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The Picard group of the moduli space of stable sheaves
on a ruled surface

By

Kota YOSHIOKA

0. Introduction

Let (X, H) be a pair consisting of a smooth projective surface X defined
over C and an ample divisor on X. Let My(r, ¢,, ¢,) be the moduli space of stable
sheaves of rank r on (X, H) with Chern classes (c,, ¢,) € H*(X, Z) x H*(X, Z), and
My(r, c,, c,) the Gieseker-Maruyama compactification of My(r, ¢y, c,). Let C be
a smooth projective curve of genus g and n: X —» C a ruled surface over C. Let
C, be a minimal section of = and f a fibre of n. Let H be an ample divisor
with (Ky, H) <0, where Ky is the canonical divisor on X. If (¢,,f)= —1,
Nakashima [N] and Qin [Q] computed the Picard group of My(2,¢;,c,). In
the rational ruled surface case, Ellingsrud and Stremme essentially computed the
Picard group of My(2, ¢y, ¢,;) if My(2, ¢y, c;) is compact ([Y, 5]). But no other
results are known for general ¢,. In this paper, we shall treat the case where
(¢y, f) = 0 under suitable conditions on H. Let H, = C, + nf be an ample divisor
on X. For a fixed triplet (r, ¢,, ¢,), there is an integer N and for all n, ' > N,
My, (r, ¢y, ¢3) = My (r, ;. c,) (Lemma 12). We denote this space by M(r, c,, c,)
and My (r,c;,c;) by M(r,c;,c;). Ifg>1,r=2and (Ky, H) <0, then we proved
that Pic(My(2, ¢, c,)) = Pic(M(2,¢c,.c;)) for ¢, > 2 ([Y, Lemma 3.6]). Hence it
is sufficient to treat M(2,c¢;,c,). To compute the Picard groups of these spaces,
it is not necessary to restrict ourselves to the case that r =2. So we shall treat
M(r,c,,¢c,). If g>1 and (Ky + f, H) <0, then we can prove that Pic (My(r, c,,
¢,)) = Pic (M(r, ¢,, ¢;)) (Proposition 5.1).

The author was also motivated by the work of Drezet [D1] on the computa-
tion of Pic (My(r, ¢y, c,)) in the case where X = P2, Let K(X) be the Grothendieck
group of a surface X and K(r, ¢;, ¢,):= {a € K(X)|x(x ® E) = 0, E € My(r, ¢y, c3)}.
Drezet constructed a homomorphism «: K(r, ¢, ¢;) = Pic (My(r, ¢y, ¢;)) and proved
that «x is surjective for X = P2, For a ruled surface with g > 1, we cannot
expect k to the surjective. In this paper, we shall construct a morphism o:
M(r, c,, c,) > Alb (X) x Pic® (X) and prove that Pic (M(r, c,, c,))/a*(Pic (Alb (X) x
Pic® (X))) is generated by the image of k.

Let M(r,c,) be the Seshadri compactification of the moduli space of stable
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vector bundles on C. Then we have M(r, ¢,,0) = M(r, ¢,) which was treated by
Drezet and Narasimhan [D-N]. So we may assume that ¢, > 1. In this paper,
we shall consider a general member E of M(r, ¢, ¢;) (and hence E,-,, = 02,
as a sheaf defined by an exact sequence 0 — L®" Y 5 E M0, where L
is the pull-back of a line bundle on C and M is a torsion free sheaf of
rank 1. Then with slight modifications, we can use the same argument as in
[D-N]. Another idea to compute the Picard group is to consider the divisor
on C determined by jumping lines. In order to analyse moduli spaces of
stable sheaves on P2, the notion of the jumping line plays important roles.
In this paper, by using the divisor of jumping lines, we define a morphism
4 M(r, ¢, c;) = 52C, where SC is the symmetric product of C. Since Alb (X) =
J (Jacobian of C), by using this morphism and the Jacobian map, we can construct
a morphism a: M(r, ¢, ¢,) = Alb (X) x Pic® (X). Then we obtain the following
theorem.

Theorem 0.1. Assume that g > 1 and ¢, > 2. Then the following holds.

(i) o*: Pic (Alb (X) x Pic® (X)) = Pic (M(r, ¢, c,)) is injective.

(i) «x is injective.

(iii) im xkNim a* = Pic® (X) x Alb (X).

(iv) Pic (M(r, c,, c,))/Pic (Alb (X) x Pic® (X)) is generated by the image of
k. In particular, Pic (M(r,c,,c,)) = Pic (Alb (X) x Pic® (X)) @ Z®.

In Proposition 3.14, we shall treat the case where ¢, = 1. In section 4, we
shall treat the case where g = 0.

I would like to thank the referee for reading carefully the previous version
of this paper and giving many valuable suggestions. In particular, the proof of
Theorem 3.13 is simplified by him.

1. The existence of stable sheaves

1.1. Notation. Let Y be a smooth projective variety defined over C and
F a coherent sheaf on Y. Let A*(Y) be the Chow ring of Y. Grothendieck
defined the i-th Chern class of F as an element of A (Y). We denote it by &(F)
and its image to H2?(Y, Z) by c,(F).

Let C be a smooth projective curve of genus g and n: X — C a ruled surface
defined over C. Let f be a fibre of 7 and C, a minimal section of m with
(C2)= —e. Let H be an ample divisor on X. Note that the Neron-Severi
group NS(X) is isomorphic to H*(X, Z).

We denote the moduli of stable sheaves of rank r on (X, H) with Chern
classes (c,, ¢,) € H3(X, Z) x H*(X, Z) by My(r, ¢, ¢,) and the Gieseker-Maruyama
compactification by My(r, c,, c;). Throughout this paper, we assume that

(L.1) (c;.f)=0.

For a torsion free sheaf F on X, we set
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_ alF)

2
—rk(F)eH X.Q),

U(F)

AF) = rk#(F)(cz(F) - %(cmz)) e H(X. Q),
and deg (F) = (c,(F), Cy).

For a scheme S, we denote the projection S x X - § by ps and S x X —
Sx C by ng. Let & be a family of coherent sheaves on X parametrized by
S. For a divisor D on X, we denote & ® r*(0x(D) by &[D], where r: S x X - X
is the projection. In this paper, we also denote a divisor defining the canonical
line bundle Ky by Kjy.

1.2. We shall first prove the following lemma which is due to [L] or [Mr2].

Lemma 1.1. Let E be a torsion free sheaf of rank r with Chern classes c,,
¢, and assume that E-., = 0%\, where n is the generic point of C. Then E
is obtained by successive elementary transformations from n*n_E along sheaves on

fibres.

Proof. Since E-1,y = 02, the natural homomorphism n*n,E — E is injec-
tive. We assume that n*n,E & E. Then there is a fibre f; such that E, % 07
Let T, be the torsion part of E; and set F, = E|; /T;. Since F, is torsion free,
Fi=@®-,0,(a), ajeZ. We set F,, = (‘Dajzo O (a;) and F,_:=F,/F,,. Let
E, be the kernel of E— F,_. Then E, is obtained by an elementary transforma-
tion from E along F,_ and E is obtained by an elementary transformation
from E,(f;) along F;, @ T;. Since n,F,_ =0 and F,_ # 0, there is an inclusion
n*n,E < E; & E. Applying this argument successively, we obtain a sequence of
inclusions n*n,Ec E; £ E;_y £+ £ E. Since deg(E,) < deg (E,_,) — 1, there is
an integer s with n*n,E = E,. Therefore E is obtained by successive elementary
transformations from n*n E along sheaves on fibres.

Remark 1.1. From this proof, we obtain that E is a subsheaf of n*(n E ®
Oc(Xi=1 f). Since ¢y(Eiy) = co(E)) + deg (F), c(E) = —)i-;deg(F2) > s.
Hence E is a subsheaf of n*(n,E ® L) where L is a line bundle of degree ¢, on C.

Lemma 1.2. Let H,= Cy, + nf be an ample divisor on X. Let m, be an
integer such that |Cy+ myf| is base point free, m; = 2rc, — r?(1 — g) + r*> +
1 and my = [((Kx, Co) + my)/2+1]. We set N =max {m,+r’c,+1,m;,m,}.
Then we obtain that My (r, ¢y, c,) = My (r, ¢y, ¢;) for n,n’ > N.  We denote this
space by M(r,c,,c,) and My (r,ci,c3) by M(r,cy, c,).

Proof. We shall first prove that if E is u-semi-stable with respect to H,
(n> N), then E ., = 02,,. Replacing E by E¥", we may assume that E is
locally free. Let f, f5, ..., f,, be general fibres of n. Then there is an exact
sequence

Ext! (E, E) > [| Ext! (E,. Ey;) » Ext? (E E (‘ ) f>> '
i=1 i=1
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The Serre duality implies that Ext® (E, E(—) 7, f;)) = Hom (E, E(Kx + Y.1, £))".
From the choice of n, we obtain that (Ky + Y 1, f;, H,) = (K, Cy) + n(Ky, f) +
m; <0. Since E is p-semi-stable, this implies that Ext?(E, E(—Y™, f})) = 0.
Assume that E-., % 02, and then Ext'(E,,E,)#0 for all i Thus
dim ([ ] Ext' (E, E)) = my > 2rc, —r*(1 —g)+r?> = —y(E,E)+7r? >
dim Ext' (E, E), which is a contradiction. Therefore E-i,, = 0.

Let n, n" > N be integers and assume that there is a torsion free sheaf E
which is not semi-stable with respect to H, but semi-stable with respect to
H,.. By this assumption, there is a subsheaf F such that (u(F), H,) > (u(E), H,),
(u(F), f) < (u(E), f) and E/F is torsion free. In fact, the first paragraph of this
proof implies that (u(F), f) < (u(E), f), and if (u(F), f) = (u(E), f), then (u(F), H,) =
(u(F), H,). Thus F is a distabilizing subsheaf of E with respect to H,., which
is a contradiction. Let C' be a member of |H, — (n — my)f| which does not
meet pinch points of E. Then (u(F)— u(E), C') = (n — my)(u(E) — u(F), f) >
(n — mo)/r*. By Remark 1.1, we get n*n,E < E < n*n E® n*L where L is a
line bundle of degree ¢, on C. We set F'=n,F.. Then F' is a subsheaf of
n,E®L, and n*F < n*n EQ® n*L c E® n*L. Since (u(n*F'), H,) = (u(F), C’)
and (u(E), Hy) = (WE) C'), we get (u(n*F'), H,) = (WE), H,)+ (0" — mg)/r?.
Therefore, (u(n*(F'® L)), H,)) — (u(E), Hy) = (u(n*F'), H,.) — (W(E), Hy) — ¢; >
(n" — mg)/r* — ¢, > 0. This contradicts the assumption that E is semi-stable with
respect to H,. Hence every H,-semi-stable sheaf is H,-semi-stable. Replacing
the role of n and n', we get that every H,-semi-stable sheaf is H,.-semi-
stable. Thus the notion of the semi-stability does not depend on H,, n> N.
By this proof, we can also show that the notion of the stability does not
depend on H,, n > N. By the definition of the coarse moduli scheme, we get
our claim.

