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Nondiscrete local ramified class field theory
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Adrian Iovrm and  Alexandru ZAHARESCU

1. Introduction

Let p  be a prime, Q ,  the  fie ld  of p-adic numbers, Q a n  algebraic closure of Q,
a n d  (2  th e  (topologic) completion o f  Q .  Suppose k  i s  a n  infinite algebraic
extension of  Q ,  with finite residue field and such that the  exponent of p  in the
Steinitz number [k : Q ]  is  fin ite , and  k its (topological) completion. W e study
the  finite abelian totally ramified extensions of k a n d  k, in  term s o f subgroups
of norms o f U (k) a n d  U(k) respectively. M ore precisely, if e is  a  finite abelian
extension of k a n d  e its com pletion, then one  h a s  th e  following commutative
diagram

U (k)/ H ` ■` Gal (? / k)ra n ,

0 Î îltes

U (k)/ H -- Gal (e r  an ,

where all the arrows are functorial isomorphisms, and H and are the subgroups
of norms of units from  e and respectively. Moreover, one  has a  continuous
group homomorphism

Ù(1)G a l  (ka b /k)r a m

(where U(k) is  the  completion o f  U (k) w ith respect t o  th e  subgroups o f finite
index), which is surjective and whose kernel is the subgroup of roots of unity in
U (k) of order q, = (q —  1, [k  Qpiso)•

Throughout th e  p a p e r  u se  ideas a n d  results o f  Hazewinkel's ( [3 ] )  and
Iwasawa's ([5]).

A s a remark, here we describe the finite abelian extensions (totally ramified)
o f  a n  infinite totally ramified extension of a  local fie ld  with only finite wild
ramification, while J.M. Fontaine and J.P. Wintenberger do it for totally ramified
extensions of a local field w ith only finite  tam e ramification O D .  O ur next
goal is  to  pu t these two together.
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2. Notations

In  what follows p  w ill be a  p rim e  number, 421,  the  fie ld  of p-adic numbers, Q
an  algebraic closure of Qp  and Srl the completion of Q with respect to  the unique
extension of the p-adic va lua tion . T he valuation on S  (norm alised such that
v(p) = 1) w ill b e  d e n o te d  b y  v . W e  sh a ll use  a lso  th e  notations :  / a  for the
(topologic) completion of any subset M  c  and k v  fo r  th e  residual field of any
subfield k  o f  (2 . , (Q IQ p ) w ill denote  th e  s e t  o f  f ie ld s  k, Q , g_ k g  Q , and
,Fv (S2/Qp ) will denote the set of fields K, Q , ,

 c K  g , f )  such that K is com plete . If
ke3r(S21Q p ) ,  and elk  is  a  finite Galois extension then Gal (ilk) r a m = Gal (O W
where ko i s  the maximal unramified subextension of elk.

L e t Qp g k g S 2  such  tha t k „ is fin ite  o r  is  algebraicly closed. C hoose a
sequence of fields k , g  k 2  g  •  g  k  such that ( j ,  k i = k  and all the k i a re  finite
extensions of Qp  if  k v  is finite, and respectively of (Qp )„,. (the maximal unramified
extension of Q,, in Q) if k , is  algebraicly c lo sed . If elk is finite and Galois, and
i =  k(oc), let ei = k i (a). Then there exists an  no E N  such that en ik  is Galois and
Gal (en ik) , - Gal (iik) for any n no . M o reo v e r  i =  H

 
( i•

Any field Qp  g k g 0  defines a Steinitz number [k: Q p ]  which contains prime
factors with finite or infinite exponents. The product of the factors with exponent
oo will be denoted by [k: Q p ] c„.

We define similarly [k : ( 2 p )u r ]  if (Qp )„, g k  g Q.

3. Subfields in Q

There is a  canonical one-to-one correspondence between ,F(QIQ p )  and ,F(S21Qp ),
w hich is a  consequence of the form ula giving the distance between conjugates,
as given in  [ 1 ] .  We summarize in the following theorem some results regarding
it w hich are  used later. F o r  a  detailed proof, see [4]

Theorem  3.1. (a) T h e  m aps def ined by  27;421Q p )Bki—, k e .Fv (S21Qp ) and
-Fc(0 1Qp)D 1O— K nS 2 E3(7(S2 1Qp) are one-to-one and inverse one to  the other.

(b) L e t  k ,e e g -(521Qp ) such that elk is f inite and  G alo is. Then elk  is f inite
and Galois and one has Gal (elk) , -,  Gal (Ilk ), the isomorphism being the canonical
one.

(c) L et K , L e,Fv (r21Qp )  such  that L IK  is  f in ite  and  G alo is . Denote: k  =
K n Q  an d  i= L n  Q .  T hen elk  is  f in ite  and G alois an d  one h as  Gal (1/k)
Gal (L IK ), the isomorphism being the canonical one.

