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Sm ooth projective varieties w ith  th e  am p le  vector

bundle Â Tx  in  any characteristic

By

Koji Clio and EIICHI SATO

In  th e  p resen t paper w e  de term ine  th e  s tru c tu re  o f  sm ooth projective

varieties w ith the am ple vector bundle AT  . If  X  is  a projective space or

smooth hyperquadric, A T  i s  an ample vector bundle . W e consider the  con-

verse and obtain the following:

Main Theorem. Let X be an n-dimensional smooth projective variety de-

f ined over an  algebraically closed f ield  w hose characteristic is arbitrary . A ssume

that A Tx  is ample. T h e n  w e  have the following:

1) if 5 , then X  is isom orphic to a projective space o r a hyperquadric. (see
Theorem 6.12 and Theorem 7.11)

2) if  the characteristic of  the base f ield is  z ero and n  3 ,  then the same conclu-
sion as  in  1) holds. (see C orollary  4.5 and Theorem 5.6).

M ori [M o2] proved that a  smooth projective varie ty  w ith  the am ple tan-
gent bundle is a projective space in  any  characteristic . S iu-Y au [S - Y] inde-
pendently proved Frankel conjecture th a t an n-dimensional compact Kaehler
manifold of positive bisectional curvature is biholom orphic to the projective
sp a c e . H e re  w e  m ust notice th a t th e  positivity o f  bisectional curvature im-
plies the ampleness of the tangent bundle over the complex number field.

A n interesting problem  to consider next is to determ ine the structure of
variety with semi-ample tangent b u n d le . In  differential geometry Mok [Mold
show ed that if  X  i s  a com pact complex manifold carry ing  a  k aeh le r  metric
with non-negative bisectional curvature, then the universal covering is a  pro-
duct of C ", projective space  and  Hermitian symmetric m anifold  of rank. 2 .
H ere w e m ust have  in  m ind  that th e  non-negative bisectional curvature im-
plies the  semi-ampleness of the tangent b u n d le . In  this m eaning it seem s to
us tha t ou r Main theorem  is of significanse as the next step  fo r the  study of
manifold with semi-ample tangent bundle.

Concerned with the subject stated above we have an attempt to determine
the structure of Fano varieties by m eans of the quantity o f rational curves of
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the m inim al d e g re e . F o r  a  F a n o  varie ty  X , length (X )  is defined to be m in
{(— Kx•C )  IC i s  a  ra tio n a l c u rv e  in  X )  .  T h e n  t h e  leng th  o f  P n  and
n-dim ensional hyperquadric are n 1  a n d  n  re sp e c tiv e ly . In  case  o f n = 3
W iniew ski proved the converse over the field of complex numbers in [W 1].

Now we state the  proof of M ain  theorem . O ne of the key of the proof is
to  show th a t the  family {-6},Ey o f rational curves of the m inim al degree has
the following property: there is a point x  in X  w hich  is  a t w orst an ordinaly
singular point of each curve t u through the point x  as stated below:

2
(5. I) L e t  X  be  a  smooth projective v a r ie ty .  Assume that A  Tx is am-

ple and len g th  X = d im  X + 1 . T h en  S V is  a proper set in X .  (See V and S
for §2 and §5 respectively.)

T h u s  in  characteristic zero  w e  ge t th e  desired  conclusion b y  v ir tu e  of
Kobayashi-Ochiai's th e o re m . B ut effecient theorem s i n  characteristic  zero
(K o d a ira 's  v a n ish in g  th e o re m , L e fsc h e tz 's  T h e o re m , S a rd 's  T h e o re m ,
Kobayashi-Ochiai's Theorem and so on) do  not hold in positive characteristic.
Therefore there a re  several problem s w e m ust solve a s  sta ted  in §6 and §7.
F o r example, fo r lack of Lefschetz's Theorem , it is very troublesom e to deal
w ith the hyperquadric case as in  §6 and in  the absense of Sard 's theorem an
unusual case is treated as in ( # ) of 7. 2.

Recently w e learned that the  firs t au tho r and  Y . M iyaoka [CM] showed
the  following conjecture in characteristic zero: An n 2 )  - dimensional Fano
variety X  of the length n o r n  + 1  is isomorphic to a hyperquadric or a projec-
tive  space  re spec tive ly . B u t ou r theo rem  ho lds fo r any  charac te ristic  and
hyperquadric case is discussed in entirely different way.

This paper consists of the following sections:

§  1  . Preliminaries.
§ 2. The property of the singular curve 4
§ 3. Fano varieties X  with v*Tx = (2 )  EDO (1) 'EDO' ,

and the morphism g: Z P .
§ 4  . H yperquadrics (in characteristic zero).
§  5  . Projective spaces (in characteristic zero) .
§  6  . H yperquadrics (in positive characteristic) .
§  7  . Projective spaces (in positive characteristic)

In §1 w e study the basic property of rational curves 4, of minimal degree
in X .  F'irst we construct the parameter space Y of such rational curves t y  in
X  and  its (m odified) universal space Z  which is P ' - bundle Z — > Y. N e x t
we investigate th e  property  o f the  singular curve in {e,,} „ Œ y  in  § 2 . F o r  th e
purpose we define two subsets ,AI and VI o f  Y  which consists of nodal curves
a n d  cusp ida l cu rves (see  (2 .1 ))  re spec tive ly . T o  dea l w ith  hyperquad ric
c a s e  in  characteristic  zero , w e  g e t in  § 3  th a t  Z  is  na tu ra lly  con ta ined  in
P (Qx ) a s  a  d iv isor by  v irtue  of Theorem due to  F u lton -H ansen . Moreover
we show that the locus consisting of these rational curves in question through



Smooth projective varieties 3

a point in  X  becomes a  d ivisor and particu la rly  it is  a  cone over an (n — 2)
- dimensional smooth hypersurface in  Pn -

1. Therefore we get Theorem 4.5.
To prove M ain Theorem in  characteristic zero, we estim ate th e  dimension of
S W . Then the  facts 5.2.1— 5.2.6 a re  available not only in  characteristic zero
but in positive c h a ra c te r is tic . In §6 and §7 we deal w ith the  positive charac-
teristic  cases, though th e  lack of Kobayasi-Ochiai's Theorem and Lefschetz's
Theorem in  positive  characteristic causes complicated a rg u m e n ts . Moreover
Wi§niewski's Theorem A  about Picard group of Fano varieties in  [W 2] is im-
portant for our proof.

Conventions and Notations. W e w ork over the  algebraically closed
field of any characteristic in  g e n e ra l. But in §4 and 5, it is supposed that the
characteristic of the base field  is  zero. W e use  the  customary terminology of
algebraic geom etry. U  ( a )  denotes th e  line bundle  U 1 ( 1 ) ® a  o n  P .  F or a
vector bundle E on a scheme S, E l l  denotes the dual vector bundle of E.

§ 1. Preliminaries

Throughout this paper let X be an n-dimensional smooth Fano variety.
(1.1) Let length (X )  be min { (C, — Ks) IC is  a  rational curve in X ) and Co a
ra tio n a l c u rv e  w ith  (Co ,  — Kx) =  le n g th  (X )  = m . T a k e  th e  normalization

: P 1 — > Co . T h e n  w e  le t  H  b e  a n  irreducible com ponent of the H ilbert
scheme Hom (P ,  X )  containing the morphism ço w h e re  d im H  x  (P1 , (P* Tx) =
m ±dimX by virtue of Proposition 3 in [Mo2].
(1.1.1) Throughout this paper it is supposed that the above H  and Hp, 11, de-
fined hereafter are normal varieties.

Let G b e  A u t  P .  S in c e  the natural action of G on Hom k  (P ,  X ) induces
the action a of G on the connected component containing H  and, consequently,
on H:

a : G x H — +H, a(g, y )x=v , gEG, v E V, x E  P l ,

G also acts on H X P l  a s  follows:

r : G x H x P — >H x P l , r(g, y , x)=  (a (g , y ), gx).

Let Chow d X  be the Chow variety parametrizing 1-dimensional effective cycles
C of X  w ith  (C. — Kx) =  d. T hen  w e have a morphism  a :  C h o w m X
with (y ( P )  •  — Ks) =m  for y EH.

The following proposition can be proved in the sam e w ay as Lemma 9  in
[Mo2].

Proposition 1.2. 1) a  is a free action.
2) ( Y, n is  the geometric quotient of H by G in the sense o f  [M u] w here Y
a (H) is  the normalization of  the closure a (H) of  a (H )  (c  Chow ' X ) in the f ield
h (H) G of  the G-invariant rational function on H.
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T hus H is  a principal f iber bundle over a normal projective variety  Y  w ith the
group G. Moreover dim x(11', go*Tx ) —3 =m +dim  X - 3.

The following argument can be found before the claim 8. 2. in  [Mo2].
(1. 2. 1) Under the above notations, we have a G - invariant morphism:

F: H X P l —  y x x ,  F (v , x ) =  (ry ) , v  (x )) , v EH, xEP 1.
Let Z = Spec y .x [(F *O H .P ) G ] . Then Z  is  the  geometric quotient H X PVG
and is  a  P i - bundle q : Z Y in the étale topology. M oreover let p: z
X be  a natural projection.

Hereafter we use the morphisms p, q very often.

(1. 1. P) In 1. 1, we fixed the rational curve C o on  X and studied a  fami-
ly of rational curves on X to which Co belongs.

Next we fix a point P at which the curve Co is  sm o o th . This condition is
effectively used when the geometric quotient of H p  by G o stated below is con-
structed, as shown in  Lemma 9 o f  [M o 2 ] . W e let c. o P  ( E  X ) be a  map
w ith  a  p o in t o in  P '  a n d  ta k e  a n  irreducible component H p  of the H ilbert
scheme Hom (I '',  X : c )  containing the  morphism yo w here Hom (111 ', X : c )  is
closed subscheme tv E Hom (P ' ,  X) y  (o) = P 1 of Hom (P ', X) . By Proposi-
tion 3 in  [Mo2] we can show that
(1. 1. 1. P) H p  is  a  closed subscheme of H and dim 1-/F __ dim x (P ', yo* Tx®

Let Go = Iv EAut (o) =o  1. In the same way a s  in  1. 2, we get an  ac-
tion Up: G o x Hp — > H p  induced by the action cr.

Proposition 1. 2. P. L et us m aintain the notations of I .  1. P. T h e n ,
1) up is a free action, and
2) ( Y (P ) , Tp) is  the geometric quotient of Hp by G o in  the  sense of  [M u] where

rp : Y  (P) a(Hp) i s  the normalization of  the closure a(Hp) o f  a (H p )  ( c
ChowniX) i n  the f ield (He) Go o f  th e  G o -inv ariant rational functions o n  H .
T hus H p is a principal f iber bundle over a norm al projective v ariety  Y (P ) with
group G o. M oreov er dim  Y (P) _dirrtx (P 1, ço* T x 00 ( - 1)) — 2=m -2.

(1. 2. 1. P )  In  the  next place we consider a G o-invarian t morphism F p :
HpX .P 1y ( p )  X .  Then we get the geometric quotient Z (P )  and cano-
nical projections pp: Z (P) — ÷  X  and qp: Z (P) Y ( P )  in  the  same man-
ner as in  1. 2. 1.

W e state several properties about H and H and H .

Proposition 1. 3. Under the above notations we have the following prop-
erties:
1) L e t q) be a s  in  1 .1 . A ssum e th at  ça* Tx is generated by  global sections.
Then X is swept out by rational curves of H.

2) For every point x  in X , dim  qp-1  (,r) rn— 2. For each irreducible component
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D of q- l qp- 1 (x ), a canonical morphism D - p - ' (x) — >  X  induced by  the morph-
ism p  is quasi-f inite.
3) If  TP(1' 1 , v* Tx) = 0 for every v in H, H is smooth and therefore Y  in Proposi-
tion 1.2 is smooth.
4) A ssume that 1-1' v*Tx00 ( - 1)) = 0 for every point v in H . T h e n  H p
is smooth.

