above condition 2.2, let C3 be a section of T and
M a quotient line bundle of E which yields the section Cs. Assume that ¢ (Cs) is a
point and dime (S) =2. Then the morphism ¢ is obtained by a linear system of
the line bundle (Opg) (1) @u*M™1)®® with some positive integer a. Moreover one
of two line bundles LiQM™, L,QM™" is ample and the other is trivial. Namely
the curve Ci such that Li=M is mapped to a point via ¢ and the other to a curve.

Proof. Let W: =0pr (a) ®7™N be a line bundle which gives the morphism ¢
where N is a line bundle on C. First since a fiber of 7 goes to a curve via ¢,
a is positive. Moreover since Wic;= Oc¢, we have N=M"% Hence we infer
that W= (Opm (1) Qa*M™) ®* = Opgenu- (1) ®2. On the other hand W is
semi-ample, so is Wi¢c,. As Wi, is (LiQM™1) % L,QM™! is semi-ample, which
says that degL;= degM. Moreover dim¢@(S) = 2 implies that the
self-intersection of (Opw (1) X* (—M) “\"(ZaZZ deg (L;®QM™1)) is positive.

If both of L;&QM™"! are ample, so is W. On the, other hand since ¢ is not fi-

nite, we have a contradition. Hence we see that the one of L;QM™! is ample
and the other is not ample. Moreover we have an exact sequence:
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LiIQM'PL,RQIM ' —— 0 —— 0, which yields L; =M or L, =M, because
either of L;&@M™! has no non-zero section. Thus the last part is trivial.
q. e. d.

Corollary 2.4. Let the condition and assumption be as in Lemma 2.3.
Assume C,NC3=¢. Then ¢(C,) is a curve and C,=Cs.

Proof. The assumption that C; N C; is empty says that M=L, and E is iso-
morphic to L;DM. Since ¢ (Cs) is a point, Li&Lz! is ample by lemma 2. 3
and therefore ¢ (C)) is a curve. Since C; and Cs are linearly equivalent to W

@ m*L1, the intersection Cz * Cs is the degree of L,@LT?, which is negative.
Thus we get C2=C;s. q. e d.

Corollary 2.5. Let the condition be as in 2.2. Assume that dime (S) =2.

Then if ¢ is not a finite morphism, one of ¢ (C1) and ¢ (Cs) is a point and the

other a curve. In other words, if ¢ (Ci) is a curve for i=1, 2, then @ is a finite
morphism.

Proof. By the assumption there is a point t in ¢ (S) such that ¢! (t)
contains a curve D with tD=C. By base change via a morphism D —— C we
get the same set-up as in Lemma 2. 3, which yields this Corollary. q.e. d.

Here we have a

Proposition 2.6. Let M be a variety, m: S—— C a P'-bundle over an
irreducible projective curve C and f: S—— M a morphism with dim f (S) = 2.
We assume that

1)  For each point ¢ in C, w1 (c) is transformed to a curve.
2) fis not finite.
Then we have the following assertions:
1) The set {s€f(S)|dim ' (s) =1} consists of only one point A.

2)  One dimensional part of f*(A) intersects a general fiber T (c) at ome point.
3) If the characteristic of the base field is zevo, then ome dimensional part of

F(A) consists of only ome rational section of m. (Here a rational section D of T
means that T p: D—— C is a birational morphism.)

Proof. By the assumption, we have a point A in f(S) so that f*(4)
contains an irreducible component D which is of one-dimension. Now assume
that D intersects with a general fiber of 7 at more than one point. Let D be
the normalization of D. Then a canonical morphism j: D —— C induces a

P'-bundle 7: D X ¢S(=S)—— D and a section D, of . Letting h: S
— S the morphism induced by the morphism j, h™' (D;) has another irre-
ducible curve Ds; (# D,) and the image of D; and D3 by hf: S —— M is the
same point A. Now taking a generic hyperplane section of £(S) not passing
through the point A, we have another curve D; in S which intersects with
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neither Dy nor D3, Therefore after several base change we obtain the same
set-up as in Corollary 2. 4 by setting D; as C;. Thus we have a contradiction,
which yields 2). The rest is trivial. g. e. d.

The above results provide us with the following proposition which is
used in §.3.

Proposition 2.7. Let m: T—— V be a P'-bundle over a smooth projec-
tive vaviety V and ¢ : T—— U a morphism. Assume that
1) every fiber of T goes to a curve via @,
2)  there is an irreducible divisor D of T which collapses to a point A in U via ¢,
and
3) the vestriction of the morphism ¢ to T—D is quasi-finite. Finally suppose that
the chavacteristic of the base field is zevo. Then D is a section of m. Moveover
there is a rank-2 vector bundle E on 'V and its subline bundle M enjoying the fol-
lowing exact sequence on 'V :

0 M E 0 0

where T =P (E) and P (0) corresponds to the section D. Heve M is an ample
line bundle and E splits to ODM.

Proof. The assumption 1) implies that the morphism 7 p is finite. By
2) in Proposition 2. 6 and Zariski Main Theorem we infer that D is a section
of . Thus the section D gives a rank-2 vector bundle E on V and the quo-
tient line bundle M with an exact sequence on V :

0 M E 0 0

where P(0) determines the section D canonically.

By the proof in Lemma 2. 3, we infer that ¢ is obtained by high power of
Opw (1). Thus E corresponds to an element ¢ in H'(V, M). Now take an
irreducible divisor G of T which does not intersect with D and if G is singu-
lar, make the desingularization f: G —— G of G. Then the fiber product
P(E) XyG has another section G which does not intersect with the section in-
duces by G. Thus f *E splits to ODf *M. This says that there is a canonical
homomorphism f*: H* (V, M) — H* (G, f *M) with f*6=0. By Proposition
4. 17 [F], we have 6=0 (in characteristic zero). Since Opw& (1) pan =M, the
remainder is trivial. Thus we get the proof. q.e. d.

Now we begin the proof of Theorem.

Proof of (2. A). Let Y,=¢gp~*(x). The assumption yields an open sub-
set Ho in H such that for each point v in Ho v*T; is generated by global sec-
tions. Thus let Y, be the image of Hy via the geomertic quotient y: H—— Y.
Then we can take an open set X; in X, so that for each point x in X; Y;NY; is
not empty. Therefore dimY,= x (P! v*Tx®0 (—1)) —dim Aut Go=m — 2
for each point x in X) (See 1. 2. P for Go) . Suppose that there are a point x
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in X1 and an open set Uz in Yz so that for every point Y in Uz y is not a-type,
n

namely, when p*Tx, = PO (a;) with a1=a,>++>0a,>0, # {ila;>1} is less than
i=1

m—1. Fix a point o of P! with o#0. First Go (1. 1. P) acts on P'— {o}
transitively. Let s be the canonical morphism Fy*p,: P'XH,— X in 2.1. P.
Since Go acts on P! X H; canonically, we see that s (P! X H;) — {x} coincides
s({o} X H;) —{x}. Thus to study the rank of the homomorphism ds: Tpixg;
— s*T, on (0, v) for a point v in H,; N H, we have only to check the one of
ds: Twxaz——s*S; on (0, v) where 5 : {0} X H,.—— X is the composite
morphism of a closed embedding i : {o} X Hy—— P'X H, and the morphism s.
Noting that the Zariski tangent space Ty, of H;, at the point v in H; is iso-
morphic to H° (P!, v*T,@0 (—1)), we infer that the rank of ds at (o, v) is
<m — 2, which implies that the image of the canonical morphism s: P! X H,
— X is of < (m —2)-dimension by Sard’s Theorem. Therefore dim (Z X yY;)
=dims (P*X H;) by 2) of Proposition 1. 3. On the other hand dim (Z X yY3)
=dim Y,+1=m—1 which yields a contradiction.
Proof of (2. B). This is clear by 2) in Proposition 2. 6.