The following two theorems can be deduced from general valuation theory,
bu t we give here elementary proofs, for the  sake of completness.

Theorem 3.2. Let Q p g k  c 52 such that k , is f inite and pt [k : Q p ] .
T hen any  cy clic ex tension e lk  of  prim e degree gl[k : Q p ],„, is inertial (i.e.

[( r :=  q ) .
P ro o f . L et Ik , =  ph.
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(a) Suppose th a t  atp
h

—  1. L e t Qp  k 1 g  k 2  g  • • •  k  b e  a  sequence of
finite extensions of Qp  such  that j i , ,  lc; =  k .  Let e= k(a) and ei = ki (a). Choose
an  no such that : [(n o : k n o ] = g, (kn o ), = k , and m  = [k n o + ,: k n o ]  be divisible by g
but no t by  p.

We may suppose that en o /kn o  is totally ramified (if not, then [(/„.),.: (k,o )„] = g,
hence [t e : k J =  g). Since kn o ± i lk n o  is also totally ram ified, one may choose a
and 13 such that kn . + ,  = k n 0 (13), en 0 4. 1 1kn 0 (a) and a, )6 are roots of two polynomials
o f the  form f = xq — n  a n d  respectively g = xm — n , a n d  i t ' being uniformizing
elements of k„0 .

Let u = —71 e  (k „„) and denote by Cs the im age of u  in  lc,. Sincep h — 1,
TC'

X q  -  t i  has a  roo t in  k„, hence X q  — u has a  root in  kn o .
It follows: en . = k 0 0 (f3-1g) g  kn 0 + 1  w h ich  is  impossible.
(b) Suppose that g I —  1. Let, as above, kn o +  = kn„(fi), 1,,„(1) k„(y), and

u = —  U(k 0). W e m ay suppose tha t u  [U (k „ , ) ) ]q .

a aq
Let y — 

f l m / 2  
e (. O n e  has vq =  = = u, hence the  image F  of r  in  /,pm

does not lie  in  k„. It follows [(k n o + , • en o ),: k v ] =  g  thus re ,: k0] = g.

Theorem 3.3. L et (Qp )o r k ç  0  such that pt [k :(Q p )o r ] o„. Then the degree
of  any  f inite ex tension of  k  is relatively prim e w ith [k :(Q p )„,,]„,.

The proof in  the  case of cyclic extensions of prime degree is analogous to
th a t o f  T heorem  3 .2(a). T h e  general case reduces immediately to the Galois
case, which reduces to the prime cyclic case by the resolubility of the Galois group.

4. The fundamental exact sequence

L et K, L  ç  0  with algebraic closed residual fields.

Theorem 4.1. L et L IK  be f inite and  G alo is. Then

NEi k(U(L))= U(K)

P ro o f . F or the  proof le t us first note the following:

Lemma 4.1 ( [5 ] , Cap. 2, Lem m a 2 a n d  T heo rem  1 ). L e t elk  be a finite
Galois extension, where k ç  é  ç Q  are  complete, discrete, w ith algebraicly closed
residual .fields. L e t 7r', r  uniformizing elem ents of  e  and  k  respectively. T h e n
there ex ists s e N such that f o r any  k > s  and any  u c k  with u 1 (mod nk ) there
exists an  ',;e t ,  c ,  1 (mod n' k ) such that No k (C )= u . From  the proof given there
it follow s that f o r elk  cyclic of  prim e degree we may take

v(le — o- (0 )
s =

v(n)
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w here a is a  generator o f  Gal (e I k ); and if

k  g k i•  •  •  g  k „  =

where k 1 1 /k 1 is cy clic  o f  prim e degree f o r any  i, an d  if  s ,  is def ined as  above,
then w e m ay  tak e s  = m ax,,,,„  {s 1}.

Now le t K, L satisfying the above hypothesis, let

(Qp ),,, Ç k i g k
2

g • • • g 1 ( }

(Qp)nr ( 1 g  ( 2  •  •  g

and le t n n ,  7„' be uniformizing elements of k „ and 1Ç respectively.
L et so b e  a s  in  Lem m a 4.1. W e shall prove that there exists n Ø E N  and

M e R  such that:

so(n„) M fo r  n no

Clearly we may reduce to the case when [L: K ] = g  is a  p r im e . L e t no be such
th a t  [e n : k n ] = g  fo r n no ,  a n d  le t i no . T h e n  s i v(ni) = v(ni —  a- (0 )  where
<a> = Gal v i lk i)= Gal (L / K ). L et f (x )= x q  + a l  +  •  •  •  a q  b e  the minimal
polynomial of over lc, and let mi, = n;, -• niq  be the roots of f . O n e  h a s :

=( 7ri — ni2) • • • (n;ni,) = + • •• +

It follows:

v(n; — c)- (ni)) ,  E v(ni — v (f (TO)
J= 2

=  min lu(vrig - 1 ),..., v (a q _ v(vr1g-1)

hence: si v(n i ) q -[v (q )+  (q  — 1)].
Now let un U ( K ) .  There exist an n , a 0 1 . . . . .  such that

{an  e k n  f o r  a n y  n

Fi a —  u. 