Proof. 1) , the  form er part of 2) , 3) and 4) a re  t r iv ia l. F o r  th e  proof of
2) assume that we can choose a point A in p (D) — {x} and an  irreducible pro-
jective curve C in D  so  that p (C) = A  and C is not contained in  D — p- ' (x) .
Then for every point c in a projective curve q (C) each rational curve pq- 1  (c)
passes through two points x  a n d  A . It is shown by Theorem 4 in  [Mo2] that
such a  family of ra tional curves has an  elem ent which is a  sum  of b rational
curves with 2, which contradicts the  assum ption that each rational curve
pq- 1 (c ) is of the minimal degree with respect to the ample line bundle — Ks.

Corollary 1. 3. 1. L et P  be a point in X  and y  a point in  qp- 1  (x) .
A ssume that the curve pq- 1 (y) is sm ooth at the point P. Then there is a canonic-
al morphism j :  Y  (P ) — >  Y which is f inite and of degree 1.

Pro o f . Note th a t Y (P )  is defined by 1. 1. P .  The action a :  G x H
in 1.1 induces the one up : Go XHp Hp  canon ica lly . B y  Proposition 1. 2. a
n a tu ra l morphism Hp —  Y  i s  a  G o- in v a rian t morphism. T h u s  w e  g e t  a
canonical morphism Y(P ) Y . M oreover by Proposition 1. 2 and Proposi-
tion 1. 2P it suffices to show tha t the morphism Y (P) (K) — )  Y (K ) between
sets of k-rational points is generically injective. B u t  it is  trivial , q .  e .  d.

T o  show tha t every  Fano manifold is algebraically simply connected we
show

Proposition 1. 4. Let Z and U be smooth projective varieties and f :  U
Z an étale f inite  morphism. A ssume that x (u , eu ) =  1. Then, f  is  an iso-

morphism.

Proof. T h e  assum ption says that f * Tz = T .  T h u s, Hirzebruch Atiyah -

Singer Riemann-Roch theorem implies that deg f  X  x  (Z , z ) =  X  (u , = 1.
Hence f  is an isomorphism. q. e. d.

Corollary 1. 4. 1. A ny smooth projective Fano variety Z defined over the
complex num ber f ield is algebraically  sim ply  connected.

Proof. Let f : Z  b e  a  f in ite  é ta le  morphism fro m  a n  algebraic
scheme U to  Z .  T hen  w e  see  tha t U i s  a  smooth projective varie ty . S ince
f * Kz = K u , U is  a  Fano variety. B y  v i r t u e  of Kodaira's vanishing Theorem,
we get H i (Z , ez )=0  for 1 i dim Z, hence x (Z, e z ) = 1 .  Thus, Proposition
1. 4 asserts that f  is an isomorphism. q. e. d.
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N ow  under a n  additional assum ption le t  u s  s tu d y  th e  p roperty  of the
morphisms p , q which is important in §.3.

Proposition 1.5. L e t u s  assum e that f o r every point v  in  H  v* Tx  i s
generated by global sections. Then the morphism p : Z X  is smooth and fac-

tors as Z - - ) X X where p ' is a sm ooth morphism to a smooth variety X  and
all the f ibers are irreducible and where j  is f inite and étale. Finally  assume addi-
tionally  that the characteristic of  the base f ie ld  is  zero. T hen the morphism j is
an isomorphism.

Proof. By Proposition 1. 2 and 1) of Proposition 1. 3, it suffices to show
that the  canonical morphism s : P 1 XH - - X  is  smooth, namely the  induced
homomorphism s* : T p .H — * s* Tx is su r je c tiv e . Since v* Tx is generated by
global sections fo r  ev e ry  p o in t  y  in  H , th e  canonical isomorphism between

(Pl, v*Tx )  and the Zariski tangent space TH, v p rov ides u s  w ith the  surjec-
tivity s*  o n  P 1 x Iv 1, which yields the desired fact. Hence since p : Z — > X
is  sm o o th , ta k e  the  S te in  fac to risa tion  j :SpecxP*0z —

, X  o f  p  an d  se t
SpecxP* fdz a s  X . T h e n  w e  se e  e a s ily  th a t X  is smooth and j  is  étale and fi-
nite. In  characteristic zero since X  is  a  Fano variety, th e  morphism p '  is  an
isomorphism one by Corollary 1.4.1. q .  e .  d.

Next when M is  an n-dimensional smooth projective variety,
2 2

det A Tm =  — (n - 1)Km . T hus if A T M  i s  ample, M is  a  Fano v a rie ty . T h u s
we have

Proposition 1. 6. Let X  be a smooth Fano variety  w ith the ample vector
2

bundle A T .  T hen  leng th  (X ) = n or n  + 1 .  Moreover le t C be a  rational curve
on X  w ith  H  K x • C ) =  length (X ) and v : P 1 — >  C  the  norm alization of  C.
A ssume that )1 3. Then v* T x is one ( # )  of the following.
(T his v is said to be # - type w hen #  is one of  a, a  y and a as stated below.)

If  deg v* Tx=n+1,

a - type) 0 (2) EDO (1) ( B n - 1

/3-type) (2) 'EDO (1) œ n - 3 .1e1V .

y- type)( 3 )  e V  (1)
A s exceptional cases

(2 )' 3 EDO ( - 1 ) (only in case n=4 ),
(3) '9 2 EDO ( — 2) or 0 (3) EDO (2) EDO (- 1 )  only in case n 3) .

If  deg v* Tx =n,

5 - type) 0 (2) EDO (1 )--e o .
A s an exceptional case,

0 (2) €-E3Do (-1) (only in case n= 3)
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Proof. Letting v * Tx= ITO (a i) with a w e have a i  2. Not-

ing v*  T x  =  E  (a -k a ) and it  is  ample, we see ai ±a ; i s  p o s it iv e . By vir-
i<;

tue of Theorem 4 in  [Mo2], deg v* T x n + 1 .  Thus we get the desired fact.
q. e. d.

Corollary 1.7. L et the assumption and notations be as above and as in
1.6. Then for each point y  in Y , p* T x 1,-1(y) is one ( # )  of  the types as in Proposi-
tion 1.6. (Hereafter the point y is said to be # -type).

§ 2 . The property of singular curves 4
Throughout in  th is  section w e let X  b e  a  F ano  varie ty  and  we maintain

notations Co, H, Hp, Z, Y, p, q and m ( =length X ) in  §.1 and set pq-1 (y) as 4.
In th is section we study how many curves in  the  se t t4 1y E  Y1 of rational

curves of minimal degree on X  are singular and w hat the type of the singular-
ity is.

F ir s t  le t  u s  begin w ith th e  definition o f singular curves w hich w e treat
here.

(2. 1) A nodal (or, cuspidal) curve means the rational curve dominated by a
plane curve C of degree 3 with only one node (or cusp) point P via a  biration-
al morphism v. Moreover the point v (P ) of the curve v (C ) is sa id  to  be nodal
(or, cuspidal) point respectively.

Let .A/ be the  se t (y c 1/ 1 4 is  a nodal curve) and t? th e  se t  {y E 11 4 is  a
cuspidal curve}. M oreover let )1/W be .A/n .

Now a  point y in Y  is said to be a - type if p* Txli, is isomorphic to 0 (2)e
o (1) beo,  with and c . O.

Proposition 2.1.1. 1) The set U 6  is a closed subset in Y  and V is
closed.

2) A ssume that AT  is ample, dim 4 and deg v * Tx =n -i- 1 (see Proposition
1.6). Then V is equal to the im age of  the set Iv CHI v is rtype) v ia the morph-
ism F: H — > Y.

Proof. 1 )  is trivial. F o r  2) we state an easy
Fact : Let w :M  b e  a non-constant morphiam to  a  smooth variety M
and o a point of P ' .  Then the following two conditions are equivalent to each
other

1) the homomorphism w* : Tp, — › w* Tm  induced by the  morphism w is  injec-
tive as a  vector bundle.
2) w (P 1)  is not a cuspidal curve.

Thus noting that the vector bundle v* Tx of r - type has no line bundle 0 (2)
as a direct summand from Proposition 1.6, we complete the proof. q. e. d.
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Next we show

Theorem 2. Let the notations be as above.

(2. A )  Set {x EXIthere is a point y  in Y  so that is sm ooth at the point x}
as X o . A ssum e that f or a general point v in  H , v* T x is generated by  global sec-
tions and the characteristic of  base f ield is  zero. T hen there is an open subset X 1

in  X o  so  th at f o r each point x  in  X i , th e re  is  a po in t y  o f  a - ty pe in qp- 1  (x) .
Moreover for x  in X i  the  set {y epq - 1 (x)ly is  a - type} i s  open in 0 - 1 (x).

(2. B) For every point x in X , the set {y E YIX is  a nodal point in 4 } is  at
most a f inite set.

(2. C) A ssum e that dim.11 n. Then 6  is not em pty  and intersects w ith the
closure of i/V in Y.

(2. C') Suppose that is  em pty . For each point x in X , the set of  nodal
curves in  Y  passing throuth x is  at m ost f in ite  set. Moreover dimN — 1.
Namely, there is a open subset V in  X  such that f or every y  in  Y , 4 is sm ooth in
V.

For the above properties, we need several propositions.

(2. 2) Let E  be a  d irect sum of line bundles LIEDL2 on a projective curve C.
Set P (E )  as S and the section P (L i )  as C .  Now let yo be a morphism from S
to a variety so that a fiber of a canonical projection z :S - - ' C is  mapped to
a curve via (p. The we have

Lemma 2.3. Under the above condition 2.2, let C 3  be a section of  7c and
M a quotient line bundle of E which yields the section C 3. A ssum e that yo (C3 )  is  a
point and dimço (S) -= 2. T hen the morphism yo is obtained by  a  linear system  of
the line bundle (0 p(E)(1) 07t- * M - l ) n a  w ith some positive integer a. Moreover one
of two line bundles L1OM - 1 , L 2 0 M - 1  is  am ple and the other is trivial. Namely
the curve Ci such that L : = M  is mapped to a point v ia go and the other to a curve.

Proof. Let W : =Op(E)(a)07c * N  be a  line bundle which gives the morphism ço
where N is a  line bundle on C. First since a fiber of 7c goes to a  curve v ia  yo,
a  is  p o s it iv e . Moreover since W1c 3 = O c, w e have N = M - a . Hence we infer
th a t  W =  (OpiE) (1) 07c * M - 1 ) ® a =  p ( E  m - i)  ( 1 )  °a  . O n the  other hand W  is
semi-ample, so is W ,c,. As W1c, is  (L ,O M -1 \ 

ae ,

) 1,10 M -1  is semi-ample, which
s a y s  th a t  d e g L id e g M . M o r e o v e r  d im y o  (5) =  2  i m p l i e s  t h a t  the
self-intersection of (Op(E)(1)077 * ( — M ) ' ( = a 2 E  deg(L i 0 M - 1 ) )  is positive.
If both of L i 0 M - 1  a re  am ple , so  is  W . O n  th e  other hand since ço is not fi-
nite, we have  a  con trad ition . Hence we see that the one of L i O M - 1  i s  ample
and the other is not a m p le . Moreover we have an exact sequence:
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L i  o m -i E31,20m-i 0, which yields L 1 = M  or L 2 =M , because
either of L i0/14- 1  h a s  no non-zero  section. Thus the last pa rt is trivial.

q. e. d.

Corollary 2.4. L et the condition and  assum ption be as  in  Lemma 2.3.
A ssume C 1 rl C3 = 0. Then go (C1) is a curve and C2 = C3.