Remark 1.2. Let E be a torsion free sheaf such that E ., = 0%, and
F a subsheaf of E such that E/F is torsion free, (u(F), H,) > (u(E), H,) and
(u(F), f) < (u(E), f). By this proof, we see that (u(n*(F'® L)) — u(F), H,) =
(W(F), C') = ¢; — (W(F), C') — (n — mo)(u(F), f) = (n — mg)fr* —c, > 0. Let 0 c
F, c F,c---c F,=E be the Harder-Narasimhan filtration or a Jordan-Holder

filtration of E with respect to H,. Then this implies (c,(F;), f) =0, that is,
1;"_ ~ @rk F;

=ty = Yaia -
Remark 1.3. Since (Ky, H,) <0 for n > N, M(r, ¢,, ¢;) is smooth of dimen-
sion 2rc, + (r* — 1)(g — 1) + g and M(r, c,, c,) is normal ([Mrl]).

From now on, we shall fix a polarization H, with n > ¢, and denote it by
0x(1). By using the same method as in [D-L], we shall show the following
proposition.

Proposition 1.3. Assume that g>1. Then M(r,c,,c,) is not empty for
c, > 1.
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Proof. Let I be a torsion free sheaf of rank 1 with Chern classes c,, ¢;,
and set E= 0%" V" @® 1. Assume that E(m) is generated by global sections and
hi(E(m)) =0, i >0. We set V =H°X, E(m))® Ox(—m), then V — E defines a
point x of 2«0¢y;x. Let Q* be the connected component which contains x. Let
V®c Op« — & be the universal quotient and Q, = {y e Q*|hi(X, &,(m)) =0, i > 0}.
Let # be the set of sequences of polynomials h = (h,, h,, ..., h;) which is the
Hilbert polynomial of the Harder-Narasimhan filtration of &,, ye Q,: if 0 c F,
F, c - < F; = &, is the Harder-Narasimhan filtration of &,, then h,(m) = x(F;(m)).
By the above remark, (¢,(F), f) =0. Let fi: #2agfo, x = Q, be the flag-scheme
whose point F corresponds to a filtration F:0 c Fi c F, c--- c F, = &, y = f,(F)
with y(F;(m)) = h;(m) and HN(h) the open subscheme of f/ay},alx x such that F
is the Harder-Narasimhan filtration of &,. Let HN(h) be the complement of
HN(h). Since HN(h) is closed and f, is proper, f,(HN(h)°) is a closed subset of
Q,. Let Q, be the open subscheme of Q; which is the complement of f,(HN (h)).
By using analogous arguments to the proof of the uniqueness of the Harder-
Narasimhan filtration, we can easily show that f,(HN (k)N f,(HN(h)) = @. Hence
we obtain a proper morphism f, yxpm: HN(h) = Q,. We set f := fuunm-

For simplicity, we denote &, by E and gr,(E) by E;. Since F is the Harder-
Narasimhan filtration of E, we get

(1.2) Hom (E,, E;)=0 for i<j.
Since (c,(E;), f) =0, we get
(1.3) Ext? (E;, Ej)) ~ Hom (E;, E;® Kx)¥ =0 for any i, j.

In the notation of [D-L, 1.5], there is an exact sequence Ext! (E, E)—
Ext; . (E, E) > Ext} _ (E, E). By using (1.2), (1.3) and the spectral sequence in
[D-L, Proposition 1.3], we see that

(1.4) Ext? (E,E)=0, Exti,(E.E)=0 for i#1.

Let J be the kernel of the quotient ¥V — E, and let T be the Zariski tangent
space of ffayg,th x at F. By virtue of [D-L, Proposition 1.5], there is an exact
sequence

(1.5) 0— Ty - Hom (J, E) = Ext} , (E, E) -0,

where w, is the composition Hom (J, E) —» Ext' (E, E) —» Ext} , (E, E). By [D-L,
Proposition 1.7], #agy, .x is smooth at F. Since f, is proper and one to one,
(1.5) implies f, is a closed immersion and the normal space of im(f,) at F is
Ext} , (E, E). The spectral sequence in [D-L, Proposition 1.3] and the Riemann-
Roch theorem imply that

(1.6) dim Ext} , (E, E) = — Y y(E;, E;)

i<j

= - {rndj—rd; + rrj(l —g) — re; —re;},

i<j
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where r; = rk (E;), d; = deg E; and e, = ¢,(E;). Since g > 1, we get

(1.7) dim Ext}; , (E, E) 2 —‘Z {rd; — rd; — rie; — rje;} .
i<j

Since r;d; — r;d;, ¢,>0 and ¢, =) ;e; > 1, we obtain that dim Ext} , (E, E) > 0.
Thus codim (im f,) > 0. By the boundedness theorem of Grothendieck, # is a
finite set. Hence Q,:= Q,\|Jsc» im(f,) is an non-empty open subset of Q,.
By the definition of Q,, for any point y of Q,, &, is semi-stable. Therefore
M(r, ¢y, c;) is not empty for ¢, > 1. The existence of stable sheaves follows from
the following lemma.

Lemma 14. Let Q be an open set of 2eolympnyx Which satisfies the
Jfollowing:

For a quotient Ox(—m)®" — E which belongs to Q,

(i) OPY —» E(m) induces an isomorphism H°(X, 09") =~ H°(X, E(m)) and

H(X, Em)) =0 for i > 0.

(i) E is semi-stable.
We set Q°:= {Ox(—m)® - E|E is a stable sheaf}. Then codim (Q\Q*) > 2 for
g=>1

Proof. Let Oy, x[—m]®" — & be the universal qoutient on Q x X. Let #'
be the set of sequences of polynomials h = (hy, h,, ..., h)) whose element is the
Hilbert polynomial of a Jordan-Holder filtration of &,, y € Q: there is a Jordan-
Holder filtration 0 c F; ¢ F, < -+ < F, = &, such that h(m) = x(F(m)). By the
above remark, (c,(F), /) =0. Let f,: #agfo.x — Q be the flag-scheme whose
point F corresponds to a filtration F:0c F, c F, - < F, = &,, y = f,(F) with
x(F:(m)) = hy(m) and JH(h) the open subscheme of ?fa;},mx such that F is a
Jordan-Holder filtration of &,. Although f,: JH(h) - Q is not an immersion, in
the same way as above, we can show that w, is surjective and codim ( f,(JH(h))) >
—Y i<jx(E;, Ej). By the definition of the filtration, we get x(E;, Ej) =rr(l —g)—
2re; < —2. Therefore we obtain that codim (Q/Q%) > 2.

Remark 1.4. We can easily prove that JH(h) = #agfo.x-

Remark 1.5. We consider a Jordan-Holder filtration of a u-semi-stable sheaf
with respect to the p-stability. Then, in the same way as in the proof of Lemma
1.4, we can also prove that there is a pu-stable sheaf for ¢, > 1. Let M* be the
open subscheme of M(r, ¢, c,) consisting of u-stable sheaves and D the closed
subset of M* consisting of non-locally free sheaves. Then, by using the proof
of Lemma 3.1, we can show that codim D >r — 1. In particular, there is a
u-stable vector bundle for ¢, > 1.

Remark 1.6. In 3.1 and 3.2, we see that M(r,c,,c,) is irreducible (see
Lemma 3.1 and (3.9)).

Corollary 1.5. M(r, c,, c,) is locally factorial for g > 1.
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Proof. The proof is completely the same as that in [D-N, Theorem A] and
hence we omit the proof.

2. Some perparations on the structure of Pic (M(1, ¢,, ¢;))

2.1. We shall first construct a morphism M(r,c,, c,) = S2C x Pic® (X) by
using the notion of jumping lines. Let Q be the open subscheme of 2«04, menx
parametrizing all quotients Oy(—m)®" — E such that quotient sheaves E are semi-
stable sheaves of rank r with Chern classes c,, ¢, and h°(X, Em))=N. If m is
sufficiently larger than r, ¢, and c,, then M(r, c,, c,) = Q/PGL(N) (good quotient)
for some N. We choose such m and N. We denote the universal family of
quotients by Oy, x[—m]® — &. Let I, = X x C be the graph of the projection
n: X —>C and I the pull-back of I, to 0 x X xC. Let r:Q x X x C—
Q x X be the projection. By using the base change theorem, we see that
R'pg.cxr*é[—Co] ® O(—T)) and R‘prC*r*é"[—Co] are locally free sheaves of
rank ¢,. We denote these sheaves by ¥ and ¥/ respectively. Applying R'py ., cy
to an exact sequence

0> r*¢[—Col® O(=T) - r*6[—Co] » r*6[—Col7 >0,
we obtain an exact sequence
07} *%"Rlpgxc*"*éa[_co]F_’O-
For a point y of Q,

Supp RlpC*(r*gy(_ Colr) = {Pe Cléyn-1py E (91?5(?)}
={PeC|n"'(P) is a jumping line of &,} .

The homomorphism @, — (det ¥3) ® (det ¥7)™! induced by ¥ — ¥, defines a
family of PGL(N)-invariant effective Cartier divisors on C parametrized by Q.
We denote this relative Cartier divisor by #. By virtuue of the Grothendieck-
Riemann-Roch theorem, the relative degree of ¢ is c,. Hence it defines a
morphism Q — #/¢;> = §°C, which is PGL(N)-invariant. Therefore, we obtain
a morphism

2.1) Arcren) Mir, ¢y, Cy) = S52C.

For simplicity, we sometimes denote Ag, ., ., by 4.
Let det: M(r, ¢, ¢;) = Pic® (X) be the determinant map: E — det (E) ® Ox(—df),
where d = deg ¢;. Then A x det defines a morphism M(r, c,, ¢,) = $2C x Pic®(X).

Remark 2.1. For a point P of C, let ip: $27!C - §2C be the inclusion
sending D to D + P. Then f,, p is the pull-back of the divisor $27'C.

2-2- WC set Ai~j = {(Pl’ Pz, ceey P")EX"lR = I)j}’ A = Ui<in,j’ AO = Asmoolh*
and 4,:= A, Let @: X" - X"\ 4, be the blowing up of X"\ 4, along 4,.
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Then the symmetric group S, acts on X" and the quotient X"/&, is an open
subscheme of #¢/#y. We denote the quotient map by ¢. We set E; ;:= o~ '(4, )
and E:=), ;E;; Then the following proposition holds.

Proposition 2.1. ¢*: Pic (#:it4}) — Pic (X") is injective.

Proof. Since the codimension of the complement of X"/S, in Helby is 2,
we have Pic (#:/4}) = Pic (X"/S,). Let L be a line bundle on #%¢£; such that
¢*L =~ O3.. Then it induces an action of S, on U3.. Since S, is a finite group
and H°(X", U.) = H°(X"\4, Oy ,) = C, this action is represented by an element
¢ of the character group Char (S,) =~ Z/2Z. Let s, , be the element of S, which
permutes 1 and 2. Since the action of s; , on E, , is trivial, the action of s, ,
on 0. is trivial. Hence we obtain ¢ = 0, which implies that L =~ 0, There-
fore ¢* is injective.

Corollary 2.2. H?(#itt:, Z) is torsion free.