Proof of (2. C). We have only to show

Sublemma 2.8. Let €, /' be as in the first part of this section.
Assume that there exists a point P in X and a curve C in N so that for each
point y in C , 4, passes through the point P. Then % intersects with the clo-
sure C of Cin Y.

Proof. We suppose the contrary. Take the normalization g: cC—C
of C and consider a smooth ruled surface C X zg~'(C) (=R). Then by the
assumption, we see that R contains sections Ci, C; with C, N Cy= ¢ satisfying
the following property: letting p : R—— X and ¢ : R—— C be canonical
morphisms induced by the morphism R—— ¢! (C), for every point ¢ in
C, P (CiN g 7' (e) ) coincides with 5 (C2N g ~(c)) and it is a nodal point of
ley. Since dim p (R) =2, R has a curve Cs so that g (Cs) = C and p (Cs) =P.
Remark that the ruled surface R is isomorphic to P (L, DL, with two line
bundles L; Lz on C so that each line bundle L; corresponds to the section C;.
Since P is not finite, ¢ (C1) or ¢ (C2) collapses to a point Q by Corollary 2. 5.
Consequently both of the points go to the point @, which yields a contradition
to Corollary 2. 5. q.e. d.

Proof of (2. C’). It is obvious by 2. C and sublemma 2. 8. q. e. d.

§3. Fano varieties X with v*T,=~0 (2) D0 (1) ®**@ 0% and the morphism
g: Z— P(R2})

We maintain notations H, Y, Z, Hp, Y (p) defined in §1.
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(3.1) Assume that for every element v in H,

v¥T, is 0 (2) DO (1) ®° D 0®°, namely the set € in §2 is empty and
(v (P') + —Kx) =length X>3. (Note that the assumption 1. 1. 1 and 1. 1. 1.
P hold automatically by 3) , 4) in Proposition 1. 3. )

Remark 3.1.1. The assumption says that for a point x in X,

dimgp™ (x) 21 and therefore there is a point y in gp~'(x) so that &, is smooth
at the point x by B in Theorem 2.

Under the assumption we show the induced morphism g: Z—— P (2%)
is a closed embedding and next we study the basic property of X obtained in
case of b=n—2 and c=1.

The P'-bundle g : Z—— Y yields an exact sequence

O Tz/y : Tz q*Ty 0

On the other hand by Proposition 1.5 and Proposition 1.6 the morphism

p: Z—— X gives a surjective homomorphism px: Tz—— p*Tx. Thus we
consider the composite homomorphism ipx
(3.2) Tzy—p*Tx.

Since the above situation 3.1 means that for any point v in H,

(3.3) the morphism v: P'—— X is unramified, the homomorphism f in 3.2
is injective as a vector bundle on Z, which yields a morphism g: Z——

P(2}) satisfying the following diagram:
(3.4)

Z_>P (2%)

\

where 7 is a tautological line bundle of Tx and g*p=T%,y.
Now we consider the case when the morphism g is a closed embedding.
First we recall notations.

(3.5) For a point xr in X, let Y;=¢p™* (x) and Z,=¢ 'gp~ ' (x).

Moreover let L,=q¢ ' (y) and §,=p(L,).

(3. 6) Now let us study the property of the morphism g on p~! (x), written
by gz First by Remark 3.1.1, Y (xr) is defined. The morphismj: Y (x) — Y

in Corollary 1.3.1 has a property that j (Y (x)) Cgp~' (x). Since p~* (x) is
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smooth and irreducible (chark =0) by Proposition 1. 5 and dimY (x) = dim
g (™1 (x)) =m—2, the morphism j: Y (x) — ¢gp~' (x) induces the natural one
Y (x) — p~'(x), which is finite birational and therefore an isomorphism.

Thus we study the morphism gz: p~'(x) (=Y (x)) — P(Q4.). Let H,
be as in §1. By the canonical morphism H, X P!—— X, we can define a
morphism

§: Hem— V(L) $0) =dva( )

where t is a local parameter of P! at the fixed point o.
Now hereafter we assume that
(3.7) n=4,b>c.
From now on let us show that the morphism g, is unramified.

First by 3.7, v: P'—— v (P') is umramified. Thus we see that the im-
age ¢ (Hz) is contained in V(Q};) — {0}, which induces the morphism Hy —
P (2}, = P"!'. Since this morphism is Gz-invariant, we have the induced

morphism Y (x) — P"7!, which is just the morphism g, itself as shown
above.

Now by the assumption 3. 7, v*Tx&®0 (—2) is isomorphic to ODOG (—1)*
@0 (—2) % and therefore, dim H° (P', v*Tx® 0 (— 2)) = 1. Note that
H° (P, v*Tx@0 (—2)) is the Zariski tangent space T¢-16m,0 of ¢7'¢p (v) at v
(see 8. 1in [Mo2]). Thus dim,¢~'¢(v) <1. On the other hand the algebraic
group G, acts on Hy and dim H° (P!, Tpm @ O (— 2)) =1, and therefore
dim,¢~'¢ (v) =1. Since dim Tg-1y,, =dimyP~'¢ (v), we infer that ¢~'¢@ (v) is
smooth and therefore every fiber of ¢ is smooth. Thus we see that g; is
umramified.

Thus we have the following:

Proposition 3.7.1. Under the wnotation in 3.3, assume the condition 3.7
for any x in X. Then g is of maximal rank on every point v in Z. Moreover, for
each point x in X, gz is a closed embedding.

Proof. The former is shown. The latter is due to the following
Theorem by W. Fulton anf J. Hansen.

Theorem (Proposition 2 [F-H]).  Let V be a projective variety of dimen-
sion n, h: V—— P™ an unramified morphism with m <2Zn. Then h is a closed
embedding. q.ed.

The above Proposition immediately yields

Corollary 3.8. Let the notation and condition be as in 3.3. Assume the
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condition 3.7. Then g is a closed embedding.
Now to study the structure of Z;. we prepare a few notations.

(3.9) Let 0r: X2—— X be the blow up of X with the point x as the center.

For a subvariety W in X, 0,7'[W] denotes the proper transform of W by o,.
Now by 2. C’ and 3. 1, we can take

(3.9.1) apoint A in V(CX), namely 4, is smooth at the point A for any y
in gp~*(A). Therefore the canonical morphism p~*(4) —— gp~'(4) is an iso-
morphism. Thus p~! (4) and Z, are smooth and therefore p~ (4) X yZ is
canonically isomorphic to Za.

Let us cosider a morphism ps: Z4—— X iduced by p: Z—— X. Noting

that pa~' (4) is a Cartier divisor in Z4, by the universality of blowing-up we
get

(3. 10) a morphism m : Zg —— X4 with moy=ps and m (pa 1 (A)) =041 [Da4]
where Da=pa (Z4).

Now let us study the behavior of the morphism m on p,~'(4).

Take a point y in Ys. Let £, be the proper transform of ¢, by g4 and
h: P!— £, the normalization of 4,.

(3.11) First we remark that for each point y in Y,
1) 047'[4,] intersects with g4 ' (4) transversally,
2)  Since p*Tx 1, is isomorphic to @ (2) DO (1) **D O, m™*T4 1, is isomorphic
to 0 (2) BO**P0C (—1)%.

To show this, it is sufficient to use the following result in Appendix B. 6.
10. in [H] B
(#) Let XCY and YCZ be regular imbeddings. Let Z be the blowing-up of
Z at X, Y the blowing-up of ¥ at X and E the exceptional divisor of X via the
morphism f: Z —— Z. Then Ny,7=f *Ny,2&Q0;(—E).
3) 04 '(A) Noy ' [D4] is a smooth subvariety in 047t (4) (=P (%) =
P"') and it is canonically isomorphic to p™'(4) from Proposition 3. 7. 1 and
the above 1). Moreover 647! [D4] is smooth around the subvariety o,7!(4)
Noa™ [Dal.