Proof. The assumption that C 1 n C3 is em pty says that M =L 2 and E  is iso-
morphic to LIEDM . Since go ( C 3 )  is  a  po in t, L i® L i i  i s  ample by lemma 2. 3
and therefore go (C1) is a  cu rve . S ince  C2 and C3 are  linearly equivalent to W

Tc* L i, the intersection C2 • C3 is  the  degree of L2OL,- 1 ,  which is negative.
Thus we get C2 = C3. q. e. d.

Corollary 2.5. Let the condition be as in  2 .2 . A ssum e that dimyo (S) =2.
Then if yo is not a f inite m orphism , one of go (CO and go (C2) is  a point and the

other a c u rv e . In  other words, if  y o (c,) is  a  curve f o r i= 1, 2, then yo is a f inite
morphism.

Proof. By the  assum ption there is a  po in t t  in  9  (S )  such  tha t 9 - 1  (t)
contains a curve D w ith 7rD = C . By base change via a morphism D C we
get the same set-up as in  Lemma 2. 3, which yields this Corollary. q. e. d.

Here we have a

Proposition 2.6. L et M  be a v ariety , it: S C  a P I -bundle over an
irreducible projective curv e  C  and  f : S M  a m orphism  w ith dim  f  (S ) = 2.
W e assume that
1) For each point c in C, 2t (c) is transform ed to a curve.
2) f  is not finite.

Then we have the following assertions:
1) The set { s Ef  (S ) dim f l  (s) 1 }  consists of only one point A .
2) One dimensional part of (A ) intersects a general fiber 7r - 1 (c) at one point.
3) I f  th e  characteristic o f  the  base f ie ld  i s  zero, then one dimensional part of
f l (A ) consists of only  one rational section of  7r. (Here a  rational section D of  i t
m eans that z ip: D - - * C is a birational morphism.)

Proof. By th e  assumption, we have  a  point A  in  f  ( S )  so that f  ( A )
contains an irreducible component D  which is of one-dim ension. N ow  assume
that D  intersects w ith a  general fiber of it  a t  more than o n e  p o in t. L e t D  be
th e  normalization o f D .  T hen  a  canonical morphism j :  D — > C  induces a
P I - bundle 7E : D  X  c S  ( = S )  — > D  and a  section  D2 of 7r. Letting h : S

S  the m orphism  induced by the morphism  j , (D2) has another irre-
ducible curve D3 ( * D2) and the im age of D2 and D3 b y  h f  :  S  — >M  is  the
sam e point A . Now taking a  generic hyperplane section of f  ( S )  not passing
through the  po in t A , w e have another curve D I i n  S  which intersects with
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neither Dy nor D 3 .  Therefore after several base change w e obtain the  same
set-up  as in Corollary 2. 4 by setting Di as C .  Thus we have a contradiction,
which yields 2 ) .  The rest is trivial , q .  e .  d.

T h e  above  resu lts p rov ide  u s  w ith  th e  following proposition which is
used in  §.3.

Proposition 2.7. L et 71- : V  be a P 1 - bundle over a smooth projec-
tive variety V and ç :  T  - -+  U  a morphism. A ssume that
1) every fiber of i t  goes to a curve v ia yo,
2) there is an irreducible divisor D of  T which collapses to a point A  in U v ia yo,
and
3) the restriction of the morphism yo to T — D is quasi-finite. Finally suppose that
the characteristic of  the base f ie ld  is zero. Then D  is a section of  It. Moreover
there is a rank - 2 vector bundle E an  V and its subline bundle M enjoying the fol-
lowing exact sequence on V :

where T P  (E ) and  P  (0 )  corresponds to the section D. H ere M  is an ample
line bundle and E splits to COW .

Proof. The assumption 1) implies that the  morphism 7r1D is finite. B y
2) in Proposition 2. 6 and Zariski Main Theorem  we infer that D is  a section
of 7r. Thus the section D  gives a  rank - 2 vector bundle E  o n  V and the quo-
tient line bundle M with an exact sequence on V:

0— >M — >E — >0 — ' 0

where P (0 ) determines the section D canonically.
B y the  proof in  Lemma 2. 3, w e in fer tha t (p is obtained by high power of

POE) (1) . T hus E  corresponds to  an  element a in  H1(V, M )  .  Now take an
irreducible divisor G  of T  which does not intersect w ith D and if G  is singu-
la r, m ake  th e  desingularization f  :  G G  o f  G .  T h en  th e  fiber product
P (E) X  v G has another section G  which does not intersect with the section in-
duces by G .  Thus f  * E splits to O ef * M .  This says that there  is a  canonical
homomorphism f * : H i (V , M) ( G  ,  f  * M ) with f * u = 0 .  By Proposition
4. 17 [F], we have (7= 0 (in c h a ra c te r is tic  z e ro ) . S in c e  p (E )  (1 )  I P u n  M, the
remainder is trivial. Thus we get the proof. q. e. d.

Now we begin the proof of Theorem.
Proof of  (2. A). Let Yx =qp - 1 ( x ) .  The assumption yields an open sub-

set H o in  H  such  that for each point y  in  Ho v * T  is generated by global sec-
tions. T h u s  le t Y1 b e  the image of Ho v ia  the  geomertic quotient y: Y .
Then we can take an open set X 1 in  Xo so  tha t for each point x  in X i Y x n 1 / 1  is
not em pty. Therefore dim  Yx = X (P l , v * Tx00  ( - 1 ) )  —  dim  Aut Go =m — 2
for each point x  in X I (See 1. 2. P for Go )  . Suppose that there  are a point x
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in X I and an open set  U.  in Yx  so  that for every point Y  in Ux y  is not a-type,

namely, when p*
Tx1 iv =  en  ( a i )  with ai  c/ 20 ,  # is less than

:=1
m — 1. F ix  a  po in t o of P I w ith  0 *  o. First G o (1. 1. P )  ac ts on  P I — {o}
tra n s it iv e ly . Let s  be the canonical morphism F x .p x  : P t X Flx — > X in 2.1. P.
Since G o a c ts  on P 1 x Hx  canonically, w e see that s (P 1 x Hx ) {x} coincides
s ({o} X  1-11 ) — {x} . T hus to  study  the  rank  of the  homomorphism ds : TPXHX

- s*Tx  o n  (o, y) for a  point y in Hx  n Ho we have only to check the one of
d s : T{o}.Hx

— > s*S x  o n  (o , y ) w here  7 : {o} X  i s  the composite
morphism of a  closed embedding j: x  PI X  Hs  and  the  morphism s.
Noting that the  Zariski tangent space TH x,v, O f 111  a t  the point y in  H., is iso-
morphic to H° (1) 1 , v*Tx00 ( - 1)) , w e infer that the  rank  of ds a t  (o, y) is

— 2, w hich im plies that the im age of the canonical morphism s :  P l  X Hx
- X  is of (m —2) -dimension by Sard's Theorem. Therefore dim (z  X y Yx )

=dim s (P '  X Hx )  by  2) of Proposition 1. 3. O n the other hand dim (Z  x  ryx)
= d im  Y1 +1=m — 1 which yields a contradiction.

Proof of  (2. B). T his is clear by 2) in Proposition 2. 6.

Proof o f  (2. C). We have only to show

Sublemma 2.8. L e t W , X  b e  a s  in  t h e  f i r s t  p a r t  o f  th is  section.
Assume that there  exists a point P  in X  and  a  curve C  in iV so  th a t fo r each
point y  in  C  , passes through the point P. Then in te r s e c t s  w i th  the clo-
su re  C  of C in  Y.

Proof. W e suppose the con tra ry . T ake  the  normalization g : C C
o f C  and consider a  smooth ruled surface C ( C )  ( = R ) .  Then by the
assumption, we see that R  contains sections CI , C 2  with C I n C2 =  0 satisfying
the  follow ing property: letting T : R - - *X  a n d  iT : R C  be canonical
morphisms induced  by  th e  morphism q- 1  (C )  , fo r  ev e ry  poin t c  in
C , r (c, n "(T - 1 (c) ) coincides with (C2 n (c )) and it is  a  nodal point of
4( c ). Since dim p- (R) = 2, R  has a  curve C 3  so that (C3) = C  and  IT (C3 ) =P.
Rem ark that th e  ru led  surface R  is isom orphic to  P  (LI eL2) with two line
bundles L l  L 2  o n  C  so that each line bundle L i corresponds to  the section  C .

Since r  is not finite, qi (C I) or ço (C2) collapses to a point Q by Corollary 2. 5.
Consequently both of the points go to  the point Q, which yields a  contradition
to Corollary 2. 5. q .  e .  d.

Proof of  (2. C'). It is obvious by 2. C and sublemma 2. 8. q. e. d.

§3. Fano varieties X with v*Tx =  (2 ) EDO (1) ("EDO'c and the morphism
g : z — * P (Q )

We maintain notations H, Y, Z, Hp, Y(p) defined in §1.
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(3. 1) Assume that for every element y in H,

v*T x  is d  (2) EDO (1) ("EDO'', nam ely the set in  § 2 is  em p ty  and
(y (P 1 ) • — Kx ) = length X (Note tha t the assumption 1. 1. 1 and 1. 1. 1.
P hold automatically by 3) , 4) in Proposition 1. 3. )

Remark 3.1.1. T h e  a s s u m p tio n  s a y s  th a t  f o r  a  p o in t  x  i n  X,
dimqp- 1  (x) 1 and therefore there is a point y in qp- 1  (x )  so that 4 is smooth
at the point x  by B in  Theorem 2.

Under the  assumption we show  the induced morphism g  : Z P (Q1)
is  a  closed embedding and  next w e study the  basic property of X  obtained in
case of b =n - 2 and c 1.

The P 1 -bundle q : Y yields an exact sequence

0 — >  T z iy - »  T z — > q * T y — '  O.

O n the o ther hand  by  Proposition 1.5 and Proposition 1.6 th e  morphism
p :  z x  gives a  su rjec tiv e  homomorphism P*: T z — )P * T x .  Thus w e
consider the composite homomorphism ip*
(3. 2) Tz/y — )P * Tx.

Since the above situation 3.1 means that for any point y in H,

(3.3) th e  morphism : 1=1 ' X is  unramified, th e  homomorphism f  in  3.2
i s  in je c tiv e  a s  a  vec to r bund le  o n  Z , w hich  y ie lds a  morphism g :  Z
P ( Q )  satisfying the following diagram:

(3. 4)

where n is a tautological line bundle of Tx and g * ri = rz iy .

Now we consider the case when the morphism g is a closed embedding.

First we recall notations.

(3. 5) For a point x  in X, le t Yx=qP - 1 (x )  and Z x =q - l qp- 1 (x).
Moreover let L u =q - 1 (y ) and 4-=p(L y ).

(3. 6) Now le t u s  study the  property of the  morphism g  on  p- 1  (x) , written
by gx . First by Remark 3.1.1, Y(x) is  de fined . The morphism j :  Y(x) — >  Y
in  Corollary 1.3.1 h a s  a  property that j (Y  (x)) (x) . Since p- ' (x ) is
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smooth and  irreducib le  (chark = 0) b y  Proposition 1. 5  and  dimY (x ) =  dim
q (p - ' (x)) = m —2, the morphism j :  Y (x) ( x )  induces the natural one
Y(x) — > p -1  (x) , which is finite birational and therefore an isomorphism.

Thus we study the morphism g,: p - 1  ( x )  (=  (x ) )  P (Q1,x) . Let Hx
b e  a s  in  §1. B y th e  canonical morphism Hx x  P ' — >  X , w e can  define  a
morphism

V(S2fc,x), 0(v)=dv*,o( d
d

i.)

where t is a local parameter of P 1 a t  the fixed point o.

Now hereafter we assume that

(3. 7) 11 4, b>c.

From now on let us show that the morphism gx  is  unramified.