Proof. Let P,,P,, ..., P,_, be n— 1 distinct points of X and p: X - X"
the morphism sending Pe X to P x P, x -*- x P,_, € X". Then we see that the
restriction of p* to Pic® (X")®": Pic® (X")®» - Pic® (X) is an isomorphism, where
Pic® (X")®" is the &, -invariant subgroup of Pic® (X"). We can easily show that
g X 5 X" 8"X - $"C induces an isomorphism q*: Pic® (S"C) — Pic® (X). Since
Hitty is a subscheme of M(1,0,n) and 4, 4.y is the natural morphism #¢/6y —
S"X — S"C, we get that c*(Pic® (#itty)) = Pic® (X")® = Pic® (X")®". We shall
first prove that g¢*: NS(#utty) > H* (X", Z)® is injective. Since Pic (X") =
Pic (X" ® @i, ZE,; and H*(X",Z) = H*(X",Z) ® @<, ZE, ;, we obtain that
Pic (X")® =~ Pic (X")® @ ZE and H?*(X",Z)® ~ H*(X",Z)® ® ZE. Since the
kernel of c,: Pic (X")® - HX(X", Z)®" is Pic® (X")® = ¢*(Pic® (#itty)), Proposi-
tion 2.1 implies that the kernel of the composition ¢, o ¢*: Pic (#:ttx) - H XX, Z)%
is Pic® (#itt}). Hence ¢*: NS(%‘/&,’;)—»HZ()?", Z)S» is injective. The torsion-
freeness of H'(X, Z) and the Kiinneth formula imply that

H*(X", Z) ~ H¥(X, 2)®" & (H'(X, Z) ® H'(X, Z))®0) .

Since H*(X,Z) is also torsion free, H*(X",Z) and H*(X", Z) are torsion free.
Hence NS(s#:t4}) is torsion free. Therefore H?*(A#:it4%, Z) is also torsion
free.

By using this corollary, we shall compare the cohomologies of $¢2C and
Hithy.

Lemma 2.3. H*(S:C, Z) is a direct summand of HX(H:t63, L).

Proof. Let Z <= S82C x C be the universal subscheme. Then (lgec X
M)*Zsercxc, © S2C x X defines a flat family of subschemes of length ¢, on X. It
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defines a morphism g: §2C — #7#4,> such that (6 x 1x)*(2) = (Ise2c X TW)*Zise2cxcys
where Z is the universal subscheme on #:#4;> x X. From the construction of
1, we obtain that Ao g = lg,c. Therefore H*(S2C, Z) is a direct summand of
HX(Aitb 3, 1).

Lemma 24. H'(A#itty, Z) =~ H'(S2C, Z) and H*(Hitt3, L) =~ H*(SC, Z2) @
Z®2 for Cy > 2

Proof. From Corollary 2.2, we obtain that H*(#:i/42, Z) is torsion free.
Combining the result of Gottsche [G6] with that of Macdonald [Mc], we
get by (Hilt) = b, (S?C) and  by(Hitt?) = by(S2C) + 2. By Corollary 2.2

and Lemma 23, we get H'(A#ittp, Z)=~ H'(SC,Z) and H?*(Hitb3, Z) =
H*(SC, Z) ® Z®2.
2.3. In this subsection, we assume that ¢, >2. Let P, P, ..., P.,_; be

¢, — 1 distinct points of X, and we denote the ideal sheaf of {P,,..., P, _,} (resp.
the ideal sheaf of {P,,..., P.,_,}) by I (resp. I'). Let X - X be the blowing up
of X at P__,. C, denotes the exceptional divisor. We set X; = X\{P,, ..., P, ,}.
I, denotes the graph of b: X; » X. Let p,: X; x X - X be the projection. On
X, x X, there is a surjective homomorphism p3l - 0, (—C,)® p3I' >0, where
we also denote the pull-back of C, to X, x X by C,. Let I, be the kernel of
this homomorphism. Then I, defines a flat family of ideals of ¢y parametrized
by X,. Thus it defines a morphism y: X, — Het6yr.  This induces a homomor-

~

phism y*: Pic (#:t43?) — Pic (X,) sending L to y*(L).
Lemma 2.5. y*: Pic (#it6y?) — Pic (X,) is a surjective homomorphism.

Proof. For a line bundle 0x(D) on X, det (py,sc211,[D]) defines a line bundle
on #7462 In the Grothendieck group K(X,),

Pz, (z[D]) = pz,(p31(D)) — px, (O, (—C,) ® p3I'(D)) .

Since pf{,!((gl;,(_cl) ®<”i|xx p3l'(D)) = (Oi,(_c1 + D) ®o, I and )’*(Pmm;Z!(Iﬂ’[D])) =
Pz, Iz[D]), we get y*(det(py.sc2lzr(D))) = O%,(C, — D). Therefore y* s
surjective.

Let & C - 8C be the morphism such that &(P)= P + Y 521" n(P). Then
Aoy=¢Eomob. This implies the image of H2(S2C, Z) in H3(X,, Z) is generated
by f, (by Remark 2.1, the image of S7'C is f) Since Z%? ~ H*(#ittg3, Z)/
H*(8:C, Z) » H¥(X,, Z)/Zf ~ Z®? is surjective, it is an isomorphism. Therefore,
H*(AHittp, L)/H*(SC, Z) is generated by images of det pyyealo[D], where
Ox(D) belongs to Pic(X). In particular, Pic (#:itt3?)/Pic (SCZC)—PHz(mfﬂ;Z, Z)/
H?*(S$2C, Z) is surjective. Since u is a section of A, there is the following exact
and commutative diagram.
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2.2)
0 0
Pic (#ity)/Pic (§8°C) — YA
H\(Hit£2, 0) —— Pic (Hitty) — ——— HX(Hill3, T) ——— HAHltS, 0)
N 4
a b c d
HY(S8C,0) ——> Pic ($2C) ——— H*§C,Z) ——— H?*(8C, 0)

0 0 0 0

Since H'(Autty, L)~ H'(S*C, Z), a is an isomorphism. Thus Pic® (#itb3) ~
Pic°(S*2C). By diagram chasing, we get

(2.3) Pic (#it63)/Pic (S2C) = H*(Hitb2, Z)/H*(SC, Z)
~ H¥(X,,2)/Zf .

Fix a point x of X. Let 2 be a Poincaré¢ line bundle of degree d:= degc,
on Pic® (X) x X such that Z;,,x = L ® Ox(df) and Ppicox)x(x} = Opicox)-  Since
Pic® (Pic® (X)) = Alb (X), it defines a morphism X — Alb (X) sending ye X to
Ppicoxyx vy Let M(1, ¢y, ¢;) = Hitt? x Pic® (X) be a decomposition and £ =
I,® % a decomposition of a universal family, where I, is the universal ideal
sheaf of colength ¢, on #:#4;> x X and we identify the pull-backs of I, and 2
to M(1,cy,c,) x X with I, and £ respectively. In the same way, we can show
that Pic®(M(1, ¢,, ¢,)) = Pic® (2 x Pic® (X)) and

(2.4)
Pic (M(1, ¢,, ¢,))/Pic (S*C x Pic® (X)) = H*(M(1, ¢,, ¢;), Z)/H*(S*C x Pic® (X), Z)

~ H¥(X,, Z)/Zf .
Remark 2.2. If ¢, =1, then H#%/4;? ~ X. Hence we get that
Pic (M(1, ¢, ¢,))/Pic (52C x Pic® (X)) = H*(M(1, ¢, ¢,), Z)/H*($*C x Pic® (X), Z)
~ H*(X, Z)/Zf

for ¢, = 1.
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3. Structure of Pic (M(r, ¢y, ¢3))

3.1. We shall use the notation in 2.1. By choosing sufficiently large m, we
may assume that

3.1) H{(X,E(—1+mH,)) =0,
for i>0, Ee M(r,c,, c,) and all fibres | of =.

Lemma 3.1. Let Q, be the open subscheme of Q which parametrizes quotients
Ox(—m)® - E such that quotient sheaves E are stable and R'mn,E =0. Then
codim (Q\Qy) = 2 for r > 2.

Proof. By Lemma 1.4, codim (Q\Q®) > 2. Hence we shall show that the
codimension of Q°\Q, is at least 2. Let | be a fibre of = and set D, :=
{yeQ’|H'(, &,) #0}. Then Q°\Q, = | ), D, where I runs all fibres of =. Hence it
is sufficient to show that codim (D;) > 3. We set B,:= {y € @°|dim¢ H'(], 6,,(—1)) >
1}. Then it is easy to see that D, < B,. Hence it is sufficient to show that
codim (B)) > 3. For a point y of Q, &,(—1)— &, is injective, and hence &, is
flat over Q°. Then we obtain a family of quotients @,,,[ —m]®¥ — &,. Thus we
get a morphism res: Q° — 2«0dq_mer;. Let 2 be the union of connected compo-
nents which contain im (res). We denote the universal quotient on 2 x [ by
Oyy[—m]® —» &' For a point y of Q, we set K := ker (Ox(—m)®" — &,). Then
there is an exact sequence Hom (K, &,) » Hom (K, &) — Ext! (K, &,(—1)). By
(3.1), Ext! (K, &,(—1)) = Ext? (8,, 6,(—1)). By the choice of H,, (Kx + 1, H,) <O.
Since &, is stable, the Serre duality implies that Ext! (K, &,(—1)) =0. Thus res
induces a surjective homomorphism between tangent spaces. Let 2,:={ye€
2|H'(l, &(m)) = 0} be the open subscheme of 2. Then 2, is smooth and contain
im (res). In order to compute the codimension of B, it is sufficient to compute
the codimension of B;, where B;:={ye 2,|dim¢c H'(l, &(—1)) > 1}.

We shall use the same method as in the proof of Proposition 1.3. We shall
only treat the case that & is not locally free. Another case is similar. Let 3#"
be the set of sequences of polynomials h = (hy, h,, ..., h;) such that h, is the
Hilbert polynomial of the torsion submodule (&}); of &, ye 2, and h, — hy, ...,
hy — h, are the Hilbert polynomials of filters of the Harder-Narasimhan filtration
of (&) := &,/(&)r, y€Q,. Since (6)F is a torsion free quotient of Ox(—m)®
and deg (&,)r < deg &,, the boundedness theorem of Grothendieck implies that
#'is a finite set. We shall consider the flag scheme f}: .9'*'/@;}'1/ 2,xx 2, and the
open subscheme HN(h) whose point F corresponds to a filtration F:0c F, =
F,c--cF,= é”y’, y = fu(F) such that y(F;(m)) = h,(m), F, is the torsion submodule
of & and F,/F, c --- = F,/F, is the Harder-Narasimhan filtration of &//F,. In
the same way as in the proof of Proposition 1.3, we see that HN(h)— 2, is
an immersion and codim (HN(h)) = —);.;x(gr(8}), gr(&;)). In order to prove
our claim, it is sufficient to classify &, such that codim (HN(h)) =2. Since
—2(gr1(&)), gri(&))) = 1k (gri(&})) dim (gr,(&})), we get that r =2, dim¢gr,(6)) =
I and =), <;x(gr{&)). gr(&})) =0. Thus & =Cp® O, ® O(—1), where Pel.
Therefore codim (B;) > 3.
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We denote Q,/PGL(N) by Mi(r,c,,c,)o.- Replacing E by E(nf), we may
assume that RpoO*@@[—l] = 0 for all fibres I, py & is locally free and g*py & —
Ty is surjective, where g: Qq x C — Q, is the projection. Let g: G = Gr(py,,&,
r—1)— Q, be the Grassmannian bundle over Q, parametrizing rank r — 1 sub-
bundles of py & and % the universal subbundle of rank r — 1. We set

G :={xeGlU,® O > mn,b,, is injective as a bundle homomorphism} .