Since lim,„  v(an  —  1) = oo there exists m o  e N such that

v(an — I) sn v(ir) fo r  n >

From  the lemma, there exists b n e ln  su ch  th a t NT,,,,z,(bn ) =  an  and

v(an — 1)
v(b r, —  1) =  fo r  n >

[L: K ]

From  the  discrete case of Theorem  4.1 which is proved in ([5], Cap. 2, §2.1,
Theorem 1) it follows the existence of an b m o E 1m o  such that

Alf„,,z o (b,n 0 ) = an .-  an o + , • • a„,..

The product b„ converges in L and  its lim it b  satisfies

as in §2,
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NL i k(b) = U.

K  and L  being a s  above , w e  deno te  by  V (L / k ) th e subgroup o f U(L)

generated by =  
0-(C)

/C e U (L), o- e Gal (L/K)}.

O ne h a s :  NE/i (V (L / k )) =  1 .  L et us suppose th a t  [K :  (Q L ,  is n o t
divisible b y  p. Theorem  3.4 im p lie s  th en  th a t [L: K ]  an d  [K : ( Q p ) n r ]  are
relatively prime, hence w e m ay fix an  no s u c h  th a t  [k i ,  :  k J  and  [L :  K ] are
relatively prime and [t ,: k ,] =  [L : K ] for any i no .

For n > no and a e Gal (L IK ) we define :

i(a )=  (7r;,1" :" .1 7 - 1  (mod V(L/k))

where n„ denotes an uniformizing element of en .
It is easy to see that i (a ) does not depend on the choice of n and 7r,ç, and

tha t " i "  is  a  homomorphism of groups. T hen  one has the following sequence
of groups :

(4.1) 1 Gal (LI K )  1— > U(L)/ V (LI K) 1 41 U (K )  — > 1

W e shall prove in  th is section tha t th is is an exact sequence.
Clearly the homomorphism Ni i k o i is null and NE/ k is onto (Theorem 4.1).

Proposition 4.1. I f  K, L are  as  above, L IK  is  abelian and  [K :(Q p )„,] 00

not div isible by p then " i "  is  a  monomorphism.

P ro o f . (a) Suppose firstly that L IK  is cyclic and let p  be  a  generator of
the Galois group. If aeZ is such that i(pa) = 1 then there exists C e U(L) such that

( P

= —
C

and we get p(7r;,0 • C- 1 ) = This implies that

a = n;,ao  • C- 1  e K.

a
Thus a =   v ( g )   —  [L :  k ] 

v ( )

is  divisible b y  [L: k ],  hence pa =  1 and " i "  is
v(7E;,0) v(n„0)

a  monomorphism.
(b) If G = Gal (L/IZ) is not cyclic, and if a e G, a 01E, then there exists a

subgroup H  of G  such that a4H  and GIH  is cyclic. Let M  = L "= {x e L IT (x )
= x, VT e II } . Then M = TY and [M :  k ]  is relatively prime w ith [k 1 1 : k 1] for
a n y  i >  no ,  where no is  d e f in e d  a s  a b o v e . W e  have Gal (M /K ) =  G IH . Let

= a/M 0  1 .  Since i: Gal (M IK ) —>U (M )IV (M IK ) i s  a  monomorphism i(a')
0  1 .  Then:

NE0 (40- )) = NLinft< = NL/m(Tc;i0)6 - 1  =  i(o- ') l m .

Hence 1(6)0 t E  and  " i "  is  a  monomorphism.
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Proposition 4.2. Ker (Nf i k) g Im (i).

P ro o f . (a) S u p p o s e  th a t  L I K  is cyclic a n d  le t  o- b e  a  generator of the
G alois group. If X E U(L ) satisfies NL, K-(x) = 1, then there exists a c r, such that
x =  aa -

1 . Let a 1 , 0 2 .....a n ,... EL such that an e en f o r  any  n  and  limn ,  an = a.
L et no  e  N  be such that [L : IZ ] is  relative prime w ith [1(1 .4_1 : k 1]  for any i >  n0 .

There exists n i o  >  no  s u c h  t h a t  v(an ) = v(am o ) f o r  a n y  n _> m0 . H e n c e
v(a) = v(am o ). Let ir b e  an uniformizing element of e m o  a n d  le t  k E Z  be such
tha t an n E  (L).