F irst by  3. 7, y : — > y  (11 ' )  is  um ram ified. Thus w e see that the im-
age 0 (H,) is contained in V(01,) —  W I, which induces the  morphism Hr. — )
P (S2k,x) P n - 1. Since th is morphism is G m-invarian t, w e have the  induced
morphism Y (x) Pn - 1, w h ic h  is  ju s t  th e  morphism gx  i t s e l f  a s  shown
above.

Now by the assumption 3. 7, y* Tx 0 0  ( - 2) is isomorphic to eiGO (— I ) "

G  ( — 2) (1? a n d  therefore, dim  H°  (13 ',  v* T x  0  (—  2 ) )  =  1 .  Note that
(P', v * Tx00 (—  2)) is  the  Zariski tangent space To-10(,), of 0 -1 0 (y) a t y

(see 8. 1 in  [M o 2 ]) . Thus dim,0 -1 0(y) On the other hand the algebraic
g roup  Gx  a c t s  o n  Hx  a n d  d im  H° (13 1 , T 1  0  ( —  2)) =  1 , a n d  therefore
dim,0 -1 0  (y )  = 1 . Since dim To--i(o.v= dim,y5- 1 0 (y) , w e infer tha t 0 -1 0 (y) is
smooth a n d  therefore  every  fiber o f  0  is  sm o o th . T h u s  w e  se e  th a t  g , is
umramified.

Thus we have the following:

Proposition 3.7.1. Under the notation in 3.3, assum e the condition 3.7
for any  x in  X . T h e n  g  is  of  maximal rank  on every point v in  Z. M oreov er, for
each point x in X , gx  is  a closed embedding.

Proof. T h e  fo rm e r  i s  s h o w n .  T h e  l a t t e r  i s  d u e  to  the  fo llow ing
Theorem by W . Fulton anf J. Hansen.

Theorem (Proposition 2 [F - H]). L et V be a projective variety of dimen-
sion n, h :  V Pm  an unramified morphism w ith m  < 2 n . Then h  is a  closed
embedding. q.e.d.

The above Proposition immediately yields

Corollary 3.8. Let the notation and condition be as in  3 .3 . A ssume the
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condition 3.7. Then g  is a closed embedding.

Now to study the structure of 4 1 , we prepare a  few notations.

(3. 9) Let (ix : X 1  — f  X  be the blow up of X  w ith the point x  as the center.
For a  subvariety W in X , ax

- i [W ] denotes the proper transform  of W by ax .
Now by 2. C' and 3. 1, we can take

(3. 9. 1) a point A  in  V ( , namely 4, is sm ooth at the point A  for any y
in qp- 1  (A ). T h e re fo re  the canonical morphism p - 1  (A ) — > q r . ' (A ) is  an iso-
m orph ism . T hus p - '  (A )  and  Z A  a re  sm ooth a n d  therefore p X  y Z  is
canonically isomorphic to ZA.

L et us cosider a  morphism P A  ZA - >  X  iduced by p :  z  - - *  X. N o t in g
that pA- 1  (A )  is  a  C artier divisor in  ZA, by  the  universality of blowing-up we
get

(3. 10) a  morphism m : X A  with maA  =PA  and m (pA - 1  (A )) = aA - 1  [DA]
where DA = PA(ZA) •

Now let us study the behavior of the morphism m on p A
- 1 (A ).

Take a  point y  in  Y A .  L e t  i y b e  the  proper transform  of .4 b y  aA and
h : P 1 — >  i y the  normalization of E.

(3. 11) First w e rem ark that for each point y  in  YA

1) 19-A - 1 [4 ] in te rsec ts  w ith  a»  (A) transversally ,
2) Since p * T is isomorphic to (2) Go (1) .beo(Dc, m*TA,,,„ is isomorphic
to  3(2) EDC'ED0 (-1) e c .

To show this, it is sufficient to use the following result in  Appendix B . 6.
10. in  [H]
( # ) Let X c  Y and Yc Z  be regular imbeddings. L et Z  be the blowing-up of
Z  at X , Y  the blowing-up of Y at X  and E  the exceptional divisor of X  via the
morphism f : Z Z .  Then NT / z =f * N y /z 002-( — E).

3) a A  (A ) n 0-A- 1  [DA ] i s  a  smooth subvariety in  a4- 1  ( A )  (= P (Qi,A) =
Pn - 1 )  and it is canonically isomorphic to p from Proposition 3. 7. 1 and
the  above 1) . Moreover 0A- '  [ DA ] is sm ooth around the  subvariety aA

- 1  (A)
n o-A- 1  [DA] .

W e study the morphism ZA - > m (ZA ) . B y  (2 ) of 3. 11, m is  of maximal
ra n k  a t  e a c h  poin t z  in  Z A .  Precisely speaking, th e  homomorphism m * : T z A

m * TxA  i s  in jec tive  as a  vector bundle . M oreover le tting  TT1 the  morph-
ism obtained by restricting m to p - - 1  (A ) , w e see  that iTt induces an  isomorph-
ism from p - 1  (A ) to  aA- 1  (A ) n 0A- 1  [DA] . Thus the morphism m :  ZA - 4 M (ZA)

is an isomorphism around p - ' (A) .
Summarizing the above argument in 3. 10 and 3. 11, we get

Proposition 3.12. L et A  be a po in t in  3 .9 .1  and  m  in  3 .10 . Then two
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morphisms ZA - +  m (Z A ) and ZA - ) pA (zA) are  b ira t io n a l m o rp h ism s . More
precisely, there is an open neighborhood U  (Dp - 1  (A )) in ZA so that m : U — > m (U)
is  an isomorphism and PA is an immersion on U — p- ' (A) . Moreover ZA P '  (A)

p (z A ) — {A} is f inite.

Proof. We have only to show the last p a r t .  B u t  it is obvious by 2) in
Propositoin 1. 3. q. e. d.

Now recalling that the set of our Fano variety  X in question is empty
and combining 2. C' and Proposition 2. 7, we get

Corollary 3.13. L et A  be a point in  3.9.1. T hen YA is  a  smooth sub-
variety in  Y , ZA a  P 1 - bund le over YA and p- ' (A )  is  a  section in  Z A . Moreover
assum e that the characteristic of  the base f ield is  zero. T hen there is an ample
line bundle M on YA so that ZA P (OEDM) , the restricted m orph ism  of p to ZA is
given by the tautological line bundle of CA M and P (Cy) is p -

1 (A).

Finally we assume tha t b =n - 2 and c= 1 .
Then we show that

(3. 14) There is a point A  in  V(see (2. C') a n d  (3. 9. 1)) so that p (z) is  a
normal Cartier divisor w ith at m ost one isolated singularity  A . Then a  natu-

—ral map PA-- : z 7,—p- ' (A ) p(Z,T)— A  is  an isomorphism.
For a  variety T, Sing T denotes the singular locus of T.
Noting 3. 13, assume that

( # ) fo r every  po in t A  in  V , p ( z A ) i s  non-normal, equivalently, codim p ( Z )

Sing p (zA )  = 1 because p (zA) is  a  C artier d iv isor in X .  More precisely Sing
P  (ZA ) — i s  a  W e il  d iv iso r  in  p (z A ) —  {A} s in ce  a  no rm al po in t in
P(ZA) — (A) is smooth one there by 3 .9 .  1.

Thus we see for every point x  in X , codim p( z x )  Sing p (zx ) = 1.
Let S (Z1 )  be the closure of a set p-

1 (Sing p (z1 )) —p- 1  (x )  in Zr.
Then ( # )  yields the property:

(3. 15) 1 )  F o r  each  point x  in  X , S (Z x ) i s  o f  codimension 1 in  Zx  and
S  (z 1 )  n p- 1 (x) is  a t m ost f in ite  se t  b y  (2. B )  o f Theorem  2. 2) F o r  each
point A in V, S (ZA ) is  a Cartier divisor in ZA and S (Z A) n p - 1  (A )  is empty.

Now le t  Z  be the  fiber product Z X yZ of Z  and Z  over Y  and d  the di-
agonal o f  Z .  Then there is a canonical morphism h :  Z - - - X X X b y (z ,z ')

(p (z) , p (z')) .
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(3. 16) Then we have the following property:
for each point x in X,
1) Z  is a disjoint union of p- 1 (x) x y z, where x  runs over X as a set,
2) Let us set p- ' (x) x y Z a s  Z x  and  le t Tx  : Z Zx be a canonical morph-
is m . T h e n  r x  i s  a  finite and  birational morphism b y  (2. B ) in  Theorem 2.
In particular if x  is in  V, th en  r x  is  an isomorphism.

Let S b e  a  closed se t 1/- 1  (Singh ( Z ) )  in  Z .  N oting that Sing h ( Z )  -=
U {x} X SingP(Z.T), we see that S is contained i n  U 75x - 1 (S (Zr)) U LI a n d  is of

xeX xeX
2n-2 dimension by 3. 15. Take an  irreducible componenet J(*i) in S  which
is  a C artier divisor in Z .  F o r  a  general point A  in V, Jn  Z A  is contained in
a disjoint union of T (S(zx)) U ({x} x p- 1(x )) and does not contain An ZA
by 2) of 3. 15 and 2) of 3. 16. On the other hand Jn ZA is  a C artier divisor
in  Z A. Hence Jn LI n ZA is em pty. M oreover w e can easily  see  that a  Car-
tier divisor Jr1 Z A  is connected in  Z A  and therefore every fiber of a canonical
morphism ap : J — > X is connected where a : z  Z be the first projection.
On the other hand since Jn z x  i s  a  C artier divisor in  Yx  fo r  each point x  in
X, it is contained in  S (Zr )  and disjoint to  {x} x (x ) b y  1) of 3. 15 and 2)
of 3. 16. Hence we have

Proposition 3.17. A nj is empty.

Now since the diagonal A is  a section of b, w e have an exact sequence on
Z2

(3. 17. 1) 0  
--

0 — >E — >L —  0

where E is  a  rank-2 vector bundle and L a  line bundle on Z 2 .  H ere Z  and A
are  canonically isomorphic to P (E) and P (L) respectively . C onsider the  fi-
ber product Jx z2Z z 2  P  (E ) )  .  Then LI and  J  yield two disjoint sections
w ith  respect to  the P 1 -bundle b  in  th e  above fiber p r o d u c t .  Hence letting

: Z 2  a  canonical projection, w e  se e  th a t th e  pull - back  of the exact
sequence 3. 17. 1 v ia  cp sp lits  to  cp*E -=  O eço *L .  Restricting the exact sequ-

ence  (3. 17. 1) to M y : = (q2) - 1  (y) P ') , w e get an exact sequence: O - 4
O. O n the o ther hand  since  (bq2) - 1  (y ) -= p i  

x

P (E im g ) , E lm ,  is isomorphic to  (a) GO (a) . Noting that cp*E = O elyo * L, we
get a = O. T a k in g  the direct im age R

°
q2 *  o f  th e  e x a c t sequence 3. 16. 1 we

obtain an exact sequence by the base change theorem:

(3. 17. 2) 0  — C y — >F - 3 N — * 0

where F is  a  rank-2 vector bundle on Y w ith O F  E and N  a  line bundle on
Ywith = L. T hus w e  in fe r tha t P (F ) = Z .  O n the  o ther hand  P (N)
yields a  unique section p--- ' (A )  in  ZA fo r  each p o in t A  in  X  a n d  therefore
P (N ) =- U  p- 1  ( A )  by  C oro lla ry  3. 13. w hich  con trad ic ts  to  th e  fact that

AGX
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z=- U p - '(A ).
AeX

Hence we proved 3. 17. q. e. d.

§4. Hyperquadrics (in characteristic zero)

In th is section using the  results in  §3, w e study a  smooth projective Fano
variety X satisfying the following condition: length (X ) = dimX=n. 2 and for
any rational curve C of the minimal degree on X, v * Tx is isomorphic to epi (2)
@ùpi (1) e n- 2 EDOpi where y : C is the normalization of C.