Since pg, 6 is GL(N)-linearized, PGL(N) acts on G and G. Let G be the
quotient of G' by PGL(N). Then we can apply the same argument as in [D-N,
7.3.2 and 7.3.3] to the family =, ,&. Since n,8,, is a vector bundle of degree
a:=degc, — c,, we obtain the following exact sequence:

(3.2) 0 — Pic (M(r, ¢, ¢5)o) = Pic (G)—»Z/(%)Z—»O,

where n=ged (r,a,¢,). Let t: T = P(Hom (O, U)")— G’ be the projective
bundle and N the tautological line bundle on T. On T, there is a homomorphism
OV 5> *Y @ N. Let T' = {xe T|t, is an isomorphism} be an open set of
T. Setting & = (g ot x 14)*€ and % = p*t*%, we obtain an injective homomor-
phism on T' x X: 02730 - % ® p.N - & ® pt.N. Let T" be the open subscheme
of T' whose point y satisfies the gy/(ﬂ,(?"‘” is torsion free.

Lemma 3.2. T'\T" is at least of codimension 2.

Proof. We shall prove that R:= {ye G'|&,, /02" is not torsion free} is
at least of codimension 2 in G'. We simply denote &, by E. We note that
if E/02"Y is locally free in codimension 1, then E/0@"~" is torsion free. Hence
if 0P~V > E, is injective for all fibres I, then E/O"™" is torsion free. In the
proof of Lemma 3.1, we proved that the codimension of B, in Q is at least
3. Hence we may assume that E, is isomorphic to OF, 6,(1)@® O(—1) @ 0" 2,
or C,®O(—1)@® 02"V, Assume that E is locally free and let | be a fibre
with E; = 0(1)® G(—1) @ 02, Let r: H'(X, E)—» H°(l, E;) be the restriction
map. In G'NGr(H°(X, E),r — 1), the locus of V < H°(X, E) with dim (r(V)N
H°(l, 0,(1))) > 2 is at least of codimension 2. Hence in a neighborhood of y,
codim R > 2. If E is not locally free, then it is easy to see that codim (RN
Gr(H°(X,E),r — 1)) > 1 in Gr(H°(X,E),r —1). We set U:={ze Q& is not
locally free}. Then codim U > 1 in Q,, and hence codim R > 2.

The quotient & ® p%. N/OEY} is a flat family of torsion free sheaves of rank 1
with Chern classes ¢;, ¢,. Therefore, & ® p%.NJ/OL'7D can be written as I, ®
det (£ ® p%.N) where I, is a flat family of ideals of colength c¢,. Thus we obtain
an extension

(3.3) 002D - &®pt.N - I,®det (§ ® p%.N)—>0.

We set T = T"/PGL(N). Then in the same way as in [D-N, 7.3.4], we obtain
the following exact sequence:
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(3.4) 0 — Pic (G) > Pic(T)-» Z/r — NZ - 0.
Combining (3.2) with (3.4), we obtain

(r— la
p .

(3.5) # (Pic (T)/Pic (M(r, ¢y, ¢3)5)) =

3.2. For simplicity, we denote M(l, c,,c,) by M, where ¢, and ¢, are the
same as in 3.1. Let ¥ := Ext) (£, OF(3}") be the relative extension sheaf on
M, where £ is the universal family in 2.3. The base change theorem implies
that ¥~ is locally free. Let u: P =P(¥ V) > M be the projective bundle and v
a divisor which defines the tautological line bundle on P. For simplicity, we
also denote (u x ly)*# by p*# and ph(v)=v x X by v. Since Hom, (u*~4,
027 =0, we get

(3.6) Extl,  (4*# ® Op(—v), 075") = HO(P, Ext), (%5 ® Op(— ). OFx"))
= H(P, u* ¥ ® Op(v))
~ Homg, (1*7", 0y(v))

Therefore the natural surjective homomorphism p*¥"¥ — @p(v) defines a universal
family of extensions:

(3.7 0 0P > F - u*fF ® Op(—v) > 0.

For simplicity, we denote #:¢4;> by H. We set D:= {I,e HR'n I, #0}. We
assume that ¢, >2. Then D is not empty. Let I, X x C be the graph of
the projection = and I the pull-back of I, to H x X x C. Let r:H x X x C—>
H x X be the projection. By using the base change theorem, R'py,c,(r*Iy ®
O(—T)) and R'py,c,r*1, are locally free sheaves of rank ¢, + g and ¢, + g — 1
respectively. We denote these sheaves by ¥3 and ¥ respectively. Applying
R’py.c4 t0 an exact sequence

0-r*l, @ O(—I') > r*ly > r*l,7—0,
we obtain an exact sequence
0= puvcal*lpyr > V32>V > RlPch*r*I:ﬂF_’ 0.

By using the determinantal subscheme defined by the homomorphism ¥3 — ¥,
we can define the multiplicity of D. By the Porteous’ formula, we get

(3.8) c1(0p) = g1.c,(¥3 — V3),
where q,: H x C - H is the projection.
Lemma 3.3. D is irreducible.

Proof. Since D is a divisor on H, it is sufficient to show that D, := 5”;:2,662
is irreducible, where 5("2/662 is the open subscheme defined in 2.2. Since D,
does not contain the exceptional divisor ¢(E) of w: )?CZ/GCZA(X‘Z\AI)/(B we

€y
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show that w(D,) is irreducible. Since (X x X x X2 2)\4, is irreducible and its
image to (X*\4,)/S,, is w(D,), w(D,) is irreducible. Thus 51 is an irreducible
divisor.

In 3.3, we shall show that D is a reduced divisor.
We set H,:= H\D and M, = Hy x Pic® (X) (My = M for ¢, = 1). Let Py:=
P x, M, be an open set of P. We set P°={yeP|Z, is a stable sheaf} and
o = P*NP,. We shall prove the following.

(3.9) TP,

Proof. On Pj, pps,(#[m]) is locally free and ppspps,(F[m]) > F[m] is
surjective. Let {U;} be an open covering of P§ such that py (F[m]) = OF",
and then p;: @uixx[—m]@N—’gﬁui defines a morphism h;: U, — Q, such that p; is
the pull-back of Op ,x[—m]®" > &. O™V = py (OF3") < py Py, induces a
lifting of h; to G, moreover the isomorphism of OF"" to the pull-back of
the universal subbundle induces a lifting to T”. Thus, we obtain a morphism
h;: U, > T = T"/PGL(N), which satisfy h; = h; on U;NU;. Thus we obtain h: P{ —
T. Conversely the extension (3.3) gives a morphism k': T” —» P§ such that the
pull-back of (3.7) is (3.3). Since k' is PGL(N)-invariant, it induces a morphism
k:T—P;. It is easy see koh = lps and hok =1y. Thus T = P;.

Lemma 34. If d:= degc, is sufficiently large, then codim (Py\P}) > 2 except
for the case that g =1, r|c, and c, = 1.

Proof. We set

P, = {y e Py|n,Z,

. is generated by global sections and h'(C, n, %)) = 0} .

In order to prove this lemma, it is sufficient to show that codim (Py,\Pg) > 2 for
sufficiently large d, and codim (Py\(Pg)*) = 2 except for the case that g =1, r|c,
and ¢, = 1, where (Py)’° is the open subscheme of P, parametrizing stable sheaves.

Since R'n,#,=0, ye P, and degc, is sufficiently large, (3.7) induces an
exact sequence

€O = HY(C, 08 V) » H'(C, 1,%,) > 0.
Thus we get
(3.10) W n,Z)<(r—1)g for yeP,.

By using sufficient large m (which depends on d), we may assume that
PEppy(F[m]) > F[m] is surjective and R'pp(#[m]) =0, i>0. Let Q; be the
connected component of 2wo, _mevx Which contains Q and Op, ,x[—m]®¥ - &
denotes the universal quotient sheaf on Q, x X. Let Q,(i) be the locally closed
subset of Q, whose point y satisfies that R'n,&, = 0 and h'(C, 1,(6,)) =i, 0 <i <
(r — 1)g. In the same way as in 3.1, we can construct Q,(i)-schemes t;: T(i) —
Q,(i) whose point z corresponds to an injective homomorphism O™V — &, .,
with torsion free cokernel, up to multiplication by constants. Let T(i)° be an
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open set of T(i) such that for a point z of T(i)°, the exact sequence 0 — O 1 —
By = 15/ O™V — 0 does not split. Then there are morphisms k;: T(i)° — Py.
By (3.10), we get (J#&G"im (k) =P, and (J#7"im (k;) = P\P;. In Lemma
3.5, we shall show that the action of PGL(N) on T(i)° is set-theoretically free.
Hence, in order to estimate codim (Py\Py) and codim (Py\(Pp)°), it is sufficient
to compute dim T(0) — dim T(i), i > 0 and codim (T(0)\ T(0)").

Let Ox(—m)®™ — E be a point of Q,(0) which has the Harder-Narasimhan
filtration F:0c F, c F, c--- < F;,= E. Let hy(x) be the Hilbert polynomial of
F, 1 <i<s. By Lemma 1.3, the locus of quotients whose Harder-Narasimhan
filtrations have the Hilbert polynomials (h,(x), h,(x), ..., hy(x)) is at least of
codimension dim Exty , (E, E). We shall use the same notation in Lemma 1.3.
Then we obtain that

dim Ext; . (E,E) = — Y x(E, E))

i<j

— rd; —rd; + rr(l —g) —rie; —re;} >0.
. J j J J J

i<j

Moreover we see that dim Extj , (E, E)=1 if and only if s =2, r,d; — r,d, = 0,
g—1=0 and re, + r,e;, = 1. Since F is the Harder-Narasimhan filtration,
e /r; <e,/r,. This implies e, =0 and re, = 1. Thus r, =e¢, = 1. By Lemma
1.4, the locus of properly semi-stable sheaves is at least of codimension 2. There-
fore we obtain that codim (T(0)\ T(0)*) = codim (Q,(0)\Q,(0)) > 2 except for the
case that g =1, rlc; and ¢, = 1, where Q,(0)° = {z € Q,(0)|&, is a stable sheaf}
and T(0F = 15"(Q,(0)).

For a point y of Q,(i), dimt;'(y) = (h°(X, &) —(r — ))(r — 1) + (r — 1)* —
1 =h%X,6&)r—1)—1. Since i<(r—1l)g, dim T(0)— dim T(i) > dim Q,(0) —
dim Q,(i) — (r — 1)*g. Therefore it is sufficient to show that dim Q,(0) —
dim Q,(i) > (r — 1)’9 + 2, i >0 for sufficiently large d. Let # be the set of
torsion free sheaves E which satisfy

(i) tk(E)=r, ¢,(E)=c¢, and c,(E) = c,,

(ii) R'n,E=0,

(iii) for the Harder-Narasimhan filtration F:0c F, <« F,c---cF,=E,

max {rk (E/F,) deg (F,) — rk (F,) deg (E/F)} < (r — 1)%g + 2.

Since # is a bounded set, there is an integer a such that for any member E of
A, nE(af) is generated by global sections and h'(C, n, E(af)) = 0. Replacing c,
by ¢, + raf, we may assume that a = 0. If h'(X, E) # 0, then E does not belong
to #, and hence dim Extj ,(E, E)>(r — 1)’g + 2, where F is the Harder-
Narasimhan filtration of E. Hence codim (Q,(i))>(r—1)®’g+2 for i>1.
Therefore dim T(0) — dim T(i) > 2 for i > 1. Thus codim (im (k;)) > 2 for i > 1.
Since codim (Q\Q°) > 2, we see that codim (P\P*) > 2, except for the case that
g=1,r|c; and ¢, = 1.