Then, since ([L: K], [k„, n : k n o ] ) =  1, there exists k' eN  such that

X ((n ;n 0 ) ik„,.:k.to]yrk' -1

( b )  L e t  L I K  be  abe lian , o f  degree n =  [1 :2  K ]. W e shall p roceed  by
induction on n. L et as above n, EN  such that (n, k i]) = e for i > n,.

L e t K g M g L  su c h  th a t M I K be cyclic . Let U(r) such that Ni i k(C) = 1
and denote : Ç = NE/m ( ) .  Then N,;-, /,z(C) = 1, hence C' (nn"da-

1 m od V(M IK),
where ir„". is an uniformizing element of m n. ,  (Qp ),„. m l  g  m 2  g •• • g M being a
sequence of discrete valued field as in §2 (one may choose n„". such that nn". =
NLIM(nrço) ,  n rç o  being an uniformizing element of en .).

Denoting t = 1] - 1 , there exists 7E V (LI IZ) such that t = N  R (q).
O ne has :

N D -Jo=  
Ç

 =[N E I R (7r0)]' - i • NEIR( ) = N Elm «niçor - 1• 11)

where o - Im  =  a ' .  Let 2 = 7t„'`7. - S i n c e  N i , - /R(A) = 1, from the inductive
hypothesis there exists r e Gal (r/11- 4) such that

A n n to -
1 (mod V(LI M))

Then

• nnto -
 1 -  (m od V (L /k)) 1nao 'r - 1 -  ' (mod V (L/k)),

and =  i(o- T - 1 )e Im (i).

W e have obtained the following:

Theorem 4.2. . / . /  pf[K : (Q p ) ,] 0 th e n  the sequence (1) is exact.

Proposition 4.3. L e t  (Q i,) n r  g  K _g L g 52 su c h  th at L I  K  is  ab e lian  and
p I[K : Then:

(a) 1f  pt[L : K ] then "i" m ay  be def ined as  above and the sequence (1) is
exact.

(b) [L : K ] = pt, t eN , then NE / k: U(L)IV (LIK)— > U(K) is an isomorphism.

P ro o f . The proof of (a) is analogous to that of Theorem  4.2 . In  order to
prove (b), one m ay reduce to the case Gal (L /k ) cyclic. Let a  be  a  generator
o f  i t .  I f  x  e  U (L ) satisfies NE/ k(x) = e  th e n  th e re  e x is ts  t i e r ,  such  tha t

(mod V (L /k )), hence x =
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x = a' .  Let an ee n fo r  n > e , such that lim , „  a =  a and let no E N such that
u(an) =  v(an ) = v(a 0)  f o r  a n y  n > no . T h e n  th e re  e x is ts  ke N  su c h  th a t  x

(mod V (L IK )). Since pl[K :(Q p ) ,] o  th e r e  e x is t s  m > no s u c h  t h a t  III
[k,„: k„,)]. Then

x (nV„`-'.. 3r 1 (mod V(LI K)) rc;; ,̀ ( k -  k "°] - 1  (mod V(LI K)) e(m od 1/ (LI K))

Rem ark. If (Q,)„, K  Q ,  then K  m ay have a  finite immediate extension
E ,  k g E g Q  only if pl[K: (Qp)ni.„ and  [E: K ] = p t , teN *

F o r  a  proof one may apply Theorem 3.3.

5. The maximal unramified extension

In  this section we consider a field Qp k Q  with finite residual field k , s ,ich.
tha t pt[k : Q p ] c o  a n d  we shall study the maximal unramified extension k„, 

t i t k

Proposition 5.1. L et k  be as above and let k ,lk„ be f inite, of  degree n. 'hen
there ex ists a unique extension k.ge.g_S2 such that:

(1) the residual f ield o f  e is 1(1 ,
(2) [/ : k] = n.
It follow s that e lk  is  Galois and cyclic.

The proof follows a s  is  the case : klQ p  finite.
L e t On) b e  the unique extension of k  g iven  by  Proposition 5.1, and let

knr n e N .  k (n )  •

The extension kn r Ik  is  abelian and  one  h as  k„,= k(k„,), where V . denotes
the set of all roots of unity of order q" — 1, n  N * and  q=lk„1

Proposition 5.2. L e t  K  =k ,„.  T hen, the  residual f ie ld  K „ o f  K  i s  the
algebraic closure o f  k„ and one has a  canonic topologic isomorphism:

Gal (K1k)L-._' Gal (K y lk„).

Again, the proof is like in  the  case: klQ p  finite.
Now we consider the following automorphism o f K„ over k„:

col — wq, fo r  co e

This corresponds, by the isomorphism of Proposition 5.2, to  an automorphism
of K lk , called the Frobenius automorphism of Klk.