We study the morphism Zs—— m (Z4). By (2) of 3. 11, m is of maximal
rank at each point z in Z4. Precisely speaking, the homomorphism mx: Tz,

—>m*TXA is injective as a vector bundle. Moreover letting m the morph-
ism obtained by restricting m to p~*(A), we see that m induces an isomorph-
ism from p~1(4) to 64~ ' (4) N6a7 [D4a]. Thus the morphism m : Zy——m (Z4)
is an isomorphism around p~'(4).

Summarizing the above argument in 3. 10 and 3. 11, we get

Proposition 3.12. Let A be a point in 3.9.1 and m in 3.10. Then two
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morphisms Za ——m (Za) and Za—— pa (Za) ave birational morphisms. More
precisely, there is an open neighborhood U (Dp7 (4)) in Z4 so that m: U—— m (U)
is an isomorphism and pa is an immersion on U—p~* (A). Moreover Zs—p~'(A)

— p(Z4) — {4} is finite.

Proof. We have only to show the last part. But it is obvious by 2) in
Propositoin 1. 3. q.e. d.

Now recalling that the set € of our Fano variety X in question is empty
and combining 2. C’ and Proposition 2. 7, we get

Corollary 3.13. Let A be a point in 3.9.1. Then Y4 is a smooth sub-
variety in Y, Zs a P -bundle over Y, and p~' (A) is a section in Z,. Moreover
assume that the characteristic of the base field is zevo. Then there is an ample
line bundle M on Y4 so that Z,= P (ODM), the restricted morphism of p to Za is
given by the tautological line bundle of C4®M and P (0 yA) ispt(A).

Finally we assume that b=n—2 and ¢c=1.
Then we show that

(3.14) There is a point A in V(see (2. C') and (3.9.1)) so that p(Z3) is a
normal Cartier divisor with at most one isolated singularity A. Then a natu-
ral map P;: Z;—p ' (A) — p(Z;) — A is an isomorphism.

For a variety T, Sing T denotes the singular locus of T.

Noting 3. 13, assume that
(#) for every point A in V, p(Z4) is non-normal, equivalently, codim 5z,
Sing p (Z4) =1 because p (Z4) is a Cartier divisor in X. More precisely Smg

p (Z4) — {A} is a Weil divisor in p (Z4) — {A} since a normal point in

p(ZA) —{A} is smooth one there by 3. 9. 1.

Thus we see for every point x in X, codim »z,) Sing p(Z;) =1.

Let S(Z;) be the closure of a set p~*(Sing p(Z,)) —p~ ' (x) in Z,.

Then (#) yields the property:
(3. 15) 1) For each point x in X, S (Z;) is of codimension 1 in Z; and
S(Z;) Np~t(x) is at most finite set by (2. B) of Theorem 2. 2) For each
point A in V, S(Za) is a Cartier divisor in Z4 and S(Z4) Np~'(A) is empty.

Now let Z be the fiber product ZX yZ of Z and Z over Y and 4 the di-
agonal of Z. Then there is a canonical morphism h: Z —— X X X by (¢, 2')

— (p2), p(2)).
/ \

Zi(=2) =2)

\/
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(3.16) Then we have the following property:
for each point x in X,
1) zZ is a disjoint union of p‘l(x) X yZ, where x runs over X as a set,
2) Let us set p™2(x) X yZ as Zg and let Fz: Z,—— Z be a canonical morph-
ism. Then 7 is a finite and birational morphism by (2. B) in Theorem 2.
In particular if x is in V, then p ; is an isomorphism.

Let S be a closed set h~! (Singh (Z)) in Z. Noting that Sing h (Z) =
U {x} X Singp (Z;), we see that S is contained in U p,'(S(Z;)) UA and is of

reX reX

2n-2 dimension by 3. 15. Take an irreducible componenet ]_(iA) in S which
is a Cartier divisor in Z. For a general point A in V, JN Z4 is contained in
a disjoint union of 7,71 (S(Zz)) U ({x} Xp~'(x)) and does not contain 4N Z4
by 2) of 3. 15 and 2) of 3. 16. On the other hand JN Z 4 is a Cartier divisor
in Z,. Hence JNAN Z,4 is empty. Moreover we can easily see that a Car-
tier divisor /N Z 4 is connected in Z4 and therefore every fiber of a canonical
morphism ap : J— X is connected where a: Z —— Z be the first projection.
On the other hand since JN Z, is a Cartier divisor in Z; for each point x in
X, it is contained in S (Z;) and disjoint to {x} Xp™' (x) by 1) of 3. 15 and 2)
of 3. 16. Hence we have

Proposition 3.17. AN]J is empty.

Now since the diagonal 4 is a section of b, we have an exact sequence on
2&:

(3.17.1) 0 0 E L 0

where E is a rank-2 vector bundle and L a line bundle on Z;. Here Z and 4
are canonically isomorphic to P (E) and P (L) respectively. Consider the fi-
ber product J X z,Z (=] X z, P(E)). Then 4 and J yield two disjoint sections
with respect to the P'-bundle b in the above fiber product. Hence letting
¢@: J— Z, a canonical projection, we see that the pull-back of the exact
sequence 3. 17. 1 via ¢ splits to ¢*E=0@ ¢*L. Restricting the exact sequ-
ence (3.17.1) to My: = (g2) ' (y) (=P'), we get an exact sequence: 0 —
Op: En, Lip 0. On the other hand since (bgy) ~*(y) = P! X P!
=~ P(E\m,), E\u, is isomorphic to 0 (a) DO (a) . Noting that ¢*E=0D¢*L, we
get a = 0. Taking the direct image R%.x of the exact sequence 3. 16. 1 we
obtain an exact sequence by the base change theorem:

(3.17.2) 0 Oy F N 0

where F is a rank-2 vector bundle on Y with ¢fF =E and N a line bundle on

Ywith gfN = L. Thus we infer that P (F) =Z. On the other hand P (N)

yields a unique section p~' (A) in Z, for each point A in X and therefore

P (N) = AUXp‘1 (A4) by Corollary 3. 13. which contradicts to the fact that
€
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Z= Up~H(4).

AeX
Hence we proved 3. 17. q. e d.

§4. Hyperquadrics (in characteristic zero)

In this section using the results in §3, we study a smooth projective Fano
variety X satisfying the following condition: length (X) =dimX =#n>2 and for
any rational curve C of the minimal degree on X, v*Tx is isomorphic to O (2)
D0, (1)*" 2P0, where v: P'— C is the normalization of C.

First we study the structure of p(Z;) in 3. 14, written by D. Note that D
is a normal irreducible divisor which is a cone with at most one isolated sing-
ularity.

By virtue of Theorem A in [W2] note that

(4.1) when n=>3, Pic X=Z L with the ample line bundle L in X.

Taking account of the fact that Z;=P(0Oy;M) by 3. 13 and D is an am-
ple divisor in X, we have the following:

Proposition 4.2. 1) PicD=Z0p(S) where S is the image of the section
P (M) via p.
2) The closed embedding i: D—— X yields a canonical isomorphism Pic X =
PicD if n=>4.

Proof. 2) is obtained by Lefschetz's Theorem. As a reference see §1
in [Fuj]. g. e. d.

The intersection number of a fiber of g: Z; —— Y; and the section S in
Z; is one. Moreover the canonical morphism p: Z; —— D (C X) is biration-
al.

Thus recalling the assumption 3. 7 first, we can show that in case of n=>4

(4.3) —Kx=nlL.

In fact let —Kx=alL by (4. 1). Thus we infer that n=(§, + —Kx) x=
(4,+alL)x= (4, Lp) p=a (4, S) =a by Proposition 4. 2. Hence by virtue of
Theorem due to Kobayashi and Ochiai we see that when dim X=4, X is a
hyperquadric.

In case of n=2, X is a Del Pezzo surface. Moreover the assumption im-
plies that the surface has no exceptional rational curve of the first kind.
Thus we infer that X is a smooth quadric surface.