Remark 3.1. P§— M(r,c,,c,), extends to a morphism P*— M(r,c,,c,).
We shall show that P*\Pj is an open dense subset of P\P,. Since M(r, c,, 1) =
M(r, ¢, 1)y, we may assume that ¢, > 2. By Remark 1.5 and Lemma 3.1, there
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is a p-stable vector bundle E which belongs to M(r,c¢;,c, —1),. Let [ be a
jumping line of E:E, =~ 02" Y@ O(1)® O(—1). Let F be the kernel of a
surjection E — O(—1) > kp, where P is a point on I It is easy to see that
02?20 0()®0(—2)@kp and n*n E(< E) is a subsheal of F. Hence
there is an exact sequence 0 —» 09"V - F - I, ® det (F) » 0. Thus P*\P§ is not
empty for ¢, > 2. Since the complement of P, is the pull-back of the divisor
D x Pic® (X), it is irreducible. Therefore we get our claim. Combining Lemma
3.4 with this, we get that Pic (P) = Pic (P*) and Pic (M(r, ¢y, ¢;)) — Pic (P}) lifts
to a homomorphism Pic (M(r, ¢,, ¢;)) = Pic (P) for ¢, > 2.

Lemma 3.5. The action of PGL(N) on T(i)° is set-theoretically free.

Proof. For a quotient Oy(—m)® — E, the stabilizer of the action of PGL(N)
on Q,(i) is the automorphism group Aut(E). If ¢ e Aut(E) fixes 0PV c E,
then ¢ — 1 induces a homomorphism I := E/OP""V - E. If the composition I —
E — I is not zero, then E = 0" V@ 1. Hence ¢ — 1 induces I - 0" which
is 0. Therefore ¢ = 1. Thus the action of PGL(N) on T(i)° is set-theoretically
free.

If ¢, =1, then we shall identify #:#44 with X. Hence M = X x Pic® (X).
We note that P =P, and M = M,.

Lemma 36. If g=1, degc, =rk and ¢, =1, then for the codimension
1 component D of P\P* @p(D) is isomorphic to M = Op((r — 1)(rk — 1)) ®
(1 0 X2 ® (PEicoxy det Ppioxy?))B" ™, where 12 X x Pic® (X) - Pic® (X) x X s
the morphism sending (x, L) to (L, x).

Proof. By the proof of Lemma 3.4, for a general point y of D, the Harder-
Narasimhan filtration of &%, is 0 = L = %, where L is a line bundle of degree
k. We note that % /L belongs to M(r — 1,(r — 1)k, 1). By using the irreduci-
bility of Pic® (X) and M(r — 1, (r — 1)k, 1), we can easily prove that D is irreduc-
ible. We shall fix a point p of C. We set

W= {(y,q) € P x CIH*(X, Z,(—kf) ® n*Cc(q — p)) # O} .

Since deg #,(—kf)=0, yeP, the Riemann-Roch theorem implies that W =
{(y,9) e P x CIh"(X, #,(—kf) ® n*0c(q — p)) > 1}. Since codim (D) =1 and the
Harder-Narasimhan filtration is unique, we obtain codim (W) =2. Let I, be
the graph of m: X »C, and 2=0([, —n"'(p)x C) a line bundle on X x
C, which is a universal line bundle with ¢, =0 on X. Let rPx X xC—
X xC and s:Px X x C—»P x X be projections. For simplicity, we denote
s¥u*F(—v)[—kf])®r*2 by #. By the exact sequence (3.7), there is an exact
sequence of sheaves on P x X x C:

0—-r*2[—kf1®™ D 5 s*F Qr*2[—kf]—> # 0.

Since o/ = pp,.cyf is a locally free sheaf of rank (r—1)k—1 and %:=
R'Ppucy(r*20—kf1)® ™V is a locally free sheaf of rank (r — 1)k, the Porteous’
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formula implies that &,(# — /) is an integer multiple of the class of W in
A*(P x C). Let u:P x C — P be the projection. We denote the projections X x
Pic® (X) x C - X, X x Pic® (X) x C - Pic® (X) and X x Pic® (X) x C — C by w,,
w, and w, respectively. We also denote the projections X x Pic®(X) x C —
X x Pic® (X), X x Pic®(X) x C— Pic®(X) x C and X x Pic®(X) x C—» X x C,
by w;,, w,; and w5 respectively. Let A, (resp. 4x) be the diagonal of C x C
(resp. X x X). Then £ =1, ® #, where we identify the pull-backs of I, and
# to X x Pic® (X) x X with I, and 2 respectively.
By using the exact sequence

(3.11) 0 Ly > Oy = Op >0
we see that
Pexc(s* (1 (s, @ P) ® Op(—V)[—kf1® r*2)
= Pr.a(s*(W*2 ® Op(—V)[—K]) ® r*2)
— PexciS*(O5® P ® Op(—V)[—kf]) @ r*2)
= PpucS*(W*P ® Op(—V)[— k1) ® 1*2)

— (1 X 1) W *2 @ wiOx(—kf) @ w3 2) ® u*Op(— ),
where 3; is the pull-back of 45 to P x X. By using the exact sequence
(3.12) 0— Occ = Ocxcldc) = Oy =0,
we see that

Pexci(8%(Z ® Op(—V)[—K]) ®r*2)
= Prxci(S*(2 ® Op(—V)[—K 1D ® r*(n X 1c)*Ocxc(—p x C))
+ Pecas¥(P @ Op(—V)[—kf D) @ r¥(m x 1)*Uys(—p x C))
= (1 % 1)*WE(Prieopn(@L—kf — 77 (p)])) ® u*Op(—)
+ (1 > 1) Wis(1picoxy X MUP(—Kf)) @ W3Oc(—Pp)) @ u*Op(—V) .
Hence we get
(B13) o = (1 X 1)*WE(PriopoPL—K — 771 (p)]) ® u*Op(—)
+ (1 % 1e)*Wi5(1picogxy X TUP(—Kf)) @ wiOc(—p)) ® u*Up(—v)
— (1 X 1) Wi * P @ wiOx(—kf) @ wi3 2) @ u*Op(—v) .
By using (3.12), we also see that
Ripp . cy(r* 2L —kf 1) = (1 x 1c)*WER'pc, 2[ —Kf]
= (u x Lc)*WHOE™ — Oc(—kp' — p))

where p’' = n(f). Hence we get
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(3.14) B = (1 x 1oy WHOKV — On(—kp' — p))@r=D

In order to compute u,¢,(# — ), we may ignore &,(E), where E is the pull-back
of a sheaf on P. In particular, we do not need the second Chern class of

(1 % 1e)* W3 (Ppicoxy(PL—Kf — 771 (p)])) ® u*Op(—v).
Since the relative degree of [ —kf —n ' (p)] is (r — Dk — 1,
(315) & {(1 X 1)*WE(Ppieocry(@L—kf — 171 (1)]) ® u*Op(— )}
=&y {(u x Ley*widet ppioy(PL—kf — 271 (p)]))} — ((r — Dk — Du*(v) .
A simple calculation shows that
(3.16)  wyp, {& Wi *PL—kf — n7 (P)]) €1 (W (Lpieorry X THPL—kf — 27 (p)])}
=(r — Dk — D&, (*PL—kf —n~'(p)]) .

By using (3.13), (3.14), (3.15) and (3.16), we can show that u,¢,(# — ) = ¢,(MA)
mod Pic (Pic® (X)). Let .#' be the line bundle constructed by using Phioxy L ® 2,
L € Pic (Pic® (X)). Since v is replaced by v + (ppicox) © 1 © 0)*L, we get that 4 =
M'. We shall identify Pic® (X) with C and assume that (1¢ X 1) 2 = ¢ (de +
(rk — 1)(C x p')). Then we see that det po,O¢, c(4c + C x d) = Oc(d), where d
is a divisor on C and pc is the first projection. Then we can show that
u,C)(# — o) =¢,(M). Hence we get M = Op(u (mW)) = Op(mD), m > 0. In the
proof of Proposition 3.14, we shall prove that m = 1.

3.3. We assume that ¢, > 2 in this subsection. By the construction of the
family on X, (cf. 2.3) and (3.8), a direct computation shows that the pull-back
of D to X, is Y221 (n(P)) + (n '(n(P,,_,)) — C,). Hence we get that

(3.17) D is a reduced divisor and the image of D in NS(X,)is (c, — )f — C, .

Combining this with (2.4), we see that Pic (S2C x Pic® (X)) — Pic (M,) is injective
and

(3.18) Pic (My)/Pic (S2C x Pic® (X)) = NS(X,)(Zf ® Z.C,) = ZC, .
Hence we get
(3.19) Pic (P%)/Pic (5°*C x Pic® (X)) = ZCy® Zv .

By the construction of morphisms A, det and h, we obtain the following commuta-
tive diagram.

P; - T

(3.20) M, M(r,cy, c3)o

AFi(1.cq.cp) X det ARitr.cy.cq) Xdet

§2C x Pic® (X) == 5C x Pic° (X)
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Therefore, the homomorphism Pic (S°2C x Pic® (X)) - Pic (M(r, ¢y, ¢;)o) is injec-
tive. Hence we regard Pic (S2C x Pic® (X)) as a subgroup of Pic (M(r, ¢y, ¢;)o).
Then there is an inclusion

(3.21)  Pic (M(r, ¢,, ¢,)o)/Pic (§2C x Pic® (X)) » Pic (T)/Pic (S2C x Pic® (X))
=~ Pic (P3)/Pic (S:C x Pic® (X))
~ZC,®ZLv.

Remark 3.2. If ¢, =1, then D =90. By using Remark 2.2, we see that (3.20)
and (3.21) also hold, unless g =1, r|c; and ¢, = 1. Ifg=1, and r|c; and ¢, =1,
then Lemma 3.6 implies that

(3.22)  Pic (M(r, ¢y, ¢;)o)/Pic (5°2C x Pic® (X)) = ZCo ® Zv/((r — )a)Zv ,
where a = deg ¢, — ¢,.

3.4. We shall recall Drezet’s construction of line bundles on M(r, ¢y, c;)
([D1], [D2], [D-N]). Let K(X) be the Grothendieck group of X. Let K°(X)
be the subgroup of K(X) which is generated by Oy — Ox(—D) and ¢, — Oc (—D’),
D, D' € Pic® (X). Then K°(X) = Pic® (X)@® Alb (X). We shall represent the class
in K(X) of Oy, Ox(—f), Ox(—Cy) and Ox(—C, — f) by e,, e,, e; and e, respec-
tively. Then K(X)=~ K°(X)@® L, where L is the free Z-module of rank 4 gener-
ated by ¢;, 1 <i<4. Let ¢ be the class in K(X) of a torsion free sheaf of rank
r with Chern classes ¢;, ¢, and set

(3.23) K(r,cy,c;) = {xe K(X)|x(e ® x) = 0} .

We set a:=degc, —c¢,. Since x(e®e,)=r(1—9g)+a, ye®e)=r(1—g)+
a—r and yx(e®e;)=y(e®e,) = —c,, K(r,cy,c;)=Ko(X)® K where K =
{3t xie;e Lix (r(1 — g) + a) + x,(r(1 — g) + a —r) — x3¢, — x4¢, = 0}. For an
element x in K(r, ¢y, c;), & :=detpy (& ® [x]) defines a GL(N)-linearized line
bundle on Q, where [x] is the image of x to K(Q x X). Since the action of
the center is the multiplication by y(e ® x)-th power of constants, it is the trivial
action. Therefore it defines a line bundle on M(r,c¢,,c,). Thus we obtain a
homomorphism

(3.24) Kk: K(r, ¢y, ¢;) = Pic (M(r, ¢y, c3)) .
Moreover let S be a smooth variety and ¢ a flat family of torsion free sheaves
of rank r with Chern classes ¢,, ¢, parametrized by S. Then x> det ps (% ® [x])

defines a homomorphism

(3.25) Kg: K(r, ¢y, c;) = Pic (S).
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Lemma 3.7. Assume that 9 is a flat family of stable sheaves and let o: S —
M(r, ¢y, c,) be the morphism defined by 4. Let o* be the homomorphism induced
by o, then kg = 6* o k.