The prolongation by continuity of 4) to  k will be denoted also by 4).
O ne has the  sequence :

(5.1) 1 U(k) U(K) U(K) 1

(kg)where j  is the inclusion and (4) — 1)(C) = for a n y  e U(K).
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Theorem 5.1. The sequence (5.1) is exact.

Pro o f . W e note firstly that Im j  ker (0 — 1).
Let Qp  k i  g  k 2  g • • • g k be a  sequence of finite extensions of Qp  such that

k  =U i k i . Let K i = (k i )„r  fo r  any i. Then :

(Qp )„,. K i  K 2 K  and K  =H  K

(a) L et us prove that 0 — 1 is  onto.
If aeU (K ) then there exists ai eU(K i)  for any  i > e  such that a=

Since the sequence:
ai.

1  - - )U (k 1) U(Ki) ) U(K 1) — )

is exact for any i ([5], §4.2 Theorem 2), there exists (e  U(K i ) such that  — a i .
Ci

Denoting by n i a  uniformizing element of k i ( a n d  thus a lso  of K i a n d  k i)
then since Ci e k1(V,0 )  one has:

= E °fun', oci) = E ci7j ir, ai o  0 0, ai i e V  u 101.
j= 0 j= 0

Now, if ni eNu{ oo} is the exponent of n i in  (ai — 1) then 0(Ci) C i (mod and
we derive: cz/j oci i  a n d  oci i ek i fo r j  = 0, 1,..., n, — 1.

Hence p i = a i o  + Œ t1  • • • + in r e  U  (k r) = ker (4), — 1) a n d  denoting
one has :

1 (mod ir7i) and (0 — 1)n1 = (0 — 1)C, = ai f o r  any i > 1.

Then the product is convergent and (0 — 1)(Fr_ qi ) = f l a;  =  a.
(b) L et us prove that ker (4) — 1) g Im j.
If x ker (4) — 1) g U(K) then there exists bi eU(K i )  such that :

x = lim b i

4)(x) = x implies lim j . œ  O b i ) = lim 1b 1, hence  lim1_  v(0(b 1) — bi ) = oo
P ut, as above : je  I' 101, (xi()O .
From  0(b1)— b i = L.3_ 0—
We derive: al;  = a u  and  cxi ;  e k i for j  = 0, 1,... t i — 1, where t i e Nu {cc} denote

the exponent of n i i n  (4)(b1) — bi ).
Then, it we put ci = ctio + oci ,ni +•••+oc i„_ i nY- l eki g k , we have v(bi —ci )i —)oo

co hence x = lim1c i e U(k).

6. The fundamental isomorphism

Let k  as in  §5 and suppose for the moment tha t pt[k :
L et E  b e  a  finite abelian extension of k , K  =k n r , 1(0 = K n E  the maximal



Class field theory 333

unramified extension of k  in  E  and let L = K E  = E ,.  Denote by 0 0 and t h e
Frobenius automorphisms o f K lk , and  L IE  respectively. O ne  has :  0/K = 0 0

a n d  (0 — 1) V(L/k) =  V (L / k ). T h en  th e  homomorphism - 1 : U (L) —0 U(L)
from §5 induces the (onto) homomorphism, denoted also by 0 — 1:

iii - 1 :  U(L)IV (LIK) - 0U(L)IV (LIK)

One has the  diagram :

A

l•
1 Gal (L / I) U(L)11/(LI U(J) — 0 1

(6.1) tY jO E

1 Gal (L / I) U(L)1V(LIK)N1-4 U(K ) — 0 1

D

where y  is  the null homomorphism, a =  —  1 , fi =  0 0  — 1, A  = ker a , B = ker 13,
C = coker y , D = coker a.

Also one sees that : C = Gal (LIK), D =1, B  = U(k ) and A  = U(E)•V (LIIZ)1
V(LIK).

The diagram (6.1) is  commutative and has exact rows a n d  columns, hence
" " " "  define the homomorphismsNE/ k  a n d  i B and C D and the "snake
lemma" gives a  homomorphism (5: B —0 C such  that the  sequence A N E- -4 B  =5- 0
C --L0 D  is exact.

W e get then a n  induced isomorphism :

: U(ko )/NE/ (U(E)) ---> Gal (LIK) , - Gal (E/k o ) Gal (Elk) r .„

Theorem 6.1. If   p t[k :Q p ]  and E  is  a f inite abelian ex tension of  k , then
one has an  isomorphism

U(k)INf i w(U(E))-0 Gal (Elk) r a m

(b) If  pl[k :Q p ] .  and E is a f inite abelian extension of  k  such that pt [E:k ]
then one has an  isomorphism

SE i k : U (k)I I NI E I ,(U (E)) —0 Gal (E I k)r a n ,

(c) If  P I  [k: Q p ] .  and E  is  a f inite abelian ex tension of  k  such that [E: k]
= p t then

NElw(U(E))= U(k)

F or the  proof we need the following result :
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Lemma 6.1. I f  k  is as  above an d  k ' is a  f inite unramified ex tension of  k
then N, 7 ,T(U (k)) = U(k).