Finally the case of n=23 is shown by Theorem A in [W2] and Corollary
2.6in [W1]. Thus we get

Theorem 4.4. Let X be an n-dimensional Fano manifold with
length (X) =n. Assume that for any rational curve C of the minimal degree on

X, v¥Tx is isomorphic to Opi(2) DO p: (1) * 2D Op1 where v : P*—— C is the nor-
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malization of C. Then if n=2, X is a quadric hypersurface.

Consequentely combining Proposition 1. 6 and Theorem 4. 4 we obtain

2
Corollary 4.5. Let X be a smooth projective variety. Assume that NTx
is ample and length X=dim X=3. Then X is a hyperquadric.

§5. Projective spaces (in characteristic zero)

In this section let X be a Fano variety with length X =dim X+1 in char-
acteristic zero. In 5. [ ~5. [, we assume 1. 1. 1 and 1. 1. 1. P. Note, in
case of Main Theorem, that the two assumptions automatically follows from
the condition.

For a subscheme W of €, let SW be the set {x €X|x is a cuspidal point of
¢, for a point yin W}. S% is a closed subset in X.

We prove the following three facts:

(5. 1) Assume ATy is ample and dim X (=n) >4. Then dim €<n—1 and
therefore S% is a proper subset of X,
(5. II) If S€ is a proper subset of X, there is an open set U in X so that for
each point x in U py: Zz— X is birational. (Here the morphism p; is the
one induced by p which is shown to be generically finite surjective by 2) of
Proposition 1. 3)
(5. ) If there is an open set U in X so that for each point x in U pz: Zs
—— X is birational, then X~ P".

To show 5. 1. we make a preparation.
By Proposition 2. 1. 1 note that ={y € Yly is y-type} and hence each cuspid-
al curve pg~' (y) has only one cuspidal point. Let H, be {v € H|p*Tx is
7-type}. H, is a closed subscheme of H.
(5.0) When n=4, let H.={wv € Hp*Tx =0 (2)**® O (—1)}. Then H. is
closed by semi-continuity of coherent sheaf and € N I'(H,) is empty.
(5.1) Let R be a plane cubic curve with one cusp singularity P and take a
general point y in €. Since 4, has a cuspidal point, there is a canonical bira-
tional morphism ¢ : R—— ¢, Thus we can find the following irreducible
component Hg of Hom (R, X) containing the morphism ¢. Fixing a birational
morphism g#: P'—— R, we have a canonical morphism ¢: Hg—— H (C Hom
(P, X)) with ¢ (Hg) CH, and dim « (¢ (Hg)) =dim € under the notation a: H
—— Chowx™"' in 1. 2 canonically. Note that a (¢ (Hg)) is closed in Chowx"*!
by virtue of the latter part in the proof of Lemma 9 ii) in [Mo2]. Take the
normalization g: €r—— a (¢ (Hg)) of the closed subvariety a (¢ (Hg)) .
Then we have an irreducible component € (R) of € (CY) such that 4 (%€ (R))
=a(¢ (Hg)) with the normalization h: ¥ — a(H) in 1. 2.

Now we show 5. [ .

Assuming that
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(5.1) dim €=u,

one has dim Hg=>n~+2 by the fact that Aut(R) is of 2-dimension.
By virtue of Proposition 2 in [Mo2], we have inequalities: h° (R, w*Tx) =
dim Hg = x (R, w*Tx) for each point w in Hg.

Thus we conclude that

(5. 2. 1) for each point w in Hg, h° (R, w*Tx) =n+2 and h' (R, w*Ty) = 1.
Thus Hg is smooth and of n+2 dumension.

In fact, setting w*Tx as E, we have an isomorphism: H* (R, E) ~H°(R, E”)"
since the canonical sheaf wg of the curve R is Ok Remarking that
x (R, w*Tx) =n+1+nx (R, Og) =n+1, we have h®(R, EY) 21 by the assump-
tion. Letting ¢: P'—— R the normalisation, we see that u*E* =0 (— 3) D
0(—1)®"2D@ and therefore h° (R, E*) <1. Thus h°(R, w*) =1, h°(R, E) =
n+2 and h® (R, w*Tx) =dimHg as desired.

Now we claim that:

¢ is a closed embedding.

In fact, the morphism ¢ : Hg —— H induces the homomorphism of the tangent
spaces d@uwi: Thpw — Tauw for each point w in Hg. Then it corresponds
canonically to the homomorphism: H°(Rw*Tx)) — H® (P!, (tw)*Tx)) .
Then it is obviously injective. Moreover we see easily that for a morphism v
of 7-type in € there is a unique morphism w: R —— X such that gw=v and
therefore that ¢ is a closed embedding as desired.

Now let o be a point in P! with ¢ (o) =P, G = AutP"! and Gr= Aut (R).
Then note that Gg is canonically isomorphic to Go (= {0 € Glo (0) =0}) which
is a closed subgroup of G. In Proposition 1. 2. 1 we have the free action
0:GXH—— H and we see that Hg is stable under the action Gg. Moreover
by the natural closed embedding: Gg X H—— G X H, the action ¢ induces a
canonical action Gg X Hr — Hpg, which is a free action. In the same way as
in 1. 1 (essencially in the way of the proof of Lemma 9 [Mo2]) we can con-
struct the geometric quotient of Hr by Gg which coincides with €. Moreover
we have a geometric quotient Zy, of R X Hg by Gg and a canonical morphism
€x— € (R) to some component € (R) of € which is finite and birational.
Therefore combining 5. 2. 1, we see

(5. 2. 2) Bk is a smooth projective variety and therefore so is the fiber pro-
duct ZX y8z. Two canonical morphisms Z X y€r—— Z X y€ (R) and Z X y€r
— Zg,, are the normalizations.

Let p : ZXy6r—— X and § : ZX yEr —— B be canonical projections.

Now let us cosider the above morphism 7.

Recall that P is a unique cuspidal point of the curve R, take a point w in
Hg and fix it hereafter. Note that H' (R, Og) =k.

It is easy to see that a non-zero section of EY(5. 2. 1) gives rise to a tri-
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vial line bundle of E” on R. Set the quotient vector bundle on R as F*. We
have an exact sequence on R :

0 Or E® F* 0.

Since p*F=0 (3) DO (1) ®"2 F is ample. Thus we infer that H' (R, F) =
H°(R, FY) =0 and we obtain

(5. 2. 3.) E splits to ODF.
Let V={s€H°(R, F)|s(P) =0}. Then we have
(5. 2. 4) dim V=2.

In fact we can find two sections s, s; in H° (R, F) which are linearly indepen-
dent over b with s; (P) =s, (P) =0 since rank F=n—1 and h°(F) =n+ 1.
Assume that there is another section s of H* (R, F) where s (P) =0 and s, s1, s2

are linearly independent over k. Since g*F =0 (3) @0 (1) ®*2, the induced
three sections 3, 5, 5z in H* (P!, u*F) are also linearly independent over % and
can be considered as sections of #e« (0 (2), 0 (3)) because the mulplicity of
the curve R at P is 2. Since dim H° (P!, 0 (1)) =2, the above argument yields
a contradiction. Thus we have an (2 —1) -dimensional vector subspace W in
H°(R, F) with VN W={0}. Then the above argument says that
(5. 2. 5) The sections of vector space W(CH®(R, w*Tx)) generates the vector
space FQFk (P) (Cw*Tx®Fk (P)) at the singular point P of R. Therefore
H°(R, w*Tx) generates w*Tx®k (P) at the point P.