First w e study the structure of p (zI ) in 3. 14, written by D .  Note that D
is a normal irreducible divisor which is a cone with at most one isolated sing-
ularity.

By virtue of Theorem A  in  [W2] note that

(4. 1) when n_3, Pic X = Z  L  with the ample line bundle L in X.

Taking account of the fact that Z,T=P(ey,TEDM) by 3. 13 and D is an am-
ple divisor in X, we have the following:

Proposition 4.2. 1) PicD= Ze D (S ) where S is  the image of the section
P (M ) via p.
2) The closed embedding i :  D — > X  yields a canonical isom orphism  Pic X =
PicD if n -4.

Proof. 2) is obtained by Lefschetz's T h e o re m . A s  a  reference see §1
in [Fuj]. q. e. d.

The intersection number o f a  fiber of q: Zx — > and the section S in
is  o n e .  Moreover the  canonical morphism p:D  ( c  X )  is  biration-

al.
Thus recalling the assumption 3. 7 first, we can show that in case of n

(4. 3) —Kx =nL.

In  fact le t  — K x=aL b y  (4. 1) . T hus w e infer tha t n = (4 • — K x)x=
(4 • aL) x = (4 • L D ) D = a (4, S) = a  by Proposition 4. 2 . Hence by virtue of
Theorem due  to K obayashi and  Ochiai w e see that w hen dim  4, X  i s  a
hyperquadric.

In case of n = 2, X is  a D el Pezzo s u r fa c e . Moreover the  assumption im-
p lie s  th a t th e  su rfa c e  h a s  n o  exceptional ra tional curve  o f  th e  first kind.
Thus we infer that X is a  smooth quadric surface.

Finally the case of n = 3  is shown by Theorem A  in  [W2] and Corollary
2. 6 in  [W 1 ]. Thus we get

Theorem 4.4. L e t  X  b e  a n  n-dimensional Fano manifold with
length (X ) = n .  A ssum e that for any  rational curve C of the minimal degree on
X, v* T x  is isomorphic to d t  (2) e Op. (1) e n-21EDOpi where v : C is  the nor-
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malization of C. Then if 2, X is a quadric hypersurface.

Consequentely combining Proposition 1. 6 and Theorem 4. 4 we obtain

Corollary 4.5. Let X be a smooth projective variety. A ssum e that Â Tx
is ample and length X=dim X - 3. Then X is a hyperquadric.

§5. Projective spaces (in characteristic zero)

In th is  section let X be a Fano variety with length X =  dim X +1  in  char-
acteristic z e r o .  I n  5. I 5. ffl , w e assume 1. 1. 1 a n d  1. 1. 1. P .  Note, in
case of M ain Theorem , that the  two assumptions automatically follows from
the condition.

For a  subscheme W of W, let SW be the  se t trE X Ix  is  a  cuspidal point of
4  for a point yin VI&  SV is a  closed subset in X.

W e prove the following three facts:
2

(5. )  Assume A Tx is  ample and dim X  (= n )  4. Then dim 1 and
therefore SW is a  proper subset of X.
(5. II) I f  S  is a  proper subset of X , there  is an open set U in X so that for
each point x  in  u Px :x  is birational. (Here th e  morphism px  i s  the
one induced by p w hich is show n to be generically finite surjective b y  2) of
Proposition 1. 3)
(5. III) If th e re  is  an  open  se t U in X  so  th a t fo r each point x  in  U Ps: Zx

X is  birational, then X= Pn .
To show 5. I .  w e  m a k e  a  preparation.

By Proposition 2 .1 . 1 note tha t W-= {y E  Yly is  rtype } a n d  hence each cuspid-
a l cu rv e  pq- 1  (y )  h a s  o n ly  one  cuspidal p o in t .  L e t  H , b e  Iv E  H Iv * Tx is
rtypel. H, is a  closed subscheme of H.
(5. 0) W hen n = 4, let HE =  ty e l - -/Tv*Tx = (2) G O  (—  1)1. Then HE is
closed by semi-continuity of coherent sheaf and Wfl r H , )  is empty.
(5. 1) Let R be a  p lane cubic curve w ith one cusp singularity P and take  a
general point y in W. Since .4 has a  cuspidal point, there  is a  canonical bira-
tional morphism :  R E .  T h u s  w e  c a n  f i n d  th e  following irreducible
component HR of Hom (R, X )  containing the  morphism 0 .  Fixing a birational
morphism p :  R ,  w e have a canonical morphism 0: HR H (OE Hom
(P ' , X)) with 0 (HR) CHr  and  dim a (0 (H R)) = dim W under the notation a :  H

Chowx '  in  1. 2 canonically. N ote that a (0 (HR)) is closed in Chowxn + 1

by virtue o f the  la tte r pa rt in  the  proof of Lemma 9 ii) i n  [Mo2] . Take the
no rm aliza tion  g : R  - *  a  (g5 (H R ) )  o f  th e  c losed  subvariety a  (0 (HR)) •
Then we have an irreducible component V (R ) of ce ( c  Y ) such that h (W (R))
= a (0 (HR)) with the normalization h: Y  a (H ) in  1. 2.

Now we show 5. I .
Assuming that
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(5. 1) dim

one has dim H R -11+ 2  by the fact that Aut(R) is of 2- dimension.
By virtue of Proposition 2 in  [Mo2], we have inequalities: h° (R, w * Tx)

dim H R X  (R, w* T x) for each point w in HR.

Thus we conclude that

(5. 2. 1) fo r each point w in  HR, h ° (R, w * T  =  n + 2  and h 1 (R, w * T  =  1.
Thus HR is smooth and of n + 2  dumension.

In fact, setting w* Tx as E , we have an isomorphism: 111 (R, E ) (R, Ev)v
s in c e  t h e  c a n o n ic a l sh e a f  coR  o f  t h e  c u rv e  R  i s  O R .  Rem arking that
x (R, w* Tx ) = n + 1 + n x  (R, C R )=n+1, we have h° (R, Ev) by the assump-

tion. L e t t in g  g: R  the normalisation, w e see  tha t te*Ev =  ( —  3) (13i

(—  1) 'n - 2Ge and therefore h° (R, .Ey) T hus h
°
 (R, wu) = 1 , h° (R, E) =

n + 2  and h° (R, w* Tx) =dimHR as desired.
Now we claim that:
0  is a closed embedding.

In fact, the m o rp h ism  : HR - >  H  induces the  homomorphism of the tangent
spaces dO[zo] : T H R EW]T H , [ w ]  for each point w  in  HR. T h e n  it  corresponds
c a n o n ic a lly  to  t h e  homomorphism: H° (R,w* Tx)) (uw )*Tx)) .
Then it is obviously injective. M oreover we see easily that fo r a  morphism y
of r - type  in  V th e re  is  a unique morphism w :  R - - -  X  su ch  th a t pw = y  and
therefore that q5 is a  closed embedding as desired.

Now let o be  a  po in t in  P 1 w ith  g (o) = P, G = AutP 1 a n d  GR =  Aut (R) .
Then note tha t GR is canonically isomorphic to Go (=  {0 . e Gla ( 0 )  

= o} )  w hich
is  a  closed subgroup o f  G .  In  Proposition 1 . 2 . 1  w e have the free action
a :  G x H H  and w e see that HR is  stable under the action G R . Moreover
b y  th e  natural closed embedding: GR X  H G X  H, the  ac tion  0- induces a
canonical action G R  H R - p  HR, w hich is a  f re e  a c tio n . In  th e  same way as
in  1. 1 (essencially in  the  w ay of the proof o f Lemma 9 [M o2]) we can con-
struct the geometric quotient of HR by GR which coincides with W R . Moreover
w e have a geometric quotient Z  R X HR by G R  an d  a  canonical morphism
SÇR - p  ( R )  to some component V (R ) o f  V w hich  is  fin ite  and  birational.
Therefore combining 5. 2. 1, we see

(5. 2. 2) S R  i s  a  smooth projective variety and therefore  so  is the  fiber pro-
duct Z x Y Ç R . T w o  c a n o n ic a l morphisms Z x Y R Z  X y Ç  (R ) and Z x y WR

are the normalizations.
Let j :  Z  x r t'R X  and V : Z X y6R R be canonical projections.
Now let us cosider the above morphism 75 .
Recall that P is  a unique cuspidal point of the curve R, take a point w in

HR and f ix  it  h e re a fte r . Note that H' (R , O R ) = k.
It is easy  to  see  that a non-zero section of Ev (5. 2. 1) gives rise to  a tri-
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vial line bundle of Ev o n  R .  Set the quotient vector bundle on R  as Fv. We
have an exact sequence on R

0 - > OR - 4  E v - >  F° 0 .

Since (O F = 0  (3) eo (1) en- 2 ,  F  i s  a m p le . T hus w e  in fe r tha t IP (R, =
H° (R, Fv) =0 and we obtain

(5. 2. 3 .)  E  splits to OEM.

Let V= fs EH° (R, Is (P ) =01. Then w e have

(5. 2. 4) dim V=2.

In fact we can find two sections si, s2 in H° (R , F) which are  linearly indepen-
dent over k  with s i (P) = s2(P) = 0  since  rank  F = n — 1  and h

°
 (F) = n + 1.

Assume that there is another section s  of H° (R, F ) where s (P) = 0  and s, s,, s2
a re  linearly independent over k. Since ,tt* F =  0  (3) EDO (1) e n - 2

, the  induced
three sections 32 in H° (/31 , tt * F)  are also linearly independent over k and
can be considered as sections of Yeam (0 (2) , d  (3 ))  because the mulplicity of
the curve R at P is 2. Since dim H° (P 1, 0 (1)) = 2 , the above argument yields
a  con trad ic tion . Thus w e have an (n — 1) - dimensional vector subspace W  in
H° (R, F) with V n w= {01. T h e n  the above argument says that
(5. 2. 5) The sections of v ec to r  sp ace  W (c lr  (R, w * T x )) generates the vector
space F 0 k ( P )  ( c  w * Tx O k ( P ) )  a t  th e  singular po in t P  of R .  Therefore
H

°
 (R, ic * Tx) generates tv * Txøk  (P ) at the point P.

Recall that 
Ç0?

sm o o th  and  se t Z x k-WR  a s  Z R. Since each point y  in

WR induces on ly  o n e  cusp ida l p o in t  o f  th e  cusp ida l cu rve  T  .7 - 1 ( y )  ,  a
P ' - bundle :  Z R - > WR h a s  a section S  induced by these cuspidal points.
Now consider the homomorphism T y — 'T * T x  induced by the canonical
morphism : Z X. By 5.2. 5  we see that the morphism Z X  is of
maximal rank  a round  the  section  S. O n  th e  o th e r  h an d  the m orphism  (7,

yields an exact sequence:

0 — >  T T. T * T „ — >  0

where Tr is the relative tangent line bundle of V .  Since the composite homo-
morphism IT  T,7 - 4  T * T x  i s  ze ro  on  the  sec tion  S , th e re  is  a n  induced
surjective homomorphism on  S : T * T x . Therefore we have a property.

(5. 2. 6) The induces morphism ps: S X  restric ted  T to s is finite  and
surjective.

Let be  a point in  V  and P the  only one cuspidal point of i v . Then to
show  the above statem ent (5. 2. 6) , w e  p ro v e  th a t (y  E  IP is  the  cuspidal
point of 41 is finite set. Consequently it is sufficient to show the following:

Claim : T he  closed subscheme {v e H  (o ) =  P , d v * ,, (± Li
d t ) = (=  B )  is
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smooth and of 2-dim ensional. (Here t is  a local parameter of P ' at the point

I n  f a c t ,  w e  s e e  t h a t  t h e  Z arisk i ta n g e n t s p a c e  T R ,v  is  iso m o rp h ic  to
H

°
(P 'v * T x 0 0  ( - 2 ))  which is 0 (1) ei0 ( - 1) 'E D 0  ( - 2 ) .  Moreover not-

ing that B h as a  canonical action via the 2-dimensional automorphism Go in-
duced by A ut (R) , we get the desired fact. A t  t h e  same time we see that

(5. 2. 7) the induced morphism : S X restricted p to  S is  étale.