Proof . F o r a  proof o f Lemma 6.1 one m ay use Lemma 4 §3.3 of [5] and
the technique used in  this paper.

N o w  fo r  (a )  l e t  K  = k n r , L =  E n r ,  (I/ =  the Frobenius autom orphism  of
K lk, = a prolongation of 4) to  L  a n d  1 =  E E/i(x ) =  x } .  Then en , = e •
K  = L , ( n K  = k , elk is totally ramified, E l( is unramified, elk is totally ramified,
Ele is unramified and  one  has :

NEAU(E)) =  u(e) a n d  U(k)/N707(U(e)) Gal (L/ )
B u t  N71 -(U(e)) =  NE0 -,-(U (E ) )  h e n c e  U(k)/NE0 (U ( E ) )  Gal (L / i)

which proves (a).
A  proof o f (b ) comes i n  a  similar w ay, by reproducing Lem m a 6.1, the

diagram  [5] and a ll §5  in  the  hypothesis stated in (b).
A s fo r  (c ) , le t K  a n d  L  b e  the m axim al inertial extensions of k  a n d  E

respectively, denote k 0 = E n K  and let 0 and 0 0  b e  the Frobenius automorphisms
o f L /E  and  K lk , respectively. Then one has the  diagram :

A

1 U WI V (LI K) Lv--E14 U(K ) — * I

- i 10 -

1 U(L)1 V (LI K) U ( i) 1

1

From Proposition 4.3 it follows that: U(k o ) = 1E 1,.(U  (E )) . Applying Lemma
6.1  w hich  is a lso  true  in  th is case if k ' is  a  finite inertial extension of k , we
obtain  U(k) = N

Remark 6.1. The isomorphism 6 E / , defined by Theorem 6.1 (a) and (b) will
be called "fundamental isomorphism."

If k  and E  are  as in  Theorem 6.1 (a) or (b) and if Q1, k 1 c  k ,g • - g k  is
a  sequence of finite extensions of 42r, such that L),,, k , = k , then there exists no  E N
such that ([K : k], [k 1, 1 : k i]) = 1 for any i no . Let n' be a uniformizing element
of En .. If uc U (k) there exists '40  e U(k 0 )  w ith N -1 0 (u0 ) = u. T hen  there  ex ists
C E U(L) with NE/k(C) =  u ,  and there exists o- e Gal (L/K) such that

n'a - 1  (mod V(L/K)).

The isomorphism (5, /, is given by :

u (mod IVE/ (U(E)))1—) a e Gal (L / i)  Gal (E I k)ram
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The isomorphisms 6, /„ has an im portant property of functoriality.
Let k  an d  E  be  a s  in  Theorem 6.1 (a) or (b) and le t k  g  E ' g  E.
Then NE/F(U(E)) g  NE, /,T(U (E )) and one has the  diagram :

U(k)/Nf i k(U(E)) — > Gal ( E l k ) .

(6.2)

U(k)1 1,(U (E)) Gal (E1k),.a n ,

where the vertical homomorphisms are the canonic ones.

Proposition 6.1. The diagram  (6.2) is commutative.

F or the proof, see [5], §5.2, Lemma 3, and  the  above remark.

7. The subgroups of norms

Proposition 7.1. Let 12 r , c k  g S 2 such that the residual f ield k „ of  k  is f inite
and  p t[k : L e t  k  g  e be a f in ite  abelian ex tension and let { 1( 1), { 1 'J be
sequences as in § 2. D e n o te : H 1 = N I ,,,(U(1,)), H = N e ,„(U(e)) and H = N ow)).
Then:

(1) H 1+ 1 = N k 11 (H 1) f o r any i e N*.
(2) H i g_ H i + , f or any  i e N*.
(3) H = ( .) ; ,,,, H ;  w here  i o  e  N  is  such  that ([k i : k w ], [e  : k ])= 1  f o r any

i > i o .
(4) ñ = H.