Proof. §' =8 Xpp.c,cp @S is a principal PGL(N)-bundle and hence
Pic (S) = PicP®*™ (§'). We denote the pull-back of 4 and & to S x X by ¥
and & respectively. Setting R = Hom, (6", %'), we get &' @ pfR=%". From
this, we obtain det pg. (%' ® [x]) = det ps(6’ @ p& R ® [x]) = det ps(6” @ [x]) ®
R®1e®9 = det pg (&’ @ [x]). Since H(PGL(N), Ofgry) = C*, PicPHM(§) >
Pic (S') is injective. Therefore we get ky(x) = a*(k(x)).

3.5. In this subsection, we shall treat the case where ¢, > 2. In particular,
we shall prove Theorem O0.1.

Lemma 3.8. K(r, c,, c,) = Pic (M(r, ¢y, ¢;))/Pic (S2C x Pic® (X)) is surjective.

Proof. Let I, be the family of ideal sheaves defined in 2.3. The family
I,[df] of torsion free sheaves of rank 1 defines a morphism X, > M. We denote
X, x,, P, by P. Let F be the pull-back of & to P® X. We also denote the
pull-back of I,[df] to P x X by I,[df]. Then there is an exact sequence

002" - F > I[df 1@ O(—v) - 0,

where we also denote p3(v) by v. We shall define 4; € Pic (Py/Pic® (X) (1 <i<4)
as follows:

A, :=det ppF = Op(C; — ¢,) ® Op(—(1 — g + a)v),

Ay :=det pp(F[—f1) = Op(C; —c; + )@ Op(—(1 —g + a — 1)),

Ay = det pp(F[—Co]) = O(C; — ¢; + Co) ® Uplc,v),

Ay :=det pp(F[—Co — f1) = Op(Cy — ¢y + Co + f) ® Op(c,v) ,

(3.26)

where a = degc, — ¢,. Let ¢: L — Pic (P)/Pic® (X) = (ZCo ® Zf ® ZC, ® Zv)/
(Z((c, — 1)f — C,)) be the homomorphism such that ¢(e;) = 4; (cf. (3.17)). Then
the restriction of ¢ to K is the morphism induced by kpx. Then e; — e, belongs
to K and ¢(e; —ey) = f. It induces the homomorphism ¢': L/Z(e; — e,)—
N := ZCy ® Zv = Pic (P)/(Pic® (X) + Zf). L :=Ze, ® Ze, ® Ze, is isomorphic to
L/Z(e; — e4) and under this isomorphism, KN L' is isomorphic to K/Z(e; — e,).
Let K’ be the kernel of the homomorphism : L' — Z such that y(e;) =r(1 — g) +
a, Y(e,) =r(l —g)+a—r and Y(es) = —c,. Then ¢ is the restriction of the
homomorphism y(e® _):L—Z to L, and hence K'=KNL. We set n:=
ged (r, a,¢,). Then imy =nZ. It is easy to see that ker ¢’ is generated by
(1 —¢g)+a—1)e; —((1 —g) + a)e,. Hence y(ker ¢')=(r — 1)aZ. Then there
is the following exact and commutative diagram.
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0 0
ker ¢’ ker ¢
(3.27) 0 K’ > L —Y5 nz —— 0
o
0 K’ N —— NK —— 0
0 0
(r— Da
Therefore N/K' =~ nZ/ker ¢ =~ Z p Z. Thus we get that

(3.28) Rgi: K 225 Pic (Py) — Pic (Py)/Pic (S2C x Pic® (X))

is injective and

Z

(3.29) coker (kg ) = Z / r - Da

(cf. 3.3). Combining this with (3.5), (3.21), and Lemma 3.7, we obtain our lemma.
Corollary 3.9. Pic (M(r, c;, ¢;)o) = Pic (S2C x Pic® (X)) ® Z®* for ¢, > 2.

Proof. We note that Pic (S2C x Pic®(X)) is a subgroup of Pic (M(r, ¢, ¢,)o).
By the proof of Lemma 3.8, we get K' = Pic (M(r, ¢, ¢;)o)/Pic (§2C x Pic°® (X)).
Hence we obtain this corollary.

Lemma 3.10. The restriction of xk: K(r, c,, c,) = Pic (M(r, c,, c;)) to K°(X)
is injective and its image is (1 x det)*(Pic® (52C x Pic® (X))).

Proof. We shall first consider the case that r = 1. We denote X . X Pic® (X)
by Y and let B: Y — #it£? x Pic® (X) be the morphism induced by y. We shall
show that f* o « is injective. Let r: Y — Pic® (X) be the projection. For simplic-
ity, we also denote pull-backs of I, in 23 and 2 to Y x X by I, and 2
respectively. By the definition of I, we see that

(3.30)  det (py(I; ® ZL[D])) = r* det (ppiox(#[D]))
® (K27 r*Zp) ®BXZ[D — C,1))" ,

where Ox(D) € Pic® (X), Pp, = Ppicoxy«(py and b: X; x Pic® (X) - Pic® (X) x X is
the morphism sending (x, L) to (L, b(x)) (cf. 2.3). Thus we get
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B* o k(Ox — Ox(—D)) = r* det (ppicoxy(? — Z[—D])) @, Ox(—D),
B* o k(Ox(—Cp) — Ox(—Co — D)) = Oy ®c, Ox(—D).

If D-Cy=),a;0;, a;€Z, then det (ppiox(? — P[—D])) = @i(g’gf)@i- There-
fore, for an element D of Pic® (X), we see that

B* o k(Ox — Ox(—D)) = X (r*g’g)@" ®e, Ox(—=D),
B* 0 k(Oc, — Ocy(—D)) = &) (r*Pp )®% .

Thus B* ok is injective and its image is Pic® (Y) = Pic® (X,) x Alb (X). Since
4* and y*o A* are isomorphisms (cf. 2.3), we obtain that x(K°(X))=(4 x
det)*(Pic® (S2C x Pic® (X))).

For general cases, by using (3.7), we get det(ppF[—D])=det(pp-
(u*#(—v)[—-D])). To avoid confusion, we denote the homomorphism K°(X)—
Pic (r, ¢y, ¢,)) by k,. For the morphism t: P* > M(r, ¢,, ¢c;), we get t* ok, (Oy —
Ox(—D)) = det (ppsy(p*F — p*SI[—D])) = p* o k,(Ox — Ox(—D)) and t* o k,(Oc, —
Oc,(=D)) = det(pps((p*F — p*#[—-D]) — (W*F[—-Co] — p*I[—Co, — D]))) =
p* o k1 (Oc, — Oc (—D)). The assertion follows from these.

Remark 3.3. Replacing the morphism X, — Hitby by X — Hitly, we see
that Lemma 3.8 and Lemma 3.10 also hold for ¢, = 1 (since C; does not appear
in the case, we can ignore that part).

Lemma 3.11.  For a point Q of C, let iy: S""'C — §"C be an inclusion sending
D to D+ Q. Then we obtain the following. For n > 2.

Pic (S"C) = Pic (J") ® ZU(iy(S"'C)) ,
Pic (S"C x Pic® (X)) = Pic (J" x Pic® (X)) @ Z0(iy(S"'C) x Pic® (X)),
where J" is the divisor class group of degree n.

Proof. Let 2 < §"C x C be the universal family of divisors such that
D,ipyxc = D. The line bundle O(2) defines a morphism j: S"C —» J". Then %, :=
Disncx oy defines an effective divisor on §"C and 9, = ig(S"'C). Let 2" be a
Poincaré line bundle of degree n. If n>2g, then S"C ~P(EY), where E:=
;m¢(P") is locally free sheaf on J", and hence H*(S"C, Z) = H*(J", Z) ® ZOp-(1).
For a line bundle Le J", we see that Dy ;1 = P(H(C, L(—Q))¥) =« P(H°(C, L)).
Therefore H(S"C, Z) = H(J", Z) ® Z0O(2,). By [Mc, 12.2 and 4.2], i}: H'(S**'C,
Z) - H'(S*C, Z) is an isomorphism for k > 1. Hence Pic (S**'C) = Pic (S*C) for
k > 2. Therefore, Pic(J")— Pic(S"C) is injective and Pic (S"C) = Pic(J")®
20(2,) for n>2. We also obtain the second relation.

Let o,: /6y — Alb (X) be the morphism induced by the Albanese map
a: X - Alb (X) in 2.3 (i.e. let Z be a 0-dimensional subscheme of X with ¢,(Iz) = n
and Y%, P, the associated cycle, then a,(z) = Y -, a(P))) and a,: H#itby — S"C — J"
the composition of A': #2445y = M(1,0, n)—ﬂ S"C and j. We shall choose an iso-
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morphism {: J" — Alb (X) such that oy =oa,. We set a = ({ojo Azp.a,,cy) X
det.

Proposition 3.12. o* is injective and Pic (M(r, ¢y, c,)) = Pic(Alb(X) x
Pic® (X)) ® K for ¢, > 2.

Proof. Since M(r, c,, c,) is locally factorial (Corollary 1.5) and the comple-
ment of M(r, c,, c,), is at least of codimension 2 (Lemma 3.1), we shall compute
Pic (M(r, ¢y, ¢;)o)- In the proof of Corollary 3.9, we saw that Pic (M(r, ¢y, ¢;)) =
Pic (82C x Pic® (X))@ K'. Since Pic (S2C x Pic® (X)) = Pic(J x Pic® (X))@
Z0O(S>7'C x Pic® (X)) and (4 x det)*(O($>"'C x Pic® (X))) = «k(es — e,) mod
Pic (Alb (X) x Pic® (X)) (see Remark 2.1 and Lemma 3.10), we get Pic (M(r,c,,
3)o) = Pic (J©* x Pic® (X)) ® K. Therefore, we obtain our proposition.

Proof of Theorem 0.1.
(i) and (iv) follow from Proposition 3.12. By Lemma 3.10 and Proposition
3.12, we get the following exact and commutative diagram.

0
0 ——  Pic®(X)x Alb(X) ——  K(r,cq,¢3) » K > 0
0 — Pic (Alb (X) x Pic® (X)) —=— Pic (M(r, c,, ¢,)) » K > 0

Hence « is injective and im (k) Nim (a*) = Pic® (X) x Alb(X). Thus (ii) and (iii)
hold.

Let w be the dualizing sheaf of M(r,c,,c,). Then we get the following
theorem, whose proof is the same as that in [D-N, Theorem E].

Theorem 3.13. Let E be a vector bundle of rank r with first Chern class
¢,. Then w=x(E¥Y —E" Q@ Ky)® (A x det)*&¥", where £ := det(ppioxn(? ®
[det EV — det EY ® Ky])) and [x] is the image of xe€ K(X) in K(Pic® (X) x X)
(cf. 34).