Recall that € is smooth and set Z X y6z as Zg. Since each point y in
%r induces only one cuspidal point of the cuspidal curve 7y, a
P'-bundle § : Zr—— %r has a section S induced by these cuspidal points.
Now consider the homomorphism 7 : Tz,— P *Tx induced by the canonical
morphism p : Zr—— X. By 5. 2. 5 we see that the morphism Zzx—— X is of
maximal rank around the section S. On the other hand the morphism ¢
yields an exact sequence;:

j

0 T- Tz, g*Te,—0

where T 7 is the relative tangent line bundle of §g. Since the composite homo-
morphism jp T7;—— P *Tx is zero on the section S, there is an induced
surjective homomorphism on S: T¢,—— P *Tx. Therefore we have a property.

(5. 2. 6) The induces morphism ps: S—— X restricted p to S is finite and
surjective.

Let y be a point in € and P the only one cuspidal point of ;. Then to
show the above statement (5. 2. 6), we prove that {y € €|P is the cuspidal
point of 4,} is finite set. Consequently it is sufficient to show the following:

Claim : The closed subscheme {v € H|v (0) =P, dvs. (%) =0} (=B) is
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smooth and of 2-dimensional. (Here t is a local parameter of P! at the point
0).

In fact, we see that the Zariski tangent space Tgy is isomorphic to
H° (P, v*Tx®0 (—2)) which is 6 (1) DO (—1)*""2P0 (—2). Moreover not-
ing that B has a canonical action via the 2-dimensional automorphism G, in-
duced by Aut (R) , we get the desired fact. At the same time we see that

(5.2.7) the induced morphism ps: S—— X restricted p to S is étale.

(5.2.7.1) S is a section of P'-bundle ¢: Zzx — €x over the smooth pro-
jective variety €g, Zg is described as P (J) where J is a rank 2 vector bundle
over € satisfying the following exact sequence:

0 Ok, J L 0

where the quotient line bundle L of J/ on $% yields the section S.

Now in characteristic zero, we infer by Corollary 1. 4. 1. that Ps is an iso-
morphism namely %% is isomorphic to X. By virtue of [W2] it is known that
PicX=ZL, with the ample line bundle L,. Since —Kx is ample, it follows that
H' (X, M) =0 for any line bundle M on X by Kodaira vanishing theorem.
Thus we have: (5. 2. 8) G splits to O DL.

Let So be the other section induced by the trivial line bundle & of E.

Note that for a general point x in X, p~! (x) is a smooth curve in Zgz which
is a rational section over gp~!(x) in the meaning in Proposition 2. 6. Thus

from Corollary 2. 5 we see that gp~! (x) is contained in So. Hence the morph-
ism p: Zg— X collapses only the section S, which implies that dim p(Zg) =
n+1. Thus we get a contradiction.

Hence we proved 5.1 .

In the next place we prove 5. II.
We assume the contrary.

(5. 3) There is a point x in X —S% so that p is of degree d >1. (Note that
this is an open condition.) In other words, there is a point y in Y, and a pro-
jective curve E in Yy where for a general point § in E # and ¥, intersect at a
point which is not x.

Then the curve E is the image of some component of p~! (¢,) via ¢ and
each & (y # ) passes through the point x and 4, N 4 — {x} is not empty.
Therefore we have more precise situation:

(5.4) there are a point x in X—S%, a curve 4, on X and an irreducible com-
plete curve C, (#L,) satisfying the following:
1) x is a smooth point of 4,

2) C:is an irreducible component of the closure of p,~! (§,—x), and
3) for each point ¢ in Cy, &4 is smooth at the point x (see 2. B).



22 Koji Cho and Eiichi Sato

Thus we consider a ruled surface ¢7! (¢ (C1)) (=S) over the projective
curve ¢q (Cy) . Letting ¢: C—— ¢ (C1) the normalization, set C X ¢,S as the
ruled surface S—— C. Let p: S—— X be the canonical morphism induced
by the morphism p and H an ample line bundle on X and f a fiber of S— C.
Let Co be the minimal section in S induced by p~' (x) Ng~' (g (C)) and e=
(Co * Co). Then p*H is numerically equivalent to a (Co-ef) and C; to aCo+ff
with integers a, @ and 8. We get a >0. Note that p(C;) =p (f) and deg p;=1.
Then we see that aB= (p*H, C,) =deg pic, (H * p(Cy)) x=deg pici (H* p () x.
Moreover we have a= (p*H, f) =deg piy (H*p(f))x= (H *+ p(f))x. Thus we
get deg pic;=0B. On the other hand (C; * Cy) =B+ae with ae#0.

Thus we will induce a contradiction by Proposition 5. 5 shown below.

We make a preparation for Proposition 5. 5.

Let m: S—— E be a geometrical ruled surface over a smooth projective
curve E. Let Cp and C; be sections of 7. Let us consider a morphism p from
S to a smooth variety X with the following properties:

1) dim p(S)=2.
2) C, collapses to a point v via p.
3) the curve p(Cy) is smooth at v.

Now let ¢ be a point on CoNCy and F=n"1x(t).

Proposition 5.5. Assume that a curves p (F) is smooth at v and the
morphism F—— P (F) is birational. Letting I (Co, Cy; t) the intersection of
curves Co and Cy at the point t and e; the vamification index of the morphism pc, :
Ci—— p(Cy) at the point t. Then I(Co, Cy; t) =ey.

Proof. Take a local coordinate x, y at the point Co N F where Cy is an
x-axis and F a y-axis and moreover take a coordinate z,...,z, at the point v
where p (F) is a z;-axis. Thus we can describe the morphism p from a neigh-
bourhood of v in S to X as(..., z.,...)=( ... fi(x,y),...) sothat f;(x, y) is
a holomorphic function near a neighborfood at CoN F and f; (0, 0) =0 for any 1.
Now since the section Cy collapses to the point v via the morphism p, f; (x, 0)
is zero and therefore for any i fi (x, y) can be written as y™g; (r, y) where
mi1=>1 and gi (0, y) #0. Noting that the morphism F—— p(F) is birational
and p(F) is a z;-axis we get m;=1 and g, (0, 0) #0. Letting C; = {y =x™}
locally, we can describe the morphism p restricted to the section C; as the
mapping (x™g; (x, x™) , ™™g, (x, ™) ,..., x™™g; (x, ™) ,...) . Noting
g1(0, 0) #0, we get the desired fact. q.e.d.

Thus we get 5.1I.

Finally we show 5. [l . Take a general point x in U. Then since the
characteristic of the ground field is zero and length X =wn + 1, the morphism
Zy— X is separable and the induced homomorphism Tq—uyz,reg,—w*Tx is
generically surjective. Hence for a general point y in Y, we see P*TxiL, is
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0(2) @0 (1)° ! by 2. A. Note that p~* (x) — Y, is a finite birational
morphism and p: Z,—p ' (xr) — X —{x} is also a finite birational morphism
by the assumption of 5. [. Take the normalization S—— p~' (x) of p~! (x).
Letting j : Zz X y; S (=Zz) —— Z, the canonical morphism by the base change
S—— Y, we see that j is a finite birational morphism. Hence we infer that
the composite morphism jp is a birational morphism. Thus the section S in-
duced by S in Z; gives a rank-2 vector bundle E and its subline bundle M on
p~'(x) with the following exact sequence:

(#) 0 M E 0 0

where P(E) =Z; and P(0) =S canonically. Letting h: S—— S be a desing-
ularization of S, we see that h+0 ;=05 because h is a birational morphism and
S is normal. Moreover the canonical homomorphism h' (S, M) — h' (S, h*M)
is injective and h*E splits to 0D h*M by the argument in Proposition 2. 7.
Thus we see that E splits to OM. At the same time since jp: Z—S—
Z—{x} is quasi-finite, M is ample. Then we get a birational morphism
¢: P(E) — X from P(E) to the normal cone X where via
¢: P(E) —P(0) — X —{z} is an isomorphism and P (0) goes to the point
x. Thus we have a canonical morphism ¢: X —— X which is a finite and
birational morphism. Since X is smooth, ¢ is an isomorphism. Setting a sec-
tion P (M) as D, we infer that ¢: D—— ¢ (D) (CX) is a birational morph-
ism. Hence we see that (I p (D)) = 1. Since Pic X = Z by [W2] and
(—Kx+ ) =n+1, —Kxis (n+1)p(D). Thus we are done by Theorem due
to Kobayashi and Ochiai [KO].