P ro o f . (1) fo llow s from  the equality =  k i+ , • e
(2) is obvious.
(3) follows from the  equalities : N o "  =  N t / k 1 f o r  any i i o .
(4) If xEH then X = N (37), 5 e U ( ) .  S in c e  =  y,„ where h e U (t)

one has = c„, y,,) =1im,„, IN 1 , Ik (yn) , hence H g IL
In  order to obtain the other inclusion it is enough to prove that f i is closed

in  U (k). W e shall show t h a t  I  i s  an  open  subgroup o f  U (k), hence it is also
a  closed subgroup of U (k ) .  Let a E I-1 and choose ac  U ()  such  that a  =  N eTi k(a).
Denote by

f  (x) = xq + Œ1 X + • • • + Œq _  1 X +

the m inim al polynom ial of a  over k. Then a  =  anq '  where m = [e : k (a) ]. Let
6 > 0 and ,6 e U(k) such that v(a  — /3) > 6.

Let fl q e S2 b e  a  ro o t of F(x) = Xtm — ,6 for which v (a q — /3q )  is  la rg e s t . If
Q  denotes a primitive root o f  1 of order m, then :

n,-1
v(cx,„ —   v( (oz, cm • fig)) = v(a )q) >

m ,=0
o

Hence for large 5  o n e  has :
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v(a
q
 — fi

q
„ ,) > sup, < _ v(1 — (`) sup.GalCa/To v(a q — o- (aq ))

a(a,)#a q

and from Krasner's Lemma we derive : k([3q ) g k (a q ) , i.e. /34 is  in  k.
N ow  le t g(x )= x q + a i xq - 1 + ••• + a q _ 1 x  + ;  a n d  denote  by  b 1 ,...,b q  th e

roots of g(x ) in  6 ,  arranged such that v(a —b,)> v (a —  bi ) for 2  j  g.

Since v(a — —
1  

v((a — b i )•••(a — bq))= —

1  

v(g(a)) = —

1  

v(flq — aq )  , it
g

follows from Krasner's Lemma that for large 5  one has
is irreducible over k , k (a) = (b ,), and Ni-f ,z(b,) = ,e7 = 

k (a)g k (b ,) , hence g(x)
/3. T h u s  n  is  open in

U(k) and this completes the  proof of (4).

L et k, { kJ be  as in Proposition 6.1. Let io  e N a n d  H,„ b e  a  subgroup of
U(k 1 0 ) such  tha t : I U(k10 )/H10 i s  r e l a t i v e l y  p r im e  w i th  [lc,: 1(1 0 ] f o r  any
i > io . D enote f o r  i > i„: H i = N k

-1,,,
0
(11,,) a n d  le t  H  =U ,,, 0 H , .  Denote by

f ( ( k )  th e  se t o f  subgroups H  o f  U(k) which a re  obtained in  this manner (by
varying i o  a n d  H i)  and by  ,Y19 (k) the set of subgroups 1-71 o f U(k) where H  runs
over

Proposition 7.2. Let Q p g k  S 2  such that pt[k : Q p ]  an d  k , is finite. For
any  HE lf (k ) there ex ists a  f inite totally  ram if ied abelian ex tension é of  k  such
that: N elk U (I ')=  H  and  N71 ,(u(e))=

P ro o f .  For any i > i ,  let e, be a  totally ramified finite abelian extension of
k , such that H i = l i e , ik, ( U ( e i ) ) .  O ne has = k , , , é ,  hence if e i o = 1(1 0 (a) then
t i = M a) for any i i 0 . Now put t=  k (a) and conclude the proof by applying
Proposition 7.1.

Theorem 7.1. L et k ,é ,{ k , } ,{ é ,}  be  as  in  Proposition 7.1. T here ex ists an
isomorphism 6 0 „ such that the following diagram (where Res is  the restriction and
44 is induced by the inclusion U(k )gU(k )) is  commutative:

U(k)1H -̀ 2-0̀ Gal (e l o r a n ,
1

U (k)1 H Gal (e/k) ra „,

P ro o f . W e have to  p rove  tha t 4) is  a n  isomorphism (then we p u t  .50 „ =
Res o ô o 0 - '). Let , ,  E U (k ) b e  a  system  o f  representatives for
U(k)/Fl.

For any n e N  le t a(f ) , , a (
m") e H be such that v(5, — a4') > n  for i = 1, ,  in.

W e assert that for large n  the im ages of a(,") , . . . ,aV  in  U(k)1H are  d istinc t. If
n o t ,  th e n  th e re  e x is ts  io  j o  a n d  a n  increasing sequence In i l te ,  such that
((x1;' ) )/((xV)E H  fo r  a n y  t, a n d  th is im plies (ci,o )/(di o ) = lim, „ ((oc%' ) )/(oV)) e H,
contrary to our assumption.

W e have thus the inequality :
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U(k)/ 1-1 1 U10/ 11 1

If there exist f i . U (k) which have distinct images in  U (k ) /H  then
they also have distinct images in  U (k ) /H ,  w h e re  " i"  is chosen large enough
such that 131,...,6„,+1eU(k i). But 1U(k 1)/H i =  [e =  :  f ( 3 .  =  I u(k)/171.
Therefore :

1U(k)/HI = 1U(k)/111.