(5. 2. 7. 1) S is  a section of P 1 - b u n d le  : ZR - - - - * WR over the  smooth pro-
jective variety WR, 

-
ZR is described a s  P (J) where J is  a  rank  2 vector bundle

over WR  satisfying the following exact sequence:

0 J L 0

where the quotient line bundle L o f f  on WR  y ields the section S.
Now in characteristic zero, we infer by Corollary 1. 4. 1. that Ps is  an iso-

morphism namely WR  is isom orphic to X .  By virtue o f  [W 2] it is known that
PicX=ZLo with the ample line bundle Lo . Since 

—
Kx is  ample, it follows that

(X, = 0  fo r  any  line  bund le  M  o n  X  b y  Kodaira vanishing theorem.
Thus we have: (5. 2. 8) G splits to 0 G @L.

L et So b e  th e  o th e r  section induced by th e  tr iv ia l line  bundle  0  of E.
Note tha t fo r a  general point x  in x, p - -

1 (x ) is  a  smooth curve in  ZR which
is  a  rational section over q- p - -

1 (x ) in  th e  meaning in Proposition 2. 6. Thus
from Corollary 2. 5 we see that qp- i  (x ) is contained in So. H e n c e  the morph-
ism p: ZR - ' X  collapses only the section So, which implies that dim p(zR )=
n + 1 .  Thus we get a contradiction.

Hence we proved 5. I .

In the next place we prove 5. H .

We assume the contrary.

(5. 3) There is a point x  in X —  SW so that p , is  of degree d> 1. (Note that
th is is an open condition.) I n  other words, there is a point y  in  Y., and a pro-
jective curve E in  Y, where for a  general point g in E 4 and 4 intersect at a
point which is not x.

Then the  curve E  is  the im age of some component of p v i a  q  and
each 4 (y g )  passes through the  po in t x  and  4 n — {x } is not empty.
Therefore we have more precise situation:

(5.4) there are a point x  in X — SW, a  curve 4 on X and an  irreducible com-
plete curve C1 ( L y )  satisfying the following:

1) x  is a  smooth point of 4,
2) C1 i s  an irreducible component of the closure of p.,- 1  (4 -x )  ,  and
3) for each point c in C1, 4 ( , ) is sm ooth at the point x  (see 2. B).
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Thus w e consider a  ru led  surface (q (C 1 ) )  ( =  S )  over the projective
curve q (C1) . Letting cp: q (C1) th e  normalization, se t  C X  c i S  as the
ru led  surface S — > C .  Let p: x  b e  th e  canonical morphism induced
by the morphism p and H an ample line bundle on X  and f  a  fiber of S C.
Let Co b e  the m inim al section in S  induced by p - 1 (x ) n q- 1  (q  (C )) and e =
(Co • Co). Then p*H is numerically equivalent to a (Co

- ef) and C i  to  aC0±i3f
with integers a , a  and ta  We get a>0. Note that p (c1) = P  ( f)  and deg A i .= 1.
Then w e see that a$ = (p*H, =  deg p;c, (H • p (C1)) x= deg Plc, (H • P (f)) x.
Moreover we have a  =  (p*H , f) = deg kJ- (I/ • P V)) x=  (H  • P  (f)) x. Thus we
g e t d e g  p lc ,= $ . On the other hand (C1 • C o) =18 - 1- cee w ith ae * 0 .

Thus we will induce a contradiction by Proposition 5. 5 shown below.
We make a  preparation for Proposition 5. 5.
Let S E  b e  a  geometrical ruled surface over a  smooth projective

curve E . Let Co and C i b e  sections of 7r. Let us consider a morphism p from
S to a  smooth variety X with the following properties:

1) dim p (s) =2.
2) Co collapses to a point v via P.
3) the curve p (CO is smooth at v.

Now let t be a point on co n c, and F =  7C- 1 7r (t)

Proposition 5.5. A ssum e that a  curves p (F) is smooth at v and the
morphism F — > P (F ) is birational. Letting I (Co, C i; t )  the intersection of
curves Co and  C1 at the point t and ei the ram if ication index  of  the morphism

p (ci) at the point t. Then I (Co, C i; t) = et.
Proof. Take a local coordinate x, y  a t the point Co n F  where C o i s  an

x -a x is  and F  a y -ax is  and moreover take a  coordinate z1. ....z,  a t  the point
where p (F) is  a z i - a x i s .  Thus we can describe the morphism p from a  neigh-
bourhood of v in S to X  as (... , zi, . . .) = (. ,  f t ( x ,  y )  ,  . )  so that f i ( x ,  y )  is
a holomorphic function near a neighborfood at C o n F  and f i (0, 0) =0 for any i.
Now since the section Co collapses to the point i) via the morphism p, f  (x ,  0)
is  zero and therefore for any i f i (x, y )  can be w ritten as ym 'g i(x , y )  where
m i  1  and g i ( 0 ,  y )  * 0 .  Noting that the morphism F - 4 p (F) is birational
and p (F) is  a  z i-ax is  we get m i =  1  and g i  ( 0 ,  0 )  * 0 .  Letting C i =  (y =x m l
locally, w e can describe the m orphism  p  restric ted  to  the  sec tion  Ci  a s  th e
m apping  (xnig i  (x, xm) , xmm 2g2 (x, xm)  x " ' g i (x, xm ) .  . )  .  Noting
g i (0, 0) *0, we get the desired fact , q. e. d.

Thus we get 5. II.

F inally  w e show 5. fflT a k e  a  general point x  in  U .  Then since the
characteristic of the  ground field is  zero  and length X =  n  + 1 , the morphism
Zx

--  X  is separable and the induced homomorphism T g -icyx ,„ g )
— >p* Tx is

generically su r je c tiv e . Hence fo r  a  general point y  in  Y x  w e  se e  p* Tx1L ,  is
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O ( 2 )  ED 0  ( 1 )  e n -1  b y  2 . A . N o te  tha t p - 1  ( x )  - - )  Yx  i s  a  finite birational
morphism and p:p - 1  (x) — )  –  { x }  is also a  finite birational morphism
by the  assumption o f 5 . ilk T a k e  the normalization s p o f  p - ' (x) .
Letting j : Z x x yx  S (= Zx) Zx the canonical morphism by the base change
S Y., we see that j  is  a  finite birational morphism.  H e n c e  w e  in fe r  th a t
the composite morphism j p  is  a  b ira tiona l m orph ism . T h u s the section S in-
duced by S in  Zx  g ives a  rank - 2 vector bundle E and its subline bundle M on
p - 1  (x ) with the following exact sequence:

( # )

where P (E ) = Z x  an d  P (0 ) = S  canonically. Letting  h:S  be a desing-
ularization of S, we see that h*OT=Os because h is  a birational morphism and
S is  n o rm a l. Moreover the  canonical homomorphism // I (S, h*M)
is  injective and h* E  sp lits  to  veh*M  b y  the argum ent in Proposition 2. 7.
Thus w e see that E sp lits  to  eTm. A t the  same time since j»: z x  –  s —>
Z– {x} is quasi-finite, M is  a m p le . Then we get a birational morphism
• : P (E) X  from P (E ) to the normal cone X  where via
'p: P (E) — P (0) — > X— {x}  is  an  isomorphism and P  (0 ) goes to the point
x .  T hus w e  h av e  a  canonical morphism  a :  X  X  w hich  is  a  finite  and
birational m orphism . Since X is smooth, a is  an  isom orph ism . Setting a  sec-
tion P (M ) as D, w e infer tha t ço : D ( . 4 0 (D )  ( c  X )  is  a  birational morph-
is m . H e n c e  w e  s e e  th a t  (1 • p  (D )) =  1. S i n c e  P ic  X  =  Z  b y  [W 2 ]  and
( — Ks • i) = n + 1 , — Kx is  (n  + 1 )p  (D) . Thus w e a re  done by Theorem due
to Kobayashi and Ochiai [KO].

Hence we complete the proof of 5.ifi.

(5. 6) Thus we show 2) of Main Theorem.
By Proposition 1. 6 we see that length (X )  is n or n  + 1 . In  the  fo rm er case  X
is  a  sm ooth hyperquadric from  C orollary 4. 5. In  the  o ther case if 1/__ 4, we
infer tha t X  i s  a  projective space by 5 . 1 5. ifi . M o r e o v e r  if  n = 3 , it is
proved by Corollary 2.6 in  [W l]  that the same conclusion holds.

§ 6. Hyperquadric (in positive characteristic)

(6.1) In th is  section and the last section we prove Main Theorem in positive
charac te ristic . A ll the  results of §1 and §2 except the ones stated below hold
in positive characteristic:

Corollary 1. 4. 1, the latter part of Proposition 1. 5, 2. A ,  3) of 2. 6, 2. 7.
W hat w e m ust check i s  the  first tw o fac ts. T hus w e consider P roposi-

tion 1. 5 first.
Let r x Z be a canonical p ro je c tio n . Since the natural morph-

ism ( y  ) p tr  1 y  )  is birational, so is a  canonical morphism (y)
p'q- 1  (y ) . T h u s rp' : P ' x H — >  X  yields a  canonica l m orph ism  : H — >
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Horn (P 1, X ) .  Consequently we have a component H of Horn (P 1 , X )  which
contains E (H) . Since th e  morphism j  i s  étale and  therefore j * Tx= T v and
moreover v* Tx is generated by global sections for each y in H, there is a  cano-
nical isomorphism: y* Tx=s (y) * T .  T hus H is smooth and dimH=h ° (y* TT)
= dim H. M oreover t h e  induced isom orphism  H n (P 1 , v *T x) H °  ( P ',
e (y)* T k )  corresponds to the homomorphism ds*,v TH,v — * T H ,E(v) induced by
a  canonical morphism s :  H - - >  H .  H ence w e infer that H  contains e (H) as
a n  o p e n  s e t .  Moreover a com posite morphism z-j : 14 1  x  H — > X y ie lds a
morphism H — > Hom (P', X ) . Consequently we h a v e  a  na tu ra l morphism
T : so  th a t s : H — >H  is  a n  iden tity . H ence  w e  in fe r tha t the
morphism s :  H — > H  is  an  isomorphism and th a t Y and Z  are the geometric
quotients of H x P 1 b y  G  respectively . Therefore  w e observe X  instead of
X .  Moreover we show a fact corresponding to Corollary 1. 4. 1.

—Proposition 6.2. L e t X  be a s  a b o v e .  I f  i s  a projectiv e space or a
smooth hyperquadric, the étale f inite morphism j :  X  — >  X  is  an isomorphism.

Proof. By Proposition 1. 4, we get the desired fact , q. e. d.

Therefore we have only to show tha t X  is  a projective space of a  smooth
hyperquadric. Then w ithout the  fear of confusion w e use  the  same notation
X.

Hereafter in th is section it is supposed that

n 5.

Now we check the facts in  §3 in positive charac teristic . C oro lla ry  3. 13
is  the  only one to  c o n sid e r . T h e n  a section p - 1  (A )  of 3. 9. 1 is  a  hypersur-
face in  P 4  (11._ 5 ) .  Letting S = p ' , we see from  Corollary 3.2 of §4 in
[H ] that

(6. 3) PicS=ZO s (1) and  hence HI (S, = 0 fo r every line bundle M on S
and 1 —3 w h e r e  S (i) "=' (i) Is.

Thus we get

(6. 3. 1) Corollary 3. 13 (= th e  splitness) holds,

Therefore results in §3 hold in positive characteristic.

Next in  th e  remainder pa rt o f th is  section w e show  tha t Fano variety X
2

with the ample vector bundle A Tx  a n d  length X = n  (  5 )  is  a  smooth hyper-
quadric.