Proof. 1t is sufficient to compute det pp. (¥, #). From the exact sequence
(3.7), we obtain

Pl F, F) = pp(p* S, p*F) + (r — D{pp(u*I(—V)) + pp(u*F(—V), Op.x)}
+(r = 1?ppi(Up.x) .-
Thus we see that
det pp(F, F) = p*(det ppi( £, ) @ (det ppy(F) ® det pap(F, Opg o x)® ")
® Op(—2d(r — 1)),
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where d:=degc,. By the relative duality, we get det py(F, Oy x) = det pyy
(F[Kx])Y. Thus

(3.31) det pp(F, F) = p*(det py(£, £) ® (det pp(F ® [Ox — KX]))®(r—1))
® Op(—2d(r — 1)v).

In the same way as in 2.3, we shall identify the pull-backs of I, and
P to Mx X with I, and £ respectively. Since codim Supp (Op.x/ly) =
2, C1(py(Orox/lz, Opx/1)) = 0. Hence, by using the relative duality, we see
that —¢,(panllz, 12)) = E1(Pa(Oy «x/12 ® [Ox — Kx])). Since (Ox — Kx)® E¥ =
(Ox — Ky) ® (02" Y @ det EV), we obtain the following.

(3.32)
det (ppilly ® P ® [EY — E¥ ® Kx])) ® [det (pp(#? ® [det EY — det E¥ ® Kx]1))1”

= det (ppi(ly, 1)) ® [det Pyl ® 2 @ [Ox — Kx1)1® V.
If I is an element of M, then y({® EY) — y(I ® EY ® Kx) = 2d. Therefore
(333)  kp(EY — EY @ Ky) = p* det (ppi(ly ® P Q@ [EY — E¥ ® Ky]))
® Ops(—2d(r — 1)v).
By using (3.31), (3.32) and (3.33), we get our theorem.
3.6. We shall treat the case where c, = 1.
Proposition 3.14. If ¢, =1, then

Lo— _ JPic(C x Pic®° (X)) ® Z if g=1 and r|c,
Pic (M(r, ¢1, ¢,)) = {Pic (C x Pic® (X)) ® Z®*  otherwise .

Proof. We note that (3.28) and (3.29) hold for ¢, =1 (see Remark 3.3).
Unless g =1 and r|c,, Lemma 3.4 implies that Lemma 3.8 and its proof also
hold, and we can argue as in Corollary 3.9. Thus we get Pic (M(r, ¢y, c3)) =
Pic (C x Pic® (X)) ® Z®2. Hence we assume that g =1 and r|c, and compute
Pic (M(r, ¢y, c;)). We also complete the proof of Lemma 3.6 (i.e. we shall show
that m=1). Since ¢, =1, r and a=degc, —c, are relatively prime. Hence
n=ged(r,a c,) =1 We set R:= Pic(C x Pic® (X)). Let D be the divisor de-
fined in Lemma 3.6. By using (3.26) (see Remark 3.3), we see that kz((a — r)e; —
ae,) = M = O(mD) mod R, in particular, (a — r)e; — ae, belongs to ker (K-), where
Ko K' 255 Pic (M(r, ¢, 1)) = Pic (M(r, ¢, 1))/R (we use Lemma 3.7). By using
(3.5), (3.21), and Lemma 3.7, we get the following exact and commutative diagram:
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(3.34)
0 0
ker (k) ZD
0o —— K’ ek, Pic (PR —— coker (Rgx) — 0
'?|k’ q
0 —— Pic(M(r, ¢y, 1))/)R —— Pic (P’))R ——— U — 0
0 0

where U is a finite abelian group with #U =(r — l)a (cf. (3.5)). Since
coker (Kzx) = Z/(r — 1)aZ ((3.29)), q is an isomorphism. By using the snake
lemma, we get that ker (K ) =~ ZD and Ky.is surjective. Since a and r are
relatively prime, (a — r)e, — ae, is a primitive element of K. Hence we get that
ker (kx) = Z((a — r)e; — ae,). Therefore Pic (M(r, ¢y, ¢;)) = Pic (C x Pic® (X)) ®
Z and m must be 1. Thus we completed the proof of Lemma 3.6.

Remark 34. Let L be a line bundle of degree d. Let M(2,L,c,)° be
the open subset of M(2, L, c,) consisting of stable vector bundles and set D :=
M2, L,c;)\M(2,L,c,)°. Then D is an irreducible divisor. In the same way
as in [S], we can show that Oy 1 .,)\(D) = k[Ky + Ox((29 — 2 + c,)f) + 2 —
29 —d — c;)(Ox(—Cy) — Ox(—Cy — f))]. A simple calculation shows that K, +
Ox(29 — 2 + c))f) + 2 — 29 — d — c)(Ox(—Cy) — Ox(—=Cop — f)) =
coley +e) +(c, +d+e+2—2g)(e, —e;) — 2e; mod K°(X). We assume that
¢, > 2. Then we obtain that

{Pic (AL (X)DZ®*®Z2Z f d+e=c,=0mod?2

. 0y ~
Pic (M(2, L, ¢,)°) = Pic (Alb (X)) ® Z.2 otherwise .

4. Pic (M(r, ¢y, cy)) in the case where g =0
4.1. We shall next treat the case that g = 0. We shall first prove analogous

statements as in Proposition 1.3 and Lemma 1.4.

Proposition 4.1. (1) For an integer d with 0 < d < r, there is a p-semi-stable
sheaf E of rank r with ¢,(E) = df and c,(E) = c, if and only if ¢, > max {r — d, d}.

(2) Under the condition in (1), there is a stable sheaf E of rank r with
¢,(E) =df and c,(E) = ¢, unless djr = c,/r = 1/2.
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Proof. (1) For torsion free sheaves F;, F, such that F,, = @,?l'l‘(,,,, i=
1, 2, the Serre duality implies that Ext®(F,, F,) = Hom (F,, F;(Kx))" = 0. Let
E be a p-semi-stable sheaf of rank r with ¢ (E)=df and c,(E)=c,. Then
Hom (Ox(f), E) = Hom (E, Oy) = 0. Hence y(Ox(f), E)=d — ¢, <0 and y(E, Oy)
=r—c, —d <0. Therefore ¢, > max {d, r — d}, in particular A(E) = c,/r > 1/2.

Conversely we assume that ¢, > max {d,r —d}. We shall use the quot-
scheme Q* and the notation in Proposition 1.3. Then it is sufficient to prove
that dim Ext;} , (E, E) > 0, where E is a torsion free sheaf of rank r with ¢, (E) = df
and c¢,(E) = ¢, which is not p-semi-stable, and F:0c F, c F,c---cF,=E is
the Harder-Narasimhan filtration of E. Since (1.6) holds for any g, we obtain
that dim Ext; . (E, E) = — ) ;;x(E;, E;), where E; = gr,(E). Thus we shall show
that —),.; x(E;, Ej) > 0. By the proof of (1.6), —x(E;, E;) = dim Ext' (E;, E;) > 0.
Therefore it is sufficient to show that y(E;, E;) # 0 for some i and j. We assume
that —y(E,, E,) =rrd,/r; —dy/r,+ e, /r; + e/r,—1=0. Then e,/r, + er,;<
1. Thus e,;/r; < 1/2 or e,/r, < 1/2. We shall treat the case that e,/r, < 1/2. The
other case is similar. We note that

4.1) "12(1 —2e,/ry) = x(E,, Ey)
= x(E,, E) — Z X(Equ)

ji>1

=rr(d/r—cy/r —di/ry — e /r, + 1) — .Zl x(Ey, Ej)-
Jj>

If dfr — cyfr —dy/ry — e /ry + 1 <0, then we get 0 <ri(l —2e,/r)) < —Y ;1 x(Ey,
E;). So it is sufficient to show that d/r —c,/r —d,/r, —e;/r; + 1 <0. By our
assumption, d/r —c,/r <0. Thus we shall prove that —d,/r, —e,/r; +1<0.
Since F is the Harder-Narasimhan filtration of E with respect to u-semi-stability,
dy >rd/r>0. Ifd, >r,, then —d,/r, —e,/r; + 1 <0 follows from e; > 0 (the
Bogomolov-Gieseker inequality). If 0 <d, <r,, then the necessary condition for
u-semi-stable sheaves (which was showed in the first paragraph of this proof)
implies that e; > max {r, —d,,d,}. Therefore —d,/r, —e;/r; +1<0ford>0.

(2) Let E be a pu-semi-stable sheaf. Let F:0c F,cF,c---cF,=E be
the Harder-Narasimhan filtration or a Jordan-Holder filtration of E. Then
—x(E;, Ej) = rirj{e/r; + ¢;/r; — 1).  Since d,/r; = d/r # 0, (1) implies that e;/r; > 1/2.
We shall first assume that d/r # 1/2. Since e;/r; > 1/2, we get e;/r; — 1/2 > 1/2r;.
Thus —y(E;, E;) > (r; + r;)/2. Since d/r #0, 1/2, we see that r >3 and hence
=Y i<jx(E;, E})>r/2>3/2. We next assume that d/r = 1/2. Then r; = 2d; for
1 <i<s. Since ¢,/r > 1/2, there is an integer i such that e;/r; > 1/2. Since
r, is even, e;/r, > 1/2 + 1/r,. Hence —y(E,; E;) = —x(E;, E;) >r; > 2. Therefore,
there is a stable sheaf.

Remark 4.1. Let Q be the scheme in Lemma 1.4. Then the above proof
also implies that codim (Q\Q®) > 2.

Remark 4.2. By using the same method as in Proposition 4.1(1), we get
that dim Ext} , (E,E) = —) ,<;x(E;, E)) >0 for the case that ¢,(E)=0 and
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¢,(E) > 0, where F is the Harder-Narasimhan filtration of E with respect to
u-semi-stability.

Lemma 4.2. Let Q, and Q° be open subschemes of the quot-scheme Q*
in the proof of Proposition 1.3.  Assume that 0 <d<r and cy/r > 1/2. Then
codim (Q,\Q°) =1 if and only if c,=r—d or c, =d.

Proof. By the proof of Proposition 4.1, it is sufficient to consider
—Yi<;x(E;, Ej) associated with the Harder-Narasimhan filtration of E with
respect to u-semi-stability. (i) If e,/r;, e,/r,> 1/2, then it is easy to see that
—x(E\, E) > rdy —ryd;>0. Thus =Y, ;x(E, Ej) >2.

(i) Assume that e,/r, < 1/2 or ey/r,<1/2. We shall treat the case that
e,/r; < 1/2. The other case is similar. We first treat the case that e,/r; = 1/2.
By (4.1), =Y s, 1(E\, Ej)) =rr(cy/r —djr +d,/ry + e,/r, —1). We shall show
that rir(cy/r —dfr+dy/ry +e/rpy —1)>2. If d, >r,, then ryr(d /ry + e /r; —
1)>re, > 2. Since ¢,/r — d/r > 0 (Proposition 4.1(1)), we obtain that ryr(c,/r —
dir +d,/r, + e Jr, —1)>2. If 0<d, <ry, then 1)2=e,/r; > max {l —d,/r,
d,/ri}. Hence d,/r, =1/2, in particular r; > 1. Since 1/2=d,/r; >d/r and
c,/r > 1 —dJr, we get c,/r > d/r, and hence r,r(c,/r — d/r) =r(c; —d) = 2. Thus
rir(cy/r — dfr +dy/r; + e /r; — 1) > 2. Therefore we obtain that Y ., x(E,, E;) >
2.