Now let a E U (k) n H . Fix an a e U(?) for which I = a. L e t  f  (x) = xq +
a i x q  1 + • • • + ce, b e  the m inim al polynom ial of a  over k , th en  a = a qm where
m = [e: k 00] . Let :

g(x ) = x q  + i x' + • • • + q _ i x + aq , w h e r e  fl, E k, v(fi, — oc,) >

If ô  is  large enough, then from Krasner's Lemma it follows that there exists a
roo t b  of g(x) such  tha t k (a) = k (b). Moreover, g(x) is irreducible over k  and
N -(b) = cc  = oc . Since g(x) E  k(x) it follows that bee and a e H.

This proved 4) is injective. H ence it is an isomorphism, as asserted.

Theorem 7.2. Let Q p  g_ k 2 such that pf [k : Q p ] „, and Ik p l = g < co. Let
g, = (g —  1, [k: Q p ] c 0 )  and Vq ,  = th e  group o f  roots o f  1  o f  order g, in  U (k ).
Then:

fl N o k(u(e))= vq ,.
e2k

ab

P ro o f. Let a E Vq ,  and le t e' be a  finite abelian extension of k. Then

d, = (k)I N (0)1 = 1Gal (( I k)r a „,1

is p r im e  w i t h  [k: Q p ] 0 0 h e n c e  i s  p r im e  w i th  q 1 . S i n c e  t h e  o r d e r  of
a(mod N e i k (U(())) is  a  divisor o f bo th  de  a n d  g ,  it follow s that a e N o k (U(()).
Thus :

vqi g fl Ne/k(u(e))
1 , k

ab

Now let a e uv), a it Vq ,. We have to prove the existence of a finite abelian
extension elk such that a  N o k (U (e )) . Let i  1\1 such that :

(1) (p • q  — 1  [k j  : k 1] ) =  1  for any J>
91

(2) a e U (W.
Let m E N . D e n o te  Um (k,) = tue k i lu 1 (mod ir71)} and  V m(k,) = Un (k) Vq ,.

Since I V m (k1)/Um (k1)1= 91 a n d  I  (ki)I Um  (ki)I = gm  (q — 1), it follows that I U( 1)1Vm(kdi
q'n(g — 1) 

is relatively prime to [k J :  k J  for any j  >
91
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Let H r = Vm(k,), H  = INICi i
i
b ,(1-17) and IF" = U i , i H T . From Proposition 6.2

it fo llo w s  th a t  th e re  e x is ts  a  fin ite  abelian extension en, o f  k  f o r  which
Ne ,,w (e m)) = Hm.

Since a 0 Va „  there exists in E N  such that a 0 V"' (ki ). Then one has for any
j > i :

Nkiiki(a) a [ki ;kil (t 117., hence a0

Therefore a 0 Iim

Corollary 7.1. L e t  Qp g_k g Q  s u c h  th at  p t[k : M . ,  and k I =  g  <  (X).
T hen  n Nok(U(e)) = 1 i f  and  only  if  g — 1 and [k: Qp ] ao a re  relatively prime.

e2k
ab

Theorem 7.3. The hypothesis and notations being as  in  Theorem 7.2, le t ka b

be the m axim al abelian ex tension of  k. Then one has:

Gal (ka b /k)r a n , U (k)I Va i .

(where U(k) is  the completion o f  U(k) w.r. to  the subgroups of  f inite index)

P ro o f .  F or any finite abelian extension t  of k one has the  isomorphism:

U(k)/Ne i k (U (0 ) ` >̀ Gal (e »or .
and if k ege ' , such that t  is finite and  abelian, the  diagram

U(k)/Nr i k (U (t ) )  ` 4̀  Gal (I" lk) r a f f ,

U(k)/Ne i k (U(e)) 4 Gal (ern)r a m

is  com m utative. Then there exists a  canonic isomorphism

Sk fim U(k)IN e l k (U(e)) limGal (e
But

limU(k)1 e i k (U(e)) U(01 ne N ok(U(e)) = (01 Vq „

and

limGal (t/k) r a m G a l  (ka b /k,,,) Gal (ka b lk),...

We conclude this paper with the following result which comes naturally from
what was already proved.

Theorem 7.4. L et Qp ç k S  s u c h  t h a t  the residual field o f  k is f inite and
pt[k: Q p ] a3 . T hen there ex ists a  canonical one-to-one correspondence between
Ye(k) and the set o f  .finite abelian extensions o f  k„„ an d  a canonical one-to-one
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correspondence between ,Y ((k) and the set of  complete finite abelian extensions of  Ç .
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