Take a  general point x  in  V in  3. 14, and set the norm al divisor p (Z r )  as
D. Different from the  case  in  characteristic zero w e show, in positive charac-
teristic, that D is  a  divisor in  P n  and next that X  is  a  smooth Cartier divisor
in the weighted projective space .  Thus we can get the desired fact easily.
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For the purpose we make a preparation.
Note that Proposition 4. 2 1) is characteristic free.

(6.4) P i c  D = ZeD(S).

We set OD ( s )  as L D . Then we have

Proposition 6.5. Pic X= ZL with the ample line bundle L.
Proof. Note that W i§niewski's Theorem  A  in  [W 2 ]  ho lds in positive

ch a rac te ris tic . In fact to construct the closed subscheme F  in Fano variety X
induced by the extrem al ray  R I, w e need not use the contraction map which
W isniewski adopted in  h is  p ro o f in  [ W 2 ]  .  M oreover w e can check easily
that any curve C in F  belongs to the  vector space generated by R1. The rest
o f the  proof of W isniew ski's Theorem holds in  positive characteristic . A lso
see the statement of the last part in [W 3]. q .  e .  d .

(6. 6) Moreover we show that

a  canonical homomorphism Pic X — > Pic D  induced by the closed embedding
i : D — > X  is  an isomorphism if

For the proof we use the following

T heorem  (SGA2 originally or Theorem 3. 1 of Chapter IV in  [H ] .  Let A  be
a  com plete non-singular variety and  le t B  b e  a  c losed  subschem e. Assume
that

) Leff (A, B),
) B meets every effective divisor on A, and

iii) H i (B,
t i n + 1

)  = 0  fo r i = 1 , 2  and  all n 1 w here  I is the sheaf of ideals
of B.

Then the natural map Pic A — > P ic  B is an isomorphism.

Since D  is  an ample divisor in X by Proposition 6. 5, L eff (X , Y ) follows
from Proposition 1. 3, Theorem 1. 5 and its proof in  § 4  in  [H] . A s fo r iii)  it
suffices to show HI (D, rND/x) =0 for any positive integer r and i =1, 2.

For the purpose we show

Lemma 6.7. Let Ls=- L DIS . A ssum e dim D = n - 1 . 4. Then for every
integer r, we have

1) (S, rLs) =H 2 (S, rL s ) O .
2) (D, rLD ) =0 for i =1, 2.

Proof. 1) is triv ial from 6. 3.
Next we have the following exact sequence on D:

— > CD( — .5) — ' 0D — >  Os — *  0.

Tensor ing rLD we get

0 (r-1)LD — *  YLD rLs — > 0
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F r o m  1 )  w e  o b ta in  a surjective homomorphim : (D , (r — 1) LD)
(D, rLD) and an injection : H2 (D, (r —  1)L D ) H2 (D, rLD) . Let the cano-

nical sheaf coD=wLD with an  integer w by P roposition  6 . 5 . Thus by virtue of
Serre 's duality we get 111 (D, rLD) =H

n- 2 (D , ( w  r )  LD ) and therefore we see
th a t IP - 2  (D , (w — r) LD) =  0  f o r  a  sufficiently la rg e  in tege r —  r by  Serre
vanishing theorem, which yields the desired fact in case of i = 1. T h e  remain-
der case is obtained in the same w a y .  Hence we complete the proof. q .  e .  d.

Thus we get

Corollary 6.8. A ssum e that 5 . A  canonical homomorphism PicX
--- +  P ic  D  induced by  the closed em bedding i :  D X  i s  an isomorphism.
T hus LID= LD ( =  CD (S))

Now take a  p o in t A  in  V in 3. 14 and set a norm al Cartier divisor p (z
as D where Z P (cam) in  3. 13. Then w e have show n that the  induced
morphism PA : Z A D  i s  a  blow-down o f P (0 ) and D  is  a  cone over the
smooth projective va rie ty  ( = S )  with the vertex A . M oreover w e see from  6.
3  th a t  the norm al bundle Ns/D is isom orphic to Os ( 0  w ith  b> O. T h e n  w e
have

Proposition 6.9.b 1 ,  namely NS/D"' Os(1.) .

Pro o f . W e study the  cone singularity  (D , A— ) . L etting (R , M ) the local
ring Oa N =N S /D  and T -= f r (S , tN ) , w e see that R  is  the localisation of

t 1
T  a t  T +  w h e re  T + =  e Ho (5 ,  tN ) .  Thus since D is  a  C artie r d iv isor in the

smooth variety X , we have dim H° (S, dimM / M2 C o n s e q u e n t ly  w e  g e t

b=1 from the following exact sequence and computation:

h
°
 (s, Os (b)) =.11° p( n-1 , el , .  ( b ) ) ( p n — i ,  p „

obtaind by the sequence:

0 — >  0 pn-] (I) —  d) .—  0  p n - 1 ( b )  — ' 0  S  ( b )  — >  0,

with d= deg S, and

h
°
 ( 0 pm (b)) —  h

°
 (
0

 p . (0  )  = m+bCb — m+cCc

0  (  ( n + b ) • • • ( m ± c ± 1 )  
m+c ,--c b•-• (c +1) 1) .,,,+2 C2 - 1 .1 n ± 2 ,  when b>c _ - 2.

=  m + b  C b —  (111 + 1 ) ±2 C2 —  ( n + 1 ) = m+1 C2 m - F- 2, when b>c=1.

m+b Cb —1  r n + 2  C2 - 1 .>_m +2, when b>1, c_.0. q. e. d.

We have come to the final stage.
F irst w e show

(b —d))
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Proposition 6.10. L et the notations be a s  i n  § .  4 .  A ssum e n >  5.
Then Kx= — nL.

Proof. T he intersection number of the  fiber of q and p - ' (A) i n  Z,T is
o n e .  Noting that PA- is  birational, and th a t — Kx=aL from Proposition 6. 3, we
have n  =  ( 4  — Ks ) = (4 • aL) = a  (4 • L D) D = a (4  •  S ) D  = a from Corollary
6.8. q .  e .  d .

Finally we show that X  is  a  quadric hypersurface.
N oting  that p - '  (A) s )  i s  a  sm ooth hypersurface o f  degree d  in

P (W x ,I ) ,  we let f  be a  defining equation of S where S= Proj k [x o , ,

( f )  in P n - 1  and  the  weight of x i= 1 for every i. Moreover recalling that L s=
es (1) =Ns/D from 6. 3 and Proposition 6.9, we have, by virutue of Theorem 3.6
in  [M o l]

Proposition 6.10. D is a hypersurface in  P n  which is isomorphic to Proj
k[xo, , xn] / ( f ) in  P n where the weight of x n = 1 ,  f  is a homogeneous polyno-
m ial ( = 4 - Fan _14 - 1 ± , ,aix n + f )  of degree d, ai a  homogeneous polynomial of
degree d—i in  k[x o , , xn-i] and  f  (x o , , xn-i, 0) 'f.

Therefore w e see that th e  above S  i s  an intersection of D  a n d  a  hyper-
plane in  P ' .  Let Ox (D ) =  c L . Then using Theorem  3 . 6  i n  [M o l] again,
w e  see  tha t X  is  isom orph ic  to  Projk [x o , ,  /  (F )  (=  X  (F ) )  in the
weighted projective space Q (1 , . . . , 1, c )  where F  is  a  weighted homogeneous
polynomial (= x li + 1+ be -i + •••  b ix n + i f )  i n  k [xo, , x'n+1] of degree
d ( = ce) , b i a  homogeneous polynomial of degree d — ic in  k [Xi . . . . .  x ,] a n d

, x n , 0] = T. On the other hand we know

(6. 11) Kx= (d — (n + 1 + c ))L  by virtue of Proposition 3. 3 in  [Mol]

Hence combining 6. 9, 6. 11 and d=ce, we have c 1 and e= d = 2 .  Thus
we can prove that

Theorem 6.12. Let X  be a smooth projective variety. A ssum e  that AT
is ample and length (X) =- dim X Then X is a hyperquadric.

§ 7. Projective spaces (in positive characteristic)

In this section it is assumed that n= dim 5.
H ere w e prove that if  a  smooth projective variety X  is  of length n +1 so

tha t the second exterior power o f Tx  i s  ample, then X  is isom orphic to P n  in
positive characteristic  by th e  sam e m anner w ay a s  in  §5. B ut several phe-
nom ena peculiar to positive characteristic h a p p e n . T h e  particularly compli-
cated one is  about the separability o f  a  canonical morphism Z x  X .  For
the purpose we must show that there  exists a  curve 4 o f a - type  as stated in
7. 2.
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N oting that facts (5. 2. 1) —  (5. 2. 7) for 5. I  a re  characteristic free, we
first obtain

Proposition 7.1. dim = 1  and SW is a proper subset in X.

Proof. Assume dim T h en  a s  s ta ted  in  5 .  2 .  7  th e re  ex is ts  the
sm ooth variety S  i n  Z R  induced by cuspidal points w h ich  is  an  é ta le  cover

2
over the given variety X with the ample vector bundle A TE. T h e n  w e  have a
claim:

Pic S ( = P ic  WR) Z
2

In fact since Ps : S in 5. 2. 6 is étale, A  TE is also an ample vector bun-
dle and therefore S  is a Fano variety of length n-1-1. Thus w e get the desired
fa c t b y  [W 2 ]. B y  S R, w e use the notation S  r a th e r  th a n  R. H e re  re c a ll
the exact sequence in 5. 2. 7. 1:

0 Os — > J — , 1 , —  0
where L  is  a  line bundle on S. N ow  letting (gii) be the transition m atrix of
th e  vector bundle J, w e denote th e  vector bundle  induced by the Frobenius
morphism of S  by pP) whose transition m a tr ix  is  (g u l l  . M oreover repea ting
the  procedure by rn-times Frobenuis maps of S , we get

 J ( 1 m )

 . Since the  cano-
nical surjective morphism P (J ( P m ) ) X has 1-dim ensional fiber, L is  n o t a
tr iv ia l line bundle, namely L  i s  positive  or negative by virtue o f P ic  S  Z.
Then since 11 1 (S , L ' ( - a) ) = H n-1 K soL oa) by S e rre s  duality , 11 1 (S, L® ( - a ) )
is 0 for a large number a. Thus we infer that J ( P n i )  sp lits  in to  Ige L ( p m ) (=J') ,
w hich im plies that there is a  birational but not finite morphism f  from P (r)
to  a  cone T which collapes either section P (0 ) o r  P(L ( P m ) ) to  a  v e rtex . L e t
a: P  (r) P  ( f )  b e  a  c a n o n ic a l S -m o rp h ism . T h u s  w e  h a v e  three
non-fin ite  an d  n o n -co n stan t m o rp h ism s: th e  P 1 -b u n d le : P (1') a
morphism a y : P X  and a birational morphism  f : P  T  and
see  that th ree  line  bundles on  P  ' )  corresponding to th e  above morphisms
are different from  each other. On the other hand since Pic P(r) ZEf9Z, the
pseudo-ample cone has tw o boundarys each o f  w hich corresponds to  a  line
bundle which is neither ample nor trivial. Thus we get a contradiction.

q. e. d.

From Propositin 7. 1 the argument of 5.  II says in positive characteristic

Remark 7.1.1. For a general point x  in X—S  t)  a  canonical morphism
Px: Zx '  X  is bijective on zs -p - '(x).

To complete the proof of (5. ) In positive characteristic and to develope
the argument for (5. ifi ) ,  w e need to prove that a  canonical morphism  Px : zx

X is separable.
For the purpose we have the following claim:
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2
(7 . 2) Assume th a t  A Tx is  ample and length (X) n  + 1 .  Moreover assume

n . 5 .  Then X has a  curve 4 of type a. (The proof continues till 7. 5.)
In  fac t, if otherw ise, w e can assume b y  Proposition 1. 6 th a t  ( # ) fo r every
point y in Y, 4 is of )3 o r r - type.