Hence we complete the proof of 5.1I.

(5.6) Thus we show 2) of Main Theorem.

By Proposition 1. 6 we see that length (X) is n or n+1. In the former case X
is a smooth hyperquadric from Corollary 4. 5. In the other case if n=>4, we
infer that X is a projective space by 5. 1 ~5.[. Moreover if n =3, it is
proved by Corollary 2.6 in [W1] that the same conclusion holds.

§ 6. Hyperquadric (in positive characteristic)

(6.1) In this section and the last section we prove Main Theorem in positive
characteristic. All the results of §1 and §2 except the ones stated below hold
in positive characteristic:

Corollary 1. 4. 1, the latter part of Proposition 1. 5, 2. A, 3) of 2.6, 2. 7.
What we must check is the first two facts. Thus we consider Proposi-
tion 1. 5 first.

Let 7: P'XH—— Z be a canonical projection. Since the natural morph-
ism ¢! (y) — pg~* (y) is birational, so is a canonical morphism ¢~ (y) —
pq* (y). Thus ©p’': P* X H—— X yields a canonical morphism &: H —
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Hom (P!, X). Consequently we have a component H of Hom (P!, X) which
contains € (H) . Since the morphism j is étale and therefore j*Tx =~ Ty and
moreover v*Ty is generated by global sections for each v in H, there is a cano-
nical isomorphism: v*Tx=¢e (v) *T7. Thus H is smooth and dim H =h° (v*T¢)
= dimH. Moreover the induced isomorphism H° (P!, +*Tx) = H° (P!,
€ (v)*Ty) corresponds to the homomorphism des,: Ta,o— Tg.cv induced by
a canonical morphism ¢: H—— H. Hence we infer that H contains ¢ (H) as
an open set. Moreover a composite morphism 7j: P' X H—— X yields a
morphism H —— Hom (P!, X). Consequently we have a natural morphism
€: H——H so that e¢ : H—— H is an identity. Hence we infer that the
morphism é: H—— H is an isomorphism and that Y and Z are the geometric
quotients of H X P! by G respectively. Therefore we observe X instead of
X. Moreover we show a fact corresponding to Corollary 1. 4. 1.

Proposition 6.2. Let X be as above. T f is a projective space or a
smooth hyperquadric, the étale finite morphism j : X —— X is an isomorphism.

Proof. By Proposition 1. 4, we get the desired fact. q.e. d.

Therefore we have only to show that X is a projective space of a smooth

hyperquadric. Then without the fear of confusion we use the same notation
X.
Hereafter in this section it is supposed that

n=>5.

Now we check the facts in §3 in positive characteristic. Corollary 3. 13
is the only one to consider. Then a section p™'(4) of 3. 9. 1 is a hypersur-

face in P*" ' (n=>5). Letting S=p ' (A), we see from Corollary 3.2 of §4 in
[H] that

(6. 3) PicS=~Z0s(1) and hence H' (S, M) =0 for every line bundle M on S
and 1<i<n—3 where Os(1) =0p.- (1) .

Thus we get
(6.3.1) Corollary 3. 13 (=the splitness) holds,
Therefore results in §3 hold in positive characteristic.
Next in the remainder part of this section we show that Fano variety X

with the ample vector bundle /2\TX and length X =n (=5) is a smooth hyper-
quadric.

Take a general point x in V in 3. 14, and set the normal divisor p (Z;) as
D. Different from the case in characteristic zero we show, in positive charac-
teristic, that D is a divisor in P” and next that X is a smooth Cartier divisor
in the weighted projective space . Thus we can get the desired fact easily.
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For the purpose we make a preparation.
Note that Proposition 4. 2 1) is characteristic free.

(6.4) Pic D=Z0,(S).
We set Op(S) as Lp. Then we have

Proposition 6.5. Pic X=ZL with the ample line bundle L.

Proof. Note that Wisniewski's Theorem A in [W2] holds in positive
characteristic. In fact to construct the closed subscheme F in Fano variety X
induced by the extremal ray Ri, we need not use the contraction map which
Wisniewski adopted in his proof in [W2]. Moreover we can check easily
that any curve C in F belongs to the vector space generated by R;. The rest
of the proof of Wisniewski's Theorem holds in positive characteristic. Also
see the statement of the last part in [W3]. q. e d.

(6.6) Moreover we show that

a canonical homomorphism Pic X —— Pic D induced by the closed embedding
i:D—— X is an isomorphism if n=>5.
For the proof we use the following

Theorem (SGA2 originally or Theorem 3. 1 of Chapter IV in [H]. Let A be
a complete non-singular variety and let B be a closed subscheme. Assume
that

i) Leff (4, B),

11) B meets every effective divisor on A, and

i) H'(B, I"/I"*') =0 for i=1, 2 and all n=>1 where I is the sheaf of ideals
of B.

Then the natural map Pic A —— Pic B is an isomorphism.

Since D is an ample divisor in X by Proposition 6. 5, Leff (X, Y) follows
from Proposition 1. 3, Theorem 1. 5 and its proof in §4 in [H]. As for iii) it
suffices to show H'(D, *Np,x) =0 for any positive integer » and i=1, 2.

For the purpose we show

Lemma 6.7. Let Ls=Lpis. Assume dim D=n—124. Then for every
wmteger v, we have

1) HY(S, rLs) =H?*(S, rLs) =0.
2) H' (D, rLp) =0 fori=1, 2.

Proof. 1) is trivial from 6. 3.
Next we have the following exact sequence on D :

0— 00 ( _S) @1) @s 0.
Tensoring rLp we get

0— (7_1)LD rLp rLs 0
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From 1) we obtain a surjective homomorphim: H'(D, (r — 1) LD) —
H'(D, rLp) and an injection : H* (D, (r—1) Lp) — H?*(D, vLp). Let the cano-
nical sheaf wp=wLp with an integer w by Proposition 6. 5. Thus by virtue of
Serre’s duality we get H* (D, vLp) =H"2(D, (w—7) Lp) and therefore we see
that H*2 (D, (w —v) Lp) = 0 for a sufficiently large integer — r by Serre
vanishing theorem, which yields the desired fact in case of i=1. The remain-
der case is obtained in the same way. Hence we complete the proof. q.e. d.

Thus we get

Corollary 6.8. Assume that n= 5. A canonical homomorphism PicX
— Pic D induced by the closed embedding i: D—— X is an isomorphism.
Thus L|D=LD(=@D (S))

Now take a point A in V in 3. 14 and set a normal Cartier divisor p(Z3)
as D where Z; =P (0®M) in 3. 13. Then we have shown that the induced
morphism ps: Z7;—— D is a blow-down of P(@_) and D is a cone over the
smooth projective variety (=S) with the vertex A. Moreover we see from 6.
3 that the normal bundle Ns,p is isomorphic to @s (b) with 5> 0. Then we
have

Proposition 6.9. b=1, namely Ns,p=0s(1).

Proof. We study the cone singularity (D, A). Letting (R, M) the local
ring Op, 2, N=Ns,p and T=@ H°(S, tN), we see that R is the localisation of

tz1l

T at T+ where T =@ H°(S, tN). Thus since D is a Cartier divisor in the

t21

smooth variety X, we have dim H°(S, N) <dimM/M?<n. Consequently we get
b=1 from the following exact sequence and computation:
nO(S, Os (b)) =h*(P"!, Opri (b)) —h° (P, Opri (b—d))
obtaind by the sequence:
0—— Opri(b—d) — Op.-: (b) 0Os(b) 0,
with d =deg S, and
hO(Opn (b)) —h* (Opn(c)) = mssCo— m+cCe

e cc< “"%?,’_’if’_’%eﬂ) —1>zm+2 C:—12m+2, when b>c>2.