We next treat the case that e;/r, < 1/2. Assume that —Y . ;x(E; E;) = 1.
By the proof of Proposition 4.1, we get 0 <r(1 — 2e,/r;) < —Y ;o x(E, Ej) <
=Y ;ix(E, Ej)y=1. Hence ri(l —2e,/r))=1, rir(d/r —c,/r —d,[r; —ey/ri + 1) =
0 and —Y,<;<;x2(E;, E;) = 0, which imply that r, =1, e, =0,d, =1 and ¢, = d.
Since F,/F, c F;/F, «--- < F,/F, = E/F, is the Harder-Narasimhan filtration of
E/F,, if s > 2, then by the proof of Proposition 4.1 and Remark 4.2, we see that
—Y 1 <i<jx(E, E)>0. Hence s =2. Thus the Harder-Narasimhan filtration of
E is
4.2) 0c Oyf)<E.

Conversely, if r, ¢; and ¢, satisfy the above condition, then we can easily show
that codim (Q*\Q®) = 1 (in the case where ¢, = d, a general member of codimen-
sion 1 components is a quotient Oy(—m)®N — E such that the Harder-Narasimhan
filtration of E is (4.2).)

Proposition 4.3. There is a stable sheaf E of rank r > 2 with ¢,(E) =0 and
c,(E)=c, if and only if ¢, > r.

Proof. Let E be a stable sheaf of rank r with ¢,(E) =0 and c,(E) = c,.
Since H(X, E) = 0, we get 0 > y(E) = r — c¢,. Conversely, we assume that ¢, > r.
We shall use the same method as in the proof of Proposition 4.1. Let F:0c
F, ¢ F, «--- < F, = E be the Harder-Narasimhan filtration of a torsion free sheaf
E of rank r with ¢,(E) =0 and c¢,(E) = ¢, with respect to u-semi-stability. If
e, /ry >1/2 and eyr,>1/2, then —x(E,, E,) = rird,/ry — dyry + e /ry + eyfry —
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1) > 2. Hence we assume that e,/r;, < 1/2 or e/r, < 1/2. We may assume that
e,/ry < 1/2 (the other case is similar). Then we see that 0 <rZ(l — 2e,/r,) =
rr(dfr —dyfry —efr — ey fry + 1) = Yo x(Ey, Ej).  Since rr(d/r —d,/r,) = —rd, <
—2 and e/r > 1, we obtain that —) ;. x(E,, E;) > 2. Therefore, there is a u-
semi-stable sheaf E. Let F:0c F, c F, = --- = F, = E be the Harder-Narasimhan
filtration or a Jordan-Holder filtration of E with respect to semi-stability or
stability respectively. Then r? < —Zj>lx(E1,Ej). Therefore there is a stable
sheaf.

Remark 4.3. By the proof of this proposition, we can easily show that
—Yi<jx(E,E)=1ifand only if i) s=2,r,=1,e,=0and e=r, or (i) r=e =
2 and r; = e; = 1. Thus the Harder-Narasimhan filtration of E is 0 « Oy = E.

Definition 4.1. For a pair (r, u) € H°(X, Q) x H*(X, Q) with 0 <degpu <1,
we set

o(r, ) :=|degu —1/2| + 1/2.

This definition is similar to the definition of d(r, u) in [D-L]. Then we
obtain similar result as in [DI1].

Theorem 4.4. We assume that 0 <degc,/r <1 and c,/r > 1/2. Then

Z2%  for c,/r = 6(r,c,/r),

Pic (M(r, ¢y, c5)) = {Z®3 for cy/r > 8(r, ¢ /r).

Proof. We first assume that c,/r > 6(r, ¢, /r). Then, in the same way as in
the proof of Lemma 3.4, we obtain that codim (P,\Pj) > 2 for c¢; =c¢, + rnf,
n> 0. Hence the proof is the same as that in Proposition 3.12. We next
assume that c,/r = é(r, ¢;/r). We shall use the quot scheme Q, and the notation
in Lemma 34 for ¢; =c, + rnf, n>0. By virtue of the above propositions,
PicPL™ (%) = Pic (M(r, ¢}, ¢,)) = Pic (M(r, c;, c,)) even if codim (Q$\Q%) = 1,
(we use [D-N, Theorem 2.3] and the proof of [D-N, Prposition 4.17). For
simplicity, we set Qj:= Q,(0) and T;:= T(0)°. By our choice of n, Q%=
{yeQ¥|R'n, & =0}. Lemma 3.1 implies that Pic??™ (Q%) = PicP5™ (Q¥) =
Pic (M(r, ¢y, c,)). We get the following commutative diagram.

PicPGL™ (0%) —— 5 PjcPOLM (T39)

4.3)

Pic (M(r, ¢y, ¢3)) — Pic (P5’)

Since PicP¢H“M(Q%) — PicPeLM™ (Ts%) is injective, Pic (M(r, ¢y, c,)) — Pic (P) is also
injective. Then in the same way as in Proposition 3.14, we can prove that
Pic (M(r, c,, c,)) is generated by the image of : K(r, ¢, ¢;) = Pic (M(r, ¢y, ¢;)).
For simplicity, we set 4 := &[ —nf]p,.x. We denote the codimension 1 compo-
nent of 0;\Q% by D. If r/2 < d <, then ky(—Ox(—f)) = (det pp, %[ —f1)" is the
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divisor Op (D). In fact, by (4.2) and the Riemann-Roch theorem, we get that
D < {yeQy|H'X.%(~f) #0} = {yeQy|H'(X.%,(—f))#0}. Since H*(X,
%,(—f)) =0, the base change theorem implies that det(R'py,,9[—f1) is a
multiple of 0y (D). Since py,,%[—f]=0 and —Ox(—f) is a primitive element
of K(r,cy,cy), we get g (D)= ky(—Ox(—f)). Therefore, we obtain that
Pic (M(r, ¢y, ¢,)) = K(r, ¢y, ¢;)/Z0Oy(—f) = Z®*. For an integer d with 0 <d <
r/2, we see that 0y (D) = det (—pg,(¥, Op,«x))- By the relative duality, we get
det (—po, (¥, Op,«x)) = det (pg,(9[Kx])). Hence Pic (M(r, ¢, c;)) = K(r, ¢y, c3)/
ZKy ~7%% 1If d=0, then in the same way as above, we see that 0o,(D) =

ky(—Oy) and Pic (M(r, c,, c;)) = 792
Remark 4.4. If ¢,/r = 1/2, then the following holds.

P!, r=2,
0, otherwise .

M(r, r/2f, r/2) = {

In fact M(2, 1/2f, 1/2) is a smooth projective unirational curve. Hence M(2, 1/2f,
1/2) = P'. In the notation of Lemma 1.4, we see that Q is irreducible (cf. Remark
1.6) and codim (Q\Q®) = 0, and hence we get M(r, r/2f,r/2) = 0.

5. Appendix
5.1. We shall slightly generalize Theorem O0.1.

Proposition 5.1. Let H be an ample divisor such that (Ky + f, H) <0. Then
Pic (MH(rv €1, CZ)) = Pic (M(rv C1» CZ))'

Proof. (1) We shall first show that W, := My(r, ¢, c;)\M(r, c;.c,) is at
least of codimension 2. Let [ be a fibre of = and E an element of W,. Since
the locus of E such that E is not locally free on a neighborhood of [ is at least
of codimension 2, we may assume that E is locally free on a neighborhood of
I. Since (Ky + I, H) <0, we see that Ext? (E, E(—I)) = Hom (E, E(l + Ky))" = 0.
Hence the restriction map: Ext' (E, E) - Ext! (E,, E;) is surjective. By Remark
1.2, if Ejp-ipy = O, then the Harder-Narasimhan filtration, or a Jordan-Holder
filtration of E with respect to Cy + nf, n>» ¢,:0c F, = F, = -+ = F, = E satisfies
that (¢ (F;), f)=0, 1 <i<s Then we get that (u(F,), Cy) > (u(E), C;) and if
(u(Fy), Co) = (U(E), Cp), then yx(F,)/rk (F,) = x(E)/rk (E). Then it is easy to see
that E is not stable with respect to H. Therefore E .-, & 02, We set W :=
{Ee W\|E, =~ O(1)® O(—1)® 02"~ »}. Applying deformation theory to E;, we
get that W,\W? is at least of codimension 2 in My(r, c,,c,). Hence we shall
compute codim WP. For an element E of W), there is a filtration F:0 c F,
F, c Fy = E such that (i) E,:= F;/F,_, are torsion free for 1 <i <3, and (ii)
Elpio = Opin(1) Egpporgy = 02002 and  Ejpoig = Op-sy(—1). We call  this
filtration the Harder-Narasimhan filtration of E with respect to f. By (ii), we
get Ext? (E;, E;) = 0 for j > i, and hence Ext? _ (E, E)=0. By using [D-L, Prop-
osition 1.3, 1.5, and 1.7], we see that
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codim W = max dim Ext} , (E, E)
E

> max {— i (—1)" dim Ext}. , (E, E)}
E i=0

= max {— Y x(E, Ej)} ,
E

i<j

where E runs over all elements of W and F is the Harder-Narasimhan filtration
of E with respect to f. By using (ii), we see that Ext* (E;, E;,,;) =0 for k # 1.
Hence —x(E;, E;+) = 0. We shall show that —y(E,, E;) > 2. We set ¢,(E;) —
ci(Ey)= —2Cy + of and H =mCy + nf, where a, m, neZ. Since E is stable
with respect to H, (—2C, + af, H) > 0. Combining this and (Ky + f, H) <0, we
obtain that e+ 1— (2 —29) <2n/m<2e+a. Thus a+e>2g. By using the
Riemann-Roch theorem, we get that —y(E,,E;)>a+e+1—g>g+1>2.
Therefore codim WP > 2.

(2) We shall next show that the codimension of W, := M(r, ¢;, c,)\My(r, ¢,,
¢,) is at least 2. Let E be an element of W,. Then Ext?(E, E(—C,)) =~
Hom (E, E(Cy + K4))¥ =0. In the same way as in the proof of (1), we may
assume that E is locally free on a neighborhood of C,. Then the restriction
map: Ext! (E, E) » Ext' (E¢,, E¢,) is surjective. Let F:0c F, c--c F,_; c F, =
E be the Harder-Narasimhan filtration or a Jordan-Holder filtration of E
with respect to H. Then (F,f)<0 for 1 <i<s and (F, f) <0 for some
j. (Kx+ f,H) <0 implies that n >0 and that if e> 1, then n>m. Since
(u(F), H) > (u(E), H) = (u(E), mCyo), we get  (u(Fj), mCo) > (u(E), mCo). Thus
deg (u(Fjc,)) > deg (u(E c,)), moreover if e > 1 then deg (u(Fjc,)) > deg (u(E\c,)) +
1/rk (F;). Applying deformation theory to E,, we see that

codim (W,) > dim Ext; , (E,, Ec,)
> rk (F)) rk (E){deg (u(F;c,)) — deg (u(Ec,))} +9 — 1.

Therefore if codim (W,) =1, then g=1, e<0, s=2 and rk (E)deg(Fc,) —
rk (F;)deg (Ec,) = 1. We set gr(E) = E;, i = 1, 2. Then —y(E, E;) =
tk (E,) tk (E)(A(E,) + A(E)) — (W(E)) — w(E2)Y/2 — (Ky, p(Ey) — W(E,))2).
By the Bogomolov-Gieseker inequality, we get 4(E;) > 0. Since Ky = —2C, —
ef in NS(X) and e < O, (Ky, p(Ey) — u(Ey)) = (—2Co, p(E,) — u(Ey)) =

2/tk (E;) 1k (E,). It is easy to see that ((u(E,)— wu(E,))*) <0. Therefore
—x(E;, E;) > 2. Hence we obtain that codim W, > 2.
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