Noting that dim - 1  from 7. 1, in  order to obtain a contradiction, we
divide into two cases:

(7. 2. 1) There are points y, y ' in Y  so that 4 is 13- type and 4, is  r - type.
(7. 2. 2) For every point y in Y  4 is )3- type.

Hereafter we prove that neither 7. 1. 2 nor 7. 2. 2 happen.

First w e consider first case.
For every point y in Y , P * T x 1,,--i (y ) i s  a  direct sum of a  triv ia l line bundle

and  am ple  vector bundle . H ence considering  th e  canonical homomorphism:
eq*P * Q1x - - - - 'P * S21x, w e in fe r tha t q*P* Q lx  i s  a  line  bundle  on  Y  and  the
homomorphism i s  in jec tive  as a  vec to r bund le  by  v irtue  of the base change
th e o re m . Let D  b e  the  cokernel o f the  homomorphism. Then D  is  a  vector
bundle o f ran k - (n  -  1 )  o n  Z  an d  fo r  each p o in t y  in  Y , Dl q -1( y )  i s  0 (3) IED
0 (1) e n '  o r  0 (2) e 2 ED0 (1) 43' n - 3 . Moreover th e  la tte r  vector bundle is more
general than th e  fo rm e r . Noting that i s  a  closed subscheme of Y where for
each point y  in  V Dl q -1(y ) .' 0 

(3) ED0 (1) 
G n - 2  

( = E )  w e see that the codimension
of V in  Y  is not bigger than dim.H1 (M, Tm) where M = P (E) .  F or the  proof
see, fo r  example, proposition 2. 3  i n  [s] . T hus noting  that d im  H' (M, TM)

dim H I (M, E0E v )  by virtue of Leray spectral sequence, we see that dim H I

(M, E0E v )  = n -2 ,  namely codim yV n - 2. On the other hand it is already
shown that codim y V  - 1 from 7. 1. T his is  a  con trad ic tion . Thus we con-
clude that the case 7. 2. 1 does not occur.

Next we treat with the case 7. 2. 2 in 7 .  3 - 7 .  5 .  Since Y has no cuspidal
c u rv e , th e re  is  a  p o in t x  w h e re  ($ )  each  cu rve  4 th rough  th e  piont x  is
smooth from 2. C'.

T h u s  w e  f ix  the  po in t x .  L e t u s  consider a  morhism g :  p - 1 (x )
P(Q1x, x)

p n - 1 .  

as in  3. 6. W e can first check that under the case 7. 2. 2,

(7. 3) g  is  a  finite surjective m orphism . Moreover it is purely inseparable.
In  fact, since dim  p - 1  (x) = n - 1, fo r the  fo rm er pa rt it is sufficient to

show
(7. 4) Claim: L et W be  a  closed curve in P .  Assume tha t g  (W ) is  a
p o in t .  Then there is a  po in t F  in  W so that 4 (,) is not smooth at the point x.
(See ($))

In fact assume tha t for each point z  in  W  4(,) is sm ooth at the point x  in
X .  Then w e see that for points z and z' in  W the  curve 4 (z )  tangents to  the
other curve fo e ) a t the point x .  Then w e can take a  general hyperplane sec-
tion D  in X through the point x  so that D  intersects transversally w ith all 4(2)
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(z E  W ) a t x .  T h is  im plies that the intersection pq- l q (w) n D  of a surface
pq- l q ( -147) and  the  am ple  d ivisor D  h a s  a  com ponent which consists of one
point x .  This is  a contradiction.

Next we show  the  la tte r  pa rt. F o r the  purpose we have only to prove that
g  is generically b ije c tiv e . F irs t f ix  a  general point x  in  X -  S W . Let S : =

( x )  and choose an open set U in Y  so that S n (U )  is  a C artier divisor
in  C I

- (u). T a k e  the  blowing-up : Xx - - > X  along the point x  and le t Ex
t h e  excep tiona l d iv isor i n  X i  v i a  ax. T h e n  b y  t h e  un iversa lity  o f the
blowing-up, we have a canonical morphism m :  q  (U) X , w ith ax  In=Px.
Then w e see that m is  injective from Remark 7. 1. 1. Note tha t ImIsna-1(u) is
equal to gisn,-1(u ). Hence m is bijective.

Thus under the assumption 7. 2. 2. we get 7. 3.

Remark 7.4.1. The latter argument of 7. 4 says that
Let x  b e  a  po in t in  X -  S W . I f  a  canonical morphism : P

P (Q x ,x ) is  surjective, then g , is generically one to  one without the conditions
of the types a, [3, y  of 4 (y E Y x ) (from Remark 7. 1. 1).

Moreover we continue the argument to  show

(7. 5) the fact 7. 3 yields a  cotradiction.
By 7. 3 th e re  is  a  Frobenius morphism F : P n - 1P n - 1 and  a  purely

n-inseparable morphism p i ) = A  with F  =  g .  Since for each
point y  in Y
p* Txi a -1(y ) --' 0 (2) 'G O  (1) 'n- 3 ,1)0, p*Tx h as the  following three exact sequ-
ences:

(7. 5. 1) 0 TZ/Y P*TX - )  the coker of i ( = M ) - > 0,
obtained by the unramified morphism (y) 4 as in  3. 2.

(7. 5. 2) 0 G p*Tx - > the coker of f ( = N ) - >  0 ,
where G denotes a  rank 2-bundle q*q* (P* T x ® T vz/Y ) 0 T v y  on Z  by virtue of
the base change theorem of Grothendieck and

(7. 5. 3) 0 - >  the kernel of k ( =H ) - >  P* Tx
- - +L - > 0

finally in  the  same manner as in  7. 5. 2 where L  is  the dual bundle of the line
bundle q* q*P* D ix.

Then we see that G is  a  subbundle of H  and T z iy  a  canonical line subbun-
dle of G .  Thus restricting each exact sequence 7. 5. 1-7. 5. 3 to  the fiber A
and pulling back them to Pn - '  via the morphism , we have

0 - >  T p.-,en M - >  0.
0N  - >  0.
0 H p”-,9n 0.

Hence we have three vector bundles T, G  and  H  on Pn - '  w ith  T C G C H .
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n -1
The Chern polynom ial of H  is described a s  E  (gt) i w i th  a  variab le  t  and

i=o
som e natural integer g. O n the o ther hand  since  T  is  a  line subbundle of a
rank - 2  v e c to r  b u n d le  G  o n  Pn - 1 ,  G  s p lits  to  a  sum  o f  two line bundles.
Therefore the polynomial becomes zero at two non-zero integers with the same
sign, but it is  impossible.

Thus we complete the proof of 7. 2.

Therefore by 7. 2 choosing a  general point x in X — SW, w e have an open
set U in Yx  so  that for each point y  4 is  a - type.

Thus we get from Remark 7. 1. 1,
(7. 6) P x :  z1 --4  x  is separable fo r a  general point x  in X —  SW and there-
fore birational.

In  fact since there is a morphism: Hxx
Fx Px , x  a s  stated in 1. 2. 1.

P, it suffices to show tha t the  induced morphism  H 1  X  Pl X is separable
and therefore Hx x  (P' — {o}) X is  generica lly  sm ooth . B ut since for a
general point y in Hx , v * Tx is isomorphic to ( 2 )  ee (1) -(-1), from Proposi-
tion 3 in [M o2] it is triv ial as shown in (8. 2) of [M o2].

Moreover in  the  same way a s  in  (3 . 6 )  a n d  (3 . 7 )  we infer from Remark
7. 4. 1 that
(7. 7) for a general point x  in X —  SW the morphism gx  is birational.

Let A =p - 1 (x) a n d  le t u s  recall that A  is sm ooth from  Proposition 1. 5
and Proposition 1. 6 and therefore that A  is canonically isomorphic to Y  (x)
(=H x /G o )  from Proposition 1. 3 and 3. 6.

A s the  finial stage w e prepare a  claim  to show  tha t g  is  a  finite morph-
is m . F ir s t  let A  = { z EA (z ) is  a  finite set}. T hen  w e  rem ark  tha t
(7. 8) The m orphism  g: A  — >  P '  is  an open immersion on A  by virtue
of Zariski M ain Theorem and A  is equal to  the  subse t tz e A Ig is isomorph-
ism around the point z)

Then we have

Proposition 7.9. ={Z EA lo z ) i s  a - type}.
For the proof we have only to show that

(7. 9. 1) Let z  be a  p o in t  in  A . Then
1) If z  is in A  , then 4 (e ) i s  a - type,
2) If z  is not in .A°. , then 4 ( e ) is  no t a - type.
F irst recall th e  n o ta tio n s . L e t 0 : V (Qx, x )  be  a  canonical morphism
(3. 6) and r r  H1 — >A  the geometric quotient by G o (Proposition 1. 2. P).
Take a point z  in  A . L e t y  be a point of H1  with F1 (v) = z  and Ho a componet
of 0 - 1 (0 (y)) containing the point v. M o r e o v e r  let pr be the canonical projec-
tion V (Qx, x) —  W I. Let z  be in A . S in c e  g  is  an  isomorphism at the point z,
w e infer that the composite morphism rxg : P (Qx, x) is smooth at the
point y, T1 g =0 p r and therefore 0 is sm ooth at the  poin t y . T hus w e see  that
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H, is sm ooth at the point y and therefore the  Zariski tangent space ZT, of Hv
a t  the  po in t y  is isom orphic to k, because automorphism group of P l. fixing
two points is  of 1- dimension as stated just after 8. 1 in  [M o2 ]. Moreover by
virtue of the deformation theory of Grothendieck ZT, is isomorphic to H° (P 1,
y*Tx 00  (- 2 ) ) .  Thus we get the former.

Next if y is fi or y - type, ZT, is a  2- dimensional vector space by the above
a rg u m e n t. Hence g  is not an isomorphism at /7, (y ).

Thus we complete the proof of Proposition 7. 9.

Since x  is contained in X S  V ,  x  is  a  smooth point or a nodal point of a
rational curve f acz , for z in W.

Hence we finally show that

(7. 10) g  is a finite morphism.
In fact assume that g  is  n o t f in ite . B y  7. 9, we see that A — A  c o n s is t  of

fi or y-type and  it  is  of a t least one  d im ension . F irst since d im  V  n  — 1 by
Proposition 7. 1, th e re  a re  a t m ost fin ite  ra tiona l cu rves of y - type  passing
through a  general point in X .  Thus w e infer that A — 2;1'. contains oa point of
fi - t y p e .  Now we claim that codimA  (A —A ) 2 , namely dim (A — A  ) —2.
In fact the deformation theory says that codimA (A — A  )  dim Hi. (I'', F O r ) =
2 with F =  (2 ) 6 2 1TO (1) E n- 3 (1)0 as stated in  the argum ent in  7. 2. On the
other hand since the set

tzGA — A  1,4(,) has a nodal point x}
is a t m ost fin ite  from  2. B, th e re  is  a projective cu rve  W in A — A  so  th a t
each curve 4( z ) G  W ) is sm ooth at the point x .  But this contradicts Claim
7. 4. Hence we get 7. 10.

Therefore we see that
p -i (x ) p  ( Q 1 x ,  x ) p n - 1 )  •  s a  finite birational morphism and therefore
an isomorphism, which means that for each point y  in  Yx , 4 is o f a - t y p e .  By
virtue of the proof o f  [Mo2] we have X=Pn.

Hence we get

Theorem 7.11. L et X  be a  smooth projective variety defined over the

algebraically closed f ie ld  whose characteristic is arbitrary. A ssum e that ÂTx is
ample and length (X) =dim X+1 Then X= Pn.

Combining 6. 12 and Theorem 7. 11, we can show 1) of Main Theorem.
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