= s Co— m+1) 2 s Co— m+1) =401 Co2m~+2, when b>c=1.
m+b Cb_12m+2 Cz—12m+2, when b>1, CSO qg. e. d.

We have come to the final stage.
First we show
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Proposition 6.10. Let the notations be as i §. 4. Assume n= 5.
Then Kx=—nlL.

Proof. The intersection number of the fiber of ¢ and p™' (A) in Z; is
one. Noting that p; is birational, and that —Kx=alL from Proposition 6. 3, we
have n= (4, - —Kx) = (4, aL) =a (4, Lp) p=a (4, + S) p=a from Corollary
6. 8. q.e. d.

Finally we show that X is a quadric hypersurface.
Noting that p7' (A4) (=S) is a smooth hypersurface of degree d in
P(Q'% 1), we let f be a defining equation of S where S=Proj k[xo, ..., xn1)/

(f) in P*"! and the weight of ;=1 for every i. Moreover recalling that Ls=
Os(1) =Ns,p from 6. 3 and Proposition 6.9, we have, by virutue of Theorem 3.6
in [Mo 1]

Proposition 6.10. D is a hypersutface in P" which is isomorphic to Proj
klxo, ..., xnl/ (f) in P" where the weight of x,=1, f is a homogeneous polyno-
mial (=xi+anxa'+,... awx,+1) of degree d, a; a homogeneous polynomial of

degree d—iin kl[xo, ..., xn_1] and f (xo, ..., Xn_1, 0) =f.

Therefore we see that the above S is an intersection of D and a hyper-
plane in P"*!. Let Ox (D) =cL. Then using Theorem 3. 6 in [Mol] again,
we see that X is isomorphic to Projk [xe, ..., e / (F) (=X (F)) in the
weighted projective space @(1 ,..., 1, ¢) where F is a weighted homogeneous
polynomial (=xby1+bey x57i+  Fburnsr+ f) in klxo, ..., Tusr) of degree
d (=ce), b; a homogeneous polynomial of degree d —ic in k[xo, ..., z,] and
F(xo, ..., xn 0]= f. On the other hand we know

(6.11) Kx= (d— (n+1+¢))L by virtue of Proposition 3. 3 in [Mol]

Hence combining 6. 9, 6. 11 and d =ce, we have c=1 and e=d =2. Thus
we can prove that

Theorem 6.12. Let X be a smooth projective variety. Assume that /Z\TX
is ample and length (X) =dim X=5. Then X is a hyperquadric.

§ 7. Projective spaces (in positive characteristic)

In this section it is assumed that n=dim X =5.

Here we prove that if a smooth projective variety X is of length n+1 so
that the second exterior power of Tx is ample, then X is isomorphic to P” in
positive characteristic by the same manner way as in §5. But several phe-
nomena peculiar to positive characteristic happen. The particularly compli-
cated one is about the separability of a canonical morphism Zy—— X. For

the purpose we must show that there exists a curve ¢, of a-type as stated in
7. 2.
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Noting that facts (5. 2. 1) ~ (5. 2. 7) for 5. I are characteristic free, we
first obtain

Proposition 7.1. dim €<n=1 and S is a proper subset in X.

Proof. Assume dim®=n. Then as stated in 5. 2. 7 there exists the
smooth variety S in Zg induced by cuspidal points which is an étale cover

2
over the given variety X with the ample vector bundle ATx. Then we have a
claim:

Pic S(=~Pic r) =Z

In fact since ps: S—— X in 5. 2. 6 is étale, /Z\Tx is also an ample vector bun-
dle and therefore S is a Fano variety of length n+1. Thus we get the desired
fact by [W2]. By S=%z we use the notation S rather than €z Here recall
the exact sequence in 5. 2. 7. 1:

0 Os J L 0
where L is a line bundle on S. Now letting (gi;) be the transition matrix of
the vector bundle /, we denote the vector bundle induced by the Frobenius

morphism of S by /¥ whose transition matrix is (g;/?). Moreover repeating
the procedure by m-times Frobenuis maps of S, we get J#™. Since the cano-
nical surjective morphism P (J*™) — X has 1-dimensional fiber, L is not a
trivial line bundle, namely L is positive or negative by virtue of Pic S=Z.
Then since H'(S, L®®) =H""'(S, Ks®L®*) by Serre’s duality, H'(S, L®?)
is 0 for a large number a. Thus we infer that J ®™ splits into OLF™ (=] "),
which implies that there is a birational but not finite morphism f from P (J’)
to a cone T which collapes either section P(0) or P(L*™) to a vertex. Let
a: P(J)— P (J) be a canonical S-morphism. Thus we have three
non-finite and non-constant morphisms: the P'-bundle: P (J') — S, a
morphism ap : P (J') — X and a birational morphism f: P(J') — T and
see that three line bundles on P (/') corresponding to the above morphisms
are different from each other. On the other hand since Pic P(J') ~Z@PZ, the
pseudo-ample cone has two boundarys each of which corresponds to a line
bundle which is neither ample nor trivial. Thus we get a contradiction.

q. e. d.

From Propositin 7. 1 the argument of 5. says in positive characteristic

Remark 7.1.1. For a general point x in X—S € a canonical morphism
pr: Zy— X is bijective on Z,—p ' (x).

To complete the proof of (5. [) In positive characteristic and to develope
the argument for (5. [ll), we need to prove that a canonical morphism bz Zx
— X is separable.

For the purpose we have the following claim:



Smooth projective varieties 29

(7.2) Assume that ATy is ample and length (X) =n+1. Moreover assume
n=5. Then X has a curve ¥, of type . (The proof continues till 7. 5.)
In fact, if otherwise, we can assume by Proposition 1. 6 that (#) for every
point y in Y, 4, is of B or 7-type.

Noting that dim € <n—1 from 7. 1, in order to obtain a contradiction, we
divide into two cases:

(7.2.1) There are points y, y' in Y so that 4, is B-type and 4, is y-type.
(7.2.2) For every point y in Y 4, is B-type.

Hereafter we prove that neither 7. 1. 2 nor 7. 2. 2 happen.

First we consider first case.

For every point y in Y, P *Tx 414 is a direct sum of a trivial line bundle
and ample vector bundle. Hence considering the canonical homomorphism:

g qup* Q2 x — p*0Q'%, we infer that ¢g«p*Q2'% is a line bundle on Y and the
homomorphism is injective as a vector bundle by virtue of the base change
theorem. Let D be the cokernel of the homomorphism. Then D is a vector
bundle of rank- (n —1) on Z and for each point y in Y, D1y is O (3) D
0 (1)®"% or 0 (2)®°2B0 (1) ®**2. Moreover the latter vector bundle is more
general than the former. Noting that % is a closed subscheme of Y where for
each point y in € Dig1y =0 (3) DO (1) **~2(=E) we see that the codimension
of € in Y is not bigger than dimH"' (M, Ty) where M= P (E). For the proof
see, for example, proposition 2. 3 in [S]. Thus noting that dim H* (M, Tx)
<dim H'(M, EQE") by virtue of Leray spectral sequence, we see that dim H"
(M, EQEY) =n—2, namely codimy® <n—2. On the other hand it is already
shown that codimy®=n—1 from 7. 1. This is a contradiction. Thus we con-
clude that the case 7. 2. 1 does not occur.

Next we treat with the case 7. 2. 2in 7. 3~7. 5. Since Y has no cuspidal
curve, there is a point x where ($) each curve 4, through the piont x is
smooth from 2. C’.

Thus we fix the point x. Let us consider a morhism g: p~! (x) —

P(Q'% ) =P"'asin 3.6. We can first check that under the case 7. 2. 2,

(7.3) g is a finite surjective morphism. Moreover it is purely inseparable.

In fact, since dim p~! (x) =#n — 1, for the former part it is sufficient to
show
(7. 4) Claim: Let W be a closed curve in p~' (x). Assume that g (W) is a
point. Then there is a point z in W so that ., is not smooth at the point x.
(See (8))

In fact assume that for each point z in W &) is smooth at the point x in
X. Then we see that for points z and 2z’ in W the curve ,, tangents to the
other curve &) at the point . Then we can take a general hyperplane sec-
tion D in X through the point x so that D intersects transversally with all ;¢
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(z€ W) at x. This implies that the intersection pg~'q (W) N D of a surface

pq'q (W) and the ample divisor D has a component which consists of one
point x. This is a contradiction.

Next we show the latter part. For the purpose we have only to prove that
g is generically bijective. First fix a general point x in X—S%. Let S: =
pz'(x) and choose an open set U in Y, so that SNg~' (U) is a Cartier divisor
in ¢7* (U). Take the blowing-up o0;: X,—— X along the point x and let E;
the exceptional divisor in X; via 0z Then by the universality of the
blowing-up, we have a canonical morphism m : ¢! (U) — X, with ox m=p;.
Then we see that m is injective from Remark 7. 1. 1. Note that msne-1w) i
equal to gisne-1ry. Hence m is bijective.

Thus under the assumption 7. 2. 2. we get 7. 3.

Remark 7.4.1. The latter argument of 7. 4 says that

Let x be a point in X —S %. If a canonical morphism g;: p~! (x) —
P (Q2x.) is surjective, then gz is generically one to one without the conditions
of the types a, B, 7 of 4,(y €Y,) (from Remark 7. 1. 1).

Moreover we continue the argument to show

(7.5) the fact 7. 3 yields a cotradiction.

By 7. 3 there is a Frobenius morphism F: P"'—— P""! and a purely
inseparable morphism g : P*"'——p~'(x) =A with F=Zg. Since for each
point y in Y
P*Txig1 =0 (2) *2D 0 (1) 3D 0, p*Tx has the following three exact sequ-
ences:

(7.5.1) 00— Tz;y— p*Tx— the coker of i (=M) — 0,
obtained by the unramified morphism ¢~} (y) — 4, as in 3. 2.

(7.5.2) 0—G—> p*Tx — the coker of j (=N) — 0,

where G denotes a rank 2-bundle ¢*q« (p*Tx&TY,v) ®Tz,y on Z by virtue of
the base change theorem of Grothendieck and

k
(7.5.3) 0—— the kernel of #(=H) P*Tx L 0
finally in the same manner as in 7. 5. 2 where L is the dual bundle of the line
bundle g*qxp* Q.
Then we see that G is a subbundle of H and Tz,y a canonical line subbun-
dle of G. Thus restricting each exact sequence 7. 5. 1~7. 5. 3 to the fiber A

and pulling back them to P”! via the morphism g, we have

O_> i_)@l)ﬂ-l$n_)@_>0.
0— G — Op® —— N — 0.

O_’ﬁ_)ﬁpn-l®n_) E_>0.

Hence we have three vector bundles ’F G and H on P*! with TCG CH.
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_ n=1 ,
The Chern polynomial of H is described as 2. (gt)  with a variable t and

i=0 _
some natural integer q. On the other hand since T is a line subbundle of a
rank-2 vector bundle G on P G splits to a sum of two line bundles.
Therefore the polynomial becomes zero at two non-zero integers with the same
sign, but it is impossible.
Thus we complete the proof of 7. 2.

Therefore by 7. 2 choosing a general point x in X —S%, we have an open
set U in Y, so that for each point y 4, is a-type.

Thus we get from Remark 7. 1. 1,
(7.6) pr: Zy— X is separable for a general point x in X —S% and there-
fore birational.

. . F b .
In fact since there is a morphism: H; X p! — Z,— X as stated in 1. 2. 1.

P, it suffices to show that the induced morphism H, X P!—— X is separable
and therefore H, X (P'— {0}) — X is generically smooth. But since for a
general point v in Hy, v*Tx is isomorphic to 0 (2) D0 (1) ®”? from Proposi-
tion 3 in [Mo2] it is trivial as shown in (8. 2) of [Mo2].

Moreover in the same way as in (3. 6) and (3. 7) we infer from Remark
7.4.1 that
(7.7) for a general point x in X—S% the morphism g, is birational.

Let A=p7'(x) and let us recall that A is smooth from Proposition 1. 5
and Proposition 1. 6 and therefore that A is canonically isomorphic to Y (x)
(=H,/G,) from Proposition 1. 3 and 3. 6.

As the finial stage we prepare a claim to show that g is a finite morph-

ism. First let A ={2€A|g7'%¢(2) is a finite set). Then we remark that
(7.8) The morphism g: A - P" ! is an open immersion on A by virtue
of Zariski Main Theorem and A is equal to the subset {zEAlg is isomorph-
ism around the point z}

Then we have

Proposition 7.9. A =1{z€Al, is a-type}.

For the proof we have only to show that
(7.9.1) Let z be a point in A. Then
1) Ifzisin A , then 4 is a-type,
2) If zis not in A , then 4, is not a-type.
First recall the notations. Let ¢: H,—— V(% ;) be a canonical morphism
(3.6) and I'y: H,—— A the geometric quotient by G, (Proposition 1. 2. P).
Take a point z in A. Let v be a point of H; with I';(v) =z and H, a componet

of 7' (¢ (v)) containing the point v.  Moreover let pr be the canonical projec-
tion V(Qx, ;) —{0}. Let zbein A. Since g is an isomorphism at the point z,
we infer that the composite morphism Iyg: Hy—— P (2x, 1) is smooth at the
point v, Izg = ¢dpr and therefore ¢ is smooth at the point v. Thus we see that
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H, is smooth at the point v and therefore the Zariski tangent space ZT, of H,
at the point v is isomorphic to k, because automorphism group of P! fixing
two points is of 1-dimension as stated just after 8. 1 in [Mo2]. Moreover by
virtue of the deformation theory of Grothendieck ZT, is isomorphic to H® (P?,
v¥*TxQ0 (—2)). Thus we get the former.

Next if v is B or 7-type, ZT, is a 2-dimensional vector space by the above
argument. Hence g is not an isomorphism at Iz (v).

Thus we complete the proof of Proposition 7. 9.

Since x is contained in X—S €, x is a smooth point or a nodal point of a
rational curve 4, for z in W.
Hence we finally show that

(7.10) g is a finite morphism. )

In fact assume that g is not finite. By 7. 9, we see that A—A consist of
B or 7-type and it is of at least one dimension. First since dim € <un—1 by
Proposition 7. 1, there are at most finite rational curves of y-type passing
through a general point in X. Thus we ilolfel‘ that A—A containsoa point of
B-type. Now we claim that codima (A —A ) <2, namely dim (4 —A ) 2n—2.
In fact the deformation theory says that codimy (A —A ) <dim H' (P}, FQF’) =
2 with F=0 (2)®2@0 (1) ®" D0 as stated in the argument in 7. 2. On the
other hand since the set

{z€EA—A |4, has a nodal point x} )
is at most finite from 2. B, there is a projective curve W in A —A so that
each curve €,y (z€ W) is smooth at the point x. But this contradicts Claim
7. 4. Hence we get 7. 10.

Therefore we see that
p ) — P(Q%, ) (=P"") is a finite birational morphism and therefore
an isomorphism, which means that for each point y in Y5, ¢, is of a-type. By
virtue of the proof of [Mo2] we have X= P*.

Hence we get

Theorem 7.11. Let X be a smooth projective vaviety defined over the

2
algebraically closed field whose chavactevistic is arbitrary. Assume that NTx is
ample and length (X) =dim X+1>6. Then X=P".

Combining 6. 12 and Theorem 7. 11, we can show 1) of Main Theorem.
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